TY - JOUR A1 - Wolf, Karen A1 - Braun, Attila A1 - Haining, Elizabeth J. A1 - Tseng, Yu-Lun A1 - Kraft, Peter A1 - Schuhmann, Michael K. A1 - Gotru, Sanjeev K. A1 - Chen, Wenchun A1 - Hermanns, Heike M. A1 - Stoll, Guido A1 - Lesch, Klaus-Peter A1 - Nieswandt, Bernhard T1 - Partially Defective Store Operated Calcium Entry and Hem(ITAM) Signaling in Platelets of Serotonin Transporter Deficient Mice JF - PLoS One N2 - Background Serotonin (5-hydroxytryptamin, 5-HT) is an indolamine platelet agonist, biochemically derived from tryptophan. 5-HT is secreted from the enterochromaffin cells into the gastrointestinal tract and blood. Blood 5-HT has been proposed to regulate hemostasis by acting as a vasoconstrictor and by triggering platelet signaling through 5-HT receptor 2A (5HTR2A). Although platelets do not synthetize 5-HT, they take 5-HT up from the blood and store it in their dense granules which are secreted upon platelet activation. Objective To identify the molecular composite of the 5-HT uptake system in platelets and elucidate the role of platelet released 5-HT in thrombosis and ischemic stroke. Methods: 5-HT transporter knockout mice (5Htt\(^{-/-}\)) were analyzed in different in vitro and in vivo assays and in a model of ischemic stroke. Results In 5Htt\(^{-/-}\) platelets, 5-HT uptake from the blood was completely abolished and agonist-induced Ca2+ influx through store operated Ca\(^{2+}\) entry (SOCE), integrin activation, degranulation and aggregation responses to glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2) were reduced. These observed in vitro defects in 5Htt\(^{-/-}\) platelets could be normalized by the addition of exogenous 5-HT. Moreover, reduced 5-HT levels in the plasma, an increased bleeding time and the formation of unstable thrombi were observed ex vivo under flow and in vivo in the abdominal aorta and carotid artery of 5Htt\(^{-/-}\) mice. Surprisingly, in the transient middle cerebral artery occlusion (tMCAO) model of ischemic stroke 5Htt\(^{-/-}\) mice showed nearly normal infarct volume and the neurological outcome was comparable to control mice. Conclusion Although secreted platelet 5-HT does not appear to play a crucial role in the development of reperfusion injury after stroke, it is essential to amplify the second phase of platelet activation through SOCE and plays an important role in thrombus stabilization. KW - platelets KW - serotonin KW - integrins KW - blood flow KW - collagens KW - platelet activation KW - platelet aggregation KW - ischemic stroke Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146399 VL - 11 IS - 1 ER - TY - JOUR A1 - Ammar, Mohamed Raafet A1 - Thahouly, Tamou A1 - Hanauer, André A1 - Stegner, David A1 - Nieswandt, Bernhard A1 - Vitale, Nicolas T1 - PLD1 participates in BDNF-induced signalling in cortical neurons JF - Scientific Reports N2 - The brain-derived neurotrophic factor BDNF plays a critical role in neuronal development and the induction of L-LTP at glutamatergic synapses in several brain regions. However, the cellular and molecular mechanisms underlying these BDNF effects have not been firmly established. Using in vitro cultures of cortical neurons from knockout mice for Pld1 and Rsk2, BDNF was observed to induce a rapid RSK2-dependent activation of PLD and to stimulate BDNF ERK1/2-CREB and mTor-S6K signalling pathways, but these effects were greatly reduced in Pld1\(^{-/-}\) neurons. Furthermore, phospho-CREB did not accumulate in the nucleus, whereas overexpression of PLD1 amplified the BDNF-dependent nuclear recruitment of phospho-ERK1/2 and phospho-CREB. This BDNF retrograde signalling was prevented in cells silenced for the scaffolding protein PEA15, a protein which complexes with PLD1, ERK1/2, and RSK2 after BDNF treatment. Finally PLD1, ERK1/2, and RSK2 partially colocalized on endosomal structures, suggesting that these proteins are part of the molecular module responsible for BDNF signalling in cortical neurons. KW - phospholipase D KW - ERK map kinease KW - long-term potentation KW - brain KW - protein RSK2 KW - dendritic growth KW - neurite outgrowth KW - neurotrophic factor KW - coffin-lowry-syndrome KW - phosphatidic acid Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-139962 VL - 5 IS - 14778 ER - TY - JOUR A1 - Pfeiffer, Verena A1 - Götz, Rudolf A1 - Xiang, Chaomei A1 - Camarero, Guadelupe A1 - Braun, Attila A1 - Zhang, Yina A1 - Blum, Robert A1 - Heinsen, Helmut A1 - Nieswandt, Bernhard A1 - Rapp, Ulf R. T1 - Ablation of BRaf Impairs Neuronal Differentiation in the Postnatal Hippocampus and Cerebellum JF - PLoS ONE N2 - This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures. KW - granule cells KW - hippocampus KW - neurons KW - neuronal dendrites KW - embryos KW - dentate gyrus KW - neuronal differentiation KW - cerebellum Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130304 VL - 8 IS - 3 ER - TY - JOUR A1 - Nieswandt, Bernhard A1 - Morowski, Martina A1 - Brachs, Sebastian A1 - Mielenz, Dirk A1 - Dütting, Sebastian T1 - The Adaptor Protein Swiprosin-1/EFhd2 Is Dispensable for Platelet Function in Mice N2 - Background Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity, but may also cause pathological vessel occlusion. Reorganizations of the platelet cytoskeleton and agonist-induced intracellular Ca2+-mobilization are crucial for platelet hemostatic function. EF-hand domain containing 2 (EFhd2, Swiprosin-1) is a Ca2+-binding cytoskeletal adaptor protein involved in actin remodeling in different cell types, but its function in platelets is unknown. Objective Based on the described functions of EFhd2 in immune cells, we tested the hypothesis that EFhd2 is a crucial adaptor protein for platelet function acting as a regulator of Ca2+-mobilization and cytoskeletal rearrangements. Methods and Results We generated EFhd2-deficient mice and analyzed their platelets in vitro and in vivo. Efhd2-/- mice displayed normal platelet count and size, exhibited an unaltered in vivo life span and showed normal Ca2+-mobilization and activation/aggregation responses to classic agonists. Interestingly, upon stimulation of the immunoreceptor tyrosine-based activation motif-coupled receptor glycoprotein (GP) VI, Efhd2-/- platelets showed a slightly increased coagulant activity. Furthermore, absence of EFhd2 had no significant impact on integrin-mediated clot retraction, actomyosin rearrangements and spreading of activated platelets on fibrinogen. In vivo EFhd2-deficiency resulted in unaltered hemostatic function and unaffected arterial thrombus formation. Conclusion These results show that EFhd2 is not essential for platelet function in mice indicating that other cytoskeletal adaptors may functionally compensate its loss. KW - adaptor protein Swiprosin-1/EFhd2 KW - platelets KW - platelet activation KW - platelet aggregation KW - cytoskeleton KW - thrombin KW - blood KW - actins KW - collagens Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113316 ER - TY - JOUR A1 - Balkenhol, Johannes A1 - Kaltdorf, Kristin V. A1 - Mammadova-Bach, Elmina A1 - Braun, Attila A1 - Nieswandt, Bernhard A1 - Dittrich, Marcus A1 - Dandekar, Thomas T1 - Comparison of the central human and mouse platelet signaling cascade by systems biological analysis JF - BMC Genomics N2 - Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences. KW - interspecies comparison KW - transcriptome KW - proteome KW - platelet KW - network KW - signaling KW - mouse KW - human KW - interactome KW - cascade Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230377 VL - 21 ER - TY - JOUR A1 - Chillo, Omary A1 - Kleinert, Eike Christian A1 - Lautz, Thomas A1 - Lasch, Manuel A1 - Pagel, Judith-Irina A1 - Heun, Yvonn A1 - Troidl, Kerstin A1 - Fischer, Silvia A1 - Caballero-Martinez, Amelia A1 - Mauer, Annika A1 - Kurz, Angela R. M. A1 - Assmann, Gerald A1 - Rehberg, Markus A1 - Kanse, Sandip M. A1 - Nieswandt, Bernhard A1 - Walzog, Barbara A1 - Reichel, Christoph A. A1 - Mannell, Hanna A1 - Preissner, Klaus T. A1 - Deindl, Elisabeth T1 - Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function JF - Cell Reports N2 - The body has the capacity to compensate for an occluded artery by creating a natural bypass upon increased fluid shear stress. How this mechanical force is translated into collateral artery growth (arteriogenesis) is unresolved. We show that extravasation of neutrophils mediated by the platelet receptor GPIbα and uPA results in Nox2-derived reactive oxygen radicals, which activate perivascular mast cells. These c-kit+/CXCR-4+ cells stimulate arteriogenesis by recruiting additional neutrophils as well as growth-promoting monocytes and T cells. Additionally, mast cells may directly contribute to vascular remodeling and vascular cell proliferation through increased MMP activity and by supplying growth-promoting factors. Boosting mast cell recruitment and activation effectively promotes arteriogenesis, thereby protecting tissue from severe ischemic damage. We thus find that perivascular mast cells are central regulators of shear stress-induced arteriogenesis by orchestrating leukocyte function and growth factor/cytokine release, thus providing a therapeutic target for treatment of vascular occlusive diseases. KW - Mast cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164800 VL - 16 IS - 8 ER - TY - JOUR A1 - Stritt, Simon A1 - Nurden, Paquita A1 - Favier, Remi A1 - Favier, Marie A1 - Ferioli, Silvia A1 - Gotru, Sanjeev K. A1 - van Eeuwijk, Judith M.M. A1 - Schulze, Harald A1 - Nurden, Alan T. A1 - Lambert, Michele P. A1 - Turro, Ernest A1 - Burger-Stritt, Stephanie A1 - Matsushita, Masayuki A1 - Mittermeier, Lorenz A1 - Ballerini, Paola A1 - Zierler, Susanna A1 - Laffan, Michael A. A1 - Chubanov, Vladimir A1 - Gudermann, Thomas A1 - Nieswandt, Bernhard A1 - Braun, Attila T1 - Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg\(^{2+}\) homeostasis and cytoskeletal architecture JF - Nature Communications N2 - Mg\(^{2+}\) plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg\(^{2+}\)]i in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic α-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7\(^{fl/fl-Pf4Cre}\)) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7\(^{fl/fl-Pf4Cre}\) MKs, which is rescued by Mg\(^{2+}\) supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice. KW - Cytoskeleton KW - homeostasisIon channels KW - thrombopoiesis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173843 VL - 7 ER - TY - JOUR A1 - Navarro, Stefano A1 - Stegner, David A1 - Nieswandt, Bernhard A1 - Heemskerk, Johan W. M. A1 - Kuijpers, Marijke J. E. T1 - Temporal roles of platelet and coagulation pathways in collagen- and tissue factor-induced thrombus formation JF - International Journal of Molecular Sciences N2 - In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process. KW - coagulation KW - fibrin KW - glycoprotein VI KW - platelet receptors KW - spatiotemporal thrombus KW - thrombin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284219 SN - 1422-0067 VL - 23 IS - 1 ER - TY - JOUR A1 - Schanbacher, Constanze A1 - Bieber, Michael A1 - Reinders, Yvonne A1 - Cherpokova, Deya A1 - Teichert, Christina A1 - Nieswandt, Bernhard A1 - Sickmann, Albert A1 - Kleinschnitz, Christoph A1 - Langhauser, Friederike A1 - Lorenz, Kristina T1 - ERK1/2 activity is critical for the outcome of ischemic stroke JF - International Journal of Molecular Sciences N2 - Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood–brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke. KW - ERK1/2 KW - tMCAO KW - ischemic stroke KW - RKIP Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283991 SN - 1422-0067 VL - 23 IS - 2 ER - TY - JOUR A1 - Viera, Jonathan Trujillo A1 - El-Merahbi, Rabih A1 - Nieswandt, Bernhard A1 - Stegner, David A1 - Sumara, Grzegorz T1 - Phospholipases D1 and D2 Suppress Appetite and Protect against Overweight JF - PLoS ONE N2 - Obesity is a major risk factor predisposing to the development of peripheral insulin resistance and type 2 diabetes (T2D). Elevated food intake and/or decreased energy expenditure promotes body weight gain and acquisition of adipose tissue. Number of studies implicated phospholipase D (PLD) enzymes and their product, phosphatidic acid (PA), in regulation of signaling cascades controlling energy intake, energy dissipation and metabolic homeostasis. However, the impact of PLD enzymes on regulation of metabolism has not been directly determined so far. In this study we utilized mice deficient for two major PLD isoforms, PLD1 and PLD2, to assess the impact of these enzymes on regulation of metabolic homeostasis. We showed that mice lacking PLD1 or PLD2 consume more food than corresponding control animals. Moreover, mice deficient for PLD2, but not PLD1, present reduced energy expenditure. In addition, deletion of either of the PLD enzymes resulted in development of elevated body weight and increased adipose tissue content in aged animals. Consistent with the fact that elevated content of adipose tissue predisposes to the development of hyperlipidemia and insulin resistance, characteristic for the pre-diabetic state, we observed that Pld1\(^{-/-}\) and Pld2\(^{-/-}\) mice present elevated free fatty acids (FFA) levels and are insulin as well as glucose intolerant. In conclusion, our data suggest that deficiency of PLD1 or PLD2 activity promotes development of overweight and diabetes. KW - enzyme regulation KW - insulin resistance KW - body weight KW - mouse models KW - bioenergetics KW - insulin KW - hypothalamus KW - adipose tissue Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-179729 VL - 11 IS - 6 ER -