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Abstract

Data mining has proved its significance in various domains and applications. As an im-
portant subfield of the general data mining task, subgroup mining can be used, e.g., for
marketing purposes in business domains, or for quality profiling and analysis in medical
domains. The goal is to efficiently discover novel, potentially useful and ultimately inter-
esting knowledge. However, in real-world situations these requirements often cannot be
fulfilled, e.g., if the applied methods do not scale for large data sets, if too many results are
presented to the user, or if many of the discovered patterns are already known to the user.
This thesis proposes a combination of several techniques in order to cope with the sketched
problems: We discuss automatic methods, including heuristic and exhaustive approaches,
and especially present the novel SD-Map algorithm for exhaustive subgroup discovery
that is fast and effective. For an interactive approach we describe techniques for sub-
group introspection and analysis, and we present advanced visualization methods, e.g., the
zoomtable that directly shows the most important parameters of a subgroup and that can
be used for optimization and exploration. We also describe various visualizations for sub-
group comparison and evaluation in order to support the user during these essential steps.
Furthermore, we propose to include possibly available background knowledge that is easy
to formalize into the mining process. We can utilize the knowledge in many ways: To fo-
cus the search process, to restrict the search space, and ultimately to increase the efficiency
of the discovery method. We especially present background knowledge to be applied for
filtering the elements of the problem domain, for constructing abstractions, for aggregating
values of attributes, and for the post-processing of the discovered set of patterns. Finally,
the techniques are combined into a knowledge-intensive process supporting both automatic
and interactive methods for subgroup mining. The practical significance of the proposed
approach strongly depends on the available tools. We introduce the VIKAMINE system
as a highly-integrated environment for knowledge-intensive active subgroup mining.
Also, we present an evaluation consisting of two parts: With respect to objective evaluation
criteria, i.e., comparing the efficiency and the effectiveness of the subgroup discovery
methods, we provide an experimental evaluation using generated data. For that task we
present a novel data generator that allows a simple and intuitive specification of the data
characteristics. The results of the experimental evaluation indicate that the novel SD-Map
method outperforms the other described algorithms using data sets similar to the intended
application concerning the efficiency, and also with respect to precision and recall for the
heuristic methods. Subjective evaluation criteria include the user acceptance, the benefit of
the approach, and the interestingness of the results. We present five case studies utilizing
the presented techniques: The approach has been successfully implemented in medical
and technical applications using real-world data sets. The method was very well accepted
by the users that were able to discover novel, useful, and interesting knowledge.
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Introduction





1 Motivation

1.1 Research Goal and Context

Nowadays, computer-based systems are applied in almost any aspect of everyday life. In
various domains of business or science huge volumes of data are acquired: In business
domains such as e-commerce, in technical domains (e.g., call-center support), or in the
medical domain (e.g., clinical information systems). After the data has been collected it is
potentially available for data analysis. Then, the results can be utilized, for market analy-
sis, improving customer service, or for decision support in general (c.f., [23,31,76,89]). In
order to analyze the data and to discover new and interesting knowledge, methods from the
area of data mining or, more generally, from the area of knowledge discovery in databases
(KDD) [42] are applied. Then, KDD techniques are utilized for the computer-aided ex-
traction of novel, potentially useful, and interesting knowledge from (large) databases.
However, in real-world settings novelty and interestingness criteria of the user often can-
not be fully satisfied if purely automatic mining methods are applied. This is often due to
two reasons: If a huge number of data mining results is presented, then this can just over-
whelm the user, and often the results are not really understandable [109]. Even if the user
inspected all the obtained results, then usually very many of them do not describe novel,
interesting and thus potentially useful knowledge (c.f., [43, 60, 139]). This is especially
the case if not all quality criteria can be formalized, i.e., if the quality criteria of the user
cannot be successfully mapped to a quality function to be used by an automatic algorithm.
This general situation can be called a second order problem of data mining, since the
mere volume of data causes a lower quality of the set of extracted patterns. Additionally,
no human expert can directly benefit from such results without using intelligent filtering
techniques. In such cases, the understandability and transparency of the results needs to be
increased. Furthermore, sometimes the really interesting results cannot even be identified
if they are suppressed by a mass of results with a lower quality.
While similar problems exist for the results obtained by a query to a web search engine
that retrieves millions of search results, the query engine is usually able to generate quite
an acceptable ranking using prior information. Link information or ratings of web pages
could be included into the ranking function, or terms that are provided in the query could be
excluded or they could be assigned a higher weight. However, it is often still problematic to
include the subjective views of the user, as those are usually hard to formalize. In general,
the ranking function utilized by the search engine cannot assess what the individual user
wants without including interactive and user-centered approaches.
These observations are valid for the general data mining problem discussed above as well,
if the discovered patterns are ranked by a given quality function: Such a mechanism is
also used in subgroup mining – an important subfield of the general KDD task – that is
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the focus of this work: Subgroup mining is a powerful and broadly applicable technique
aiming at discovering ’interesting’ subgroups that describe easily interpretable and appli-
cable subgroup patterns of interest; the interestingness of a subgroup can be formalized
flexibly by a user-defined quality function. If the user does not have a clear notion of what
is interesting, then automatic methods are at a clear disadvantage compared to interactive
methods. However, applying purely interactive approaches is often intractable for large
search spaces. Using exhaustive (automatic) approaches that discover all of the interesting
patterns can be difficult as well due to efficiency reasons. The main focus of this work is
to present techniques to cope with the described situations, and to provide an improved
subgroup mining approach, by considering the following strategies:
• Algorithms: Improved subgroup discovery methods should be able to discover most

of the interesting patterns. In the best case, exhaustive methods can be applied that
are guaranteed to find all the interesting patterns. For such exhaustive methods, the
discovery step needs to be performed efficiently. Often exhaustive methods can be
applied if the search space can be constrained significantly.

• Exploiting background knowledge: The discovery results can often be improved
significantly if the user is able to integrate existing background knowledge into the
mining process. Therefore, we propose to include background knowledge that is
either directly used in the mining process, or can be applied for post-processing.

• Introspection and analysis: We propose introspective methods that provide ’larger
views’ of the patterns and provide techniques for their detailed analysis, e.g., to
identify confounding variables. These approaches can then provide further insights
concerning the structure and characteristics of the discovered patterns.

• Visual methods: Visualization techniques are essential to guide the user in a semi-
automatic approach for knowledge discovery, but can also be utilized for post-
processing and evaluation. Appropriate visualizations can include the implicit know-
ledge of the user in addition to explicitly formalized knowledge.

• Knowledge-intensive active mining: We combine the ideas outlined above in a
knowledge-intensive active process for subgroup mining: The advantages of auto-
matic and interactive methods are merged in a semi-automatic approach: The au-
tomatic methods can be applied to identify useful starting points for analysis or for
a quick test of ad-hoc hypothesis. The results obtained by the mining method can
then be used incrementally in further interactive sessions, or the user can guide the
automatic methods, e.g., by inspecting the intermediate results and by providing
appropriate quality functions that contain the relevant objective criteria.

By utilizing these techniques, we provide subgroup mining methods and a mining pro-
cess that discovers interesting knowledge, i.e., subgroup patterns, effectively and effi-
ciently. The mining approach features active user integration [114], since the interesting-
ness, novelty or usefulness of the mined results can only be finally determined by the user
(e.g., [60]). In the next section we will give an overview of the approach and summarize
the tasks mentioned above.
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1.2 Overview of the Approach

Our focus is on mining interesting subgroups: Subgroup discovery (e.g., [82, 174]) – as
the underlying core technique – is a method for explorative and descriptive data mining
to obtain an overview of the dependencies between a specific target (dependent) variable
and usually many explaining (independent) variables. A subgroup can be defined as a
subset of the target population with a (distributional) unusualness concerning a certain
property we are interested in; e.g., the risk of coronary heart disease (target variable) is
significantly higher in the subgroup of smokers with a positive family history than in the
general population. The unusualness (or interestingness) of a subgroup is formalized by a
user-defined quality function.
As outlined above, we mainly distinguish four strategies in order to improve upon the
sketched second order problem of data mining: Effective and efficient subgroup discovery
algorithms, the application of different types of helpful background knowledge, subgroup
introspection and analysis methods that provide alternative views on subgroups, and sev-
eral visual mining techniques. These approaches are combined in a knowledge-intensive
active mining approach (c.f., Chapter 2, Section 2.3) that includes interactive techniques
but also relies on automatic methods implementing a semi-automatic method.
In the following, we will shortly introduce the proposed techniques for the different tasks
and finally summarize the process for knowledge-intensive active subgroup mining that
contains all the strategies presented in the next sections.

1.2.1 Algorithms for Subgroup Discovery

In the subgroup mining process both heuristic and exhaustive search methods can be ap-
plied. We propose a modification of the PRIM algorithm [47] as an improved heuristic
method that is able to overcome certain limitations of common heuristic approaches. How-
ever, heuristic discovery approaches do not guarantee the discovery of all the (optimal) so-
lutions. For example, if a heuristic method implements a greedy approach or uses certain
pruning heuristics, then whole subspaces of the search space are not considered. Utiliz-
ing exhaustive search methods is often problematic due to the exponential search space
encountered in subgroup discovery (c.f., Section 3.4.1). Therefore, we present a novel ex-
haustive discovery approach, the SD-Map method (c.f., Section 3.4.6), that is nevertheless
effective and efficient and therefore applicable even for larger subproblems.

1.2.2 Exploiting Background Knowledge

In contrast to visualization methods that make use of the implicit background knowledge
of the user, the proposed subgroup mining approach can also utilize explicitly formalized
knowledge. Background knowledge is often essential in ensuring subgroup mining results
that are novel, interesting and potentially useful to the user. We distinguish the following
knowledge classes: (a) Constraint knowledge, e.g., constraints excluding attribute values
or combinations of attributes, (b) ontological knowledge, e.g., weights of attributes or
similarities between attribute values, and (c) abstraction knowledge, i.e., derived attributes.
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The different knowledge classes can be either applied directly in the discovery process or
in the post-processing phase, and some types of knowledge can be utilized in both steps.
Background knowledge is used to restrict the search space by excluding parts of the hy-
pothesis space, and to focus the search, e.g., by specifying the relations that are not interest-
ing. For example, constraints can be used to restrict the search process/space by specifying
the attributes and attribute values of interest. By utilizing ontological knowledge we can
often accomplish an intuitive analogy to the mental model of the user. As a consequence
knowledge acquisition costs often can be reduced. Ontological knowledge, e.g., weights of
attributes denoting their importance, or partial similarities between attribute values, can be
used to derive further constraint knowledge: For example, attribute exclusion constraints
or aggregated values can be constructed using ontological knowledge.
Concerning abstraction knowledge, we can include derived attributes that reduce the search
space and help increase the interpretability of the mined results. Derived attributes are rule-
based abstractions: They are inferred from basic attributes or other derived attributes, and
can be refined incrementally. A derived attribute can combine similar attributes in order to
reduce the search space, and to increase the expressiveness of the discovered patterns thus
improving their interpretability. Furthermore, abstraction knowledge can help to remedy
an especially significant problem for data mining in general, i.e., the missing value prob-
lem. If a dataset contains many missing values, then abstraction knowledge can be used
in order to define or to incrementally tune (new) abstractions that decrease the number of
missing values by interpreting missing values in their respective context.
For a detailed discussion of the individual knowledge elements and their application we
refer to Chapter 4.

1.2.3 Subgroup Introspection and Analysis

The final decision whether knowledge discovery results are novel, interesting and poten-
tially useful has to be made by the domain specialist [60]. Therefore, subgroup evaluation
by the user is essential.
We propose to supplement (interactive) techniques for subgroup evaluation by including
methods for subgroup introspection and analysis. These can provide further insight into
the subgroup structure, and support the user in assessing subjective quality criteria of a
subgroup [50, 53]. Thus, an appropriate (larger) view on a subgroup, given by a set of
characteristic factors of the subgroup or by its typical cases, is often a convenient option.
The introspection and analysis techniques are orthogonal to the common presentation and
integration steps applied in subgroup mining. Similar to the mining results themselves, the
characteristics need to be easily understandable and transparent for the user.
We propose semi-automatic methods for providing alternative views on a subgroup de-
scription and for general analysis of subgroups that are available on demand. The tech-
niques use representations that the user is usually familiar with in order to improve their
acceptance by the user: For example, the user can view a set of typical or extreme cases
exemplifying the subgroup, or inspect a set of statistically characteristic (supporting) sub-
group factors. For subgroup analysis, we also consider the issue of confounding factors
that are related to a subgroup. For more details we refer to Chapter 5.
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1.2.4 Visualization Methods

Visualization methods allow for the direct integration of the user into the mining process
in order to overcome major problems of automatic data mining methods, e.g., the presen-
tation of uninteresting results, lack of acceptance of the discovered findings, or limited
confidence in these. By including the implicit background knowledge of the user, visual-
ization techniques provide the opportunity to perform knowledge discovery effectively.
The Visual Information Seeking Mantra by Shneiderman [146], ’Overview first, zoom and
filter, then details-on-demand’ is an important guideline for visualization approaches. In
an iterative process, the user is able to successively focus on the interesting data elements.
We implement this principle in several visualization techniques (c.f., Section 1.4), e.g., in
a component for visualizing the individual distributions of a set of variables: It provides
an overview, supports visual exploration, and can guide the user in the subgroup mining
process effectively. For this aim, helpful information is displayed using visual annotations.
Furthermore, we propose several techniques for evaluating sets of subgroups which can be
applied for subgroup selection and redundancy management: Then, in a semi-automatic
approach the user can select the relevant and interesting patterns directly. The proposed
visualizations methods are described in Chapter 6 in detail.

1.2.5 Knowledge-Intensive Active Subgroup Mining

We combine the proposed methods in an active mining approach (c.f., [53,114]): It is user-
centered, includes semi-automatic techniques, utilizes visualization methods, and exploits
background knowledge to improve its results. For a detailed discussion of the process we
refer to Chapter 2, Section 2.3 (pp. 19).
Although preprocessing methods are commonly rather important (e.g., [112]), they are not
discussed in the context of this work: There exist a variety of preprocessing techniques
(e.g., [57, Ch. 3] for a survey), however, these are not specific for subgroup mining but for
data mining in general. Several standard toolkits can be applied for data preprocessing,
e.g., the WEKA [173] toolkit. Advanced techniques are e.g., implemented in the Mining-
Mart system [112] that also includes many preprocessing operators to form operator chains
for extended preprocessing. In the context of this work, we usually apply high-quality
data obtained from knowledge-based systems, e.g., documentation and consultation sys-
tems, as described in the case studies in Chapter 9.
In the subgroup mining process the user can either start with specific hypotheses or a set
of subgroup patterns discovered by the automatic methods: In an exploratory fashion the
patterns can be inspected and refined incrementally. In each (further) iteration, a set of
subgroups is obtained, either using automatic or interactive approaches. At each interme-
diate step the user can interact with the discovery process, e.g., by utilizing appropriate
visualization methods or by restarting the automatic methods with modified parameters.
Then, the discovered set of subgroups needs to be evaluated: This step is directly sup-
ported by appropriate analysis and visualization techniques. Also, the applied background
knowledge can be modified and adjusted interactively. In this integrated approach the user
is in control at all stages of the process thus considering the active mining principle.
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1.3 Criteria and Problems of an Evaluation

In the following we will discuss problems and criteria of an evaluation concerning sub-
group mining for descriptive induction. We first compare predictive and descriptive ap-
proaches. After that, we describe an approach for evaluating the effectiveness and effi-
ciency of algorithms for descriptive data mining. Next, we discuss the role of user ac-
ceptance in our mining task. Lastly, we will outline the problem of including subjective
interestingness measures of the user.

1.3.1 Predictive vs. Descriptive Data Mining

Predictive and descriptive data mining approaches are aimed at different tasks: Predic-
tive methods are used to learn models that are subsequently used for classification, i.e.,
predicting a certain class. In contrast, descriptive data mining aims to extract interesting,
understandable and interpretable knowledge in order to discover hidden dependencies and
characteristics of the data. Thus the patterns must be understandable for humans, can be
quite simple, and do not need to fulfill strict accuracy criteria, e.g., used for predictive
methods.
For descriptive methods simplicity is often traded off for accuracy if the user favors sim-
pler patterns due to a better understandability (e.g., [109]). Therefore, applying standard
evaluation procedures known from predictive data mining is problematic for descriptive
and exploratory methods: Usually other criteria besides rule accuracy are more impor-
tant, for example the understandability and the user acceptance of the discovered patterns.
Since the proposed subgroup mining approach is mainly aimed at descriptive mining, we
need to define such evaluation criteria: These correspond to measuring the effectiveness
and the efficiency of a discovery method, which we will discuss in the next section.

1.3.2 Evaluating the Effectiveness and the Efficiency

The evaluation of knowledge-discovery and data mining methods is a general research
problem. Commonly, the following issues are considered:
• The efficiency of an algorithm can be theoretically described using the O–notation

concerning the time and the space complexity of the algorithm; however, constant
factors are then neglected. It is also interesting to see how the time-performance
and memory requirements of a method (and its implementation) scale in a real-
world setting (on a typical computer’s performance), depending on the number of
the applied data samples, e.g., using 1000 instances compared to 10000 instances.

• The effectiveness of a method concerns its accuracy: The accuracy can be deter-
mined by classical measures like precision or recall. As discussed above, this is
problematic for descriptive methods. Additionally, the effectiveness of a method
may concern the fraction of correctly discovered patterns, which is better suited for
descriptive methods. Then, it is very important to control the characteristics of the
data, i.e., the included patterns of interest, in order to estimate the effectiveness.



1.3 Criteria and Problems of an Evaluation 9

We see a general problem when one wants to properly evaluate a data mining method,
because a priori often no data base with appropriate sample data sets is available. At
best, a data base embodies a sufficiently large collection of data sets with varying sizes
and describing data characteristics at different complexity levels. Such a setting would
allow for a complete and representative evaluation of the method. In the past, data sets
were collected from real world applications or were taken from collections of data sets
containing both real and synthetic data, e.g., from the UCI repository [115].
However, existing data sets obtained from the UCI repository as well as samples from
real world applications often lack the reliability when evaluating a particular discovery
method. On the one hand, the efficiency of the method cannot be precisely tested if the
data sets with different sizes do not show equivalent characteristics. On the other hand,
the effectiveness of the method cannot be concisely determined if the patterns contained in
the data sets are not known. Furthermore, the complexity of the included patterns can then
also not be varied transparently. So, it is hard to compare two different data sets, since it
is difficult to compare the complexity of the included patterns.
Salzberg [141] describes a similar problem: It is very difficult to generalize the evalua-
tion results of machine learning methods using a limited collection of data sets with fixed
characteristics. Therefore, we propose the application of synthetic data for an evaluation
of descriptive data mining methods; then, the data characteristics can be controlled, and
data sets with the same characteristics but varying sizes can be generated. Furthermore,
the effectiveness of an algorithm can be tested quite easily if the characteristics of the data,
i.e., the contained patterns are known: If they can be specified in advance, and if it can be
ensured that the characteristics are implemented in the data set in a controllable manner,
then we can compare the effectiveness of different algorithms reliably and concisely.

1.3.3 User Acceptance of the Discovered Patterns

User acceptance is a rather important criterion concerning the discovered patterns: Com-
mon problems include a possible ’information overload’ if too many results are presented
to the user. Also, many patterns that are statistically valid but not meaningful for the user
may be generated by a possible overfitting of purely automatic methods. Furthermore, the
patterns often need to be simple enough with respect to their understandability and action-
ability. Then, it is difficult to evaluate the patterns automatically. Moreover, automatic
black box approaches are often not transparent enough for the user if steps that were per-
formed by the mining method cannot be evaluated and validated. The user might also want
to inspect, modify, and adjust the subgroups during the discovery process. In contrast to an
automatic approach, interactive and user-centered methods can provide such capabilities.
In general, a purely automatic approach is often appropriate if the analysis goals of the
user are fixed during the search process. Otherwise, if the user wants to test specific hy-
potheses or already has a lot of background knowledge and experiences about the specific
domain, then interactive methods can improve the user acceptance and also increase the
transparency of the method. The patterns of interest can then be evaluated by the user di-
rectly. Supporting visualizations should guide the user concerning the given analysis goal,
and the users should be able to perform the discovery and evaluation steps by themselves.
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1.3.4 Including Subjective Interestingness Measures

Discovering interesting knowledge is one of the primary goals of knowledge discovery in
database tasks and therefore also for subgroup mining. There is a variety of objective inter-
estingness measures based on statistical parameters of the discovered patterns, e.g., their
accuracy, or the (syntactical) complexity of the patterns. These interestingness measures
are quite easy to integrate in common mining approaches since the used parameters can be
directly measured. However, often subjective criteria also need to be taken into account,
e.g., the understandability, the unexpectedness, the novelty, the usefulness, and the action-
ability of the discovered patterns. In contrast to objective quality criteria, these parameters
are rather difficult to measure automatically, and so their integration into purely automatic
mining approaches is challenging.
Obviously, subjective interestingness criteria depend on the prior experiences, notions and
knowledge of the user. Thus, a pattern that is interesting to one user might not be inter-
esting to another one with different beliefs or knowledge. Considering and integrating the
subjective measures is therefore critical for the success of the mining task, since the final
decision as to whether knowledge discovery results are novel, interesting and potentially
useful has to be made by the user, e.g., by the domain specialist [60]. If possible, objective
and subjective measures should be combined as needed in order to fulfill the analysis goals
of the user. For example, the discovered patterns can first be presented and ranked accord-
ing to the objective criteria; after that, the user can integrate subjective criteria during a
post-processing phase.

1.4 Results

The presented work describes an approach for knowledge-intensive active subgroup min-
ing. It consists of several elements, i.e., the subgroup discovery algorithms, knowledge-
intensive methods, subgroup introspection and analysis techniques, and visualization
methods, as discussed in Section 1.2. These different techniques are combined into a sub-
group mining process (see Section 2.3) analogously to the general knowledge discovery in
databases process (see Section 2.2.1).
Concerning the algorithmic part we propose the SD-Map algorithm (see Section 3.4.6) as
a novel efficient and exhaustive subgroup discovery method. It depends on a minimum
support threshold, that is commonly applied in order to discover statistically valid and
interesting patterns. SD-Map is inspired by the FP-growth method [58] for discovering
association rules that builds a compact data structure for mining the individual patterns.
However, in contrast to the FP-growth method the SD-Map algorithm can compile an even
more compact data structure due to the subgroup discovery setting, given a specific target
concept. The algorithm guarantees to find optimal results and thus enables effective sub-
group discovery compared to heuristic methods. In contrast to other exhaustive methods,
the algorithm can be applied for constrained but nevertheless large subproblems, as dis-
cussed in the evaluation in Section 8. In addition to standard subgroup discovery methods,
we furthermore present an algorithm based on the PRIM algorithm [47] that exploits a
non-covering approach compared to the basic PRIM algorithm.
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We exploit background knowledge in order to improve the quality of the mined patterns:
As we have previously presented in [14, 15], we propose several types and classes of
background knowledge, i.e., constraint knowledge, ontological knowledge, and abstrac-
tion knowledge. We categorize the proposed knowledge elements according to their ben-
efit and impact on restricting the search space and focusing the search process. Applying
background knowledge can significantly increase the user acceptance of the discovered
patterns, and can also help to include subjective interestingness measures of the user as
discussed in Section 1.3.3 and Section 1.3.4, respectively.
In the following we provide some examples of the different knowledge classes and refer
to Chapter 4 for more details.
Constraint knowledge is used to restrict the search space and to focus the search process,
e.g., by specifying attribute and attribute values constraints the attributes and attribute
values of interest can be directly defined. In addition, a set of attribute values can be used to
define additional aggregated values specific to the application domain and the requirements
of the user. For example, in the medical domain of sonography for the attribute cirrhosis
of the liver the values possible and probable can be defined as a disjunctive attribute value.
Furthermore, constraints can also include quality and syntactical constraints that filter the
mined patterns during the discovery process.
Ontological knowledge includes information about the domain ontology, e.g., abnormal-
ity information about attribute values can be used to define aggregated values merg-
ing several attribute values contained in a set of certain abnormality categories. For
example, consider the attribute temperature with the value range dom(temperature) =
{normal, marginal, high, very high}: The values normal and marginal denote normal
states of the attribute, while the values high and very high describe abnormal states that
could be combined.
Furthermore, using similarity information about partial similarities between attribute val-
ues we can also combine significantly similar attribute values into new disjunctive attribute
values. Ordinality information is used to indicate the ordinal attributes, which can be used
to construct certain ’ordinal groups’, such as summarizing certain consecutive age groups.
In general, specifying appropriate aggregated values can significantly increase the inter-
pretability of the mined subgroup patterns for the user.
Another example for ontological knowledge is given by attribute weights that specify the
relative importance of an attribute. Ontological knowledge has the advantage that it is
often known in the context of knowledge-based systems, e.g., case-based reasoning or
rule-based knowledge systems, and that it can be formalized according to the mental model
of the domain specialist. Then, ontological knowledge can be utilized to create ’simpler’
knowledge, i.e., constraint knowledge quite easily.
Abstraction knowledge is given by derived attributes that are rule-based abstractions:
These can be refined incrementally during the mining process, i.e., they denote virtual
attributes that can be adapted dynamically and are inferred from basic attributes or other
derived attributes. For example, a derived attribute can combine similar attributes to reduce
the search space, and to increase the interpretability of the attributes. Abstraction know-
ledge is especially useful for coping with the problem of missing values, and for providing
suitable abstractions that are interpretable and interesting for the domain specialist.
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Background knowledge can be supplied by the user of the mining system or by a domain
specialist. Additionally, it can be acquired automatically utilizing appropriate learning
methods. We propose to apply such learning methods to acquire an initial set of back-
ground knowledge, i.e., partial similarities of attribute values and weights of attributes,
that can be optionally refined by the domain specialist in a later step. We have presented
methods for such a semi-automatic approach in [7, 20]. There are similar types of back-
ground knowledge, e.g., abnormalities and similarity knowledge, for which their applica-
bility depends on the specific domain: For example, for non-diagnostic domains, similarity
knowledge is often more appropriate while abnormality knowledge is usually quite natural
for diagnostic domains.
An important part of the subgroup mining process is the subgroup presentation and anal-
ysis step, that can be performed either interactively or automatically. Besides methods
that visualize subgroups for comparison, we also provide introspective approaches that
provide different views on a subgroup (see Chapter 5): We provide a method for an al-
ternative characterization of the subpopulation constrained by the subgroup by obtaining
statistically characteristic factors of the subgroup. We present these factors with assigned
symbolic categories denoting the individual strengths of the parameters, based on tech-
niques for learning diagnostic scores presented in [8]. This technique can help the user to
validate a subgroup by providing helpful information about the distribution of additional
important variables in the subgroup.
Additionally, we provide a subgroup exemplification method to provide exemplary cases
contained in a subgroup: This technique helps to describe the subgroup by its extension,
as presented in [10]. Then, the retrieved set of cases is similar to a visualization of the
subgroup, since it contains its most typical or extreme cases. These can then be used to
identify other important characteristics of the subgroup, e.g., additional meta-information
contained in the cases.
Furthermore, we describe a subgroup analysis approach for identifying confounding fac-
tors that are potentially related to the subgroup variables. Confounding analysis is rather
important for some domains, e.g., for epidemiological studies in the medical domain; con-
founding factors are other causally important factors of the subgroup – target relation that
contribute to the effect of the factors contained in the subgroup description.
Visual mining methods allow for the direct integration of the user in order to overcome
major problems of automatic data mining methods, e.g., the presentation of uninteresting
results, lack of acceptance of the discovered findings or limited confidence in these. We
discuss several visualization methods that are embedded in the active subgroup mining pro-
cess described in Section 2.3. We present an interactive core visualization – the zoomtable
– for discovering interesting subgroups which can also be used to obtain a representative
overview of the analysis objects (see Section 6.1, Figure 6.4, p. 97). The zoomtable enables
an overview of the important variables similar to an extended OLAP-view (e.g., [57, Ch.
2]) on the data. It is primarily used in the subgroup discovery step directly. In general,
the zoomtable shows the value distributions of selected analysis variables and can contain
visual markers used for guiding the discovery process. The zoomtable is configurable on
the fly, so that helpful information such as frequency counts or other visual mark-up is
only displayed if needed.
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As a related visualization method, we propose the subgroup tuning table (c.f., Figure 6.7,
p. 99): It can be used to optimize a subgroup by small variations that improve its quality
– according to objective or subjective quality criteria, e.g., considering the complexity, the
unusualness or the interpretability of the subgroup.
Moreover, we present several visualizations that compare different subgroups, e.g., a
stacked bar visualization (shown in Figure 6.11, p. 103), a clustering and overlap visual-
ization (Figure 6.15, p. 107) that shows the relations between subgroups and an overview
visualization (Figure 6.14, p. 106) that displays generalization and specialization hierar-
chies. These visualizations can be used for subgroup evaluation, selection, and redundancy
management. They are essential in order to cope with the criteria discussed in Section 1.3.3
and Section 1.3.4, respectively. Furthermore, we propose a novel approach for interactive
knowledge refinement based on these visualization techniques.
Our implementation demonstrates the practical aspects of the proposed approach imple-
mented in the VIKAMINE (Visual, Interactive and Knowledge-intensive Analysis and
Mining Environment) system. The user is supported in all steps of the subgroup mining
process and can perform the discovery steps intuitively in the integrated environment. It
contains components and editors for all parts of the proposed subgroup mining process;
particularly the main interactive component of VIKAMINE, i.e., the zoomtable visual-
ization enables interactive subgroup discovery, navigation and evaluation.
The presented approach has been empirically evaluated in several case studies (c.f., Sec-
tion 9). An application for knowledge discovery was presented in [14] using data from the
fielded medical system SONOCONSULT [62], a documentation and consultation system
for sonography. In this context we also applied subgroup mining for quality control by
profiling the sonographic examiners, as discussed in [15]. Moreover, we performed two
case studies using real-world data in a technical service-support domain, and for analyzing
general questionnaires. A further case study using VIKAMINE that applied subgroup
mining for interactive knowledge refinement in the domain of dental medicine was pre-
sented in [6]. These case studies clearly demonstrate the benefit and the applicability of
the presented approach. Applying background knowledge significantly improved the re-
sults of the subgroup mining methods. Visualization methods applied in the interactive
approach have proved to make the process more transparent for the user, and enable an
easy inspection of intermediate results. Our experiences show that such transparency in-
creases the user acceptance of the methods and the discovered patterns.
Concerning the evaluation we present a data generator that is able to generate data for
common data mining methods in order to evaluate their effectiveness and efficiency. It
is especially applicable for descriptive mining approaches, since it features the ability to
generate data with controllable and known characteristics. Since many data sets with dif-
ferent sizes can be generated, we can also evaluate the efficiency, i.e., the scalability of the
algorithms quite easily. Using the data generator we measured the efficiency and the scala-
bility of the individual discovery algorithms. Furthermore, we performed an experimental
evaluation comparing the algorithms to an optimal discovery method in order to estimate
the effectiveness by the quality of the discovered results.
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1.5 Structure of this Work

In this thesis we describe an approach for knowledge-intensive active subgroup mining –
structured into four parts that are summarized in the following. The first part including this
chapter gives an introduction into the general problem setting; it provides an overview of
the process for knowledge-intensive active subgroup mining, introducing the knowledge-
intensive approach and the techniques for automatic and interactive subgroup mining. We
propose to apply appropriate subgroup discovery algorithms, helpful background know-
ledge, subgroup introspection and analysis techniques, and several visualization methods
in order to focus and guide the discovery process.
The second part considers the details of the presented process for knowledge-intensive
active subgroup mining. First, we define the subgroup mining and the subgroup discov-
ery task, introducing the necessary notation. After these preliminaries we discuss subgroup
quality and interestingness measures, and methods for pruning the search space and redun-
dancy management. Next, we describe several subgroup discovery methods, and present
the novel SD-Map algorithm for fast and effective subgroup discovery. The following
chapters cover knowledge-intensive methods, techniques for subgroup introspection and
analysis, and the approaches for interactive subgroup mining utilizing appropriate visual-
ization techniques.
In the third part we discuss practical issues, i.e., the implementation and the evaluation.
We first introduce the subgroup mining tool VIKAMINE, a highly integrated environment
that implements the described approach for knowledge-intensive active subgroup mining.
Furthermore, we present an experimental evaluation of the proposed subgroup discovery
methods to measure their effectiveness and the efficiency. The evaluation was performed
using synthetic data. We describe a data generator for the generation of such evaluation
data for general knowledge-discovery and data mining methods. For a qualitative evalua-
tion, we provide five case studies that demonstrate the applicability and the benefit of the
presented approach: Three of these were performed in medical domains, one in a tech-
nical domain, and one case study describes an application for the general evaluation of
questionnaires using VIKAMINE.
The fourth part concludes this thesis with a summary of the presented work and an outlook
for promising research directions in the future.



2 The Knowledge-Intensive Active
Subgroup Mining Process

2.1 Motivation for Knowledge-Intensive Active
Subgroup Mining

Subgroup mining is a subfield of the Knowledge Discovery in Databases (KDD) [42] task
which aims to discover novel, potentially useful, and interesting knowledge from (large)
databases. As discussed in Chapter 1.1 the existing approaches typically do not meet the
quality requirements that we face: The result space is quite large, often too many unin-
teresting subgroups are discovered, or a lot of already known knowledge is just rediscov-
ered [43]. Furthermore, manual inspection of the discovered subgroups is often intractable
for human experts [51]. This is especially problematic for experience-rich domains like
the medical domain. In such domains a lot of background knowledge is typically already
available which in turn can be used, e.g., for restricting the search space and for guiding
the search. Therefore, we propose to integrate domain knowledge into the mining process.
Furthermore, the user can often be effectively supported by subgroup analysis methods
and appropriate visualization techniques integrated in an active process.
In the following, we first give a general overview on subgroup mining. We then describe
the proposed process model for knowledge-intensive active subgroup mining that includes
the elements introduced in Section 1.2, i.e., subgroup discovery algorithms, background
knowledge, subgroup introspection and analysis methods, and visualization techniques.

2.2 Subgroup Mining – An Overview

In this section we summarize the general knowledge discovery in databases task and its
relation to subgroup mining. After that we introduce the basics of subgroup discovery
methods, and discuss related work. Lastly, we sketch the general subgroup mining process.

2.2.1 Relation to Knowledge Discovery in Databases

There are three main purposes of knowledge-discovery in databases (c.f. [81]): For pre-
diction and classification, a global model is built for later prediction of future cases. For
description, a domain is described using the mined patterns by identifying the dominant
dependency structure between variables of the domain. Nuggets are given by single inter-
esting hypotheses of the domain that describe a local model, not a global one.
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There are several process models for data mining and knowledge discovery in databases
[32]. Figure 2.1 shows the general KDD process by Fayyad et al. [42], which includes the
following steps:

1. Understanding the domain, and the analysis goals (business understanding)
2. Data selection (selecting the relevant data, e.g., focusing on a subset of the data)
3. Data preparation (data selection, data preprocessing, data transformation),
4. Data mining – as the core technique,
5. Result interpretation and evaluation, and
6. Presentation and integration of the results.

Variations include the CRISP-DM [172] process model, and the process introduced by Cios
et al. [33], as discussed by Cios and Kurgan [32]. In general, the knowledge discovery
process is iterative and incremental, often consisting of several iterations until the final
results can be obtained.

Figure 2.1: Overview of the steps of the general KDD process.

Subgroup mining, or subgroup discovery as the core machine-learning technique, is a spe-
cial, but broadly applicable method and can in principle be utilized for all three knowledge-
discovery tasks mentioned above: Subgroup discovery aims to identify subgroups of anal-
ysis objects that show some type of interesting behavior [81]. The degree of interestingness
of a given subgroup is obtained using a specific quality function that includes application
dependent criteria. In contrast to other statistical methods, subgroup mining methods are
particularly useful [81], if the domain includes a large number of potentially interesting
variables, if there are varying multidimensional relations in subpopulations of the data set,
if there exists no established statistical model for the problem, and if surprising results
(subgroups) are to be expected.
Similar to the knowledge discovery in databases task, we apply an active subgroup min-
ing approach that also considers the standard steps subgroup mining, interpretation and
evaluation, and result presentation and integration (e.g., [53]). After data selection, data
cleaning and transformation, subgroups are induced by the discovery method, which are
then selected and evaluated semi-automatically. After that, the obtained subgroups are
available for presentation, visualization and integration.
The subgroup discovery step is the core technique in the subgroup mining process. In the
incremental process, background knowledge can be integrated dynamically, and the user
is supported by helpful visualization and analysis techniques at each intermediate step.
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2.2.2 Subgroup Discovery

Subgroup Discovery Basics

Subgroup discovery [82, 174] is a method to discover ’interesting’ subgroups of individ-
uals. The deviations of a subgroup from the performance of the general population are
usually not simply due to statistical fluctuations, but are caused by local factors being
associated with the target concept. Then, subgroups are described by relations between
independent (explaining) variables and a dependent (target) variable, e.g., the subgroup
smoker=true AND family history=positive for the target variable coronary heart disease.
The relations are then rated by a certain user-defined ’interestingness’ measure.
In contrast to the typical approaches for prediction and classification, subgroup discovery
can be placed at the intersection of predictive and descriptive induction [89]. Similarly
to a prediction task, subgroup discovery aims to discover properties of a specific target
population. However, the main application areas are usually descriptive induction and
exploration; then, the main relations or nuggets of the target population are extracted.
Furthermore, the mined patterns often need to be quite simple in order to be interpretable
and actionable for the user.

Comparison and Discussion

Descriptive and predictive induction methods have quite different goals: In descriptive
mining we want to generate understandable, interpretable knowledge (for humans) that is
used for exploratory data analysis. In contrast to unsupervised methods, e.g., clustering or
association rule algorithms, subgroup discovery uses labeled instances: Given the target
variable the instances can be labeled ’dynamically’, e.g., for the binary case a positive or
negative class can be assigned. Furthermore, the goal of subgroup discovery is to identify
high quality rule sets, for which the contained rules act individually: They are treated as
individual rules that describe interesting regularities in the data, i.e., only partial relations.
In contrast, classification/prediction approaches aim to induce classifiers: The induced rule
sets act together in a classifier, and are not evaluated individually. Standard rule learning
approaches applied for prediction usually differ for two additional reasons. Subgroup dis-
covery can usually cope with a larger number of false positives (in unbalanced populations)
for the target concept. Furthermore, rule-learning approaches apply special techniques for
optimizing rule set accuracy, e.g., using a covering algorithm that is usually not applicable
for subgroup discovery.
Several standard data mining problems can be cast into the subgroup discovery paradigm.
For example, regarding association rules [2] the interesting subgroups relate to the inter-
esting transactions. Additionally, a cluster (belonging to a collection of clusters) can also
be seen as an ’anonymous’ subgroup pattern, especially when it is derived by a conceptual
clustering method. The main difference in this respect is the fact that clustering algorithms
are usually unsupervised algorithms, while subgroup discovery is supervised - given a spe-
cific target concept. A leaf of a decision tree can also be seen as a subgroup. However, a
decision tree is used to discriminate between classes and not to characterize a class (target
variable) as done by subgroup discovery methods.
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2.2.3 The General Subgroup Mining Process

Subgroup mining can be considered as an incremental process for discovering interesting
subgroups. In the subgroup discovery step, the search is organized in two phases. As a first
step, an initial set of interesting subgroups is identified using a subgroup discovery method
and a quality function (described in Section 3.1.5) to obtain the quality of an individual
subgroup and a ranking of the discovered subgroups.
Then, since very many subgroups are considered, the result set needs to be filtered: Usu-
ally a subset of the ’best’ n subgroups needs to be selected before it is presented to the user
in a second step. Alternatively, all subgroups with a quality that is greater than or equal to
a certain minimal quality threshold can be provided as the result set. Since the subgroups
can be correlated to each other and can thus highly overlap, redundancy management tech-
niques are applied, as discussed in Section 3.3. These techniques can significantly improve
the quality of the set of discovered subgroups: Usually a subset of the original set is re-
turned, and/or the set is extended using derived subgroups [81].
Criteria for a best set of (selected) subgroups include a small number of subgroups with
a low overlap, a high coverage of their union, a high quality of the combined subgroups,
and other user-defined measures. In summary, the general overall process is organized as
shown in Algorithm 1.

Algorithm 1 The general subgroup mining process.
1: repeat
2: Depending on the problem setting, start with an empty subgroup, or with a given

start subgroup or subgroup set (e.g., from the previous iteration).
3: repeat
4: Retrieve a set of subgroups using a subgroup discovery method
5: If enabled: Apply redundancy operators, or clustering methods to refine the sub-

group result set.
6: until There are no improvements.
7: until The result set of subgroups is sufficient according to user criteria
8: Apply refinement operators for global redundancy management
9: Present the retrieved set of subgroups

This process can be enhanced by various techniques, e.g., by including background know-
ledge (see Chapter 4), or by integrating the user into the discovery process in a semi-
automatic approach (see Section 2.3). The latter includes using techniques for subgroup
analysis and for obtaining alternative views of a subgroup in order to characterize the spe-
cific subpopulation (see Chapter 5), and specific visualization methods, e.g., to compare
various subgroups. We introduce such an approach for knowledge-intensive active sub-
group mining in the following section.



2.3 Process Model for Knowledge-Intensive Active Subgroup Mining 19

2.3 Process Model for Knowledge-Intensive Active
Subgroup Mining

In the following we describe the process model for knowledge-intensive active subgroup
mining that exploits background knowledge and contains subgroup analysis, active dis-
covery methods and visualization as its core techniques. An overview of these methods is
given in Section 1.2 whereas the approaches are discussed in detail in the Chapters 4- 6.
A necessary prerequisite for the application of the subgroup mining process is the initial
selection of the population that needs to be considered. Another prerequisite is the selec-
tion of the analysis objects, i.e., the set of independent variables. These can be directly
selected by the user, e.g., using overview visualizations, or by applying background know-
ledge. In addition, automatic methods can also be used to select an initial set of attributes
that are significantly dependent on the target variable.
The process model is depicted in Figure 2.2: The dotted boxes represent steps supported by
helpful visualization methods as described in Section 6.1, while the hatched boxes depict
steps that are mainly performed utilizing (semi-)automatic methods. We distinguish two
main tasks: 1) Discovering a set of subgroups, and 2) evaluating and refining the set of
most interesting subgroups.
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Figure 2.2: The knowledge-intensive active subgroup mining process.

In this process both interactive and automatic elements are combined in an active mining
approach (c.f., [114]) that merges the advantages of automatic and interactive methods:
The automatic methods can be used to identify useful starting points for analysis, or for
a quick ’what if’ analysis. The users are embedded into the process and empowered to
perform the discovery steps by themselves in every phase of the discovery process. We
include background knowledge that can be applied at the start, but also during the discov-
ery process incrementally. Furthermore, visualization plays a major part in the presented
process: We propose to support and guide the user in filtering the hypotheses obtained by
the discovery system. Using suitable subgroup visualization techniques, the results can be
presented in an intuitive and easy-to-interpret way.
Often the users of the discovery system do not completely know what to look for in the
data, especially with regard to unexpected or novel patterns [98]. In such cases, the user
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can be inspired and can obtain (first) insights into the data by using (a combination of) the
following options:
• Using an overview visualization showing the value distributions of variables, the

user can obtain an impression of the data in order to start with an interactive analysis.

• In an incremental approach, the user can discover an initial set of subgroups con-
sisting of i selectors, i = 1 . . . n that are further extended by the significant factors
of the ith step. For example, the user can start with the strongly dependent factors
(i = 1) and then incrementally test all combinations of these factors (i = 2 . . . n).
Instead of using the strong factors the user can alternatively test specific hypotheses,
or supply a set of ’hypothesized’ potentially important selectors.

• At every step during the knowledge-intensive active subgroup mining process, the
user can interactively refine, adjust, and evaluate the intermediate results, e.g., initial
subgroups discovered by the automatic methods.

The evaluation step of the sets of subgroups is crucial. Evaluation and interpretation of
the discovered subgroups is supported by visualization methods and by the techniques for
subgroup exemplification and analysis. In general, the size of the subgroup and its target
share are the predominant objective factors. However, the evaluation of the individual
subgroups is usually domain-specific and highly dependent on the user [14, 40]. Also,
subjective parameters of a subgroup may become important, e.g., when preferring shorter
(simpler) subgroup descriptions. Moreover, actionability of the patterns, i.e., if the users
can do something using the discovered knowledge to their advantage [52,121], is often an
important concept. Related criteria include how well the subgroups represented by explicit
symbolic descriptions can be memorized, or if they are operational [89]. Furthermore,
adjusting the values of individual selectors, i.e., the boundaries of the subgroup variables
can greatly increase the acceptance and the (subjective) quality of a subgroup [15].
Subgroup validation is an optional step after the subgroup mining process has been per-
formed. However, it is essential in order to verify that the discovered subgroups are not
only due to spurious associations: If a lot of statistical tests are applied during the subgroup
mining process, then this may result in the erroneous discovery of ’significant’ subgroups
due to the statistical multiplicity effect. Then, correction techniques, e.g., Bonferroni-
adjustment [68], can be applied. Subgroups can often be validated using an independent
test set, or by performing prospective studies, e.g., in the medical domain.

2.4 Conclusion

In this chapter, we have described how the proposed knowledge-intensive active subgroup
mining approach can improve the discovery of novel, interesting and potentially useful
patterns. We have introduced subgroup mining, and presented how the general subgroup
mining process can be enhanced with approaches that exploit background knowledge, sup-
port the interpretation of the mining results, and guide the user in an active mining ap-
proach. Integrating the techniques we have concluded with the presentation of the process
for knowledge-intensive active subgroup mining.
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3 Subgroup Discovery

The discovery of (interesting) subgroups has a high practical relevance in all domains of
science or business. For example, consider statements such as: ’the unemployment rate
is above average for young men with a low educational level’, ’smokers with a positive
family history are at a significantly higher risk for coronary heart disease’, or ’single males
living in rural areas do rarely take out a life policy’. Subgroup discovery is well suited
for finding such dependencies, i.e., discovering relations between a (dependent) target
variable and a set of independent variables. Then, subgroup discovery can be utilized for
exploration and descriptive induction, and the subgroups can be applied, e.g., for decision
support. Subgroup discovery is the core technique of the subgroup mining process (c.f.,
Section 2.2), and has first been formalized by Klösgen [80–82] and Wrobel [174, 175].
As described in Section 2.2.2, subgroup discovery does not aim to generate global models
for each class as common predictive methods. Instead, the goal of subgroup discovery
is to identify individual local patterns of interest in order to extract understandable and
interpretable knowledge for descriptive purposes. Usually, a set of ’best’ subgroups is
returned, that may contain overlapping subgroups, in contrast to standard predictive rule-
learning methods which usually apply a covering approach. The quality of a subgroup is
estimated by a user-defined quality function. In contrast to other methods for descriptive
induction, e.g., approaches for mining association rules [2] or frequent sets that apply quite
simple quality functions, e.g., only considering the subgroup size and/or the strength of the
association, subgroup discovery can handle arbitrary quality functions: a quality function
usually combines the generality/size of a subgroup and its distributional properties, e.g.,
to identify maximally large subgroups for which the distribution of a specific (target) con-
cept differs maximally from its default probability in the total population [174]. Thus,
subgroups can be informally defined as a subset of the population with a distributional
unusualness (deviation) concerning a certain property of interest.
In the following we describe the features of the subgroup discovery approach in detail.
We then discuss pruning techniques, and methods for the redundancy management of sub-
groups in order to obtain a small set of diverse and high-quality subgroups. After that, we
describe the individual subgroup discovery algorithms, and present the novel exhaustive
SD-Map method for fast and effective subgroup discovery.

3.1 The Subgroup Discovery Approach

In this section we introduce the subgroup discovery approach: We formalize the general
subgroup discovery task, and discuss the elements used in the subgroup discovery setting
in the next sections.
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Subgroup Discovery Task When applying a subgroup discovery method, the user is
usually not interested in finding all subgroups that could be statistically interesting, but in
finding the best, i.e., the k most unusual or most interesting subgroups [174]. Alternatively,
the user could also be interested in discovering all interesting subgroups above a given
minimal quality threshold. Then, the number of subgroups is only limited by their quality.
Furthermore, both approaches can be combined.
Given a set of cases/instances (a case base) CB , a subgroup description language Ωsd

specifying the valid subgroup patterns, and a quality function q that estimates the quality
of a subgroup s, the subgroup discovery task can be defined as follows:

Definition 3.1.1 (Subgroup Discovery Task) Given CB , Ωsd, q, and a minimal subgroup
quality threshold qmin ∈ R discover a set of subgroups S = {s1, s2, . . . , sk}, si ∈ Ωsd of
size k for which q(si) ≥ qmin, i = 1 . . . k, and for which there is no s′ 6∈ S, q(s′) > qmin,
where qmin = mins∈S q(s), and k specifies the desired number of best subgroups.

The definition covers the options discussed above: If k is set to +∞, then we obtain all
subgroups above the minimum quality threshold; similarly, if a low value (e.g., −∞) for
qmin is selected, then the size of the subgroup result set will be determined by k. Usually,
both parameters are selected by the user according to the analysis requirements.
In the following we describe the required elements used in a subgroup discovery setting,
i.e., the subgroup discovery context, the target variable, the subgroup description language,
the quality function, and finally the search strategy. However, we first introduce the nec-
essary notions concerning the used knowledge representation.

3.1.1 Definition of Basic Ontological Knowledge

Definition 3.1.2 (Attribute and Attribute Values) Let ΩA be the set of all attributes. For
each attribute a ∈ ΩA a range dom(a) of values is defined. Furthermore, we assume VA to
be the (universal) set of attribute values of the form (a = v), where a ∈ ΩA is an attribute
and v ∈ dom(a) is an assignable value. Other common names for attribute values are
findings and observations.

Definition 3.1.3 (Diagnosis) Let ΩD ⊆ ΩA be the set of all diagnoses. For each diagnosis
d ∈ ΩD we define a range dom(d): ∀d ∈ ΩD : dom(d) = {established , not established} ,
i.e., the diagnosis denotes a boolean variable.

Definition 3.1.4 (Case) A case c is defined as a tuple

c = (Fc,Dc, Ic ) ,

where Fc ⊆ VA is the set of attribute values observed in the case c. Often Fc is also
called the set of observations for the given case. The set Dc ⊆ ΩD contains the diagnoses
describing the solution of the case c, and Ic provides additional (meta-) information. The
set of all possible cases for a given problem domain is denoted by ΩC . Let CB ⊆ ΩC be
the case base containing all available cases (also called instances).

The occurrence of a diagnosis d in a case c, i.e., d ∈ Fc, d ∈ ΩD, c ∈ CB implicitly
indicates the attribute value (d = established).
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3.1.2 Target Variable

In general, a subgroup is informally defined as an application-relevant and interpretable
subset of a population [82]. Given a certain target variable, e.g., a (binary) target concept,
interesting subgroups concerning this target variable can be identified in the subgroup
mining process.
In general, there are different types of target variables for subgroup discovery problems.
The target variable can be boolean, nominal, or numeric. In the boolean and numeric case,
the selected subgroup population is compared against the general population, whereas in
the nominal case k populations are analyzed.
There are different analytic questions depending on the type of the target variable [80],
e.g., for a numeric target variable we can search for significant deviations of the mean of
the target variable. For binary target variables, we can compare the target share in the
subgroup to the target share of the total population.
In the context of this work we focus on binary target variables, similar to the MIDOS
approach presented by Wrobel [174,175]: Given a population of individuals and a property
of those individuals that we are interested in, we aim to discover population subgroups that
are statistically most interesting, e.g., subgroups that are as large as possible and have the
most unusual statistical (distributional) characteristics with respect to the target property.

3.1.3 Subgroup Discovery Context

A subgroup discovery context is given by the target variable, the search space of indepen-
dent variables, the general population, and additional constraints. The constraints that are
applicable could restrict the search space, or constrain the set of valid patterns. We refer to
Section 4.2 for a detailed discussion. In the following we focus on binary target variables,
i.e., T ∈ VA. Thus, a context for subgroup discovery can be defined as follows:

Definition 3.1.5 (Subgroup Discovery Context) A subgroup discovery context SC is de-
fined as the tuple

SC = (T, A, C,CB) ,

where T ∈ VA is a target variable. A ⊆ ΩA is the set of attributes to be included in the
subgroup discovery process. CB is the case base representing the general population used
for subgroup discovery. C specifies (optional) constraints for the discovery method. We
define ΩSC as the set of all possible subgroup discovery contexts.

Thus, the subgroup discovery context determines the general setting of the subgroup dis-
covery task, given by the population, the (dependent) target variable, the set of independent
variables and constraints applied during the discovery process.

3.1.4 Subgroup Description Language

A subgroup description identifies a set of objects (cases) which form the respective sub-
group: The statement in the description language specifies the properties that characterize
the subgroup objects. Often propositional conjunctive languages are used.
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In the single-relational case, a subgroup description can then be defined as follows:

Definition 3.1.6 (Subgroup Description) A subgroup description sd = {e1, e2, . . . , en}
consists of a set of selection expressions (selectors) ei = (ai, Vi), which are selections on
domains of attributes, i.e., ai ∈ ΩA, Vi ⊆ dom(ai). A subgroup description is defined
as the conjunction of its contained selection expressions. We define ΩE as the set of all
selection expressions and Ωsd as the set of all possible subgroup descriptions.

In the simplest case, single-valued selectors are used (e.g., (ai, {vi}), vi ∈ dom(ai)).
Extensions include internal disjunctions of attribute values, e.g., (ai, {vi, vj}), vi, vj ∈
dom(ai), or the use of negation in the subgroup descriptions, e.g., (ai 6= {vi}). How-
ever, these mechanisms can significantly enlarge the search space. They also do not nec-
essarily help to improve the understandability of subgroups, since more complex descrip-
tions are usually harder to understand. Furthermore, numeric attributes can be discretized
(e.g., [39, 165]) in order to include intervals in the selectors. The multi-relational case
(e.g., implemented in the MIDOS approach [174, 175]) extends the single-relational one
by including further information about the applied relational tables, using specified links
between these. In this case the search space can be significantly larger. In this work we
focus on propositional conjunctive and single-relational languages according to the defini-
tion above, and assume nominal and discretized numeric attributes.

Statistical Characterization of Subgroups Subgroups can always be character-
ized by the factors used to describe them, i.e., by the selectors contained in the subgroup
description. However, besides these principal factors Gamberger and Lavrac [51] propose
to use certain supporting factors. These are attribute values supp ⊆ VA contained in the
subgroup cases, which are ’characteristic’ for the subgroup. They are identified using ba-
sic statistical analysis: The value distributions of their corresponding attributes (supporting
attributes) differ significantly comparing two populations: the true positive (target class)
cases contained in the subgroup and the non-target class cases contained in the total pop-
ulation. We say, that an attribute value (a = v) of a supporting attribute is characteristic
for the subgroup, i.e., it is a supporting factor, if it is positively associated with the true
positive cases contained in the subgroup, i.e., the target class cases, compared to all the
negative cases, i.e., the cases not containing the target variable. In order to test the statis-
tical significance of an attribute and an attribute value, we apply the standard χ2-test for
independence with a 0.05 confidence limit, and the correlation- or φ-coefficient for binary
variables, respectively. Thus, a supporting factor can be defined as follows:

Definition 3.1.7 (Supporting Factor) Given a binary target variable, a supporting at-
tribute a of a subgroup s is defined as an attribute with a significantly different distribu-
tion comparing the true positive cases tp(s) of the subgroup s and all negative cases FP
contained in the general population. Then, an attribute value (a = v) is defined as a
supporting factor if it is positively associated with tp(s) compared to FP .

The supporting factors can be used to statistically characterize a discovered subgroup; they
essentially provide more evidence for the target concept in the subgroup and thus charac-
terize the target-subpopulation contained in the subgroup. The factors that are character-
istic for the negation of the target concept in the subgroup are called the opposing factors.
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Supporting and opposing factors can be seen as simple rules with only one condition in
the rule body, and the target concept in the rule head, resembling decision stumps [61].
Lavrac et al. [89] describe a scenario applying subgroup discovery for marketing where
only the target group (true positives) and the non-target group (false positives) are com-
pared only using supporting and opposing factors, instead of discovering subgroups de-
scribed by the principal factors. Thus, characterizing these different subpopulations by the
supporting and opposing factors can also be seen as an alternative subgroup description
method.

3.1.5 Subgroup Quality and Interestingness Measures

Returning to definition 3.1.6, a quality function estimates the interestingness of the sub-
group mainly based on a statistical evaluation function, e.g., the statistical χ2-test for inde-
pendence. A variety of quality functions have been proposed e.g., [53,82]. The applicable
set of quality functions is determined by the type of the target variable and by the analytic
problem. In the subgroup discovery process, quality functions are used to obtain a quality
ranking of the discovered subgroups. Therefore, quality functions play a crucial role for
subgroup discovery: Since subgroups are ordered/ranked according to their quality and
lower quality subgroups might be suppressed, a quality function has a significant influence
on the search process and needs to be selected appropriately.

Definition 3.1.8 (Quality Function) A subgroup quality function

q : Ωsd × ΩSC → R

evaluates a subgroup description sd ∈ Ωsd (given a subgroup description language Ωsd)
in a specific subgroup discovery context SC ∈ ΩSC . It is used by the search method to
rank the discovered subgroups when processing the defined search space.

Quality functions are used to measure the characteristics of the subgroups according to
the analytical questions, and to estimate the potential interestingness for the user. An
exemplary quality function for a binary target variable, the binomial test (c.f. [80, 82]), is
given by

qBT =
p− p0√

p0 · (1− p0)

√
n

√
N

N − n
, (3.1)

where p is the relative frequency of the target variable in the subgroup, p0 is the relative
frequency of the target variable in the total population, N = |CB | is the size of the total
population, and n denotes the size of the subgroup. The squared value of the qBT quality
function is equivalent to the value of the χ2-test for independence with respect to the
subgroup and the target variable (c.f., [79]).
The above quality function exemplifies the basic parameters that are commonly used in
order to compare subgroups: The difference between the target shares p− p0, i.e., the gain
in accuracy or the unusualness, and the differences between the subgroup size n, i.e., the
size, coverage or generality of the subgroup, and the size of the total population N .
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This way, either small and highly accurate subgroups are discovered, i.e., subgroups with
a high accuracy and possibly a low generality, or very large but potentially inaccurate sub-
groups (c.f. [72]). It is difficult to optimize all criteria, i.e., larger subgroups n usually have
smaller deviations p − p0 , since n = N implies p = p0. There are many possible quality
functions trading-off the generality of a subgroup against its accuracy, e.g., [80, 144]. As
a rather special case, we can consider quality functions used for mining association rules:
These are given by support and confidence, which correspond to a (relative) subgroup size,
and a minimum target share. Then, association rules are considered, if both of these quality
functions are above certain minimal thresholds.
In general, it is easy to obtain highly accurate subgroups with a low generality. This
motivates the use of generality as a weight for accuracy. The following quality function
(e.g., [80, 120]) implements this idea: The function is similar to the evaluation function of
MIDOS [174], and also known as the weighted relative accuracy (WRACC) (e.g., [93]. It
trades off the generality of a subgroup against its accuracy directly:

qWRACC =
n

N
· (p− p0) (3.2)

As discussed in [93, 161] WRACC is a promising measure for subgroup analysis; using
example weighting is a further option for gains with respect to its accuracy (c.f., [72]).
Another quality function qTP introduced by Gamberger and Lavrac [51] is given by:

qTP =
pn

(1− p)n + g
, (3.3)

The generalization parameter g weighs the trade-off of the number of true positives pn,
i.e., the support of the subgroup against the number of false positives (1 − p)n. For a
low value of g, fewer false positives are tolerated. Thus, in contrast to the other discussed
quality functions, the quality function qTP does not measure the deviation from a reference
population: It assigns the highest rank to the subgroups with a maximum number of true
positives and a minimum number of false positives, relative to other subgroups only. In
contrast to general approaches for classification that also consider such a trade-off for a
quite small number of false positives, a larger value of g enables more general subgroups
that might only contain a small number of true positives. However, such subgroups might
still be interesting for descriptive subgroup mining in contrast to a predictive application.
A quality function that we have found very useful in our own work, especially in the
medical domain, is given by

qRG =
p− p0

p0 · (1− p0)
, n ≥ TCov , (3.4)

where TCov is a necessary minimum coverage threshold. The quality function qRG mea-
sures the relative gain of the target share in the subgroup compared to the target share in
the reference population, since we found that physicians are often most interested in this
parameter. The relative gain is obtained by weighting the increase of the target share of the
subgroup compared to default frequency of the target in the reference population. How-
ever, since the size of a subgroup is not taken into account, a suitable coverage threshold
is necessary to discover significant subgroups.
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Monotony Axioms for Quality Functions Piatetsky-Shapiro [120] introduced three
axioms that should be satisfied by reasonable quality functions q. Furthermore, Major
and Mangano [102] added a fourth axiom. In the subgroup quality context these axioms
(shown below) mainly specify monotony requirements with respect to the subgroup size n
and the target share p of a subgroup s, as discussed by Klösgen [80]:

1. q(s) = 0 for p = p0,

2. q(s) monotonically increases in p when n is fixed,

3. q(s) monotonically decreases in n when p = c/n, with a fixed constant c,

4. q(s) monotonically increases in n when p > p0 is fixed.
It is easy to see that the quality functions qBT , and qWRACC , satisfy these axioms while qTP

does not necessarily, since it does not measure the deviation of the subgroup from the total
population, as discussed above. The quality function qRG does not take the subgroup size
into account directly, and uses a cutoff minimum coverage value. However, since no strict
monotonicity is required, the monotony axioms are also satisfied by qRG. Freitas [45]
proposes extensions to the axioms by Piatetsky-Shapiro, e.g., including the complexity
of a rule, the imbalance of class distributions, attribute suprisingness/interestingness and
misclassification costs.
To compare quality functions, iso-lines can be used that describe lines with equal quality
studied in the two dimensional p, n/N space [80] or alternatively in the ROC space [74].
When compared to the quality function qBT , the function qTP prefers subgroups with
higher p, while the quality function qWRACC favors larger subgroups; the function qRG

mainly focuses on the relative gain, i.e., on the increase of p with respect to p0. Other
selected rule evaluation measures have been analyzed in [90].

Quality Computation and the Missing Value Problem Missing values are a com-
mon problem for data mining and machine learning in general. There are automatic meth-
ods for inferring the missing values of attributes; additionally, knowledge-based methods
can be used (c.f., Section 4.2.3). The subgroup quality function needs to perform the eval-
uation of a subgroup description in a way such that only instances are used for which
the subgroup variables have defined values. It is easy to see that this condition is always
satisfied by the instances included by the subgroup description. However, for the qual-
ity computation we need to consider only cases for which the subgroup variables and the
target variable have a defined value.
We therefore need to test for all instances whether the subgroup descriptors, i.e., the cor-
responding attributes and the target attribute are defined for the instance. If the test is
positive, then we include the instance into the quality evaluation, otherwise it is discarded.
This approach has an impact on the size of the defined population Ndef ≤ N , where N is
the population size. The parameter p0 is also affected since it can change arbitrarily due to
the distributional changes in the defined population.

Objective and Subjective Quality and Interestingness Measures In general,
quality and interestingness measures can be grouped into two categories: Objective and
subjective measures [45, 164]. Objective measures are data driven and are derived using
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structure and properties of the data, e.g., based on statistical tests. Subjective measures
are user-driven: They depend on the beliefs, the background knowledge, and the analysis
requirements of the user.

Objective Quality Measures The subgroup quality measures discussed above can be
regarded as objective quality measures, since they test the (statistical) validity of the pat-
terns. Often the (syntactical) complexity and simplicity of a pattern can be regarded as
objective quality measures as well. Commonly, simpler patterns are easier to understand
and to interpret for the user [140]. In [9] we describe a combination of quality measures
for rules and rule-bases concerning the validity, i.e., the accuracy and the simplicity of
the contained patterns. For the general subgroup mining process this can be extended to
user-defined quality functions in order to better capture the requirements of the user.

Subjective Quality Measures Novelty and usefulness of patterns relate to the subjective
interestingness measures, and depend on the prior knowledge of the user. Thus, a pattern
that is interesting to one user might not be interesting to another one with different be-
liefs or knowledge. Common subjective interestingness measures are understandability,
unexpectedness (new knowledge or knowledge contradicting existing knowledge), inter-
estingness templates (describing classes of interesting patterns), and actionability (patterns
which can be applied by the user to his or her advantage [121]). As discussed in [164],
objective and subjective interestingness functions can also be combined.
It is hard to generally include subjective measures in an automatic mining process, i.e.,
to formalize the subjective notions to be included in the quality function. However, in a
user-defined quality function at least the objective criteria can be combined as needed by
the user. We propose two options to include the subjective criteria into the mining process:
First, the user can specify subjective knowledge elements, i.e., background knowledge to
be included in the search process (c.f., Chapter 4). Second, the user can guide the mining
process and thus the set of patterns that is discovered in a semi-automatic visual mining
approach. Subjective quality measures are included implicitly in such a process if the user
guides the mining process explicitly (c.f., Chapter 6).

3.1.6 Search Strategies for Subgroup Discovery

Subgroup discovery requires an efficient search strategy since the search space is exponen-
tial concerning all the possible selectors of a subgroup description. Usually, generate-and-
test approaches are used: These mainly consist of two steps that are applied iteratively:
• Evaluating subgroup hypotheses, and

• generating (expanding) new subgroup hypotheses.
In the evaluation step, subgroups are selected and evaluated using a specific quality func-
tion. In the expansion phase, the possibly restricted set of hypotheses is expanded, e.g., by
adding a selector to the subgroup description, or adding/removing an attribute value from
a selector if internal disjunctions are used.
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Heuristic Methods A brute-force exhaustive search strategy is often not acceptable,
if the search space cannot be constrained sufficiently. Therefore, often non-exhaustive
(heuristic) search strategies are applied. However, such approaches cannot guarantee to
discover the optimal solution. Commonly a beam search strategy is used because of its
efficiency [82]: It only expands the current subgroup hypothesis further if the specializa-
tion yields a better subgroup, and expands the n best hypotheses iteratively. For example,
Lavrac et al. [93] describe the application of the beam-search based CN2-SD algorithm
adapted for subgroup discovery. To improve upon the greedy approaches, other alterna-
tives such as the PRIM algorithm [47] have been proposed, which employ a patient search
strategy. We discuss several heuristic subgroup discovery methods in detail in Section 3.4.

Use of Sampling for Subgroup Discovery Sampling (e.g., [46, 162, 174]) can be
used for estimating the quality of a subgroup on a (potentially significantly) smaller subset
of the case base. Basically, sampling can significantly improve the scalability, i.e., the run-
time of the subgroup discovery algorithms, since the search time of many algorithms, e.g.,
of the beam search method, is primarily dependent on the number of analysis objects: The
search effort is determined by the size of the case base, and by the size of the subgroup
hypothesis space given by the number of possible selector combinations. By only consid-
ering a sample of the data, arbitrarily large data sets could potentially be considered that do
not fit into the main memory. This is especially important for multi-relational approaches,
since the full join-operation of a set of relations is avoided.
If only a sample of the data is considered, then precise bounds for the error of the applied
quality functions need to be determined. ’Naive’ approaches just take a random sample
of the data set with a fixed size, and do not consider the specific characteristics of the
data in order to derive the error-bounds. In contrast, ’intelligent’ sampling techniques that
avoid a naive sampling of the data set have been developed, e.g., in the field of association
rules [162]: These are usually preferred, since the naive approach may require (impracti-
cal) large sample sizes for adequate error-bounds (c.f., [144]). Scheffer and Wrobel [144]
provide the sequential sampling algorithm GSS for subgroup discovery that discovers the
k best subgroups according to a given confidence level, for quality functions that can be
estimated with bounded error.
However, sampling approaches also exhibit several drawbacks: By implementing sam-
pling techniques only error-bounded estimates of the quality of a subgroup or a set of
subgroups are obtained, in contrast to exhaustive methods. Additionally, sampling ap-
proaches do not work for all quality functions which may be problematic for the user: For
example, quality functions based on the chi-square test (e.g., the standard binomial-test
qBT quality function, c.f., Equation 3.1) cannot be estimated with bounded error as proved
in [144]. Also, a formula estimating a confidence-interval needs to be specified for every
single applied quality function. This is unfortunately rather inflexible for a user-integrated
approach for which an arbitrary quality function can be specified by the user.
Furthermore, the GSS algorithm requires that all subgroup hypotheses are explicitly repre-
sented in main memory, which is impractical for certain subgroup description languages,
e.g., strictly conjunctive languages with internal disjunctions, or generally for larger search
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spaces. Scheffer and Wrobel [143] have presented the LCM-GSS algorithm that applies se-
quential sampling using constant memory for storing the subgroup hypotheses. However,
the constant memory property has to be paid for by larger sample sizes compared to GSS, if
the subgroup hypothesis theoretically fitted into the main memory. Furthermore, as noted
in [143], for a small error threshold the computation time to process the required sample
size is still the limiting factor.

Exhaustive Methods In contrast to heuristic and sampling methods exhaustive ap-
proaches guarantee to discover the best solutions. However, the runtime costs of a (naive)
exhaustive algorithm usually prohibit its application for larger search spaces. Examples of
exhaustive algorithms include Apriori-based methods (c.f., Section 3.4.5). Furthermore,
Zimmermann and De Raedt have proposed branch-and-bound algorithms [178, 179] that
require special (convex) quality functions.
As a broadly applicable alternative, we propose the novel SD-Map algorithm for fast and
exhaustive subgroup discovery (c.f., Section 3.4.6); we also present an experimental eval-
uation and comparison of the algorithm in Section 8. SD-Map does not require that
all the data fits into the main memory, if a sufficient minimum support threshold is pro-
vided. This is usually determined by the user in order to accomplish statistically signifi-
cant discovery results. Furthermore, the applied highly condensed data representation (an
frequent-pattern tree) is usually significantly smaller than the used case base [58]. Only
two sequential passes over the complete data set are necessary, for which the effort is thus
linear in the size of the data set. Combining intelligent sampling approaches with fast
exhaustive methods, e.g., with the SD-Map method can be seen as a promising option for
efficiently mining potentially arbitrarily large databases (see Section 11.7).
In the context of this work we consider knowledge-intensive approaches with active user
integration: Therefore, we ultimately focus on an exact (exhaustive) approach and propose
the SD-Map algorithm which is transparent for the user and guarantees to obtain the best
subgroups using arbitrary quality functions.

3.2 Pruning the Search Space

Pruning the search space is a central issue for efficient subgroup discovery. For example,
pruning can be accomplished utilizing a minimum coverage threshold with respect to the
generality of a subgroup, or by utilizing special features of the quality function; in this
case, optimistic estimate functions can be applied. For best-n approaches, the subgroup
hypotheses with an optimistic estimate below the currently n best hypotheses can then be
pruned.
Suppression heuristics essentially apply redundancy filters, e.g., so that further special-
izations of a good subgroup are suppressed, or all predecessors of a better subgroup are
removed [80]. Furthermore, background knowledge can be applied in order to prune the
search space.
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Optimistic Estimate Quality Functions Methods for discovering frequent pat-
terns [108], e.g., association rule methods [2] often apply the anti-monotonicity property of
the support of association rules: If a hypothesis is not frequent (according to a threshold),
then every specialization will also be non-frequent, and can therefore be pruned.
Thus, essentially based on the generality of a current hypothesis whole subspaces of the
search space can be pruned. However, this is not possible for the general case of quality
functions applied in subgroup discovery, since the distributions of the target variable and
thus the target share p might change arbitrarily with respect to specializations of a current
subgroup hypothesis.
However, to prune the search space, optimistic estimates of several quality functions can
be applied, e.g., for best-n approaches, a whole subgroup subspace can be pruned, if none
of its subgroups can have a higher quality than the current n-th best one. For example, for
the binomial test 3.1, an optimistic estimate is given by

q′BT =
1− p0√

p0 · (1− p0)

√
n

√
N

N − n
, (3.5)

since for a given n, N and p0 it is maximized for the value p = 1.
Similarly, Zimmermann and De Raedt [178] propose convex quality functions for a gen-
eralized subgroup discovery task, i.e., for discovering cluster groups: Their approach
does not use a single target concept, but allows for a disjunction of several target con-
cepts/variables.

Suppression Heuristics Constraints denoting redundancy filters can be used to prune
large regions of the search space. This is especially important for certain search strategies
which do not constrain the search space themselves, e.g., exhaustive search compared to
beam search. Klösgen [80] distinguishes two types of redundancy filters: Logical and
heuristic filters. The filters include either logical or heuristic implications for the truth
value of a constraint condition for a predecessor/successor pair of subgroups.
For example, if the constraint of a minimum quality for a subgroup is set, then a heuris-
tic filter is applied, since it is possible that the quality of the subgroup can still be in-
creased by successor groups to satisfy the threshold. Furthermore, by specifying a mini-
mum support constraint for a subgroup, a logical redundancy filter is applied, due to the
anti-monotonicity property of support, as also used, e.g., for mining association rules [2].

Background Knowledge Besides using heuristics for pruning the search space, we
can also apply background knowledge. We propose to apply several constraints to restrict
the search space: For example, constraints can be provided that restrict the search pro-
cess/space by specifying the attributes and attribute values of interest. In addition, a set of
attribute values can be used to define additional aggregated values (disjunctive value sets)
specific to the application domain. Furthermore, constraints can also include quality and
language constraints that filter the mined patterns during the discovery process.
Exploiting background knowledge can significantly prune the search space. For more
details, we refer to Chapter 4 where we discuss several classes and types of background
knowledge that can be used during the search process and for post-processing.
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3.3 Redundancy Management of Sets of Subgroups

The result of the subgroup discovery step is a set of subgroups. Due to multi-correlations
between the independent variables, some of these subgroups can overlap significantly. To
identify a set of relevant subgroups, methods for redundancy management are applied. The
subgroup set then can be often improved significantly with respect to its overall quality.
The goal of methods for redundancy management is to reduce the set of the discovered
subgroups by identifying and eliminating the subgroups which are irrelevant or redundant.
Multi-correlations between independent variables can then be reduced by excluding over-
lapping subgroups. Therefore, common criteria for a best set of subgroups include a low
overlap of the subgroups, a high coverage of their union, and a low number and high quality
of the set of selected subgroups. Often subgroups can be described by several competing
subgroup descriptions, i.e., by disjoint sets of selection expressions. The user has then to
decide about the most interesting description, e.g., using background knowledge. Alter-
natively, we can often exclude certain patterns directly, which can also be implemented
using background knowledge as discussed in Section 4.3.2. Alternatively, we can consider
condensed representations of a collection of patterns.

Relevance of Subgroups As a quite simple method for redundancy management we
can consider the (ir-)relevance (e.g., [51]) of a subgroup with respect to another subgroup
or a set of subgroups:

Definition 3.3.1 (Irrelevant Subgroup) A (specialized) subgroup hypothesis sn is irrele-
vant if there exists a (generalized) subgroup hypothesis sp such that the true positives of
sn are a subset of the true positive of sp and the false positives of sn are a superset of the
false positives of sp, i.e., TP(sn) ⊆ TP(sp) ∧ FP(sn) ⊇ FP(sp).

We say that a subgroup sn is strictly irrelevant if the true positives of sn are a strict subset
of the true positive of sp and the false positives of sn are a strict superset of the false
positives of sp, i.e., TP(sn) ⊂ TP(sp) ∧ FP(sn) ⊃ FP(sp).
Embedding this technique for redundancy management into the search process can be
performed in a straight-forward manner: When considering a subgroup hypothesis for
inclusion into the set of the k best subgroups, the test for (strict) irrelevancy can be applied.
Furthermore, such a method can also be implemented in an optional post-processing step.

Condensed Representations for Subgroups In the field of association rules,
condensed or concise representations of frequent item sets have been developed in or-
der to reduce the size of the set of association rules that are generated and presented
(e.g., [17, 29, 117, 119, 137]). These representations are used for the (implicit) redun-
dancy management, since then the condensed patterns also describe the specifically in-
teresting patterns. In this case, the efficiency of the association rule discovery method is
also increased significantly. Such techniques can also be generalized for frequent patterns
(c.f., [26, 107, 108]). Based upon set-theory, condensed representations include closed-
sets, free-sets and (non-)derivable sets. We refer to [26, 108] for a detailed description.
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In the context of subgroup discovery, we can apply closed- and free-sets in order to po-
tentially reduce a set of subgroup patterns. Let n(sd) denote the size of the subgroup
corresponding to the subgroup description sd . Based upon the definition of closed-
itemsets (e.g., [17, 117, 119], we can define closed subgroup descriptions as follows:

Definition 3.3.2 (Closed Subgroup Description) A subgroup description sd ∈ S is
called closed with respect to a set S if there exists no other subgroup description sd ′ ∈ S
that is a proper superset of sd , for which n(sd) = n(sd ′).

Furthermore, adapting the notion of the free patterns [108] we can also define free sub-
group descriptions:

Definition 3.3.3 (Free Subgroup Description) A subgroup description sd ∈ S is called
free with respect to a set S if and only if n(sd) < n(sd ′) for all sd ′ ⊂ sd , sd ′ ∈ S.

Thus, a set of subgroups can be summarized similarly to applying the relevance criteria
discussed above: If only the closed subgroup descriptions are considered, then for equally-
sized subgroups, the subgroup with the longest subgroup description is selected. Other-
wise, by selecting the free subgroup descriptions only the shortest subgroup descriptions
are included.

Semi-Automatic Post-processing Methods In the following sections we consider
two basic methods for redundancy management that can be applied in a post-processing
step: Grouping and ordering sets of subgroups while preserving their redundancy and
semi-automatic selection of relevant subgroups. Both techniques are important: Preserving
redundancy enables the user to inspect the (ordered) set of subgroups and to discover hid-
den relations between the subgroups, i.e., alternative descriptions and multi-correlations
between selectors. Furthermore, relevant subgroups can be identified using background
knowledge of the user: The user can select specific subgroups from a set of similar sub-
groups by clustering sets of subgroups (e.g., [84, 85]) according to the overlap of their
extensions as described below.
After that, we present two further methods for selecting relevant subgroups semi-
automatically. First, we discuss the weighted covering algorithm [51,93] as a suitable tech-
nique for post-processing a set of subgroups. The approach works by example reweighting,
and iteratively focuses the subgroup selection method on the space of target instances not
covered so far.
Second, methods for causal subgroup analysis (e.g., [84, 85]) can be applied in order to
identify the subgroups which are causal for the target concept; for a causal subgroup, the
manipulation of an instance to belong to the subgroup would also affect the probability of
the instance to belong to the target group [36]. We will discuss the concept and technique
of identifying causal subgroups using constrained-based methods in Section 3.3.3. After
causal subgroups have been detected, the user can retain these (important) subgroups,
which have a direct dependency relation to the target concept, in contrast to the remaining
non-causal subgroups, which are often redundant given the causal subgroups.
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3.3.1 Grouping Subgroups by Clustering

Besides ordering subgroups by their quality or by the number of conjunctions/selectors,
they can also be clustered into hierarchical groups of similar subgroups. Then, individual
clusters can be defined according to a specified minimal similarity, or they can be auto-
matically constructed using a quality function for the clusters.
Clustering is performed using a similarity measure for pairs of subgroups. A simple sym-
metric similarity measure is based on the overlap of a pair of subgroups si, sj , given by the
fraction of the intersection and the union size:

sim(si, sj) =
si ∩ sj

si ∪ sj

. (3.6)

It is easy to see that sim(si, sj) = 0 for disjoint subgroups and 1.0 for equal subgroups.
Then, a bottom-up hierarchical complete-linkage clustering algorithm (e.g., [57, Ch. 8.5])
is applied. We start with the single subgroups and merge the two most similar clusters
recursively using an algorithm adapted from [78]. The process terminates if a certain
similarity threshold, i.e., the split similarity, is reached.
In order to determine this threshold automatically, cluster-quality functions which trade-off
cluster-size against intra-cluster-similarity need to be selected. Since usually large clusters
with a high intra-cluster similarity are desired, the quality function should assign a high
quality value to a set of clusters with a low inter-cluster similarity and a high intra-cluster
similarity. For example, we can apply the following quality function to determine the split
similarity:

split = argmax sim

1

|clusters(sim)|
∑

c∈clusters(sim)

intraSim(c) ∗ log(size(c)) . (3.7)

This quality function trades off the intra-similarity of a cluster and the number of sub-
groups included in the cluster.
Grouping and clustering subgroups preserves redundancy in the clusters. If the results are
shown for interactive analysis, then the user can select representative descriptions from the
clusters, e.g., a minimal set of most frequent selectors occurring in all definitions of the
subgroups of a cluster. Alternatively, either the cluster kernel, i.e., the intersection of all
subgroups contained in the cluster, or the cluster extension, i.e., the union of all subgroups
can be presented. It is easy to see that the cluster kernel and the cluster extension can be
represented as subgroups (described by a complex selection expression) themselves.
Another task relates to the selection of relevant subgroups from the clusters: We aim to
retrieve high-quality subgroups which are as disjoint as possible with a common extension
that is as large as possible. For example, we can apply heuristic approaches such as the
weighted covering [51] algorithm discussed below, or we can use quality functions to rate
sets of subgroups (c.f. [9] for rules).

3.3.2 Subgroup Selection by Weighted Covering

Using the weighted covering method, we can implement a subgroup subset-selection
method as a post-processing step. The approach is illustrated in Algorithm 2 based on
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a technique described in [51]: We collect a set of subgroups that cover different subsets of
the target class cases, i.e., the cases containing the target variable (for binary target vari-
ables). To select the next best subgroup, we apply a quality function q that can handle
instance weights; this is just a simple modification of a general quality function, since we
can just add up the instance weights instead of just counting the instances in the quality
computation.

Algorithm 2 Weighted covering for subgroup subset-selection.
Require: Sin – set of subgroups, CB t cases containing the target variable, quality function

q, size of the result set k
1: Sout = ∅ {Initialize: Empty set of selected subgroups}
2: for all c ∈ CB t do
3: w(c) = 1{set the initial weight to 1}
4: repeat
5: select the subgroup si from Sin that has the highest quality qi, taking the weight

w(c) of a case c into account
6: for all cases (examples) c ∈ CB t covered by the subgroup si do
7: w(c) = 1

1+ 1
w(c)

{decrease the weight of covered target cases}
8: Sin = Sin − si

9: Sout = Sout + si

10: until size k of the set Sout has been reached
Ensure: Sout – set of relatively independent subgroups

Using an idea similar to boosting (e.g., [142]), the algorithm tries to guide the subgroup
selection process by assigning weights to the target class cases. After that, the algorithm
focuses harder on those cases that have not been covered so far, since (target) cases that
have been covered previously obtain a reduced weight. Thus, in the first iteration, all target
class cases contribute the same weight in the quality computation. In subsequent itera-
tions, the contributions of cases are inversely proportional to their coverage by previously
selected subgroups. Thus, the cases already covered by one or more selected subgroups
decrease their weights, while subgroups covering many yet uncovered target class cases
will have a greater chance to be selected in the following iterations.
Then, a set of diverse subgroups Sout is selected that aims to cover different portions of
the target case space. This set of subgroups is ensured to minimize the overlap of the
contained subgroups; however, no guarantees of statistical independence are given.
As discussed in [72], example reweighting can also be used as a search heuristic – in
combination with a suitable quality function. In this way, weighted covering is integrated
in the subgroup discovery algorithm, i.e., the search step directly (e.g., [51]): In each
search iteration only the best subgroup is considered, then the instances are reweighted,
focusing the subgroup discovery method on the not yet covered target class cases.
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3.3.3 Causal Subgroup Analysis and Selection

The philosophical concept of causation or causality refers to the set of all particular ’cause-
and-effect’ or ’causal’ relations. In general, causation is a relationship that holds between
events, objects, or variables. It is typically assumed that the cause chronologically precedes
the effect. The existence of a causal (cause – effect) relationship generally suggests the
following: All things equal, if the cause occurs, then the effect will occur as well, or at
least the probability of the effect occurring will increase. In the following, we will discuss
methods for causal analysis and their application in the context of subgroup discovery.

Causal Analysis Causal analysis in observational data is somewhat controversial (e.g.,
[44,154]). However, there are methods to infer knowledge on the causality of variables for
a target variable (e.g., [36, 148]). For such an analysis, subgroups are modeled as binary
variables that are true for an object (case) if it is contained in the subgroup, and false
otherwise. A subgroup is causal for the target group, i.e., its characteristics as defined
by the subgroup description are causal for the target group, if in an ideal experiment [36]
the probability of an object not belonging to the subgroup to be a member of the target
increases or decreases when the characteristics of the object are changed such that the
object becomes a member of the subgroup. For example, the probability that a patient
survives (target group) increases if the patient received a special treatment (subgroup).
Then, redundant subgroups, e.g., a subgroup that is conditionally independent from the
target group given another subgroup, can be suppressed. This is also useful for classifica-
tion purposes since it is sufficient to include only the causal subgroups into the classifier,
i.e., the parents of the target group (c.f., [79]).
Furthermore, causal analysis supports the actionability of subgroup mining results. Ac-
tionability is described as: ’A pattern is interesting to the user if the user can do something
with it to his or her advantage.’ (e.g., [121]). Examples for potential actions for subgroups
include e.g. operating on subgroup members to reach a high percentage of target objects
(e.g., potential costumers), manipulating non-members to become members (e.g., by of-
fering a reduced rate), or rewarding subgroup members assuming they will then not leave
the subgroup characteristics.
The basic idea of causal subgroup analysis is to construct a Bayesian network made up of
the derived (subgroup) variables. For constructing the network, constraint-based methods
are commonly used because of scalability reasons (c.f., [36,148]): In contrast to Bayesian
methods, constraint-based methods apply simple tests, i.e., adaptations of the χ2− test for
independence, in order to determine the dependence and independence of variables.

Constraint-Based Methods The constraint-based methods make several assump-
tions (c.f. [36]), e.g., that the database is complete, i.e., no missing values exist in the
database, that the variables are discrete, that there is no selection bias, and that the applied
statistical tests are valid. The assumption that there are no missing values is often prob-
lematic, e.g., in the medical domain; then, the missing values can be replaced by particular
’special’ values. However, correlations of these to other values may blur the analysis re-
sults. One further basic assumption is that the model generating the data can be expressed
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by a Bayesian network, which might contain hidden variables. The crucial condition is
then the Markov condition (c.f. [154]): Let X be a node in a causal Bayesian network, and
let Y be any node that is not a descendant of X in the causal network. Then, the Markov
condition holds if X and Y are independent conditioned on the parents of X .

Constraint-Based Algorithms for Causal Analysis

The CCC and CCU rules [148] described below are based upon the LCD-algorithm by
Cooper [36]. They are constraint-based causal discovery algorithms that try to limit the
possible causal models by analyzing observational data. In accordance with the general
principle that correlation does not imply causation, we can apply statistical tests, e.g., the
χ2-test for independence in order to test the (conditional) dependence and independence
of variables to exclude certain causal relations. In this way, we can identify some causal
options between triples of variables. Let A, B, and C denote three distinct variables: Then,
the CCC rule is applicable if all (three) pairs of the variables (A, B), (B, C), (A, C) are
correlated, and A and C become independent when conditioned on B. The CCU rule is
applicable if two pairs are correlated, one pair is uncorrelated, but the uncorrelated pairs
becomes dependent when conditioned on the remaining variable. The CCC and CCU
causality rules can then be defined as follows:

Definition 3.3.4 (CCC Causality) Let X, Y, Z denote three variables that are pairwise
dependent, i.e., D(X, Y ),D(X, Z),D(Y, Z); let X and Z become independent when con-
ditioned on Y . Then, in the absence of hidden and confounding variables, we may infer
that one of the following causal relations exists between X, Y and Z:

X → Y → Z, X ← Y → Z, X ← Y ← Z

However, if X has no causes, then the first relation is the only one possible, even in the
presence of hidden and confounding variables.

Definition 3.3.5 (CCU Causality) Let X, Y, Z denote three variables with the following
dependencies: X and Y are dependent (D(X,Y )), Y and Z are dependent (D(Y, Z)) , X
and Z are independent (ID(X, Z)), but X and Z become dependent when conditioned on
Y (CondD(X,Z|Y )). Then, in the absence of hidden and confounding variables, we may
infer that X and Z cause Y .

As a necessary precondition, the basic CCC algorithm needs a variable with no causes;
this usually needs to be specified by the user. Alternatively, we can use the results of the
CCU algorithm to help the CCC algorithm, if the CCU rule is applied before the CCC rule
in all possible ways (c.f. [79]): The non-separating condition (conditional dependency) of
the relation identified by the CCU rule is not only a sufficient but a necessary condition,
i.e., for X → Y ← Z , if X and Z become dependent being conditioned on Y . Then,
considering a triple of variables X, Y, Z for which the CCC rule is valid we can identify
one relation from the three possible relations, i.e., X → Y → Z if a causal relation exists
from X to Y , but no causal relation has been derived from Y to Z.
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Definition 3.3.6 (Modified CCC Causality) Let X, Y, Z denote three variables that are
pairwise dependent, i.e., D(X, Y ),D(X, Z),D(Y, Z); let X and Z become independent
when conditioned on Y . Then, in the absence of hidden and confounding variables, we
may infer that one of the following causal relations exists between X, Y and Z:

X → Y → Z X ← Y → Z, X ← Y ← Z

If there exists an (inferred) causal link X → Y between X and Y , we may identify the first
relation as the true relation.

Basic Algorithm for Causal Analysis

The algorithm for causal analysis consists of three basic steps: First, a basic subgroup
search is performed identifying a set of subgroups that is dependent on the target group.
Then, (conditional) independence and dependence relations between pairs (and triples)
of variables are identified. Finally, we construct the directed causal net using the found
relations. Dependence and (conditional) independence can be tested using the χ2-test for
independence for binary variables representing the subgroups or the target group. The
decision is based on a threshold, which is a problem if very many tests are performed –
then, either the threshold has to be set to a very high value, otherwise errors concerning
the relations and directions in the causal net can occur. Therefore, we propose interactive
presentation and adaptation techniques for causal analysis of sets of subgroups.
For subgroups s1, s2, s3 the tests corresponding to independence ID(s1, s2), dependence
D(s1, s2) and conditional independence CondID(s1, s2) can be formulated as follows:

ID(s1, s2)←→ χ2(s1, s2) < T1 (3.8)

D(s1, s2)←→ χ2(s1, s2) > T2 (3.9)

CondID(s1, s2)←→ χ2(s1, s2|s3 = 0) + χ2(s1, s2|s3 = 1) < 2 · T1 (3.10)

For suppressing non-causal subgroups directly, we can apply the test for conditional in-
dependence of a subgroup s1 to the target group T , given another subgroup s2. The χ2-
measure for the target group and s1 is calculated both for the restriction on s2 and its
complementary subgroup. If the sum of the two test-values is below a threshold, then we
can conclude that subgroup s1 is conditionally independent from the target group. Con-
ditional independence is a sufficient criterion, since the target distribution of s1 can be
explained by the target distribution in s2, i.e., by the intersection. Since very similar sub-
groups could symmetrically suppress each other, the subgroups are ordered according to
their quality, and then subgroups with a nearly identical extension (and a lower quality)
can be eliminated.

Constructing a Causal Subgroup Net

We summarize how to construct a causal subgroup net in Algorithm 3.3.3, which is adapted
from an algorithm described by Klösgen and May [79]: The first step of the algorithm de-
termines for each subgroup pair, if they are independent, based on the inductive principle
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Algorithm 3 Constructing a causal subgroup net.
Require: Set of subgroups ST dependent with the target group T

1: for all si, sj ∈ ST , si 6= sj do
2: if approxEqual(si, sj) then
3: exclude any causalities for the subgroup with smaller correlation to T
4: if ID(si, sj) then
5: exclude causality: ex (si, sj) = true
6: for all si, sj ∈ ST , si 6= sj do
7: if ¬ex (si, T ), and¬ex (sj, T ) or¬ex (si, sj) then
8: if CondID(si, T |sj) then
9: exclude causality: ex (si, T ) = true

10: include sj into separators(si, T )
11: If conditional independencies are symmetric, then select the strongest relation
12: for all si, sj ∈ ST , i < j do
13: if ¬ex (si, T ), and¬ex (sj, T ) or¬ex (si, sj) then
14: if CondID(si, sj|T ) then
15: exclude causality: ex (si, sj) = true
16: include T into separators(si, sj)
17: for all si, sj ∈ ST , i < j, i 6= k, j 6= k do
18: if ¬ex (si, sj), and¬ex (sj, sk) or¬ex (si, sk) then
19: if CondID(si, sj|sk) then
20: exclude causality: ex (si, sj) = true
21: include sk into separators(si, sj)
22: for all si, sj, sk ∈ ST do
23: apply the CCU rule
24: for all si, sj, sk ∈ ST do
25: apply the modified CCC rule

that the dependence of subgroups is necessary for their causality. In the next step we de-
termine for any pair of subgroups whether the first subgroup is conditionally independent
from the target group given the second subgroup. As discussed above, the property of con-
ditional independence can be used to suppress the first subgroup by the second subgroup.
Also, from an actionability perspective, the second subgroup is usually preferable.
The next two steps check conditional independence between each pair of subgroups given
the target group or a third subgroup, respectively. For each pair of conditionally indepen-
dent groups, the separating (conditioning) group is noted. Then, this separator information
is exploited in the next steps, i.e., independencies or conditional independencies for pairs
of groups derived in the first steps are used to exclude any causal links between the groups.
The last two steps (5, 6) now derive the directions of the causal links between subgroups,
based on information derived in the previous steps. Applying the CCU rule [36, 148]
and the modified CCC rule [79] the network can finally be constructed. Hidden and/or
confounding variables and possibly erroneous tests cannot be ruled out utilizing the algo-
rithm, and can therefore cause incorrect results. Therefore, after applying the algorithm,
the resulting causal net is presented to the user for interactive analysis.
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3.4 Subgroup Discovery Algorithms

In this section we describe several subgroup discovery algorithms. First we consider the
size of the search space for subgroup discovery, Next, we discuss a simple brute-force ap-
proach for exhaustive search. We then describe the commonly used beam-search approach.
After that, we introduce a patient search strategy, i.e., the PRIM algorithm and a variant
(Weighted PRIM) specifically adapted for subgroup discovery. Thereafter, we describe the
adaptation of the Apriori-algorithm [2] for subgroup discovery (Apriori-SD [73]). Finally,
we introduce the novel SD-Map algorithm for scalable and effective subgroup discovery.

3.4.1 Size of the Search Space

For subgroup discovery the size of the search space is exponentially large with respect
to the number of attributes and the number of attribute values. Let us consider a strictly
conjunctive subgroup description language with no internal disjunctions, i.e., all possible
combinations of selectors containing only one value: If there are n attributes with k at-
tribute values each, then there are k2·n·(n−1)

2
combinations for 2 attributes, k3·n·(n−1)·(n−2)

6

combinations for 3 attributes, and ki
(

n
i

)
combinations of i attributes in general. Therefore,

if we also consider the ’empty’ subgroup description (as the combination of 0 attributes),
then the total size of the search space is given by

n∑
i=0

ki

(
n

i

)
= (1 + k)n (3.11)

i.e., the total number of all possible selector combinations for n attributes with k attribute
values each.

3.4.2 Exhaustive Search

Exhaustive search is essentially the most simple search strategy. It just considers all pos-
sible points of the search space, and is therefore guaranteed to find the optimal solution.
For subgroup discovery, the combinations of all possible selectors that are provided by the
subgroup description language are considered.
Considering Equation 3.11 above it is easy to see that using 10 attributes with 5 values each
an exhaustive search would take 17 hours, if we assumed that one search step takes about
1 ms. For 100 attributes with 5 values each it already takes 1.8 · 1071 hours. On the other
hand, for 5 attributes and 5 values each, exhaustive search takes about 8 seconds. Besides
that, the time needed to perform a search step is usually also dependent on the number of
cases that need to be processed. Thus, it is easy to see that a simple exhaustive search is
usually not feasible for a large number of attributes and/or cases if the search space cannot
be constrained or pruned significantly. Alternatively, heuristic algorithms can be used that
often show good empirical results [82,89]. However, in contrast to exhaustive search, they
cannot guarantee the discovery of the optimal solution(s).
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3.4.3 Beam Search

Beam search is a commonly used algorithm for subgroup discovery due to its efficiency,
and has been applied e.g., in the EXPLORA [80], MIDOS [174], or the Data Mining Server
(DMS) [51] systems. The beam search method starts with a list of subgroup hypotheses of
size w (corresponding to the beam width), which may be initially empty. The w subgroup
hypotheses contained in the beam are expanded iteratively, and only the best w expanded
subgroups are kept implementing a hill-climbing greedy search.
CN2 [34, 35] is a classical algorithm for rule learning employing a beam search strategy,
whereas CN2-SD [93] is the adaptation of the basic CN2 algorithm for subgroup discovery.
In contrast to the classic CN2 algorithm, it does not use a covering strategy but instead ap-
plies the weighted relative accuracy (WRACC) metric (c.f., Equation 3.2), using instance
reweighting similar to the weighted covering algorithm described in Section 3.3.2. The
modified CN2-SD algorithm is more suitable for subgroup discovery since its beam search
algorithm can discover overlapping subgroups due to the weighted-covering strategy. The
basic beam search algorithm is illustrated in Algorithm 4.

Algorithm 4 Basic beam search algorithm.
Require: Quality function q, minimum quality qmin, selector set E ⊆ ΩE , beam width w

1: i = 0; Bi = {∅}
2: Bi+1 = {sdj, | sdj = ∅, q(sdj) = qmin, j = 1 . . . w} {initialize the beam}
3: repeat
4: for all sd ∈ Bi do
5: for all e ∈ E do
6: sd′ = expand(sd, e){specialize subgroup description sd}
7: if support(sd′) ≥ TSupp ∧ q(sd′) ≥ worstquality(Bi+1) then
8: replace worst hypothesis in Bi+1 with sd′

9: i = i + 1
10: Bi+1 = Bi

11: until there is no improvement

For our search strategy, we use a modified beam search strategy, where an initial subgroup
description can be selected as the initial value for the beam (c.f., step 1 in Algorithm 4).
In addition, we use a minimum support threshold TSupp to stop the beam expansion.

3.4.4 PRIM

In contrast to other heuristic algorithms for subgroup discovery, the PRIM [47] algorithm
by Friedman and Fisher tries to be less greedy when constructing the subgroup descrip-
tions. PRIM (Patient Rule Induction Method) is applicable for numeric target variables
and can include numeric variables using quantiles and nominal selectors. PRIM searches
for subgroups (boxes) with a high response mean of the target variable. However, it can
also be extended for binary and nominal target variables by applying other quality func-
tions. We describe an adaptation of PRIM focusing on subgroup descriptions containing
selectors of nominal attributes.
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Basic PRIM

PRIM first employs a top-down peeling method, and iteratively removes selectors from a
subgroup description initially covering all the data. The peeling phase employs a patient
hill-climbing (greedy) strategy such that the selector to be peeled away is chosen based
on the locally best improvement of the quality function. Peeling is applied repeatedly and
stops when a minimal support value of the subgroup is reached. At each specialization
step only a small part of the objects of the current subgroup is removed. Thus, the PRIM
method offers all internal disjunctions for nominal attributes. After peeling, PRIM applies
pasting steps to compensate for possible mistakes of the (greedy) peeling phase: The
subgroup is iteratively enlarged as long as its quality can be improved by choosing the
selector with the best improvement. Then, the sequence of boxes obtained during the
peeling and pasting steps is presented as a trajectory to the user, in order to select the best
subgroup. After that, all instances covered by the selected subgroup are removed from
the dataset. Next, the process continues with the remaining set which provides a covering
strategy of PRIM. The algorithm terminates if the support of the reduced data set is below
a minimum support threshold or all the target cases have been covered.
Our implementation and adaptation of PRIM for nominal attributes is summarized in Al-
gorithm 5. To determine the result of a PRIM iteration, we choose the subgroup with the
highest value of the quality function q as the best subgroup from the subgroup trajectory.

Algorithm 5 basic PRIM algorithm for nominal attributes.
Require: Quality function q, target variable t, set of selectors E (search space)

1: Result set R = ∅
2: Start with all the cases (instances) C contained in the case base CB and a subgroup

covering all the data, i.e., a subgroup description sd containing all selectors e ∈ E
3: repeat
4: subgroup trajectory SD = ∅
5: repeat
6: for all selectors e ∈ E do
7: Peeling step: Remove the selector e from the current subgroup description sd

that provides the highest gain of the quality function q
8: SD = SD ∪ sd
9: until the minimum support threshold TSupp concerning sd has been reached

10: repeat
11: for all selectors e′ ∈ E − sd do
12: Pasting: Add the selector e’ to the current subgroup description sd that pro-

vides the highest improvement given quality function q
13: SD = SD ∪ sd
14: until the quality function q does not improve any further
15: Selection: Select sdb as the subgroup description with the highest quality from SD
16: R = R ∪ sdb

17: Covering step: Remove the instances covered by the selected subgroup description
sdb from C, i.e., C = C − extension(sdb)

18: until the support of C is below threshold TSupp , or all target cases have been covered
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Weighted PRIM

The covering step of the PRIM algorithm ensures that a set of cases described by one
subgroup description cannot be included in another subgroup description. Thus, sub-
groups discovered by PRIM cannot overlap. This is often problematic, since due to multi-
correlations a given subgroup can often be described by multiple subgroup descriptions.
Overlapping subgroups may be seen as redundant, but they can be very valuable in terms
of their descriptive power, since they describe properties of different population subsets
from different viewpoints.
Therefore, we propose an adaptation of the PRIM algorithm by substituting the covering
step. Using an idea from the weighted covering algorithm given in Algorithm 2, we do
not remove cases (instances) covered by a subgroup description from the search space.
Instead, the instance covered by previously discovered subgroups can be reweighted, such
that a reduced weight is assigned to frequently covered instances. Then, the overlap is
not entirely prevented but can be significantly reduced. The algorithm for Weighted PRIM
applying a non-covering strategy is shown in Algorithm 6 below.

Algorithm 6 Weighted PRIM algorithm for nominal attributes.
Require: Quality function q that takes weights of cases into account, Target variable t,

Set of selectors E specifying the search space
1: Result set R = ∅
2: Let C = CB (all cases/instances contained in the case base); start with a subgroup

covering all the data, i.e., a subgroup description sd containing all selectors e ∈ E
3: repeat
4: subgroup trajectory SD = ∅
5: repeat
6: for all selectors e ∈ E do
7: Peeling step: Remove the selector e from the current subgroup description sd

that provides the highest gain of the quality function q
8: SD = SD ∪ sd
9: until the minimum support threshold TSupp concerning sd has been reached

10: repeat
11: for all selectors e′ ∈ E − sd do
12: Pasting: Add the selector e’ to the current subgroup description sd that pro-

vides the highest improvement given quality function q
13: SD = SD ∪ sd
14: until the quality function q does not improve any further
15: Selection: Select sdb as the subgroup description with the highest quality from SD
16: R = R ∪ sdb

17: for all cases c ∈ CB that contain the target variable t and are covered by sdb do
18: w(c) = 1

1+ 1
w(c)

{decrease the weight of covered target cases}
19: until the support of C is below threshold TSupp , or all target cases have been covered
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3.4.5 Apriori-SD

Apriori-SD [73] is an adaptation of the classical Apriori [2] algorithm for mining associa-
tion rules. In the following we will first summarize the basics of mining association rules
using the Apriori algorithm; we refer to [2] for a detailed description. After that, we will
discuss the extensions of Apriori-SD that are necessary for subgroup discovery.

Basics of Apriori

Association rules consider a set of items contained in transactions; in our context
cases/instances can be regarded as transactions; the items correspond to a set of selectors,
i.e., an item is given by an (atomic) selector containing an attribute value of a particular
attribute, or by a set of attribute values if internal disjunctions are allowed. An associa-
tion rule has the form X → Y, where X and Y are sets of selectors. The quality of an
association rule is determined by its confidence, i.e., an estimate of the conditional prob-
ability of Y given X , and its support that can be obtained by the probability of X and Y
co-occurring:

confidence =
n(X ∪ Y )

n(X)
, support =

n(X ∪ Y )

N
,

where n(S) is the number of cases containing the selector set S, and N is the total size of
the case base.
The Apriori algorithm consists of two basic steps: 1) Finding all frequent itemsets, and 2)
generating strong association rules from the frequent ones. An itemset is considered to be
frequent if its frequency is above a certain minimum support count; a strong association
rules satisfies a given minimum support and confidence threshold. Apriori performs level-
wise search, applying an anti-monotonicity principle, i.e., that every superset of a non-
frequent itemset will also be non-frequent. The algorithm applies this principle in the
candidate generation step, where the k−itemsets are used to explore the (k+1)−itemsets .
Therefore, Apriori can be considered an exhaustive search algorithm dependent on the
minimum support count for pruning non-interesting patterns.

The Apriori-SD Algorithm

The Apriori-SD algorithm is an adaptation of the Apriori-C algorithm [70] for learning
classification rules: Only rules are considered for which the target item (class) occurs as
a single item in the head of the rule. The rule generation phase of Apriori-C is straight-
forward, since rules can be generated directly in the candidate generation phase such that
only the itemsets of size k and k + 1 need to be stored in each step of the Apriori frequent
itemset generation phase.
Apriori-SD is based on the same observations as Apriori-C: We need to concentrate only
on the association rules containing the target variable as a single item in the head of the
rule. Then, rules (subgroups) can be generated for the target variable. Since usually a
large number of overlapping and potentially redundant association rules are discovered,
Apriori-SD uses a weighted covering method for rule-subset selection in order to obtain
the final set of subgroups, similar to the CN2-SD algorithm [93].
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3.4.6 SD-Map

In this section, we present the novel SD-Map algorithm for exhaustive but efficient sub-
group discovery. SD-Map guarantees to identify all interesting subgroup patterns con-
tained in a data set, compared to common heuristic methods or sampling-based ap-
proaches. Similar to Apriori-SD, SD-Map is an exhaustive search method, dependent on
a minimum support threshold: If we set the minimum support to zero, then the algorithm
performs an exhaustive search covering the whole unpruned search space. The SD-Map
algorithm utilizes the well-known FP-growth method [58] for mining association rules.
Using association rules for classification has been proposed, e.g., in the CBA [99] and
the CorClass [179] algorithms. As discussed in the last section Apriori-SD also adapts
the Apriori method for subgroup discovery. Compared to the existing approaches, we use
the exhaustive FP-growth method that is usually faster than the Apriori approach. The
adaptations of the Apriori-style methods are also valid for the FP-growth method. Then,
due the subgroup discovery setting the memory and runtime complexity of FP-growth
can be reduced further (c.f., [70, 73]). In comparison to the Apriori-based methods and
a naive application of the FP-growth algorithm, the SD-Map method utilizes a modified
FP-growth step that can compute the subgroup quality directly without referring to other
intermediate results. Additionally, we propose an efficient integrated method for handling
missing values. Furthermore, SD-Map can utilize arbitrary quality functions, in contrast
to branch-and-bound algorithms [178,179] that require special (convex) quality functions.
In the following, we first introduce the basics of FP-growth. Then, we discuss the SD-Map
algorithm and describe the extensions and adaptations of the FP-growth method for the
subgroup discovery setting. After that, we describe how SD-Map can be applied efficiently
for the special case of (strictly) conjunctive languages using internal disjunctions.

The FP-growth Algorithm

The FP-growth algorithm is an efficient approach for mining frequent patterns. Similar to
the Apriori algorithm [2], FP-growth operates on a set of items that are given by a set of
selectors in the context of subgroup discovery. The main improvement of the FP-growth
method compared to Apriori is the feature of avoiding multiple scans of the database for
testing each frequent pattern. Instead, the candidate set generation and test phase of Apriori
is replaced by an efficient divide-and-conquer algorithm for mining frequent patterns. As a
special data structure, the frequent pattern tree or FP-tree is used which is implemented as
an extended prefix-tree-structure that stores count information about the frequent patterns.

Building a FP-Tree The FP-tree contains a root node, labeled with ’null’ and a set of
item/selector prefix subtrees that are children of the root. A frequent selector/item header
table contains entries of the form (selector, head-node-link); the head-node-link points to
the first node in the FP-Tree with the same corresponding selector. Each node in the tree is
a tuple (selector, count, node-link): The count measures the number of times the respective
selector is contained in the number of cases reached by this path, and the node-link links
to the next node in the FP-tree with the same assigned selector, or ’null’, if there is none.
An example of a FP-tree is shown in Figure 3.1.
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Figure 3.1: Example of a FP-Tree (c.f., [58]), for the frequent selectors a, b, c, f,m, p.

The construction of an FP-tree only needs two passes through the set of cases: In the first
pass the case base is scanned collecting the set of frequent selectors S and their absolute
frequencies, i.e., their supports. The set S is sorted in support descending order as L, the
list of frequent sorted selectors. In the second pass, the root T of the FP-tree is created and
labeled as ’null’. Then, for each case c ∈ CB the following algorithm is applied: The fre-
quent selectors contained in c are selected and sorted according to the order of L, resulting
in L′ = (e1, . . . , en). After that, L′ is inserted into the tree by calling insertTree(L′, T ):
If T has a child N such that there is a match for the first selector of L′, i.e., N.e = e1, then
the count of N is incremented by 1; otherwise, a new node N is created and assigned a
count of 1; T is linked as its parent, and the new node is linked to the nodes with the same
selector. If L′ 6= ∅, insertTree(L′ − e1, N) is called recursively.
A FP-tree is a highly compact data structure for frequent pattern mining: The size of an
FP-tree is bounded by the size of the case base, since at most one path for each case will
be constructed. The maximum length of such a path is bounded by the number of selectors
included. Since often a lot of frequent selectors are shared in the cases, the size of the FP-
tree is usually much smaller than the case base. The selectors in the set of sorted frequent
selectors are ordered in support-descending order: This increases the chances of sharing
common prefixes corresponding to (prefixed) frequent selectors.

Mining the FP-Tree In order to determine the set of frequent patterns, the FP-growth
algorithm is used. It applies a divide and conquer method, first mining frequent patterns
containing one selector and then recursively mining patterns of size 1 conditioned on the
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occurrence of a (prefix) 1-selector. For the recursive step, a conditional FP-tree is con-
structed, given the conditional pattern base of a frequent selector contained in the header
node table of the FP-Tree and its corresponding nodes in the tree. The conditional pattern
base consists of all the prefix paths of such a node v, i.e., considering all the paths Pv that
node v participates in. The counts of the prefix paths need to be adapted to the frequency
of v. Given the conditional pattern base a (smaller) FP-tree is generated, the conditional
FP-tree of v utilizing the adapted frequency counts of the nodes. If the conditional FP-Tree
just consists of one path, then the frequent patterns can be generated by considering all the
combinations of the nodes contained in the path. Otherwise, the process is performed re-
cursively. The FP-growth mining algorithm is summarized in Algorithm 7; we refer to Han
et al. [58] for a detailed discussion. Figure 3.2 shows examples of a conditional pattern
base and a conditional FP-Tree.

Algorithm 7 Basic FP-growth algorithm.
Require: A (conditional) FP-Tree tree; a set A ⊆ ΩE of conditioned frequent selectors):

1: if tree contains a single path p then
2: for each non-empty element N ∈ 2p of the powerset of the nodes in p do
3: generate pattern F = N ∪ A with support(F ) = min{support(n) | n ∈ N}.
4: else
5: for each selector ei in the header of tree do
6: generate the pattern F = A ∪ {ei} with support(F ) = ei.support and construct

the conditional FP-tree treeF of F
7: if (treeF 6= ∅ then
8: call FP-growth(treeF , F)

The SD-Map Algorithm

Compared to association rules that measure the confidence (precision) and the support of
rules [2], subgroup discovery uses a special quality function to measure the interestingness
of a subgroup. A naive adaptation of the FP-growth algorithm for subgroup discovery just
uses the FP-growth method to detect the frequent patterns; then we also need to test the
patterns using the quality function. For the subgroup quality computation mainly four
parameters are used: The true positives tp (cases containing the target variable t in the
given subgroup s), the false positives fp (cases not containing the target t in the subgroup
s), and the positives TP and negatives FP regarding the target variable t in the general
population of size N . Thus, we could just apply the FP-growth method as is, and compute
the subgroup parameters as

1. tp = support(s) = count(s ∧ t),
2. n = count(s),
3. fp = n− tp,
4. p = tp/(tp + fp),
5. TP = count(t),
6. FP = N − TP , and
7. p0 = TP/(TP + FP).
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Figure 3.2: Example of a conditional pattern base and a conditional FP-Tree (c.f., [58]),
for the frequent selector/item m.

However, one problem encountered in data mining remains: The missing value problem.
If missing values are present in the case base, then not all cases may have a defined value
for each attribute, e.g., if the attribute value has not been recorded. For association rule
mining this usually does not occur, since we only consider items in a transaction: An item
is present or not, and never undefined or missing.
In contrast missing values are a significant problem for subgroup mining in some domains,
e.g., in the medical domain [14, 15]. If the missing values cannot be eliminated they
need to be considered in the subgroup discovery method when computing the quality of
a subgroup: We basically need to adjust the counts for the population by identifying the
cases where the subgroup variables or the target are not defined, i.e., where these have
missing values.
So, the simple approach described above is redundant and also not sufficient, since
• We would get a larger tree if we used a normal node for the target
• If there are missing values, then we need to restrict the parameters TP ,FP to the

cases for which all the attributes of selectors contained in the subgroup description
have defined values
• Furthermore, if we derived fp = n − tp, then we could not distinguish the cases

where the target is not defined
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In order to improve this situation, and to reduce the size of the constructed FP-tree, we
consider the following important observations:

1. For estimating the subgroup quality we only need to determine the four basic sub-
group parameters tp, fp, TP , and FP with a potential adaptation for missing values.
Then, the other parameters can be derived: n = tp + fp, N = TP + FP .

2. For subgroup discovery, the concept of interest, i.e., the target variable is fixed,
in contrast to the arbitrary ’rule head’ of association rules. Thus, the necessary
parameters described above can be directly computed. For example, considering the
true positives tp, if a case contains the target and a particular selector, then the tp
count of the respective node of the FP-tree is incremented.

If the tp, fp counts are stored in the nodes of the FP-tree, then we can compute the quality
of the subgroups directly while generating the frequent patterns. Furthermore, we only
need to create nodes for the independent variables, not for the dependent (target) variable.
In the SD-Map algorithm, we just count for each node if the target variable occurs (incre-
menting tp) or not (incrementing fp). The counts in the general population can then be
acquired as a by-product. For the main FP-Tree, it is thus important that the parameters
tp, fp are only counted for cases for which the target variable has a defined value.
For handling missing values we propose to construct a second FP-tree-structure, the
Missing-FP-tree. The FP-tree for counting the missing values can be restricted to the set of
frequent attributes of the main FP-Tree, since only these can form subgroup descriptions
that later need to be checked with respect to missing values. Then, the Missing-FP-tree
needs to be evaluated in a special way to obtain the respective missing counts. To adjust
for missing values we only need to adjust the number of TP , FP corresponding to the
population, since the counts for the subgroup FP-tree were obtained for cases where the
target was defined, and the subgroup description only takes cases into account where the
selectors are defined.
Using the Missing-FP-tree, we can identify the situations where any of the attributes
contained in the subgroup description is undefined: For a subgroup description sd =
(e1 ∧ e2 ∧ · · · ∧ en), ei = (ai, Vi), Vi ⊆ dom(ai) we need to compute the missing counts
missing(a1∨a2∨· · ·∨an) for the set of attributes M = {a1, . . . , an}. This can be obtained
applying the following transformation:

missing(a1 ∨ · · · ∨ an) =
n∑

i=1

missing(ai)−
∑

m∈2M

missing(m) , (3.12)

where |m| ≥ 2. Thus, in order to obtain the missing adjustment with respect to the set M
containing the attributes of the subgroup, we need to add the entries of the header nodes of
the Missing-FP-tree corresponding to the individual attributes, and subtract the entries of
every suffix path ending in an element of M that contains at least another element of M .
By considering the (tp, fp) counts contained in the Missing-FP-tree we obtain the number
of (TPmissing ,FPmissing) where the cases cannot be evaluated statistically since any of the
subgroup variables are not defined, i.e., at least one attribute contained in M is missing.
To adjust the counts of the population, we compute the correct counts as follows:

TP ′ = TP − TPmissing ,FP ′ = FP − FPmissing . (3.13)
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Algorithm 8 SD-Map algorithm
Require: target variable t, quality function q, set of selectors E (search space)

1: Scan 1 – Collect the frequent set of selectors, and construct the frequent node list L:
1. For each case for which the target variable has a defined value, count the

(tpe, fpe) for each selector e ∈ E.
2. Prune all selectors which are below a minimum support TSupp , i.e., tp(e) =

frequency(e ∧ t) < TSupp .
3. Using the unpruned selectors e ∈ E, construct and sort the frequent node list L

in support/frequency descending order.
2: Scan 2 – Build the main FP-tree:

For each node contained in the frequent node list, insert the node into the FP-tree
(according to the order of L), if observed in a case, and count the number of (tp, fp)
for each node

3: Scan 3 – Build the Missing-FP-tree (This step can also be integrated into scan 2 as a
logical step):

1. For all frequent attributes, i.e., the attributes contained in the frequent nodes L
of the FP-tree, generate a node denoting the missing value for this attribute.

2. Construct the Missing-FP-tree, counting the (tp, fp) for each (attribute) node.
4: Perform the adapted FP-growth method to generate subgroup patterns:
5: repeat
6: for each subgroup si that denotes a frequent subgroup pattern do
7: Compute the adjusted population counts TP ′,FP ′ as shown in Equation 3.13
8: Given the parameters tp, fp,TP ′,FP ′ compute the subgroup quality q(si) using

a quality function q
9: until FP-growth is finished

10: Post-process the obtained subgroup patterns, e.g., return the k best subgroups, or re-
turn the subgroup set S = {s | q(s) ≥ qmin}, for a minimal quality threshold qmin ∈ R
(This can also be integrated as a logical filtering step in the discovery loop (lines 5-9).

Then, we can compute the subgroup quality based on the parameters tp, fp,TP ′,FP ′.
Thus, in contrast to the standard FP-growth method, we do not only compute the frequent
patterns in the FP-growth algorithm, but we can also directly compute the quality of the
frequent subgroup patterns, since all the parameters can be obtained in the FP-growth step.
So, we perform an integrated grow-and-test step, accumulating the subgroups directly. The
SD-Map algorithm is shown in Algorithm 8.
SD-Map includes a post-processing step for the selection and the potential redundancy
management of the obtained set of subgroups. Usually, the user is interested only in the
best k subgroups and does not want to inspect all subgroups. Thus, we can select the best
k subgroups according to the quality function. Alternatively, we could also choose all the
subgroups above a minimum quality threshold. Furthermore, in order to reduce overlap-
ping and thus potentially redundant subgroups, we can apply post-processing, e.g., clus-
tering methods or a weighted covering approach, c.f., Section 3.3.2, as in the Apriori-SD
algorithm. The post-processing step could potentially also be integrated into the ”discov-
ery loop” (while applying the adapted FP-growth method), see Algorithm 8.
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A subgroup description as defined in Section 3.1.4 can either contain selectors with internal
disjunctions, or not. Using a subgroup description language without internal disjunctions
is often sufficient for many domains, e.g., for the medical domain [14,15]. In this case the
description language matches the setting of the common association rule mining methods.
If internal disjunctions are not required in the subgroup descriptions, then the SD-Map
method can be applied in a straight-forward manner: If we construct a selector e =
(a, {vi}) for each value vi of an attribute a, then the SD-Map method just derives the
desired subgroup descriptions: Since the selectors do not overlap, a conjunction of selec-
tors for the same attribute results in an empty set of covered cases. Thus, only conjunctions
of selectors will be regarded as interesting if these correspond to a disjoint set of attributes.
Furthermore, each path of a constructed frequent pattern tree will also only contain a set
of selectors belonging to a disjoint set of attributes.
If internal disjunctions are required, then the search space is significantly enlarged in gen-
eral, since there are 2m−1 (non-empty) value combinations for an attribute with m values.
However, the algorithm can also be applied efficiently for the special case of a description
language using selectors with internal disjunctions, as described in the next section.

Applying SD-Map for Conjunctive Subgroup Descriptions with Internal
Disjunctions Efficiently

Naive Approach First, we can just consider all possible selectors with internal dis-
junctions for a particular attribute. This technique can also be applied if not all internal
disjunctions are required, and if only a selection of aggregated values should be used.
For example, a subset of the value combinations can be defined by a taxonomy, by the
ordinality of an attribute, or by background knowledge (c.f., Section 4.2).
If all possible disjunctions need to be considered, then it is easy to see that adding the se-
lectors corresponding to all internal disjunctions significantly extends the set of selectors
that are represented in the paths of the tree compared to a subgroup description language
without internal disjunctions. Additionally, the selectors overlap: Then, the sizes of many
conditional trees being constructed during the mining phase is increased. However, in
order to improve the efficiency of this approach we can apply the following pruning tech-
niques:

1. During construction of a conditional tree, we can prune all parent nodes that con-
tain the same attribute as the conditioning node, since these are subsumed by the
conditioning selector.

2. Constructing the combinations of the selectors on a single path of the FP-tree we
only need to consider combinations for disjoint sets of the respective attributes.

Using Negated Selectors An alternative approach is especially suitable if all internal
disjunctions of an attribute are required. The key idea is to express an internal disjunction
by a conjunction of negated selectors: For example, consider the attribute a with the values
v1, v2, v3, v4 and let us assume that there are no missing values for the attribute: Instead of
the disjunctive selector (a, {v1, v2}) corresponding to the value v1 ∨ v2 we can utilize the
conjunctive expression ¬(a, {v3}) ∧ ¬(a, {v4}) corresponding to the value ¬v3 ∧ ¬v4.
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This works for data sets that do not contain missing values. If missing values are present,
then we just need to exclude the missing values for such a negated selector: For the negated
selectors of the example above, we create ¬(a, {v3, vmissing})∧¬(a, {v4, vmissing}). Then,
the missing values are not counted for the negated selectors. If we need to consider
the disjunction of the all the attribute values of an attribute, then we add a selector
¬(a, {vmissing}) for each attribute a.
Applying this approach, we only need to create negated selectors for each attribute value
of an attribute, instead of adding all internal disjunctions: The set of selectors that are
contained in the frequent pattern tree is then significantly reduced compared to the naive
approach described above. The evaluation of the negated selectors can be performed with-
out any modifications of the algorithm. Before the subgroup patterns are returned, they
are transformed to subgroup descriptions without negation by merging and replacing the
negated selectors by semantically equivalent selectors containing internal disjunctions.

3.5 Summary

In this chapter we have introduced the subgroup discovery approach and the general setting
of subgroup discovery. We introduced our general knowledge representation and described
the subgroup discovery context given by the target variable, the description language, con-
straints, and a quality function. Concerning the latter, we discussed several quality func-
tions and also discussed the issue of general interestingness measures. Additionally, we
introduced the general strategies for subgroup search, pruning, and redundancy manage-
ment of subgroups.
We then explained the general issue of the huge search space usually encountered in sub-
group discovery, described its dimensions and discussed problems of simple exhaustive
methods. After that, we described several standard search algorithms: We discussed the
classic beam search algorithm and the PRIM method. Furthermore, we presented an adap-
tation of the PRIM algorithm that improves upon the covering strategy of the basic PRIM
algorithm which is not really suitable for subgroup discovery. Then, we described the
Apriori-SD algorithm that is an adaptation of the Apriori algorithm for association rule
learning for the subgroup discovery setting.
As a major point, we have presented the novel SD-Map algorithm that is an exhaustive
search strategy depending on a minimum support threshold. Based on the FP-growth al-
gorithm, the algorithm enables efficient and effective subgroup discovery.



4 Knowledge-Intensive Subgroup
Mining

In this chapter we present an approach for knowledge-intensive subgroup mining. First, we
discuss the benefit of exploiting background/domain knowledge and introduce the different
classes (e.g., constraints) and the individual types of knowledge utilized in the subgroup
mining process. Then, we describe how the knowledge can be integrated into the subgroup
discovery methods described in Section 3.4, and how it can be applied for post-processing
the discovered subgroup patterns in order to improve their quality. Finally, we show how
several types of background knowledge can be learned (semi-)automatically.

4.1 Problem Definition

Knowledge-intensive learning methods apply background knowledge for a simple reason:
In general, using background knowledge can improve the quality of their results signifi-
cantly [133]. So, in knowledge-rich domains, e.g., in the medical domain, the user usually
wants to utilize existing knowledge to increase the interestingness of the mined patterns.
Similarly, in diagnostic domains the diagnostic performance of a system depends more on
quality and quantity of general diagnostic knowledge as well as ontological knowledge
than on a particular problem-solver, according to Puppe et al. [123].
Background/domain knowledge can help to improve subgroup discovery in several ways:
For example, it can focus the subgroup discovery method on the relevant patterns accord-
ing to specific criteria. Then, similar to a constrained query to a web search engine, the
user is not flooded with too many (uninteresting) results, but relevant results can be pre-
sented according to the specified background knowledge. Furthermore, domain knowledge
can be used to constrain the search space in order to increase the efficiency of the search
method. Therefore, in our approach we want to apply as much background knowledge
as possible in order to focus the mining method, to restrict the search space, to exclude
non-interesting patterns, and to improve the handling of missing values.
Knowledge acquisition is often challenging and costly considering the knowledge acquisi-
tion bottleneck [27, 59]. Therefore, an important idea is to ease knowledge acquisition by
reusing existing domain knowledge, i.e., knowledge that is already known to the user, or
that is contained in existing ontologies or knowledge bases. Then, we can decrease know-
ledge acquisition costs and can try to fit the applied knowledge to the mental model of the
user. Several types of background knowledge can also be learned (semi-)automatically as
described in Section 4.4. The background knowledge can be dynamically formalized and
re-entered in an active and incremental process as discussed below.
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4.2 Types and Classes of Background Knowledge

The proposed classes of background knowledge that can be applied for knowledge-
intensive subgroup mining are given by constraints, ontological knowledge, and abstrac-
tion knowledge. Constraints basically specify conditions that the subgroup patterns need
to satisfy. Examples include specific knowledge about attributes and attribute values and
quality or language constraints. Ontological knowledge describes properties of the onto-
logical objects, and can be used to infer new additional constraints, thus easing knowledge
acquisition costs. Abstraction knowledge is given by ’virtual’ rule-based derived attributes
that can be refined incrementally.
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Figure 4.1: Hierarchy of (abstract) knowledge classes and specific types

Figure 4.1 shows the knowledge hierarchy, from the three general knowledge classes to
their specific types, structured by the domain objects (attributes, values, and patterns) that
they apply to.
Compared to constraints, ontological and abstraction knowledge can be considered as a
more abstract ’high-level’ form of knowledge. As described below, ontological know-
ledge can be used for deriving ’simpler’ constraint knowledge: Then, often the knowledge
acquisition costs can be reduced. Furthermore, usually the abstract knowledge types fit
in the mental model of the user such that (manual) knowledge acquisition is made easier;
some types of ontological background knowledge can also be learned semi-automatically
as described in Section 4.4. In the following we discuss the elements of the proposed
knowledge classes in detail.
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4.2.1 Constraint Knowledge

In general, constraint knowledge indirectly specifies the kinds of patterns that the user
is especially interested in. Constraints are often applied for ’configuring’ an (automatic)
discovery method in order to focus it on the interesting patterns. Then, the given con-
straints can be applied for filtering patterns by their quality, by language restrictions, or by
restricting the value range of an attribute contained in the search space.
In principle the mined subgroup patterns can be either constructed according to the speci-
fied constraints during the mining process, or the subgroup patterns can be post-processed
afterwards. However, the first alternative has the advantage that the search space can often
be significantly restricted. Furthermore, it is straight-forward to apply certain constraints,
e.g., quality or language constraints during the discovery process. In either case, constraint
knowledge can significantly focus the discovery process similar to the techniques applied
in constraint-based data mining [25]. We refer to Section 4.3.2 for a detailed discussion.
In the proposed knowledge-intensive approach we distinguish the following constraints:

• Language constraints: The applied description language specifies the form of sub-
group patterns that can be discovered, and thus affects the size of the search space.
Possible choices range from considering purely conjunctive languages to languages
that allow internal disjunctions and negation. For the latter case, by including inter-
nal disjunctions and negation the search space is extended significantly compared to
only using simple conjunctions of attribute values as selectors. Depending on the
requirements of the user, the right description language for the task needs to be se-
lected, considering also interestingness, simplicity and actionability aspects. Further
language constraints consider specialized syntactical constraints, e.g., restricting the
maximal number of conjuncts used in a subgroup description.

• Quality constraints: These constraints relate to a minimum quality value that the
subgroup patterns need to satisfy. Depending on the applied quality function the
user often has an intuitive idea about a minimum quality which can also restrict the
search space conveniently using pruning approaches. Furthermore, certain quality
thresholds, i.e., a minimum support or a statistical significance threshold may be
applied by the user.

• Value exclusion constraints: By excluding certain (uninteresting) values the value
range of an attribute can be restricted to the set of relevant values, i.e., thus restricting
the search space and focusing the search.

• Value aggregation constraints: Specific value groups, i.e., a disjunction of attribute
values defining an abstracted ’aggregated value’ can be specified, e.g., intervals for
ordinal values. For example, consider the attribute age with the values ’< 40’,
’40 − 50’, ’50 − 70’, ’> 70’: From these we can derive the aggregated values
’≤ 50’ and ’> 50’. Aggregated values are not restricted to intervals, but can cover
any combination of values. Then, the search space is not necessarily constrained
if the new values are added while the old values are not excluded. However, if the
aggregated values are more meaningful for the user, then the search can be focused.
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• Attribute exclusion constraints: By excluding uninteresting attributes the search
space can be significantly reduced when defining the subgroup discovery context. If
only the important and interesting attributes are considered, then the search process
can also be focused in order to discover more relevant (and interesting) subgroups.

• Attribute combination constraints: Combinations of attributes can be excluded,
e.g., if these are already known to the user. Thus, the search space can be restricted,
and the search process can also often be focused, since already known patterns and
associations are filtered and removed.

• Priority group constraints: As another kind of constraint knowledge, the user can
specify priority groups that are partially disjunctive sets of attributes with an as-
signed priority. The sets of attributes are then utilized iteratively: We can first start
with the set of attributes with the highest priority. If the discovered subgroups can-
not be improved any further by the attributes in the current set, then we take the
attributes in the next prioritized attribute set into account in the next iteration.

• Subgroup pattern constraints: Subgroup patterns denoting either predefined or
discovered subgroups can be specified as constraints. As described by Scholz [145],
such pattern knowledge can be used to avoid the rediscovery of already known sub-
groups. Subgroup patterns can also be utilized for deriving new attributes: Since
subgroups describe relations between a dependent and several independent vari-
ables, such a relation can be abstracted into a new attribute. Furthermore, new
subgroups can also be compared to the existing background knowledge in order
to identify interesting unexpected patterns, as discussed in Section 4.3.3.

The knowledge acquisition costs for constraints are moderate, depending on the number of
relations that need to be modeled; in general, the acquisition costs can also be decreased
utilizing ontological knowledge as described below. For priority groups, the cost is en-
coded in the partially disjunctive separation of attributes. These groups do not necessarily
restrict the search space, but can help to focus the discovery method on the interesting
patterns. The costs for subgroup pattern constraints are moderate if the patterns are dis-
covered automatically during the discovery process. Then, they can be stored in a subgroup
knowledge base for future reference. We propose to apply pattern knowledge in a semi-
automatic approach: interactive analysis and comparison techniques can then be applied
in a post-processing step as discussed below.

4.2.2 Ontological Knowledge

Ontological knowledge is commonly used for the development of knowledge systems, e.g.,
for case-based reasoning systems: The class of ontological knowledge consists of several
types that specify general properties of the objects contained in the domain ontology.
We distinguish the following types of knowledge:

1. Weights of attributes denoting their importance
2. Abnormality/normality information about attribute values
3. Similarity information about the relative similarity between attribute values
4. Ordinality information about attributes
5. Partition class information about sets of attributes
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In the following we will discuss the different elements of ontological knowledge that can
be either defined by the user, or can be partially learned (semi-)automatically (1,3), as
presented in [20], and discussed in Section 4.4. Furthermore, this class of knowledge can
be used to infer new ’basic’ constraint knowledge dynamically, as shown below.

Attribute Weights

Weights of attributes can be used for excluding (irrelevant) attributes using a suitable
weight-threshold. Attribute weights are a common extension for knowledge-based sys-
tems, e.g., for case-based reasoning systems [20]: There, weights of attributes denote their
relative importance that can be used for feature subset selection.
We distinguish eight classes of weights given by the symbolic values {G0, G1, . . . , G7}
that describe the importance of an attribute in ascending order. Then, if attributes are
annotated with weights, this knowledge can be used very intuitively to derive attribute
constraints in order to restrict the search space. The standard interpretation is to ex-
clude attributes with a zero weight (G0); alternatively, subsets of the (ordinaly) scaled
weight space can be used for exclusion as well. Weights of attributes can also be learned
(semi-)automatically, as described in Section 4.4.

Abnormality/Normality Information

Abnormality or normality information is easy to obtain for diagnostic domains, e.g., in the
medical domain the set of ’normal’ attribute values contains the expected values, and the
set of ’abnormal’ values contains the unexpected values, i.e., the pathological attribute val-
ues. For subgroup analysis often unexpected values are more interesting, e.g., in medical
domains. Then, the normal attribute values can be pruned such that subgroups containing
these are suppressed.
If abnormality or normality information about attribute values is available, then each
value v ∈ dom(a) of an attribute a is attached with a label that explains, if v is de-
scribing a normal or an abnormal state of the attribute. Normality information only
requires a binary label while abnormality information defines several categories. For
example, consider the attribute temperature with the value range dom(temperature) =
{normal, marginal, high, very high}. The values normal and marginal denote normal
states of the attribute, while the values high and very high describe abnormal states. Sev-
eral categories can be defined according to the degree of abnormality. We use four degrees
of abnormality given by the symbolic values A2, A3, A4, A5 in ascending order, and con-
sider a normal category A1.
Using abnormality/normality knowledge we can constrain the value range of an attribute:
e.g., either all values corresponding to selected abnormal categories, or the values marked
with the normal category can be excluded from consideration by the subgroup discovery
method, by applying a global value exclusion constraint.
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Similarity Information

Similarity information between attributes values is a concept that is often applied in
knowledge-based systems, e.g., in case-based reasoning systems: It specifies the relative
similarity between the individual attribute values. For example, for a nominal attribute
color with the value range white, gray, black we can state that, e.g., the value white is
more similar to gray than it is to black. Then, depending on the analysis goals, similar
values can be combined, and (non-)similar values can be excluded. Similarity information
is an alternative knowledge element for abnormality or ordinality information for creating
aggregated value constraints. Similarity knowledge can be learned (semi-)automatically
as described in Section 4.4.

Ordinality Information

Ordinality information specifies if a nominal attribute is ordinal, i.e., if its value domain
can be ordered. For example, the qualitative attributes age and liver size are ordinal. Often
the value ranges of such attributes needs to be adapted, since the boundaries of the individ-
ual values may need to be fine-tuned for the analysis. In such cases, often values need to be
merged into an (additional) new aggregated value to be utilized by the discovery method.

Partition Class Information

Partition class information (c.f., [7]) takes advantage of the fact that many domains can
be divided into rather independent subdomains. For example, in the medical domain of
sonography such partitions are representing the different organ systems like liver, pan-
creas, kidney, stomach, and intestine. Then, the user can provide partition class knowledge
describing how to divide the set of attributes contained in the domain ontology into par-
tially disjoint subsets, i.e., partitions describing semantically distinct group of attributes.
These subsets usually correspond to certain problem areas of the application domain. We
can utilize the partition classes by deriving attribute combination constraints in order to
prevent specific combinations of attributes or to only enable such combinations during
the mining process; additionally, we can use the partition class information in a post-
processing phase to filter or to indicate subgroup patterns that contain attributes included
in different partition classes.

Summary of Constraint Derivation

The described types of ontological knowledge can be used in order to derive further ’basic’
constraints dynamically. The possible options are shown in Figure 4.2; in the following,
we summarize how new constraint knowledge can be inferred semi-automatically.

• Considering (learned) weights of attributes, we can construct attribute exclusion
constraints to configure the set of relevant attributes, e.g., using a weight threshold.

• Using abnormality/normality knowledge we can specify global value exclusion con-
straints for a set of abnormal values, or for the normal values.
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Figure 4.2: Deriving constraint knowledge using ontological knowledge.

• Given similarity and abnormality/normality information about attribute values we
can model and restrict the value ranges of attributes: abnormality information or
similarity information can be used to define additional aggregated values: If the
similarity between two attribute values is very high, then they can potentially be an-
alyzed as a combined value forming a disjunctive selection expression on the value
range of an attribute. Similarly, global abnormality groups can be defined by provid-
ing sets of abnormality degrees that specify which values should be combined, e.g.,
by aggregating all attribute values for which their abnormality degree is contained in
the set {A4, A5}. This is especially relevant in the medical domain, e.g., consider-
ing attribute values such as probable and possible for a diagnosis: for analysis these
often have an almost equivalent meaning and can then be considered as one value.

• Ordinality information about attribute values can be easily used to construct ordi-
nally grouped aggregated values, which are often more meaningful for the user.
Using ordinality information we can generate aggregated values covering all adja-
cent combinations of attribute values, or all ascending/descending combinations of
values, starting with the minimum or maximum, respectively. Whenever abnormal-
ity information is available, we partition the value range by the given normal value
and only start with the most extreme value. For example, for the ordinal attribute
liver size with the values 1:smaller than normal, 2:normal, 3:marginally increased,
4:slightly increased, 5:moderately increased and 6:highly increased, we partition by
the normal value (2) and obtain the following aggregated values: (1), (3, 4, 5, 6), (4,
5, 6), (5, 6), and (6). Another example is discussed in Section 4.3.6.

• Partition class information specifying semantically distinct sets of attributes can be
used to infer attribute combination constraints in order to prevent the combination
of individual attributes that are contained in separate partition classes. Alternatively,
attribute combination constraints can also be derived such that attributes can only
be combined if they are contained in different partition classes, e.g., to specifically
investigate inter-organ relations in the medical domain.
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4.2.3 Abstraction Knowledge

Applying data abstraction is a common technique for knowledge-based systems (e.g.,
[124–126]) in order to increase the quality of the input data of the system. Abstraction
knowledge is given by derived attributes that are inferred from basic attributes or other
derived attributes. Thus, the abstracted attributes are virtual attributes (c.f., [134]) that
are not stored in a case of the case base but can be created and/or adapted on demand
by the user. Derived attributes often correspond to certain known dependencies between
attributes, or known intermediate concepts, that are not stored as basic attributes. For ex-
ample, in the medical domain, we can infer the derived attribute body mass index, given the
attributes height and weight. Additionally, if there are a lot of basic attributes in the case
base, (known) multi-correlations between basic attributes can cause unstructured subgroup
discovery results. Then, data abstraction can increase the interpretability of the discovered
subgroups significantly: For example, simple concepts can be aggregated to intermediate
concepts to potentially form more meaningful and more interesting selectors.
A nominal derived attribute a ∈ ΩA is defined using abstraction rules, which are utilized
to derive the values via ∈ VA concerning attribute a. A rule of the form

rva = cond(rva)→ va

is used for a value va of attribute a, where the rule condition cond(rva) contains con-
junctions and/or disjunctions of (negated) attribute values vi ∈ VA. Furthermore, derived
attributes with a numerical value range can be defined by algebraic formula expressions.
The derived attributes serve three main purposes:
• They focus the subgroup discovery method on the relevant analysis objects.

• They decrease multi-correlations between attributes that are not interesting.

• Derived attributes can reduce missing values for a given concept, since they can
be constructed such that a defined value is more often computed if the respective
concept would have a missing value otherwise. This is described in the next section.

Constructing derived attributes automatically is a non-trivial problem; there are methods
for constructive induction, e.g., [3,156] that generate features for automatic machine learn-
ing methods, i.e., their results are not necessarily suitable for human interpretation. There-
fore, we propose an alternative approach: The derived attributes can either be constructed
based on expert knowledge, or can be generated semi-automatically using specific discov-
ered subgroups to obtain abstraction knowledge that is interpretable and meaningful for
humans. A subgroup description is a set of selectors for a specific target concept that are
highly correlated with the concept. If the set of selectors can be abstracted into a (more ex-
pressive) derived attribute, then it can be used as potential background knowledge as well.
Furthermore, derived attributes can potentially be refined incrementally according to the
subgroup discovery results, e.g., by specialization or generalization of the rule conditions
for deriving the individual values of the attribute.
Abstraction knowledge is probably the most costly class of background knowledge: If the
abstractions are not based on discovery results, then they have to be formalized manually
by the expert. For an illustrating example we refer to Section 4.3.6.
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Improving the Handling of Missing Values Considering the quality functions ap-
plied in subgroup mining abstraction knowledge contributes to one major point – handling
missing values. Missing values contained in the data represent a significant problem for
subgroup discovery and data mining in general, i.e., for methods performing some kind of
statistical evaluation of the data. When collecting the data, often not all the attributes are
measured for all cases in some domains. For example, in medical case bases for a specific
patient usually only a subset of the possible examinations is performed, given a structured
data acquisition strategy in real-world applications. Then, only the relevant questions for
the diagnostic tasks are presented by the system. This results in reduced costs for the ex-
aminer, however then a specific instance of the data set concerning the basic attributes may
be quite sparse, i.e., there are many missing attribute values contained in the case. This is
typically true for medical studies as well, where the complete set of parameter information
is documented only seldomly [40, 103].
There exist several strategies for dealing with missing values: a common strategy [163]
removes objects (cases) with missing values from the set of analyzed objects. It is easy to
see that this strategy can reduce the number of cases significantly if there are very many
missing values. Other strategies try to fill in the missing values according to statistical eval-
uations. Some techniques try to estimate the distribution [103, 130] of the variables with
missing values: Then, the real attribute values are determined based upon their statistical
correlations to the attribute values of the dependent attributes. However, these methods
may introduce significant bias into the dataset.
The subgroup quality functions basically perform a kind of statistical hypothesis testing
given a subgroup description, the target variable and the general population. For such a
test only the cases of the population can be considered in which all variables have defined
values. The power of the test is then decreased significantly if many analysis objects are
removed due to missing values. Therefore, we try to apply a knowledge-based method
that does not need to remove cases; instead we can use abstraction knowledge to not only
estimate the distribution of the attributes with missing values but to identify the situations
where a missing value can be replaced by a defined value of the attribute.
In general, we cannot simply apply a ’closed-world assumption’, i.e., that missing values
of a concept indicate the non-existence or negation of the concept. For example, in the
medical domain, a diagnosis may be missing, because either all its relevant observations
are missing or they are known but denote the normal, i.e., the non-pathological state. Con-
sequently the diagnosis is not inferred. If we construct a derived attribute to indicate the
cases when the relevant observations are missing, then we can use this derived ’helper’ at-
tribute to indicate whether the diagnosis is not established or really missing. Additionally,
derived attributes besides the described helper attributes can also be constructed accord-
ingly to minimize missing values themselves, such that a certain default value is provided
which denotes the normal category of the attribute.
This knowledge-based method can increase the data quality significantly compared to au-
tomatic methods for inferring the attribute values, since the necessary knowledge can be
supplied by the users/domain specialists themselves.
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4.3 Exploiting Background Knowledge for
Subgroup Mining

In this section we discuss how we can integrate the different knowledge elements into
the subgroup mining process. We can apply domain knowledge directly in the subgroup
discovery method, and/or apply background knowledge in a post-processing phase.
For the first approach, we employ background knowledge to formalize the user preferences
in the discovery phase. The knowledge is applied directly in the process of searching
for interesting subgroups in order to focus the discovery method on the relevant patterns.
Then, the patterns that are not interesting and do not correspond to the preferences of the
user cannot be discovered if appropriate constraints are applied. However, as discussed
in [96] formalizing these preferences and requirements suffers from the obvious problem
of knowledge acquisition. Nevertheless, in the proposed knowledge-intensive approach
this problem is not too severe since we apply knowledge that is easy to understand for
the user, and that is quite common in knowledge systems. Additionally, it can often be
acquired (learned) semi-automatically as discussed in Section 4.4.
The second alternative utilizes background knowledge for post-processing: Then, the in-
teresting subgroups can be identified by comparing them with previously discovered pat-
terns that are contained in the background knowledge. Applying this technique does not
exclude the need for utilizing knowledge in the discovery process: The less knowledge is
used within the discovery method the more results are generated that are potentially not
interesting. Therefore, we propose to combine both approaches: Background knowledge
can then be included directly in the discovery process, and the discovered results can also
be compared to already existing knowledge, if available.
In the next section, we provide a task-specific categorization of the applied background
knowledge. The two approaches for including background knowledge are discussed in the
following sections. Additionally, we discuss which background knowledge can increase
the expressiveness of the representation, i.e., the mined subgroups. After that, we summa-
rize the proposed types and classes of background knowledge, their costs and benefit, and
provide an example for the most important types of knowledge. Finally, we compare the
presented approach to existing techniques exploiting background knowledge.

4.3.1 Task-Specific Categorization of Background Knowledge

In Figure 4.3 we provide a task-specific categorization of the different types of background
knowledge: They are categorized considering their tasks and application areas with respect
to the involved ontological elements. We distinguish the following tasks: Restricting the
search space, focusing the search process, post-processing the results, and increasing the
representational expressiveness of the subgroup patterns. We consider attributes, attribute
values, and the mined patterns, which are affected by the different types of knowledge.
It is easy to see that the knowledge types that only filter elements both have a positive
effect on the search space, and also on focusing the search process, e.g., attributes or
value exclusion constraints. For post-processing mainly background knowledge given by
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subgroup patterns but also ontological knowledge, i.e., partition class knowledge, can be
applied. Finally, we can increase the representational expressiveness by applying back-
ground knowledge that provides more meaningful or more interesting analysis objects for
the user, e.g., by utilizing derived attributes. We will discuss the impact of the individual
knowledge types in the next sections in detail.
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Figure 4.3: Task-specific categorization of background knowledge.

4.3.2 Pruning the Search Space and Focusing Search

Most of the knowledge classes described in Section 4.2 can be directly integrated in the
subgroup mining process: Constraints can be used as filters, e.g., to restrict the search
space by filtering attributes or attribute values. Furthermore, new (simpler) knowledge
can be created and derived using the existing knowledge in order to focus the search on
the interesting patterns. In the following we discuss the individual classes and types of
background knowledge that can be included in the discovery process directly in detail.
• Language constraints and quality constraints are applied as filters during search

in order to prune certain subgroup patterns. For conjunctive subgroup descriptions
language constraints specify, if internal disjunctions or negation is enabled, which
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significantly enlarges the search space. Furthermore, simpler descriptions are usu-
ally easier to understand and to apply by the user, so by selecting a suitable descrip-
tion bias the search process can also be focused. Quality constraints are utilized
to prune uninteresting hypotheses below a minimum quality threshold. Addition-
ally, the user can often reduce the number of discovered patterns significantly using
quality constraints, e.g., given by a minimum statistical significance threshold.
• Constraint knowledge and ontological knowledge that is used to derive constraint

knowledge such as value exclusion constraints, value aggregation constraints and at-
tribute exclusion constraints helps to focus the search process, and can be easily inte-
grated into the search process as well. As discussed above, exclusion constraints can
be derived using attribute weights, abnormality/normality and similarity information
concerning attribute values. Attribute exclusion and value exclusion constraints dy-
namically remove elements from the search space and are used for its configuration:
Applying the exclusion constraints may seem quite similar to common static prepro-
cessing steps. However, in contrast to these, the data elements are only dynamically
removed from the search space, and not from the underlying data set, such that they
are still available for analysis.
Furthermore, attribute combination constraints that inhibit the examination of spec-
ified sets of attributes can prune large areas of the search space while also removing
the (uninteresting) patterns. Such constraints can also conveniently be derived us-
ing partition class information. Value aggregation constraints do not necessarily
restrict the search process since new values are introduced. However, value aggre-
gation constraints can provide significant quality improvements with low costs if the
aggregated values are more meaningful for the user. Additionally, if only the gener-
ated new values are taken into account, e.g., for ordinal value groups, then the search
space remains the same or is even restricted significantly. Aggregation constraints
can intuitively be derived from more abstract types of knowledge, e.g., considering
abnormality or similarity information of attribute values. Priority group constraints
are integrated into the search process by construction: The attributes of the different
priority groups are included in the search space successively.
The background knowledge can be applied dynamically during the incremental min-
ing process (c.f., Section 2.3, Figure 2.2, p. 19). Such a method is quite flexible, and
so the subgroup discovery setting can be usually easily adapted to fit the require-
ments of the user.
• Subgroup pattern constraints contained in the background knowledge can be in-

cluded into the process by considering them as starting points for the search process.
Furthermore, derived attributes can be incrementally defined using (discovered) sub-
group patterns during the discovery process. Additionally, using already known
subgroup patterns we can try to prevent the rediscovery subgroups, as described by
Scholz [145]: Using example reweighting the distributional unusualness of the tar-
get variable given a known subgroup is normalized such that the given subgroup is
not ’interesting’ any more. The discovery algorithm then should be forced to ignore
the known subgroup to prevent just rediscovering it again.
In addition, subgroup patterns can also be used in a post-processing step in order to
prune uninteresting subgroups, as discussed in the following section.
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• Abstraction knowledge can be applied in order to increase the representational ex-
pressiveness as discussed in Section 4.3.4, and to focus the search process on the
relevant objects. If only these are included in the discovery setting, then the search
space can also be restricted significantly. For an example we refer to Section 4.3.6.
Additionally, missing values can often be reduced significantly by applying abstrac-
tion knowledge.

4.3.3 Post-Processing the Discovered Subgroups

For post-processing the results of the subgroup mining process we can utilize existing
background knowledge given by subgroup patterns (constraints). Then, we can perform
an interactive interest-driven analysis. In addition to specific subgroup patterns we can
also apply partition class information in order to mark subgroups that conform to the par-
tition classes, or to identify subgroups that contain attributes included in different partition
classes. This depends on the requirements of the user, e.g., in the medical domain different
organ systems can be considered.
The most important type of background knowledge for post-processing is given by known
subgroup patterns, in order to identify (especially) interesting subgroups: The given sub-
group patterns can either consist of previously discovered patterns, or of patterns that were
pre-defined by the user. If these have not yet been confirmed (validated) they are called
beliefs [164], i.e., unvalidated knowledge. For example, in the medical domain often a lot
of the existing relations are already known and can be formalized as subgroup patterns.
So, it is reasonable to store portions of the discovered patterns, and to analyze discovery
results with respect to the already formalized patterns collected in a subgroup knowledge
base. The formalized patterns, i.e., either previously discovered subgroups or ’belief’ sub-
groups, can then be compared to the discovered subgroups. Then, unexpected patterns that
either deviate or contradict the given domain knowledge can be identified. Furthermore,
also conforming subgroups can either be analyzed and especially marked, or they can be
excluded from analysis, as discussed in [97, 122, 164].
For post-analysis and inclusion in pattern knowledge the discovered subgroups are an-
notated with certain meta data containing the subgroup parameters, i.e., population size,
subgroup size, number of true positives and number of false positives, the date when the
subgroup was created/discovered and the user which entered the subgroup description.
For subgroup comparison we can use the statistical parameters of previously collected
subgroups and compare these to similar subgroups that were discovered in a recent, e.g.,
the current discovery session: If the parameters deviate significantly, then the subgroups
are presented to the user as unexpected; otherwise they are conforming subgroups and
can be withdrawn from further analysis if necessary. However, subgroups that are given
as beliefs only can be confirmed by the discovery results. Thus, in this case conforming
subgroups are used to validate the existing beliefs. For comparing subgroups with respect
to their similarity we can either compare their subgroup descriptions directly or compute
the overlap fraction of the two subgroups as discussed in Section 3.3.1.
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4.3.4 Increasing the Expressiveness of Subgroup Patterns

An important reason for the application of background knowledge is to increase the ex-
pressiveness of the data. Then, derived attributes and modifications of the value range of
an attribute can be utilized to infer new attributes and values that are more meaningful for
the user. Additionally, the description language itself plays an important role, since it is
used to define the subgroups. Then, a simple and concise description language is neces-
sary. Usually, conjunctive languages without internal disjunctions are suitable concerning
the simplicity and actionability aspects.
Abstraction knowledge can be applied similarly to constraint knowledge: Derived at-
tributes are included as new attributes in the search space and are flexibly defined using
rules that can also be changed during the incremental process dynamically. The power of
derived attributes lies in their ability of abstracting (known) associations of attributes into
new attributes, that often correspond to certain important concepts. Then, these new con-
cepts are usually more meaningful, reasonable, and ultimately more important for the user.
Thus, the search process can be focused significantly; the search space is not necessarily
reduced if the basic attributes that were utilized in constructing the abstracted attribute
are not removed. Furthermore, the power of the statistical evaluations is increased signif-
icantly if missing values can be minimized. Since abstraction knowledge can be used to
infer missing values in their respective context, derived attributes can help to improve the
missing value problem significantly.
Furthermore, aggregated values can be more expressive for the user: Aggregated values
forming a disjunctive selection expression are often more meaningful and reasonable for
the user, e.g., considering different aggregated age groups in the medical domain. We
can apply abnormality or similarity information in order to derive value aggregation con-
straints. Then, these new values can be directly utilized in the search process.
Using derived attributes and aggregated attribute values we can create objects that are
more expressive according to the criteria of the user (c.f., Section 4.3.6). Often the basic
parameters (used for the derivation) can be excluded from the search process since they
can often be entirely replaced by the new values. Then, such an approach ensures that only
relevant and interesting data objects are used throughout the subgroup discovery process.

4.3.5 Summary: Background Knowledge: Applicability, Benefit
and Cost

In the following table, we summarize the different classes and types of background know-
ledge (CK = constraint knowledge, OK = ontological knowledge, AK = abstraction know-
ledge). We show their characteristics in terms of the ’derivable knowledge’ (if applica-
ble), their syntactical and cognitive costs, and their potential contribution to restricting the
search space and/or focusing the search process. Considering the costs and the impact of
the knowledge types on the search space, the label - indicates no cost/impact; the labels
+, ++, and +++ indicate increasing costs and impact. A +(+) signifies, that the respective
element has low costs if it can be derived/learned, and moderate costs otherwise. Similarly
++(+) indicates this for moderate and high costs, respectively.
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Knowledge Derivable Costs Search
Class Type Knowledge Syn. Cog. Restr. Foc.
CK Language Constr. – – + ++ +
CK Quality Constr. – – ++ ++ ++
CK Value Exclusion Constr. – (+) + + +
CK Val. Aggregation Constr. – (+) +(+) ++ +
CK Attr. Exclusion Constr. – (+) +(+) ++ ++
CK Attr. Combination Constr. – (+) +(+) ++ ++
CK Priority Group Constr. – + ++ – +
CK Subgroup Pattern Constr. Derived Attr. +(+) +(+) – ++
OK Normality Information Val. Excl. Constr. + + ++ ++
OK Abnormality Information Val. Excl. Constr. ++ ++ ++ ++

Val. Aggr. Constr. + ++
OK Similarity Information Val. Aggr. Constr. +(+) +(+) ++ ++
OK Ordinality Information Val. Aggr. Constr. + + +++ ++
OK Attribute Weights Attr. Excl. Constr. (+) +(+) ++ ++
OK Partition Class Inform. Attr. Comb. Constr. + + ++ ++
AK Derived Attributes Derived Attr. +++ +++ – +++

The most important types of background knowledge with an especially good cost/benefit
ratio are quality constraints, attribute exclusion constraints, normality information, and
ordinality information (indicated in bold type). As discussed above, derived attributes are
a special case with potentially high benefit. Then, the need for derived attributes depends
on the specific application domain.

4.3.6 Background Knowledge – Examples

In the following, we will give examples of the most important types of background know-
ledge with an especially good cost – benefit trade-off as discussed above: Applying quality
constraints and attribute constraints is straight-forward, and can be directly implemented
in the subgroup discovery step. Below, we consider ordinality and normality information,
and derived attributes. In general, the search space can be significantly reduced by ’shrink-
ing’ the value ranges of the attributes. Furthermore, the search can often be focused if only
’meaningful’ values are taken into account. This usually depends on the applied domain,
and can be performed by the user in exploratory fashion.
Let A be a nominal attribute with the value range dom(A) = {a1, a2, a3, an, a5, a6, a7},
e.g., A could correspond to the (discretized) attribute body weight with values like massive
underweight, strong underweight, underweight, normal weight, overweight, strong over-
weight, and massive overweight. Ordinality information can be easily applied in order to
derive a restricted set of aggregated values denoting different weight groups. If we want
to exclude all combinations not being neighbors (excluding irrelevant combinations like
(a1, a3)), we obtain only 77 combinations of all adjacent attribute values, in contrast to
considering all possible 127 attribute value combinations:

(a1, a2), (a1, a2, a3), . . . , (a1, . . . , a7), (a2, a3), (a2, . . . , a7), . . . (a6, a7) .
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Furthermore, in the medical domain we often know that a certain attribute value denotes
the normal value (in our example ’normal weight’ = a4). This value is often not interest-
ing for the analyst who might focus on the ’abnormal’ value combinations. Combining
normality and ordinality information, we then only need to consider 10 combinations:

(a1), (a1, a2), (a1, a2, a3), (a2, a3), (a3), (a7), (a7, a6), (a7, a6, a5), (a6, a5), (a5) .

If we are interested only in combinations including the most extreme value (typical in
medicine), we can further reduce the number of ’meaningful’ combinations to 6:

(a1), (a1, a2), (a1, a2, a3), (a7), (a7, a6), (a7, a6, a5) .

The savings of such a reduction of value combinations are huge: If there are 10 attributes
like A with seven values each, then the size of the search space considering all possible
selector combinations is reduced from 12810 = 1021 to 710 = 3 · 108.

a1 a2 a3 a4 a5 a6 a7

b1 0 0 1 2 3 4 4
b2 0 0 1 2 3 4
b3 0 0 1 2 3
b4 0 0 1 2
b5 0 0 1
b6 0 0
b7 0

With respect to abstraction knowledge, let us con-
sider an additional nominal attribute B denoting
the body height with the (ordinal) value range
dom(B) = {b1, b2, b3, bn, b5, b6, b7}. In the fol-
lowing, we assume that both A and B are quanti-
tative nominal attributes. Then, we can derive the
attribute body mass index given the body weight
(attribute A) and the body height (attribute B).
The following matrix shows the combinations of
the respective attribute values: The derived attribute values corresponding to a high body
mass index are given by the entries 1, 2, 3, 4 in ascending order, while a ”0” denotes the
”normal” case. It is easy to see that in this example the ”meaningful” combinations of the
respective attribute values are always on the diagonal, or form triangular matrices, e.g.,
considering the entries ”3” and ”4” of the matrix. In our example, these combinations cor-
respond to relatively small people with a large body weight: In principle, the distribution
of the individual values can be arbitrary. Then, the distributions of the combined attribute
values can also be of arbitrary shape. By constructing selection expressions containing
internal disjunctions we can only select quadrangular sub-matrices and would thus include
larger groups that can ”confound” the ”new values”, i.e., the original value combinations,
since the quadrangular sub-matrices might contain at least one potentially misleading value
combination. In contrast, using derived attributes we can carve out arbitrary parts of the
matrix, e.g., the triangular sub-matrices shown in the example. Then, a derived attribute
capturing the specific value combinations is more expressive and meaningful for the user,
and can focus the analysis significantly.

4.3.7 Comparison with Existing Approaches

Current subgroup mining methods only exploit some limited form of domain know-
ledge [81]. The EXPLORA system [80] is also able to integrate simple constraints, i.e.,
taxonomies that are defined on the domain of attributes: Similar to value groups or aggre-
gated values a set of attribute values can be combined in the mining step.
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Constraint-based data mining [21, 88, 91] uses constraints to restrict the set of discov-
ered patterns in order to increase their interestingness. The constraints applied in this
area mainly consist of language constraints and evaluation/optimization constraints. Lan-
guage constraints specify syntactical restrictions, e.g., concerning the length of the sub-
group descriptions, or the language bias according to the given representation language.
In that sense, the proposed language constraints are quite similar to the constraint-based
data mining approach, but are specifically designed for subgroup patterns. The evalua-
tion/optimization constraints are captured by the presented quality constraints, e.g., such
that a pattern has to satisfy a minimum quality as formalized by the applied quality func-
tion or a certain minimum support or statistical significance level.
Using domain knowledge to improve KDD methods has been proposed in the area of In-
ductive Logic Programming (ILP) and not in the mainstream mining methods. Weber [166]
presents require- and exclude-constraints for groups of literals, i.e., attribute – value pairs,
in order to prune the search space. Zelezny et al. [177] integrate constraints that are mainly
concerned with syntactical restrictions and constraints relating to the quality of the discov-
ered subgroups. Furthermore, using domain knowledge for pattern post-processing has
mainly been applied in association rule learning [2] approaches, e.g., [95, 97, 116]. Then,
previously discovered rules are used to check the newly discovered rules. Jaroszewicz et
al. [66,67] propose to utilize a Bayesian network for capturing the background knowledge:
The knowledge is then applied in order to find all itemsets with a minimum interestingness,
i.e., the frequent patterns that are interesting relative to the Bayesian network.
In contrast to the existing approaches (including constraint-based data mining), the pre-
sented approach is able to integrate several new types of additional background know-
ledge. This additional background knowledge can be refined incrementally according to
the requirements of the discovery task, and can additionally be used quite easily to infer
new background knowledge on the fly, e.g., constraints. As the major point we apply spe-
cial abstraction knowledge that can be applied dynamically: it can either be defined by the
expert, or can be constructed semi-automatically using the subgroup discovery results.
Compared to common preprocessing methods, the background knowledge that considers
aggregations of attributes or attribute values is applied dynamically on the data. Then, the
knowledge can also be easily adapted by the user incrementally. The original data set is
not changed by the knowledge-intensive approach; instead, either the discovery method
is ’configured’ applying the knowledge, ”virtual” attributes and/or attribute values are in-
troduced, or the discovered patterns can be post-processed in a knowledge-based manner.
The background knowledge is applied after the data has been preprocessed, often after first
analysis steps performed by the user. Background knowledge can be applied and adapted
’on the fly’ such that requirements that arise during the analysis can be captured quite
easily by the user. Since the original data is not changed the original attributes and their
values, including potentially ’excluded’ elements with respect to the search space, are still
available and can be applied on demand, e.g., for purely interactive analysis.
For the post-processing task, we aim to integrate the user: Conforming or unexpected sub-
groups are presented to the user and are not removed automatically. Then, the user is able
to decide, whether the detected patterns are really irrelevant or really unexpected, respec-
tively. This is also combined with visualization techniques as described in Chapter 6.
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4.4 Methods for Learning Background Knowledge

Besides the background knowledge provided by the domain expert, background know-
ledge can also be acquired automatically, e.g., if high-quality cases are available, where
the background knowledge can be extracted. We will outline algorithms (c.f. [20]) for
acquiring two types of ontological background knowledge for knowledge-intensive sub-
group mining: One technique extracts similarity information between attribute values, the
other method is used to learn the weights of attributes.
The algorithms presented in the following are designed to handle discrete attributes. Thus,
in the case of continuous attributes, data-preprocessing needs to be applied, just as in the
general case for subgroup mining. A lot of work has been done on the discretization of
continuous attributes and there exists a wide range of methods (cf. [39, 165] for empirical
comparisons). Two quite simple approaches applicable to our problem are the Equal Width
Interval Binning, which divides the domain dom(a) of an attribute a into equal sized bins.
A more promising approach seems to be the usage of clustering methods (cf. [57, Ch. 8]
for a survey), that groups partitions relative to the frequency the attribute values occur in
the single partitions. If there were expert-defined partitions available for some attributes,
then we can use these instead of applying automatic methods.
The algorithms for learning similarities between attribute values, and weights of attributes
are adapted from the methods that we have presented in [20]: We consider the domain
dom(T ) of the target variable T of a subgroup discovery context SC . So, for a binary
target variable we can consider the positive (class) value and the negative (class) value.

4.4.1 Similarity Knowledge for Attribute Values

The use of similarities between attribute values can improve subgroup discovery meth-
ods significantly as discussed above. Similarity information can usually be quite easily
included by applying ontological knowledge. For computing the similarity between at-
tribute values we can utilize the inverse of similarity measures, i.e., distance measures.
In the following we use the term distance function, but it is obvious, that a given distance
function d : VA × VA → [0; 1] directly corresponds to a similarity function sim. For two
attribute values (a = x) and (a = y) we define their similarity by

sima(x, y) = 1− da(x, y) . (4.1)

Common Distance Functions One of the most commonly known distance function
is the City-Block or Manhattan distance function, which is defined as follows:

dm
a (x, y) =

|x− y|
α

, (4.2)

where x and y are values for attribute a and α = xmax − xmin . The Manhattan distance
function is only appropriate for continuous or ordinal attributes a.
For discrete attributes we implemented the Value Difference Metric (VDM) as described
in [155] and extended by Wilson and Martinez [170, 171].
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Given two attribute values (a = x) and (a = y) the VDM defines the distance between the
two values x and y of attribute a:

vdma(x, y) =
1

|dom(T )|
·

∑
t∈dom(T )

∣∣∣∣N(a = x | t)
N(a = x)

− N(a = y | t)
N(a = y)

∣∣∣∣ , (4.3)

where N(a = x) is the number of cases for which value x is assigned to attribute a.
N(a = x | t) is the number of cases for which the value t ∈ dom(T ) of the target variable
T co-occurs with the value x of attribute a. Using this measure, two values are considered
to be more similar, if they have more similar correlations with a certain value of the target
variable they occur with. Thus, we obtain the following distance function d for an attribute
a ∈ ΩA with values x, y ∈ dom(a):

da(x, y) =

{
1 if x or y is missing,
vdma(x, y) otherwise.

(4.4)

Using Additional Knowledge If available, we can utilize abnormality and ordinality
information to augment the distances between attribute values.

Ordinality Knowledge The user may mark some of the attributes as ordinal to character-
ize, that values, that are closer to each other, are more similar. For example, dom(pain) =
{none, little,medium, high} is ordinal, whereas dom(color) = {green, black , red} is not
ordinal. We can utilize this flag, by applying the VDM method not for all distinct pairs
of values within each partition, but only for adjacent values. Then, we interpolate the
remaining distances by the following equation

da(vi, vi+k) = da(vi, vi+k−1) + da(vi+k−1, vi+k) , (4.5)

where k ≥ 2. After interpolating the remaining distances we have to normalize the dis-
tance matrix for the attribute a, such that 0 ≤ d(v, v′) ≤ 1 for all values v, v′ ∈ dom(a).

Abnormalities For non-ordinal attributes, we can utilize abnormality information for
attribute values to divide the value range of an attribute into an abnormal and a normal
partition. If ordinality information of an attribute is not available, then we can either
assume that the attribute is not ordinal or we can apply a heuristic to infer ordinality,
e.g., if the abnormality degrees of the attribute values are sorted in ascending order of
abnormality. However, this depends on the specific application domain.
To obtain the distance between a normal value y and an abnormal value x we use the
following matrix

dp(x, y) abn(x)=A2 abn(x)=A3 abn(x)=A4 abn(x)=A5
abn(y)=A1 0.7 0.8 0.9 1

where abn(x) is a function returning the abnormality for the given value and A1 defines
a normal value. So we get a maximum distance between a normal and a totally abnormal
value, e.g., dp(x, y) = 1 for abn(x) = A5 and abn(y) = A1.
After that, we compute the similarities for the remaining values by applying the VDM
method (see Equation 4.3) for the values contained in the ’normal values’–partition and
for the values contained in the ’abnormal values’–partition.
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4.4.2 Learning Attribute Weights

Weights for attributes are another common knowledge extension for knowledge-based sys-
tems, e.g., for case-based reasoning systems. In general, the weight w(a) of an attribute
a specifies the importance of the attribute. Then, by applying attribute exclusion con-
straints unimportant attributes can be removed from the discovery space similar to auto-
matic feature-subset selection.
There is a variety of methods that perform feature-subset selection [100], e.g., Relief [77]
or ReliefF [138]. Basically we distinguish between filter and wrapper approaches. Filter
methods are used in a preprocessing step. The wrapper approaches are instead coupled to
the learning method, i.e. the learner is used to evaluate the attributes itself incrementally
depending on its performance.
Since we learn the weights of attributes semi-automatically, and since this step is included
in an incremental active process for subgroup mining we favor a method similar to the
filter approach. The wrapper approach would also be possible but it usually takes longer
compared to a filter method. In the method, which we have presented in [20] in the con-
text of learning weights for case-based reasoning systems, the weights of attributes are
proposed to the user: We use symbolic weights for easier interpretation and adaptation by
the domain specialist.

Learning Weights Without Additional Knowledge Our approach is inspired by
a procedure mentioned in [168], when using the VDM method to discriminate between
the importance of specific attributes. However, our interpretation also considers additional
information, i.e., abnormality knowledge.
An attribute a is defined to be important, if a has a high selectivity over the value domain
dom(T ) of the target variable T . The degree of selectivity directly corresponds to the im-
portance (weight) of the attribute. So, if different values of an attribute a indicate different
target values, then the attribute is considered to be selective.
We define the partial selectivity of an attribute a combined with a value t of the target
variable T by the following equation

sel(a, t) =
1(|dom′(a)|
2

) ∑
x,y∈dom(a)

∣∣∣∣N(a = x | t)
N(a = x)

− N(a = y | t)
N(a = y)

∣∣∣∣ , (4.6)

where x 6= y.
To compute the global selectivity of an attribute a, we average the partial selectivities
sel(a, t)

sel(a) =

∑
t∈dom(T )

sel(a, t)

|dom(T )|
(4.7)

Since sel(a, t) ∈ [0, 1] for all target values t ∈ dom(T ) and all attributes a ∈ ΩA, we see
that sel(a) ∈ [0, 1] for all attributes a ∈ ΩA.
The lower bound 0 is obtained if attribute a has no selectivity over the target variable T ;
the upper bound 1 is obtained if a has a perfect selectivity over the target variable, i.e.,
each value x ∈ dom(a) occurs either always or never with a target value.
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After determining the selectivity of the attribute, we use the following logarithmic conver-
sion table to transform the numerical selectivity into a symbolic weight.

sel(a) w(a) sel(a) w(a)
0 ⇀ G0 (0.08, 0.16] ⇀ G4
(0, 0.02] ⇀ G1 (0.16, 0.32] ⇀ G5
(0.02, 0.04] ⇀ G2 (0.32, 0.64] ⇀ G6
(0.04, 0.08] ⇀ G3 (0.64, 1.00] ⇀ G7

We accept the loss of information to facilitate a user-friendly adaptation and refinement of
the learned weights by the expert in a later step.

Utilizing Additional Abnormality Knowledge Similar to using helpful background
knowledge when learning partial similarities, we can also utilize abnormality information
about attribute values. If there are abnormalities available for a given attribute a, then
we can use this information to focus the learning algorithm on the difference between the
normal and the abnormal partition of the value domain of an attribute. So, in this case
we will adapt Equation 4.6 to consider only the selectivity between normal and abnormal
attribute values.

sel(a, t) =

∑
x∈abnormal(a)∧ y∈normal(a)

∣∣∣∣N(a=x | t)
N(a=x)

− N(a=y | t)
N(a=y)

∣∣∣∣
| abnormal(a) | · | normal(a) |

, (4.8)

where abnormal(a) = {x ∈ dom(a) | abn(x) 6= A1 } is the set of values x ∈ dom(a))
representing an abnormal state, and normal(a) = dom(a) \ abnormal(a).

4.4.3 Comparison with Existing Approaches

Methods for the automatic learning of similarity information between attribute values and
for learning weights of attributes have been mainly applied in the area of case-based and
instance-based learning. For learning similarities we can utilize the inverse concept, i.e.,
distances between attributes. Then, certain distance functions for nominal attributes need
to be applied. Wilson and Martinez [170] define several methods based on the discretized
value difference metric (VDM) [155]. An adaptation of the VDM is also used in the
PEBLS system by Cost and Salzberg (cf. [37])
Wettscherek and Aha [168] give a survey of attribute weighting methods for k-nearest
neighbor methods classifying these according to several dimensions, e.g., if the algorithm
uses feedback from the learner, if it learns local or global weights, or if background know-
ledge is applied. Feedback methods essentially apply hill-climbing approaches to tune the
attribute weights, e.g., [101,132]. Examples for feedback methods are given by the EACH
system by Cost and Salzberg [37], by the PATDEX system by Wess [4, 136, 167], and by
the CBL4 system by Aha. In contrast to feedback methods, the ’ignorant’, i.e., the one-
pass methods, only need to traverse the data once to compute the weights of attributes. The
ignorant methods mainly use probability information, i.e. statistical information estimated
from the case base. For example, the per category feature importance metric [168] assigns
high weight values to attributes that are highly correlated with the given class.
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Our algorithms for learning similarities between attribute values and global weights of at-
tributes are both based on the family of value difference metric techniques (see [170]). For
learning similarities we apply an adapted VDM method that only needs one pass through
the data in order to facilitate user interaction.
Our approach for learning attribute weights is inspired by a procedure mentioned in [168],
when using the VDM method to discriminate between the importance of attributes. How-
ever, the main difference of our approach in comparison to the existing approaches is the
ability to include several different types of helpful background knowledge in order to im-
prove the similarity and weight knowledge. For further improvements it can also be tuned
by the user in semi-automatic fashion.
We have presented initial work for learning partial similarities between attribute values
and weights of attributes in [20], in the context of improving a knowledge-intensive case-
based reasoning approach; the presented methods are based on this work: The techniques
proved quite successful when learning the background knowledge for the respective types
of ontological knowledge.

4.5 Summary

In this chapter we presented how exploiting background knowledge can help to improve
subgroup discovery in a knowledge-intensive approach. We described several classes of
background knowledge in detail, and showed how the individual elements can be inte-
grated in the discovery process directly. Additionally, we discussed the use of abstraction
knowledge and particularly described how it can help to handle the problem of missing
values. Furthermore, we also showed how background knowledge can be integrated in a
post-processing step, to validate or filter the discovered patterns, and described how the
representational expressiveness of the subgroup patterns can be increased.
Additionally, we presented learning methods for two types of ontological knowledge, i.e.,
concerning similarity information between attribute values and weights of attributes. If no
initial background knowledge is available, then these techniques can provide an alternative
to manual knowledge acquisition. The learned knowledge can then be refined by the user
in a semi-automatic approach.
In our experiences applying background knowledge proved very helpful for subgroup min-
ing, and we will discuss the application and benefit of background knowledge in the case
studies discussed in Section 9.



5 Subgroup Introspection and
Analysis

A subgroup is usually easy to interpret and to evaluate depending on a suitable descrip-
tion language, e.g., using conjunctive selection expressions. In that sense the subgroup
description defining the subgroup objects (cases) stands for itself.
However, methods for subgroup introspection and analysis can be very helpful for the
user [50,53] since they can be used to obtain further information about the subgroup or its
contained cases, e.g., to obtain a better understanding of the mechanisms within the sub-
group. Then, introspective information can support the user in interpreting the discovered
subgroups, e.g., by providing descriptive information about the subgroup objects, or by
presenting the subgroup in an alternative form. For example, characteristic factors of the
subgroup and their respective strengths can be identified. Furthermore, the user could also
try to identify confounding factors that distort the effect between the target variable and
the principal factors of a subgroup.
In the following, we describe two methods for subgroup introspection. The first approach
is used to obtain the factors that statistically characterize a subgroup and ranks these ac-
cording to their individual strengths with respect to the target concept of the subgroup. The
second method exemplifies a subgroup using the subgroup extension, i.e., the set of cases
covered by the subgroup. Then, typical or extreme cases of the subgroup can be presented
to the user in order to provide distinctive examples of the subgroup objects.
Furthermore, we discuss how to identify confounding factors. In this case, not only the
important risk groups (given by the subgroups) are important for the user: Also, further
relations to specific (known) confounding variables and their possible interaction with the
subgroup factors are essential for the interpretation of the discovered subgroups.

5.1 Subgroup Introspection

As discussed in Section 3.1.4 a subgroup is described by the subgroup description contain-
ing a set of selection expressions. These subgroup selectors specify the set of the principal
factors, i.e., the set attribute values specifying the subgroup. The supporting factors are
a subset of the values of particular supporting attributes that have a significantly different
distribution comparing the target cases of the subgroup to all the negative cases. We say
that an attribute value of a supporting attribute is characteristic for the subgroup, i.e., it
is a supporting factor, if the attribute value is positively associated with the target group
contained in the subgroup compared to the complementary group, i.e., all negative cases.



78 Chapter 5: Subgroup Introspection and Analysis

Characteristic Factors The principal factors can be regarded as strong factors, while
the supporting factors can be regarded as a kind of weak factors: The principal factors are
observed in all cases of a subgroup while the supporting factors are only observed in some
cases. If a case is assigned to a subgroup based on the principal factors, then observing a
supporting factor provides some evidence that the case is a potentially positive case with
respect to the concept of interest. As discussed by Gamberger et al. [50] presenting the
supporting factors characterizing the subgroup can be very helpful for the user, since they
provide additional evidence (given the principal factors): The supporting factors facilitate
an easier recognition of target cases by providing for some redundant information in order
to confirm the target concept [92].
So, we can define a generalized set of characteristic factors as the union of the principal
and supporting factors. Considering the subpopulation defined by the subgroup the prin-
cipal factors are contained in all cases. The supporting factors do not occur in all cases of
the subgroup but may occur in many cases. Then, their individual strength in confirming
the concept of interest, i.e., their relative importance can be scored. The significant sup-
porting factors can be ranked and can then be presented to the user in a comprehensive and
intuitive manner. Thus, the supporting factors are used to point at specific characteristics
of the target space covered by the subgroup.

Introspective Methods for Subgroup Analysis Subgroup introspection provides
alternative views on subgroups similar to custom views defined for the relations defined
in a common database. We propose two methods for subgroup introspection: As outlined
above, we can additionally characterize a subgroup by the set of supporting factors. For a
detailed description of these we assign a symbolic confirmation category to each support-
ing factor: The confirmation category basically measures how well the individual factor
distinguishes between the target class cases in the subgroup, and the rest of the cases, i.e.,
the false positive cases contained in the subgroup.
Additionally, we can exemplify subgroups by their typical cases, or by extreme cases uti-
lizing techniques known from case-based reasoning. Using the characteristic subgroup
factors, i.e., the principal factors contained in the subgroup description and the supporting
factors that characterize a subgroup, we construct virtual cases that are then compared to
the cases covered by the subgroup. For the typical cases we perform a similarity com-
putation to match the set of factors best. For the extreme cases we try to obtain similar
subgroup cases that are nevertheless as distinct to each other as possible. Then, this set
can be considered by the user in order to obtain a better understanding of the subgroup.

5.1.1 Introspective Scoring of Subgroup Factors

In the following we will discuss how to view the subgroup using the characteristic factors;
we propose a technique for presenting the factors in an intuitive descriptive way using di-
agnostic scores, as presented in [11]. Then, the set of characteristic factors of the subgroup
can be evaluated with respect to their individual strengths corresponding to the evidence
they provide for the target concept in the subgroup. We first introduce the concept of
scores, then we present an automatic method for learning such scoring relations.
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Subgroup Introspection using Scores

A score is simple to interpret and one of the standard knowledge formalization formats,
e.g., for diagnostic knowledge. For example, in the medical domain diagnostic rela-
tions [8, 12] are often modeled as diagnostic scores (e.g., [129, Ch. 3]). In general, scores
consist of a set of factors with assigned confirmation categories. The basic assumption
of the diagnostic score pattern is that each individual factor is meaningful by itself [125]
and therefore a simplifying independence assumption between the factors is made. For
prediction and classification, e.g., in diagnostics, a score can be used to predict a certain
diagnosis. The factors that are contained in the score are considered given a set of obser-
vations: If a factor is observed, then it contributes to an account according to its (confir-
mation) category. If the aggregation of the categories exceeds a specified threshold, then
the diagnosis is established. In the simplest case, such an accumulation is accomplished
by adding points for the individual categories.
The score representation is very suitable for subgroup introspection in order to obtain a
different view on the subgroup using the set of the characteristic factors: the categories
of the factors contained in the score denote the relative importance, or the strength of the
individual scoring relations, i.e., the relation between the factor and the target variable.
Then, a subgroup is characterized by the set of the scored characteristic factors. For each
factor (selector) e we construct a scoring selector e′ = (e, sc) assigning a confirmation
category contained in the set

Ωsc = {sc1, sc2, sc3}

that specifies confirming symbolic categories in ascending order. So, the symbolic cate-
gory sc ∈ Ωsc expresses the strength or the relative importance of a given selector e. In
this way, a score containing the characteristic factors of a subgroup is used for description
and characterization of the subgroup. Therefore, we focus on a descriptive application of
the score in contrast to using a score for prediction or classification.

Learning Scoring Relations

For rating the subgroup factors concerning their confirmation strengths, we compare two
populations: The true positive cases contained in the subgroup and the all the negatives
of the total population that also contain the false positives of the subgroup. In this way
we measure how significantly a selector can discriminate between the cases containing the
target concept in the subgroup, and all the remaining non-target class cases. For example,
in the medical domain we would like to identify factors that are characteristic for a sub-
population of all the patients with a certain disease compared to all the healthy patients.
The principal factors will always obtain the strongest confirmation category, while often
weaker categories will be assigned to the supporting factors.
In the following, we describe how to learn simple scoring relations, i.e., associations be-
tween a (binary) target variable t and a set of several independent variables A ⊆ ΩA,
considering a set of selectors with respect to the provided attributes. The method is an
adaptation of the approach that we presented in [8, 12] for learning diagnostic rule bases.
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Scoring Subgroup Factors Essentially we compare two populations similar to the
predictive setting described in [12]: We compare the positive cases contained in the sub-
group and all negative cases of the total population. For these populations, we construct
a 2 × 2 contingency table comparing the distribution of a specific factor with respect to
the true positives in the subgroup, i.e., the target class cases, and the negative cases. If
the association is significant, then we map the score to a symbolic confirmation category
utilizing a suitable conversion table. To identify the important scoring relations for the
variables and their values given by the set of characteristic factors, we assess each possible
selector – target relation independently, and rank the selectors according to their confirma-
tion strength for the target with respect to the given subgroup s.
For each considered selector e, we measure the frequency N(e, t) of e co-occurring with
the target t in the cases covered by the subgroup s. Using a minimum-support count T we
can first identify the important (strong) selectors that are candidates for score construction,
i.e., the selectors e with N(e, t) ≥ T . We can then map these dependency relations to a
symbolic category sc ∈ Ωsc . Finally, we label the selector with the obtained symbolic
category sc for an easier interpretation by the user. The mapping can be adapted by the
user semi-automatically. This basic procedure is applied in Algorithm 1, and explained in
more detail below.

Algorithm 9 Algorithm LSR: Learning scoring relations.
Require: Population CB ⊆ ΩC , subgroup s, target variable t, a set of selectors Ω′

E ⊆ ΩE ,
and a minimum-support count T

1: Construct a set of selectors Ω̂e = {e | e ∈ Ω′
E, N(e, t) ≥ T }

2: for all selectors e ∈ Ω̂e do
3: Construct binary variables T , E that identify the target class (t) cases of the sub-

group s compared to all negatives of CB , and the cases where e occurs, respectively.
4: Compute χ2

et = χ2(E, T )
5: if χ2

et ≥ χ2
α then

6: Compute the correlation-/φ-coefficient φet = φ(E, T )
7: if φet ≥ threshold c then
8: Compute the quasi-probabilistic score qps ,

qps = prec(r) ·
(
1− FAR(r)

)
using the pseudo-rule: e→ t

9: Map the qps-score to a symbolic category s using a conversion table
10: Apply background knowledge to validate the scoring dependency, if available
11: label the selector e with the symbolic category sc ∈ Ωsc

* for the definitions of prec (precision) and FAR (false alarm rate) see below.

We create a four-fold contingency-table for each selector – target variable relation. With
the given target variable t and the selector e we construct two binary variables T measuring
the target class cases contained in the subgroup, and E identifying the cases containing the
specific selector e. We limit this analysis to cases C ⊆ CB from the population in which
attribute a is not unknown. Considering a case c, the value true is assigned to the variable
T , if c is contained in the subgroup s and if the target variable t occurs in c, and false
otherwise; the value true is assigned to a variable E, if the selector e occurs in a case,
otherwise E is false.
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We fill the four-fold table as shown below.

T = true T = false
E = true a b
E = false c d

The frequency counts denoted in the table are defined as follows:

a = N(T = true ∧ E = true), b = N(T = false ∧ E = true),

c = N(T = true ∧ E = false), d = N(T = false ∧ E = false),

where N(cond) is the number of times the condition cond is true for cases c ∈ C.
To identify dependencies between the target variable and a selector, we apply the χ2-test
for independence with a certain threshold χ2

α corresponding to confidence level α. For
binary variables the formula for the χ2-test simplifies to

χ2(E, T ) =
(a + b + c + d)(ad− bc)2

(a + b)(c + d)(a + c)(b + d)
. (5.1)

To adjust for small sample sizes concerning the χ2-test, we apply the Yates’ correction for
a more accurate result. We require a certain minimal support threshold T for selector e
co-occurring with target variable t in the subgroup. The default threshold is set to 5, i.e.,
the selector has to occur together with the target value at least five times. However, the
threshold can be adapted by the user in order to apply the method for smaller subgroups,
since then the individual support of certain characteristic factors might be quite small.
For all dependent tuples (E, T ) we derive the association strength of the dependency using
the φ-coefficient

φ(E, T ) =
ad− bc√

(a + b)(c + d)(a + c)(b + d)
, (5.2)

which measures the degree of association between two binary variables. In principle, the
φ-coefficient can be used in order to identify positive or negative dependencies. However,
for the characteristic factors we only consider positive associations. If the value of φ(E, T )
is less than a certain threshold threshold c ≥ 0, i.e., |φ(E, T )| < threshold c, then we do
not consider this weak dependency for scoring the selector. Otherwise, if φ(E, T ) > 0,
then we map the obtained value to a symbolic confirmation category sc ∈ Ωsc .

Labeling Scoring Relations In principle, we could use the value of the φ-coefficent
directly to determine the symbolic confirmation category. However, experiences obtained
through the case study that we performed in [12] motivated a more sophisticated approach.
For determining the exact symbolic confirmation categories we utilize two measures used
in diagnosis: precision and the false alarm rate (FAR), which is also known as the false
positive rate, or 1− specificity.
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In general, the precision of a selector e is defined as

prec(e) =
TP

TP + FP
, (5.3)

whereas the false alarm rate FAR for a selector e is defined as

FAR(e) =
FP

FP + TN
. (5.4)

The symbols TP, TN, FP denote the number of true positives, true negatives, and false
positives, respectively. These can easily be extracted from the contingency table. For a
positive dependency between selector e and a target variable t with respect to the subgroup
s, the parameters are defined as TP = a, TN = d and FP = b.
To score the dependency, we first compute a quasi probabilistic score (qps) which we then
map to a symbolic category. The numeric qps score for a selector e is computed as follows

qps(e) = prec(e) ·
(
1− FAR(e)

)
. (5.5)

Using this formula, we achieve a trade-off between the accuracy of the selector to predict
a target variable measured against all predictions weighted by the proportion of false pre-
dictions. It is worth noting, that often the true positive rate (TPR) – which is also known
as recall/sensitivity – is used in combination with the FAR as a measure of accuracy.
However, this is mostly applicable to standard rules, which usually contain more complex
rule conditions than using single selectors. For descriptive purposes, the scoring relations
are assessed independently but can support each other in supporting evidence for the target
variable. Thus, their accuracy needs to be assessed on localized regions of the target
space. In this case, precision is more suggestive, since it does not take the complete target
space into account, but it measures only the accuracy of the localized factor due to the
independence assumption.

Mapping Score Categories To ease the interpretability of the discovered knowledge,
we restrict the mapping process to only three different symbolic confirmation categories.
The qps-score qps(e) for a selector e is then mapped to a symbolic category sc ∈ Ωsc

according to the following conversion table:

qps(e) category(e)
(0, 0.5) ⇀ sc1

[0.5, 0.9) ⇀ sc2

[0.9, 1.0] ⇀ sc3

We accept the loss of information to increase the understandability of the learned scoring
relations. The subgroup introspection method applies the scores for describing the charac-
teristic factors of a subgroup: The learned confirmation categories describe the qualitative
strength of the individual characteristic selectors. These can then be presented to the user
as a summary of the characteristic subgroup factors.
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Utilizing Background Knowledge The presented algorithm can be augmented with
additional background knowledge in order to achieve better results. We can utilize several
types of background knowledge discussed in Chapter 4, e.g., attribute constraints, attribute
value constraints and aggregated attribute values.
Furthermore, especially partition class knowledge can be very useful for generating sup-
porting factors: The user/domain specialist can provide partition class information de-
scribing how to divide the set of attributes into partially disjunctive subsets, i.e., partitions.
These subsets correspond to certain problem areas of the application domain. For example,
in the medical domain of sonography, we can consider subsets corresponding to problem
areas like liver, pancreas, kidney, stomach and intestine.
Then, we can reduce noise and irrelevant dependencies by pruning such discovered de-
pendencies e → t, for which the target attribute of the target variable t and the attribute a
concerning the selector e = (a, V ), V ⊆ dom(a), are not in the same partition class, or if
a combination between attributes has been excluded using attribute constraints.

Summary

In contrast to the technique described by Gamberger and Lavrac [51] and Gamberger et
al. [50], we do not only present the set of supporting factors. Instead, we additionally rank
the characteristic factors by assigning a quasi-probabilistic score that measures how well a
factor can discriminate between the target class and the complementary group. Then, this
quantitative value is mapped to a qualitative symbolic confirmation category, i.e., into an
intuitive score representation that is usually easy to interpret for the user.
Since the characteristic factors are ranked by the assigned symbolic categories, the user can
get a comprehensive and intuitive overview of the statistically significant factors: The prin-
cipal factors are the most important factors describing the subgroup while the supporting
factors are used to statistically characterize the subpopulation defined by the positive cases
of the subgroup. The score formed by the combination of the characteristic factors, each
with an assigned strength, can characterize the subgroup in a different way, orthogonal to
the subgroup description. Then, the target group of the subgroup can be characterized in
more detail, and the different aspects of the target population covered by several subgroups
can be identified.
Furthermore, by characterizing a given subgroup by its supporting factors we can obtain
more evidence for the target variable within the subgroup if at least one supporting factor
is observed. Then, the learned scoring relations could also be used for prediction, if the
contributing selectors are accumulated, e.g., by adding their categories in a way, so that
four equal categories result in the next higher category (e.g., sc1 + sc1 + sc1 + sc1 = sc2),
and if a threshold is used for predicting the membership to the target group.
The symbolic form of the confirmation categories facilitates an especially user-friendly
adaptation of the learned scores. We have described an approach utilizing learned scoring
selectors in [8,12] to learn an initial knowledge base from a data base. However, in contrast
to that approach we score the characteristic factors for descriptive purposes, and not for
prediction, e.g., if the score is used in a diagnostic knowledge base.



84 Chapter 5: Subgroup Introspection and Analysis

5.1.2 Subgroup Introspection by Exemplification

As introduced above, we can combine the principal and supporting factors of a subgroup
into a set of characteristic factors F . Usually the principal factors suffice to describe the
subgroup. However, the supporting factors can also provide valuable information about
the properties of the subgroup. The interpretation of F mainly depends on the judgment
of the user, especially on his/her existing background knowledge.
To support the user, we propose to utilize the implicit experiences contained in the cases
of the case base as explaining examples. Then, typical and extreme cases with a high
coverage of the set of characteristic factors F can be retrieved for presentation to the user.
By inspecting these sets of cases the user can obtain a view on the general ’problem setting’
of the subgroup: The proposed exemplification method can be seen as a technique for
retrieving explanatory examples for the subgroup and its characteristic factors.

Identifying Exemplary Cases

A naive solution retrieves all target class cases contained in the subgroup. However, this
approach suffers from two shortcomings: The set of cases can be quite large for a compre-
hensive overview. Furthermore, a subset of F is not accounted for very precisely, i.e., the
supporting factors that may cover quite diverse sets of cases.

Case Retrieval We aim to retrieve a set of cases that have a high coverage with the
set F containing the characteristic factors. Then, we have two options to characterize
the elements of F : First we can retrieve typical cases that are most similar to F while
the individual cases can also be very similar to each other. These cases can then be used
to exemplify the most common factors contained in F . Second, we can retrieve extreme
cases, i.e., cases that are very similar to F but not to each other. This set of diverse cases
is discriminative, and can be used to get a comprehensive description of extreme factor
combinations concerning the set F .
For the retrieval step we use techniques known from case-based reasoning [1]. Given a
query case q, we aim to retrieve the k most similar cases {c1, . . . , ck}, ci ∈ CB . The at-
tribute values contained in the query case are commonly called the problem description.
We construct a virtual query case q and define its problem description as the set of char-
acteristic factors Fi obtained from a given subgroup si. Optionally, the user can modify
and tune Fi interactively to fit the analysis requirements. For example, a subset of factors
contained in Fi can be selected, e.g., in order to concentrate on the most interesting fac-
tors. Furthermore, the analysis can be focused on the positive cases by including the target
variable into Fi. Thus, specific queries can be formulated.
For assessing the similarity (e.g., [65,135]) of a query case q and a retrieved case c, we can
use the well-known matching features similarity function sim(q, c) given in Equation 5.6:

sim(q, c) =
|{a ∈ Ω′

A : πa(q) = πa(c)}|
|Ω′

A|
, (5.6)

where the set of attributes is restricted to the attributes contained in the query case q, i.e.,
to the attributes Ω′

A = {a | ∃e ∈ Fi, e = (a, Va)}; πa(c) returns the value of attribute a.
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Alternatively, we can apply a weighted similarity measure given in Equation 5.7, which
is an adaptation of the Hamming distance with weights and partial similarities between
attribute values, if these are available (e.g., [20]):

sim(c, c′) =

∑
a∈Ω′

A

w(a) · sima

(
vc(a), vc′(a)

)
∑

a∈Ω′
A

w(a)
, (5.7)

where vc(a) is a function, which returns the value of the attribute a in case c and w(a) is
the weight of attribute a. If weights for attributes are not available, then we set w(a) = 1
for all a ∈ Ω′

A. If partial similarities between attribute values and attribute weights are
not available, then it is easy to see that the formula simplifies to the standard similarity
measure given in Equation 5.6.
Concerning the similarity measures we have presented case-based reasoning methods [7,
16, 20] that improve upon conventional case-based retrieval techniques especially in the
setting of multiple faults (diagnoses or concepts of interest) in medical domains. These
could potentially also be adapted to the presented scenario.
The diversity of a set of retrieved cases RC = {ci}k of size k is computed according to
the measure diversity(RC), defined as follows:

diversity(RC) =

k−1∑
i=1

k∑
j=i+1

(
1− sim(ci, cj)

)
k · (k−1)

2

, (5.8)

where the similarity of two cases is assessed with respect to the attributes in the constructed
query case q, as outlined above.
To retrieve the set of the most extreme cases we apply techniques that obtain a set of most
similar but diverse cases R with regard to the query case. There are several methods to
retrieve a set of diverse cases as described, e.g., in [105]. We apply the Bounded Greedy
(BG) algorithm introduced by Smyth and Mc Clave [150]: BG starts with a retrieval set ini-
tially containing the most similar case to the query case. In each iteration of the algorithm
the case in the set of the 2k most similar cases is selected that maximizes the product of
its similarity to the query case and its relative diversity with respect to the cases that have
been selected for the retrieval set so far. The relative diversity relDiversity(c, RC) of a
case c with respect to the retrieval setRC = {ci}m of size m is defined as

relDiversity(c, RC) =

m∑
i=1

1− sim(c, ci)

m
. (5.9)

BG stops if the retrieval set reaches its pre-specified size of k. Then, the set of diverse
cases can be presented to the user.
To obtain a smaller number of diverse (extreme) cases, we can optionally select the small-
est subset R′ ⊆ R, for which the coverage between the problem description of a query
case q and the union of the problem descriptions contained in R′ is maximized. The re-
trieved set of typical (or extreme) cases is then presented to the user as a set of explaining
examples for the given set of factors characterizing a specific subgroup.



86 Chapter 5: Subgroup Introspection and Analysis

Exploiting Background Knowledge We can include several types of background
knowledge (c.f., Chapter 4) into the retrieval step used for the exemplification method. For
example, attribute value constraints can exclude certain attribute values completely; fur-
thermore, attribute weights can be used in the similarity computation of the case retrieval
method directly as given in Equation 5.7. Then, partial similarities between attribute val-
ues can also be directly applied, if available.
Additionally, the approach can potentially be extended for some domains (e.g., the medical
domain) using partition class knowledge that splits the problem descriptions into partially
disjoint partitions as discussed in Section 5.1.1. Then, exemplary partial cases for these
partitions can be also retrieved and recombined, as we have presented in [7] for a general
case-based reasoning approach.

Summary

The exemplification approach for subgroup introspection described above provides the
option for further exploratory analysis of a specific subgroup. Then, a subgroup can be
inspected in a different view by considering specific exemplary cases. By presenting typ-
ical or extreme cases the user gets a detailed and intuitive impression about the objects
(cases) contained in the subgroup. Besides inspecting discovered subgroups the exempli-
fication technique can also be used for summarizing certain cases, i.e., if a subgroup is
constructed with the special goal of obtaining an overview of the contained cases. The
presented approach is an alternative to the primary description of a subgroup by its princi-
pal and supporting factors. For example, by inspecting the set of diverse cases the user can
obtain a comprehensive overview of the general problem setting that is manifested within
the target class cases contained in the subgroup.
Furthermore, the exemplification method can be applied in the active subgroup mining
process, if the user needs to obtain further insights into the subgroup objects, e.g., to
focus on special meta-information that is contained in the case base, or to clarify certain
properties of the cases contained in the subgroup.

5.2 Subgroup Analysis of Confounding Factors

Analysis of confounding factors is an important requirement, e.g., for epidemiological
studies in medical domains. Then, the direct effect of a specific factor (or combinations of
factors) on a dependent variable, e.g., a disease, needs to be estimated, without including
potential effects of other causes of the disease.
For example, let us assume that ice cream consumption and murder rates are highly corre-
lated. However, this does not necessarily mean that ice cream incites murder or does that
murder increase the demand for ice cream. Instead, both ice cream and murder rates might
be joint effects of a common cause or confounding factor, namely, hot weather.
Thus, confounding analysis is applied in order to isolate the effect of the factors with
respect to other already known causal factors, e.g., in the medical domain often the age of
patients is a confounding factor.
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The analysis of potential confounding variables is an optional step in the subgroup min-
ing process and depends on the specific requirements of the user. Furthermore, since
confounding variables need to be causal for the target concept, background knowledge is
essential in order to obtain valid analysis results. In order to determine the exact effect
measure, techniques for controlling confounding factors provide the necessary means to
obtain an unbiased estimate of the effect of the subgroup description on the target.
In the following sections we first introduce the concept of confounding and discuss the
criteria that can be used to identify confounding. Then, we describe the role of confound-
ing in subgroup discovery and analysis. Thereafter, we describe methods for controlling
confounding, and propose a semi-automatic approach for controlling confounding that can
be embedded in the subgroup mining process.

5.2.1 The Concept of Confounding

Confounding can be described as a bias in the estimation of the effect of the subgroup on
the target concept due to attributes that are not contained in the subgroup description and
affect the target concept [104]. Thus, confounding is caused by a lack of comparability
between subgroup and complementary group due to a difference in the distribution of the
target concept that is caused by other factors and thus inherent in the subgroup.
Before describing necessary criteria that can be used to identify confounding variables,
we first discuss an extreme example of confounding that is known as Simpson’s Paradox.
After that, we discuss further issues related to confounding, i.e., proxy factors and effect
modification.

Simpson’s Paradox

An extreme case for confounding is presented by Simpson’s Paradox: The (positive) effect
(association) between a given variable X and a variable T is countered by a negative asso-
ciation given a third factor F , i.e., X and T are negatively correlated in the subpopulations
defined by the values of F [149]. For binary variables X, T, F this can be formulated as

P (T |X) > P (T |¬X) ,

P (T |X, F ) < P (T |¬X, F ) ,

P (T |X,¬F ) < P (T |¬X,¬F ) ,

i.e., the event X increases the probability of T in a given population while it decreases
the probability of T in the subpopulations given by the restrictions on F and ¬F . An
example is shown in the tables in Figure 5.1. For this example, let us assume that there is
a positive correlation between the event X that describes people that do not consume soft
drinks and T specifying the diagnosis diabetes. This association implies that people that
do not consume soft drinks are affected more often by diabetes (50% non-soft-drinkers
vs. 40% soft-drinkers). However, this may be due to age, if older people (specified by F )
consume soft drinks less often than younger people, and if diabetes occurs more often for
older people.
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Combined T ¬T Rate (T) Restricted on F T ¬T Rate (T) Restricted on ¬F T ¬T Rate (T)

X 25 25 50 50% X 24 16 40 60% X 1 9 10 10%

¬X 20 30 50 40% ¬X 8 2 10 80% ¬X 12 28 40 30%

45 55 100 32 18 50 13 37 50

Figure 5.1: Example: Simpson’s Paradox

The analysis of confounding is an optional step in the subgroup mining process that is nec-
essary if the identification of confounding variables is a requirement for the user. Then, the
associations between the subgroup description and the target variable with respect to other
potential variables can only be checked using background knowledge of the user, since
confounding is a causal concept [118]. Confounding analysis enables an in-depth causal
analysis about the estimated effect of the subgroup description on the target variable: The
effect can then also be analyzed with respect to already known relations, e.g., subgroup
pattern constraints (c.f., Section 4.2.1), that are causes for the target variable in order to
isolate their potential contributions.

Criteria for Confounders

Confounding, as discussed by Pearl [118] is a causal concept, that is interesting in order
to correctly identify genuine causal effects. Given a factor or a combination of factors X
contained in a subgroup description and a target concept T there are three criteria that can
be used to identify a confounding factor F [104, 118]:

1. A confounding factor F must be a cause for the target concept T , e.g., an indepen-
dent risk factor for a certain disease.

2. The factor F must be correlated with the subgroup description X , i.e., the subgroup
factors, in the general population: This means, that the factor has a different distri-
bution comparing the subgroup and its complementary group.

3. A confounding factor F must not be affected by the subgroup (factors) X .
However, these criteria are only necessary but not sufficient to identify confounders. If
purely automatic statistical methods are applied in order to detect confounding, then such
approaches may label some variables as confounders incorrectly [118]: it is easy to see that
confounding variables can potentially blur an association, but cannot be identified if the
confounding variables themselves have not been measured. Furthermore, the contributions
of different confounders can even cancel out their respective effects such that they cannot
be identified using the statistical criteria [104]. Thus, user interaction is rather important
when testing confounding factors in order to judge the individual contributions of potential
confounding variables. Then, causal knowledge about confounding variables needs to
be specified by the user, since one of the criteria for identifying confounding factors is
dependent on the exclusion of a causal path from the subgroup factors to the confounder.
For example, causal knowledge, e.g., in the form of a (causal) Bayesian network can be
utilized for identifying confounders.
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Proxy Factors and Effect Modification

There are two closely related phenomena similar to confounding. First, a factor may be
associated with the subgroup description, and may be the real cause for the target con-
cept. Then, the subgroup description might only be a proxy for the really important factor.
Without causal knowledge it is difficult to identify the true relation.
Another situation is given by effect modification: Then, a third factor F does not neces-
sarily need to be associated with the subgroup (described by the factors X); F can be
an additional factor that increases the effect of X in a certain subpopulation only. This
scenario is called interaction or effect modification, and can point to new subgroup de-
scriptions that are interesting by themselves.

5.2.2 Subgroup Discovery and Confounding

Subgroup discovery methods are usually applied in order to identify certain subsets of the
general population that show an interesting behavior with regard to the target concept. It is
easy to see that the strength of the association between the subgroup and the target concept
as measured by the applied quality function may be dependent on other variables that are
not included in the specific subgroup. Since subgroup discovery approaches are usually
non-covering approaches, it is furthermore possible that one subgroup may be described
by several subgroup descriptions. Then, the factors contained in the respective subgroup
descriptions may be highly correlated to each other. More specifically, it is possible that
the association between a subgroup description and the target variable is distorted by a
single third factor not included in the subgroup description. Such a behavior can be caused
by confounding variables that are (independent) subgroup factors for the target variable;
other factors can also influence the relation between the subgroup description and target
by modifying the association.
Thus, confounding essentially confounds the reading of an effect between certain cause
and effect variables: A confounding variable may increase or decrease the true degree of
association between the variables. Thus, the estimate of the effect is biased, either posi-
tively or negatively [71, 104]. Given a discovered subgroup, i.e., a certain target variable
and a subgroup description, the association between the selectors in the subgroup descrip-
tion and the target variable may not be as significant as measured by the quality function.
Controlling for confounding is an important concept in some domains, e.g., in epidemi-
ology [71, 94, 104] or in medical domains. When epidemiological studies are performed,
e.g., for prospective studies the study is designed in such a way as to minimize confounding
influences. However, in a setting in which secondary data, i.e., electronic patient records
are used for subgroup analysis, confounding is often a real problem: It cannot be mini-
mized by design in a retrospective study, e.g., in an epidemiological case-control study,
where the study parameters cannot be defined in advance as to exclude confounding in-
fluences. Therefore, confounding needs to be controlled after the subgroup patterns have
been discovered.
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5.2.3 Methods for Confounding Analysis of Subgroup Factors

There are a number of methods for controlling the influence of confounders. Morik et
al. [110] describe a knowledge-based system that proposes statistical adjustment methods
for controlling confounding based on the stratification method explained below. Consider-
ing the characteristics of the data an appropriate method is selected, and the results of the
adjustment are presented to the user interactively. Other methods eliminate confounding
variables by statistical adjustment. Such adjustment methods include, e.g., multiple logis-
tic regression, special statistical models, or multiple linear regression. These methods are
advanced analysis methods that are appropriate under certain assumptions, e.g., that the
relations between the variables are linear.
However, such adjustment methods like logistic-regression [94] are often too costly, be-
cause extensive time would be required for modeling the confounding relations, i.e., in a
logistic regression model. Automatic methods for controlling and/or detecting confound-
ing are still not reliable in a general setting [118], because background knowledge about
causal effects needs to be taken into account, c.f., [56].
We favor interactive approaches with short feedback-cycles for testing confounding fac-
tors: In a semi-automatic approach statistical methods can be used to discover potential
confounders that are then presented to the user for subsequent evaluation and validation.

Controlling Confounding by Stratification

One method for controlling confounding factors is given by stratification: Then, the rela-
tion that is suspected to be confounded is analyzed in different strata, i.e., restrictions to
partitions of the population given by the individual values of the potential confounder. A
necessary precondition for this method is that the confounding variable satisfies the criteria
defined above in Section 5.2.1.
Applying the stratification method we can control nominal confounding factors. For ex-
ample, in the medical domain typical factors suspected of confounding are given by the
attributes age, gender, or weight: Considering the potential confounder age, we could split
on age groups such as age < 30, age 30− 60, and age > 60 as the different strata.
Then, the stratification method analyzes the subgroup on the different levels or partitions
of the potential confounder, i.e., the subgroup – target relation is analyzed in the subpopu-
lations given by age < 30, age = 30 − 60 and age> 60. Basically, the association in the
general population is compared to the association restricted to the individual strata.
If the association strength differs comparing the strata and the general population, then
this is an indication for confounding or effect modification. Otherwise, if the association
persists across the different age groups/strata then the confounding association cannot be
proved. However, if the association within the strata differs significantly from the general
association in the whole population, then the factor under consideration is a candidate for
confounding. Furthermore, if the strength of the association differs significantly between
the different strata, then this is a sign for effect modification. To distinguish between these
situations manual inspection by the user is often necessary to obtain the final judgment,
since confounding and effect modification can also occur together.
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Semi-Automatic Analysis of Confounding Factors

To include the background knowledge of the user, we favor a semi-automatic approach
controlled by user interaction. This approach for controlling confounding in subgroup
discovery consists of the following steps:

1. Definition: A subgroup discovery context is defined by the user providing the target
variables, the relevant variables defining the search space, and additional constraints.

2. Selection: The user can specify a group of variables which are candidates for con-
founding, i.e., variables that are causes for the target concept, and general factors
that are usually candidates for confounding, e.g., age and gender in the medical
domain. These factors can be specified in advance but they can also be supplied
incrementally during the subgroup mining process.

3. Subgroup discovery: After the analysis context is set up, subgroup discovery is
performed, and a list of subgroups that are associated with the target variable is
retrieved.

4. Analysis:

a) Test: In the next step, all the candidate confounders are tested automatically,
i.e., their association to the subgroup factors is tested, to fulfill the criteria given
in Section 5.2.1. The decision whether the potential confounder is causal for
the target variable, and whether the confounder is not affected by the subgroup
factors is based upon the background knowledge of the user. For example, this
can be checked using the supplied knowledge in the knowledge base, or it can
be verified using causal background knowledge specified by the user.

b) Presentation: The potential confounding variables are presented to the user.
Depending on the association strength they can be proposed as potentially mi-
nor, medium or strong confounders.

5. Visualization: Given a list of potential confounding variables, the user can perform
the stratification step interactively, supported by suitable visualizations, e.g., line
charts that show the distribution of the target and subgroup description in the differ-
ent strata given by the confounding factor.

By applying this semi-automatic approach that is embedded in the general subgroup min-
ing process, the user is in control of the identification step guided by the discovery system.
Thus, confounding variables can be identified without relying on purely automatic test
methods, since the interpretation and analysis of the potential confounding factors is de-
pendent on domain knowledge of the user. The approach can be extended by including
causal knowledge that is modeled in a knowledge base, e.g., in the form of rules or by
specifying a causal network.
In the described approach user interaction is essential according to the principles of the
active mining paradigm: The confounding variables can be identified and the first analysis
steps provided by the stratification method can be performed. However, advanced analysis
has to be performed by the user supported by appropriate visualization methods.
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Summary

We favor an interactive approach for confounding analysis since there is no purely auto-
matic test for confounding [118]; the analysis itself depends on background knowledge for
establishing a partial causal model of the domain that is essential for identifying confound-
ing factors. Then, such causal knowledge can be be supplied to the discovery method in
order to point out suspected confounders. However, the set of potential confounding fac-
tors ultimately needs to be evaluated and validated by the user.
The proposed semi-automatic method can be embedded as an optional step in the active
subgroup mining process, and can be performed by the user on demand. The described
approach is utilized in order to propose confounding factors. The stratification method is
easy to apply, and it can be further supplemented using other visualization approaches in
order to facilitate the interpretation of the results.

5.3 Conclusion

In this chapter we have introduced methods for subgroup introspection and analysis. These
approaches can be applied by the user as an optional step after a set of subgroups has been
discovered. The presented interactive techniques can be directly initiated by the user.
Subgroup introspection methods are utilized in order to obtain an overview of the subgroup
characteristics. We propose two techniques for subgroup introspection: We can either
present a ranked list of characteristic factors for the subgroup, or we can provide typical
or extreme exemplary cases characterizing a subgroup in order to obtain an overview of
the objects contained in the subgroup. The proposed methods were applied in the case
studies described in Chapter 9, where we will discuss the benefit of the approaches in the
respective context.
Furthermore, we discussed the concept of confounding that is often a central requirement,
e.g., for subgroup analysis in the medical domain and for epidemiological studies. We
described the prerequisites of a comprehensive analysis of potential confounding factors
and how it can be performed regarding the discovered subgroups. Since confounding is
a causal concept that cannot be identified by statistical tests only (since it is a form of
systematic error and not random error) we propose a knowledge-intensive approach: In
the presented semi-automatic approach, confounding variables can be identified using the
domain knowledge of the user. Then, the original effect of a subgroup description on the
target can be measured excluding external effects of potential confounders.
The proposed approaches can be seamlessly integrated into the active subgroup mining
process. Both introspective and analysis methods are not strictly necessary for subgroup
mining but can be very useful for the user: Their application depends on the criteria and
requirements of the user and on the applied domain. Introspective techniques can support
the user in understanding the characteristics of a specific subgroup. Additionally, analysis
methods concerning confounding factors can help to clarify the (causal) contribution of an
individual subgroup with respect to the concept of interest.
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Visual mining approaches (e.g., [83, 169]) are often a promising option for the user, since
visual techniques can increase the effectiveness of automatic methods by utilizing the per-
ception and general knowledge of the user. Furthermore, user integration can also increase
the degree of confidence concerning the discovered findings. In this chapter we discuss the
interactive techniques for subgroup mining, i.e., the interactive visualization approaches
that are used in the knowledge-intensive active subgroup mining process.
In general, there are three fundamental paradigms for exploratory data discovery systems:
search, visualization, and interactive navigation [80]. Each of these should be supported
by the data discovery system. We described the general search process in Section 2.3:
Concerning the visual mining approach we aim to provide convenient exploratory tech-
niques that support the user in performing the discovery process. These should provide
concise representations that are easy to understand and to apply by the user. Then, vi-
sualization methods can supplement automatic methods effectively, and the user can be
actively integrated into the mining process.
Starting with a general overview of visualization techniques [146, 147], we motivate vi-
sualization as a suitable technique for the user in order perform subgroup mining and to
obtain an overview of the mining results. Concerning the interactive mining task that we
presented in [13] we will first introduce the issue of visual subgroup mining, and present
visualizations for explorative subgroup mining, i.e., for an interactive discovery phase.
After that, we propose and discuss visualizations for subgroup comparison and evalua-
tion, i.e., for interactive post-processing, refinement and interpretation of the discovered
subgroups. A main point of the interactive subgroup mining approach is the fact that the
proposed visualization techniques are strongly combined: The visualization methods are
connected and various interactions can be performed starting from the explorative meth-
ods to using the post-processing methods that in turn can be used to re-start the explorative
phase incrementally. We discuss the possible interactions, and describe specific advantages
and disadvantages of the presented visualizations and their main application areas.
After that, we introduce a novel approach for interactive knowledge refinement that is a
modification of the general subgroup mining process; it includes the proposed visualiza-
tion methods as its necessary core components, since the user-driven refinement process
is dependent on high-quality visualizations in order to support the user in performing the
refinement steps.
For the implementation and applications of the proposed methods we refer to the Chapter 7
and Chapter 9, respectively. The proposed visualization methods were applied in the case
studies described in Chapter 9 where we discuss the benefit and applicability of the ap-
proach in detail. When describing the individual visualization methods we use real-world
examples obtained throughout these case studies.
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6.1 Visual Subgroup Mining

The Visual Information Seeking Mantra by Shneiderman [146], ’Overview first, zoom and
filter, then details-on-demand’ is an important guideline for visualization. In an iterative
process, the user is able to subsequently concentrate on the interesting data by filtering
uninteresting data, and focusing (zooming in) on the interesting elements, until finally
details are available for an interesting subset of the analyzed objects.
We implement this principle in the zoomtable for visualizing the individual distributions of
variables: first, the zoomtable can be used to obtain a quick overview of all the variables for
analysis. Additionally, it supports the visual search process directly by providing helpful
information using visual markers. The visual annotations included in the zoomtable are
configurable on the fly and thus can be enabled if needed.
Furthermore, we discuss and present several techniques for evaluating sets of subgroups.
The subgroup patterns are visualized for an easier comparison, such that the user is en-
abled to select the relevant patterns directly in order to identify a small number of highly
discriminative and distinct subgroups with a high overall quality.
The proposed interactive approach provides a novel integration and effective combination
of the individual visualization techniques such that the user can utilize each visualization
as needed during the mining process.

6.1.1 Explorative Subgroup Mining

Subgroup mining utilizes a specific (dependent) target variable for identifying associations
with a set of independent variables that specify the search space used for hypothesis gener-
ation. In information visualization, there are a number of general visualization approaches
that can be used to detect dependencies between attributes. For example, the Attribute Ex-
plorer [151] uses an adapted bar-chart visualization of the attributes and the distribution of
their values in a series of 1-dimensional histograms. Then, the user can specify constraints
on the attribute values, and the system visualizes where certain constraints of the attributes
fail. This enables the formulation of specific hypotheses with respect to the attribute space.
Mosaic plots are another common method for displaying n-dimensional contingency ta-
bles: In the simplest case, a 2-dimensional mosaic plot shows a 2 × 2 contingency table
by splitting a rectangle on the y-axis for the first, and on the x-axis for the second attribute
such that the frequencies of the values are represented by the areas of the sub-bars. For the
n-dimensional case, this technique is applied recursively. Additionally, color coding can
be applied, e.g., in order to mark exceptional values.
Furthermore, the parallel coordinates [64] technique provides a mapping of a case con-
taining n attribute values to a set of n parallel axes depicting the attributes. The case is
displayed as a set of line segments that intersect each of the axes at the position the specific
attribute value contained in the case. Then, an interactive parallel coordinates plot can be
used for a general overview of the data, or the user can manipulate the visualization, e.g.,
by changing the order of the axes, or by focusing on certain ranges of an attribute. Then,
dependencies can often be easily identified: If the lines between two neighboring attributes
are nearly parallel, then they are potentially correlated.



6.1 Visual Subgroup Mining 95

An example for a mosaic and parallel coordinates plot is shown in Figure 6.1 that displays
a screenshot of the Mondrian system [160] using the Titanic data set 1. Mondrian features
several visualization methods, e.g., bar-charts, histograms, and mosaic and parallel coor-
dinate plots that are connected, such that selections performed by the user are propagated
to all currently active visualizations.

Figure 6.1: Examples (from left to right): Bar chart, mosaic plot, and parallel coordinates
plot for the Titanic data.

In this section we present three visualizations for interactive and explorative subgroup min-
ing. First, we focus on the zoomtable that provides an overview of the important variables.
However, its main purpose is interactive subgroup discovery as the central visualization
technique for that task. After that, we describe the subgroup tuning table that can be used
to optimize a given subgroup by small variations that improve the subgroup – according
to objective or subjective quality criteria, e.g., complexity, unusualness or interpretabil-
ity. Furthermore, the subgroup tuning table can supplement the zoomtable for quite small
search spaces or for testing specific subgroup hypotheses. Finally, we discuss the subgroup
workspace that is used for storing interesting subgroups for later reference and analysis.

The Zoomtable

The zoomtable visualization shows the value distributions of selected analysis at-
tributes/variables in the rows of the table corresponding to the attributes in the first column.
Usually the distribution is scaled such that the widths of the bars depicting the attribute val-
ues correspond to the respective frequencies of the attribute values. Optionally, the bars
can also be evenly scaled in order to show infrequent attribute values.
In addition to this basic statistical information, the zoomtable can contain a number of
visual markers for guiding the discovery process that are configurable on the fly. For

1http://lib.stat.cmu.edu/S/Harrell/data/descriptions/titanic.html
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example, interesting values can be highlighted, or the general trend of the quality measure
can be indicated. According to the visualization seeking mantra by Shneiderman, the
zoomtable enables its main functions: It features an overview on the attribute space, and
it allows the zooming in on specific attribute values, i.e., subgroup selectors, for testing
specific hypotheses, in order to finally obtain the details-on-demand.

Overview and Analysis As an example for a simple configuration, the main com-
ponent of the zoomtable is depicted in Figure 6.2. In this figure, the frequencies of the
individual values are given below the value names, and the widths of the cells are evenly
scaled. Then, a first overview of the value distributions can be obtained.

Figure 6.2: Showing value distributions in the zoomtable.

Additionally, the zoomtable can be used for simple correlation analysis similar to basic
OLAP (Online Analytical Processing) techniques (e.g., [57, Ch. 2]). Similar to a ’flat’ mo-
saic plot [49], the sorted mode of the zoomtable enables the analysis of the different rows
with respect to other rows, i.e., given a sorting attribute the values of the other attributes
are grouped by the values of the respective attribute. An example is shown in Figure 6.3.

Figure 6.3: Simple correlation analysis in the zoomtable.

In this zoomtable screenshot the cells are not evenly scaled but the width of a cell depicting
an attribute value relates to the frequency of the respective attribute value; the values of
the attribute ’Attachmentloss’ are sorted according to the attribute ’Lockerungsgrad’ (tooth
lax) in the first row. This mechanism can be extended using further sorting attributes such
that the values of an attribute are grouped by several attributes according to a sorting order.
Then, the value cells are split up recursively, depending on the attributes that are higher up
in the sorting order.

Interactive Subgroup Mining We utilize the zoomtable as the major visualization
for explorative subgroup mining. Given a subgroup discovery context defined by the target
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variable, the set of relevant attributes and additional constraints, the attributes can directly
be visualized in the rows of the zoomtable. Then, we can utilize additional information dis-
played in its cells. This is in contrast to common visualizations techniques such as mosaic
plots [49] or parallel coordinates [64] techniques that can be used for locating associations
but do not display as much additional information. Furthermore, the zoomtable focuses on
the subgroup discovery paradigm considering a specific target variable, and can therefore
provide detailed visual markers specifically for that task.
Applying the zoomtable for subgroup mining is exemplified in Figure 6.4. This screenshot
contains the current subgroup view (Annotation I) showing the binary target variable ’Er-
ror Analysis: (EX;;;red; [FP,FN])’ that is true for cases where a dental consultation system
wrongly inferred a tooth to be extracted; the single selector of the current subgroup is given
by ’Attachmentloss = gravierend, 31-50%’ (attachmentloss = strong). The bars (Annota-
tion II) depict the target distributions in the whole population (upper bar: 108 positives vs.
670 negatives), and in the subgroup (57 vs. 115). The left part of a bar shows the posi-
tives, the right part the negative instances. Usually the positives are shown in green color,
and the negative instances in red color (in Figure 6.4 the colors are interchanged due to
the error analysis task). The zoomtable (Annotation III) shows the distribution of the data
restricted to the currently selected subgroup: Each row of the zoomtable shows the value
distribution of a specific attribute limited to the cases covered by the current subgroup; the
width of each cell relates to the frequency of the respective attribute value.

II

I

III

Figure 6.4: Visual subgroup mining using the zoomtable.

For a detailed view, Figure 6.5 shows the abstract structure of a row of the zoomtable
including the type of the attribute, its current ranking, the attribute name, and its value
distribution annotated with several visual markers. In general, two of the most impor-
tant parameters of a subgroup are the target share (p) (c.f., Section 3.1) and the size (n)
of the respective subgroup. There is always a trade-off between these parameters that is
usually formalized by the applied quality function. So, for the interactive part of the semi-
automatic process for subgroup mining, we want to visualize possible future changes or
improvements regarding these parameters. The subgroup size with respect to a future sub-
group is given by the width of a specific selector cell. The current target share is visualized
in the individual cells by visual markers: (a) indicates the positive and (b) the negative in-
stances of the current subgroup SGc; (c) shows the positive instances for the subgroup
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Value1 Value2

<Type> <Num>:<Attribute> ...

...

Figure 6.5: The zoomtable – detail view

SGn, i.e., the subgroup that is constructed by including the particular attribute value. If
(c) is larger than (a), then the target share increases adding this selector. Furthermore, (d)
shows the relative gain in the target share p, comparing the subgroups SGc and SGn, i.e.,
d ∼ c−a

b
, c ≥ a; the marker (d) can then be used for an easier assessment of small cells.

If the height of (d) is zero, then the target share does not increase. If it fills the entire bar,
then the target share reaches 100%.
We can relate this abstract structure to the screenshot of the zoomtable shown in Figure 6.4,
e.g., to the first row showing the attribute ’Lockerungsgrad’ (tooth lax). Then, the anno-
tations in the cell representing the value ’Grad I’ (minor degree of tooth lax) indicate that
the target share significantly increases by adding this selector. By interpreting these visual
markers of each cell which are shown using different colors the user can immediately iden-
tify promising improvements of the currently active subgroup. If the target share increases,
then the horizontal marker (c) is indicated in green, otherwise a gray bar is shown. For an
improving selector the remaining area b− c is shown in red color.

Figure 6.6: Visual subgroup mining using the zoomtable - ’zooming in’ operation

Furthermore – if enabled – the zoomtable ranks the rows of the table with the most signifi-
cant improvement, shown by the number in the column left to the value cells in Figure 6.4
(’Num’ in Figure 6.5). For example, in Figure 6.6 the best selector ’Lockerungsgrad =
Grad I’ (tooth lax = minor) has been added to the current subgroup, compared to Fig-
ure 6.4. Now, the selector ’Klinische Krone = 3-5mm, defektfrei’ (crown length = 3-5mm,
undamaged) is a potential candidate for further subgroup refinement.
Using such zooming operations, i.e., selecting selectors, the user can manipulate the cur-
rent subgroup by one click selecting cells in the zoomtable. Then, the zoomtable is ani-
mated and updated immediately with respect to the changes of the value distributions.
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Compared to the zoomtable approach, the InfoZoom system [22, 152, 153] also visualizes
the value distributions of attributes in single rows of a table, and allows zooming in on in-
dividual values. The zoomtable extends this mechanism significantly, since we also guide
the user during the subgroup mining process by visualizing additional quality parameters
such as the future target share, and the gain of a specific selector directly in the zoomtable.

The Subgroup Tuning Table

The subgroup tuning table can be used for purely interactive subgroup discovery by the
user. Figure 6.7 shows a detailed subgroup tuning table. Given a set of user-determined
attributes, the user can select each attribute value as a selector for specialization by a sin-
gle click in a value cell. Furthermore, a specific subgroup can be analyzed in the subgroup
tuning table: Then, all its attributes and valid attribute values are included in the table.
In this manner, the subgroup description can be fine-tuned by the user, e.g., by extend-
ing a selector into a disjunctive selections expression. Thus, subgroup specialization and
generalization operations can be performed very intuitively.
Slight variations of a subgroup description can be more interesting depending on the pref-
erences and requirements of the user [14]. For example, considering the nominal attribute
age with discretized age groups, often consecutive age groups can be aggregated in order to
increase the support of a subgroup, or to enhance its interestingness or interpretability for
the user. Furthermore, the subgroup tuning table allows for a quick hypothesize-and-test
cycle if the user already has a lot of background knowledge.

Target Variable: Gallstones Age: 1 = <50, 2 = 50-69, 3 = >=70

# Age Sex Liver size Aorta sclerosis Sex: m = male, f = female

1 2 3 m f 1 2 3 4 5 6 n c Size TP FP Pop. p0 p RG Bin. QF Liver size: 1 = smaller than normal,

1 X X X X X X 89 37 52 3171 0.172 0.416 1.71 6.17 2 = normal,

2 X X X X X X X 119 46 73 3171 0.172 0.387 1.5 6.31 3 = marginally increased,

3 X X X X X X X 132 51 81 3171 0.172 0.386 1.5 6.66 4 = slightly increased,

4 X X X X X X 190 68 122 3177 0.172 0.358 1.3 6.99 5 = moderately increased,

5 X X X X X 207 72 135 3171 0.172 0.348 1.23 6.92 6 = highly increased

6 X X X X X X X 64 22 42 3171 0.172 0.344 1.2 3.67 Aorta sclerosis: n = not calcified, c = calcified

Figure 6.7: Exemplary subgroup tuning table: The first line depicts the subgroup (89
cases) described by Age ≥ 70 AND Sex=female AND Liver size=slightly or
moderately or highly increased AND Aorta sclerosis=calcified with a target
share (gallstones) of 41.6% (p) compared to 17.2% (p0) in the general popula-
tion, with a relative gain of 171% (RG).

Returning to Figure 6.7, the individual subgroups are shown in the rows of the table: The
subgroup description is given by a set of selected columns corresponding to the attribute
values. After these, the subgroup parameters are shown, which include the (subgroup)
Size, TP (true positives), FP (false positives), Pop. (defined population size), RG (relative
gain), and the value of the binomial quality function qBT (Bin. QF), c.f., Section 3.1.
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The Subgroup Workspace

If the user discovers an interesting subgroup, e.g., either using the zoomtable or the sub-
group tuning table, then this subgroup can be added to the subgroup workspace for later
reference. In this manner, the subgroup workspace contains the set of the currently in-
teresting subgroup hypothesis. Thus, the subgroup workspace table is the second central
component in the interactive and incremental process for subgroup mining besides the
zoomtable. While the zoomtable enables the analysis of the current subgroup hypothesis,
the subgroup workspace contains a set of interesting hypotheses that are the candidates
for potential further refinement and analysis, e.g., a subgroup or a set of subgroups can
be assessed using the techniques described in Section 6.1.2 below. Thus, the subgroup
workspace can be regarded as a working repository of the subgroups. Then, the different
analysis techniques can be (re-)started using the subgroups contained in that workspace.
Figure 6.8 shows the subgroup workspace, where the subgroups are grouped by the com-
mon target variable as the root of a tree. Then, each child of this root depicts a subgroup;
the children of the individual subgroup nodes are the selectors contained in the respective
subgroup description.

Figure 6.8: Subgroup workspace: The subgroups are shown in the first column. The fol-
lowing columns display the subgroup size (Size), the quality, the target share
p (subgroup) and p0 (population), the relative gain value (Rel. Gain), the sig-
nificance level (Significance), the cluster that the subgroup belongs to, and the
subgroup instances that are split into positives and negatives.

In this tree-table view of a set of subgroups each subgroup is contained in an extended row
of the table. The description of each subgroup is contained in the first column of a sub-
group row, but can be unfolded in order to show the individual selectors of a subgroup in
dependent rows. Next to the subgroup description the most important values for each sub-
group are shown to allow for a quick comparison of the subgroups. These values contain,
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e.g., the size of the subgroup (Size), the quality of the subgroup according (Quality) to the
given quality function, the size of the defined population (Population), and the target share
(p, p0) considering the subgroup and the general population, respectively. These param-
eters are configurable on the fly such that only the necessary information is displayed as
needed. The subgroups in the workspace are clustered automatically (in column Cluster),
and for each subgroup the number of its corresponding cluster is shown. The last column
visualizes the instances of the subgroup as bar, which is split into two parts for the positive
and negative instances. Additionally, the bar visualizes the quality of the subgroup: The
darker the bar, the better the quality. Thus, the user can easily rank the shown subgroups.
Using the subgroup workspace, the user can get a comprehensive overview of the results
obtained so far. The subgroups can be sorted according to the given quality parameters,
and a set of subgroups can be compared or the relations of the subgroups can be assessed
using the techniques described below.

6.1.2 Subgroup Comparison and Evaluation

Subgroup mining typically aims to identify a small set of distinct high quality subgroups.
Automatic approaches for subgroup selection, i.e., methods that aim to optimize the set
of subgroups often suffer from several limitations. A subgroup can potentially be de-
scribed by several different subgroup descriptions, i.e., sets of selectors, if there are multi-
correlations between the considered attributes. Then, a representative subgroup needs to be
selected from the competing descriptions, a task which is difficult using automatic meth-
ods without including background knowledge. Furthermore, subjective quality criteria of
the user also need to be taken into account, e.g., the individual trade-off between sub-
group size and target share, the complexity of a subgroup, the unusualness, and finally the
interestingness of the subgroup: These criteria are hard to assess without user integration.
In the following we describe two types of visualizations for the proposed semi-automatic
approach: visualizations for comparing the quality characteristics of subgroups and for
assessing hierarchical/redundancy relations between subgroups.

Comparing Subgroup Quality Parameters

For comparing subgroup quality parameters there are a number of potentially useful visu-
alizations. Gamberger et al. [54] discuss two visualizations, i.e., a circle visualization sim-
ilar to a pie chart and a box visualization that displays subgroups in several boxes arranged
from top to bottom of a quality chart. These are also used, e.g., in the Kepler/Descartes
system; however, the visualizations are only used for post-processing and viewing the re-
sults, so no direct interaction is possible.
Similarly, the Subgroup Miner system [84,85] by Klösgen and May uses visual indicators
to show the parameters for a single subgroup, e.g., the target share in the subgroup and
the population, and the size using simple bar charts. It also applies a visualization sim-
ilar to a Receiver Operating Characteristics (ROC) graph [41], where the precision and
support are visualized for a set of subgroups. A ROC graph is a visualization method
that is mainly applied for evaluating classifiers. The ROC graph itself shows the trade-off
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between the true positive and false positive rates. For subgroup analysis requirements the
graph can also be used for comparing single subgroups, and can furthermore be applied
for the comparison of the quality of sets of subgroups [93].
In contrast to the existing visualization methods we propose a new specialized visual-
ization, i.e., the stacked bar visualization. Subgroups and their quality parameters can
be easily displayed as as a set of stacked bars containing additional visual markers to
indicate the important subgroup parameters: In contrast to the existing approaches, the
presented stacked bar visualization includes all the relevant parameters, and can display
many subgroups for comparison. Thus, it facilitates their comprehensive assessment and
comparison which is often problematic for the other approaches, e.g., for small subgroup
sizes. In the following we will discuss the mentioned visualization methods, i.e., subgroup
visualizations using circles, boxes, and stacked bars, and the ROC graph in detail.

Circle Visualization An example of the circle visualization is shown in Figure 6.9:
The outer circle represents the whole population, and the inner circle shows the instances
of the subgroup. The gray area stands for the positive instances and the black area for the
negative ones. To estimate the precision the angles of the two segments can be compared,
while the size of the subgroup is depicted by the radius of the circle. In the example, it is
easy to see that subgroup A is smaller than subgroup B, but has a much better precision.

Figure 6.9: Example for the circle visualization.

Box Visualization In the box visualization shown in Figure 6.10, the whole box rep-
resents the population instances: The left striped half depicts the positive instances and
the right half the negative ones. The subgroup instances are shown in gray. The target
share of the subgroup is indicated by the horizontal position of the box. In the example,
the first box represents the whole population, for comparison to the other subgroups. Our
box visualization differs slightly from the visualization used in the Kepler [176] system,
since we use boxes with equal sizes for displaying the positive and negative share, i.e., the
width of the positives does not correspond to the amount of the positives/negatives in the
population. Then, it is possible to estimate the sensitivity and specificity of a subgroup as
discussed in Section 6.1.4 by comparing the area of the positive/negative ’gray instances’
(subgroup) to the blank, unmarked areas (population).
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Figure 6.10: Example for the box visualization

Stacked Bar Visualization In contrast to the circle and box visualization we propose
an intuitive and easy to interpret visualization technique, i.e., the stacked bar visualization
for comparing individual subgroups and their parameters. In the proposed visualization we
aim to (1) show the most important subgroup parameters (size n and target share p) that
should be (2) easily comparable, in a (3) compact way, such that it is possible to include a
high number of subgroups in this visualization.

Figure 6.11: Example for the stacked bar visualization.

Figure 6.11 shows an example of the stacked bar visualization that corresponds to the
subgroups shown in Figure 6.7 (referenced by the numbers in the first column). This visu-
alization is similar to a spineplot [159], i.e., a 1-dimensional mosaic plot. For visualizing
a set of subgroups and their quality parameters a stacked bar is created for each subgroup:
Since all bars have the same height, the area, or the width of a stacked bar shows the
subgroup size. The relative size with respect to the total population is also printed above
the bars. The shares of the positive/negative instances are depicted by the areas of the
lower/upper bars. The default target share is indicated by a horizontal line that can be
compared to the height of the lower bars representing the target share of the subgroup.



104 Chapter 6: Interactive Subgroup Mining

The stacked bar visualization has the important property that the relevant information for
a subgroup, the size and the target share are directly shown. Since the bars are arranged
horizontally this visualization is also suitable for comparing large sets of subgroups.
If very large and very small subgroups are compared, then there is the general problem of
comparing subgroups for which the respective sizes differ by several orders of magnitude.
To solve this problem the proposed visualization clusters the subgroups according to their
respective sizes, i.e., by the respective order of magnitude the subgroups belong to. The
different clusters of subgroups are then shown in partial views and are scaled accordingly.
Since the scale is shown it is still possible to compare individual subgroups.

Receiver Operating Characteristics (ROC) Graphs To visualize the quality of a
set of subgroups, and to compare individual subgroups, a ROC [41,93] graph can be used.
This graph is a common method for visualizing, organizing and selecting classifiers based
on their performance. Initially, ROC graphs were used in signal detection. Then, they were
adapted to medical diagnostics [158] and to the general area of machine learning and data
mining. A ROC graph (e.g., Figure 6.12 and Figure 6.13) is drawn in a two-dimensional
coordinate system: The X-axis shows the false positive rate (fp-rate), i.e., the proportion
of false positives fp to all negatives (false positives + true negatives tn):

fp−rate =
fp

fp + tn
. (6.1)

The Y-axis shows the true positive rate (tp-rate), i.e., the sensitivity that specifies the
proportion of the true positives tp to all positives (true positives + false negatives fn):

tp−rate = sensitivity =
tp

tp + fn
. (6.2)

Each axis ranges from zero to one. ROC graphs are another way to examine the perfor-
mance of classifiers, besides confusion matrices, i.e., 2× 2 contingency tables concerning
the predicted and correct classifications (c.f., Section 6.1.4). The point (0, 1) corresponds
to the perfect classifier: It classifies all positive cases and negative cases correctly, i.e.,
for the point (0, 1) the false positive rate is 0 (none), and the true positive rate is 1 (all
positives). The point (0, 0) represents a classifier that predicts all cases to be negative,
while the point (1, 1) corresponds to a classifier that predicts every case to be positive.
The classifier that is incorrect for all classifications is depicted by the point (1, 0). Often a
classifier features a parameter that can be adjusted to increase the number of true positives
tp at the cost of an increased number of false positives fp, or vice versa.
Concerning subgroup evaluation and comparison, a ROC graph features several interesting
properties:
• ROC graphs are insensitive to changes in the class distributions. In contrast to other

graphs, e.g., precision - recall graphs, if the distribution of the class changes, then
the graph will not: The ROC curve uses the true positive and false positive rates
that are computed each from a column of the contingency table. Thus, the graph
is insensitive to distributional changes, since changes in the proportion of the two
columns are not reflected in the applied metrics.
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• A ROC graph encapsulates all information contained in the confusion matrix, since
fn is the complement of tp and tn is the complement of fp; so, these parameters are
all accounted for by the metrics used, i.e., the true positive rate (sensitivity) and the
false positive rate.

• ROC curves provide a visual method for examining the trade-off between the ability
of a classifier to correctly identify positive cases and the number of negative cases
that are incorrectly classified corresponding to misclassification costs.

There are two options for visualizing subgroups in the ROC graph. Each subgroup pro-
vides a (fp, tp) pair and a series of such pairs can be used to plot a ROC curve by consid-
ering each such pair as the coordinates of the subgroup. In general, a subgroup should be
as close to the top-left corner of the ROC graph as possible. If the convex hull over the
set of points is drawn, the area under this line can be defined as the quality of the set (see
figure 6.12). This procedure has the disadvantage, that only the best subgroups that are
participating in the convex hull affect the result.

Figure 6.12: Descriptive ROC graph:
Accuracies of single sub-
groups plotted separately.

Figure 6.13: Predictive ROC graph:
Combined accuracy of a
set of subgroups.

The second option considers the complete set of subgroups. For classification of an in-
stance a probabilistic value is calculated that is the average of the precision of the sub-
groups that contain the instance. More formally, for an instance i the probability p(i), that
the instance is positive, is defined as:

p(i) =

∑
s∈S precision(s)

| S |
,

where S is the set of subgroups that contain the instance i and precision(s) is the precision
of the subgroup s.



106 Chapter 6: Interactive Subgroup Mining

This probabilistic value can be converted to a binary value using a threshold: If the proba-
bility is below the threshold, then the binary value is ‘negative’, otherwise ‘positive’. So,
different threshold values lead to different classifications of the instances. For each thresh-
old a point in the coordinate system can be defined by calculating the false positive rate
and the sensitivity for this threshold (c.f., [41, 93]). So, increasing the threshold leads to
several points which are connected by a line from the origin to the point (1,1), as shown in
figure 6.13. Then, the area below this line is defined as the quality of the set of subgroups.

Comparing Subgroup Relations

To compare the characteristics of several subgroups, we describe an overview visualization
to identify the specialization/generalization relations between subgroups. Furthermore,
we provide an overlap/clustering visualization to identify overlapping subgroups, since
subgroup mining methods are not necessarily covering approach.

Overview Visualization If all selectors of the description of the subgroup A are con-
tained in the description of the subgroup B, then A is a generalization of B and B is a
specialization of A. This relation can be visualized as a graph (e.g., [83]), where the sub-
groups are the nodes and an edge from A to B exists if B is a specialization of A. The

Figure 6.14: Overview on sets of subgroups.

overview visualization is shown in Figure 6.14. Each bar depicts a subgroup: The left sub-
bar shows the positives and the right one the negative instances of the subgroup; it is easy
to see that the subgroup size n is the sum of these parameters, and that the target share is
obtained by the fraction of positives and size. The quality of the subgroup is indicated by
the brightness of the positive bar such that a darker bar indicates a better subgroup. So, we
are able to include the most important parameters in the visualization, i.e., the size, target
share, and the subgroup quality. Since the edges show which subgroups are specializations
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of other subgroups, it is easily possible to see the effect of additional selectors. Further-
more, we can add the subgroups that are obtained by generalizing the subgroups contained
in the overview visualization in all possible ways, in order to see the effect of all possible
selector combinations.
The overview visualization is inspired by a similar graph by Klösgen and Lauer [83] but
there the quality of a subgroup is not visualized directly. In addition, we also include other
relevant parameters, e.g., the target share in the proposed visualization. By visualizing the
positive and negative instances of each subgroup in the graph it is possible to see the direct
effect of additional selectors in the respective subgroup descriptions.

Figure 6.15: Visualizing overlap/clusters of subgroups.

Cluster Visualization The cluster visualization (depicted in Figure 6.15 containing
the subgroups of Figure 6.14) shows the overlap of subgroups, i.e., their similarity. It can
be used to detect redundant subgroups, e.g., if all positive instances of a subgroup A are
also contained in another subgroup B with less negative instances, then the subgroup A is
potentially redundant. The similarity SGSim(s1, s2) of two subgroups s1 and s2 can be
defined using a symmetric similarity measure taking the intersection and the union of the
respective subgroup instances into account:

SGSim(s1, s2) =
| s1 ∩ s2 |
| s1 ∪ s2 |

. (6.3)

Thus, the cluster visualization can also show redundancy between subgroups that are not
similar with respect to their descriptions but only similar concerning the covered instances.
So, if a redundant subgroup is not a specialization of the non-redundant subgroup, i.e., its
description is different, then the application of additional semantic criteria might be needed
in order to infer if the subgroup is really redundant. To indicate overlapping subgroups,
the cases are arranged in the same order for each row corresponding to a subgroup. If an
instance is contained in a subgroup, it is marked in green, if it is positive, and red if it is
negative, with respect to the target variable.
To determine the individual clusters, we apply a bottom-up hierarchical complete-linkage
clustering algorithm (e.g., [57, Ch. 8.5]), starting with the single subgroups and merging



108 Chapter 6: Interactive Subgroup Mining

the two most similar clusters recursively, as shown in Figure 6.15. The process terminates
if a certain similarity threshold is reached. The threshold can be specified by the user, but
it can also be determined automatically using an adapted algorithm from [78] discussed in
Section 3.3.1: Equation 3.7 can be used in order to determine the ’split similarity’, i.e., the
similarity threshold that is used to stop the aggregation of clusters.

6.1.3 Interaction: Connecting the Visualization Methods

In the proposed knowledge-intensive active subgroup mining process discussed in Sec-
tion 2.3, the interactive part supported by visualizations is essential. When applying au-
tomatic discovery approaches, the visualization methods can be used at any time when
the automatic search method has been stopped or interrupted. Then, the user can browse
the data directly in order to generate promising hypotheses that can then be validated and
refined semi-automatically. In addition, if the interactive approach is applied directly, then
the (current) results can be actively refined, inspected, evaluated and tested using the visu-
alization techniques.
Returning to the ’Visual Information Seeking Mantra’ [146], the zoomtable provides the
overview and zooming functionality. The ’details-on-demand’ process step is enabled by
the visualization methods for comparing subgroup parameters and for comparing subgroup
relations. Thus, the zoomtable is the central starting point for the user in order to perform
an interactive discovery of subgroups. In this visualization several analysis requirements
can be considered by the user directly, e.g., searching for 1) large subgroups, 2) subgroups
with a high true positive rate, 3) subgroups with few false positives, 4) subgroups with
a high precision/deviation, and finally 5) subgroups with a high quality, which can en-
capsulate several of the above criteria 1-4, depending on the selected quality function.
Alternatively, the subgroup tuning table can be applied: It can be used to test very specific
hypotheses, e.g., if the user already has certain expectations or beliefs concerning interest-
ing subgroups. Moreover, it can be utilized for subgroup fine-tuning and refinement.
After an interesting subgroup has been determined it is stored in the subgroup workspace.
Then, comparison and evaluation of a set of subgroups can be performed. In an integrated
approach the user is able to utilize a suitable visualization method as needed. For example,
the comparison of the subgroup instances contained in a set of subgroups can be performed
using the clustering/overlap visualization. To estimate the quality of a set of subgroups the
ROC-Plot can be used. Furthermore, to measure the influence of a specific selector, the
overview mode is often most appropriate.
Thus, the visualization methods are tightly coupled. The main starting point for interactive
subgroup discovery is the zoomtable supplemented by the current subgroup view, depicted
in Figure 6.4 and the subgroup tuning table. In addition to testing subgroup hypotheses
using these visualizations, the subgroups can be analyzed using the proposed visualizations
for parameter comparison and subgroup evaluation. The second starting point is given by
the subgroup workspace. Subgroups that are considered as interesting by the user can
be added to the workspace. Then, these subgroups can be evaluated and compared using
the post-processing visualizations. Furthermore, the discovery process can be restarted
by refining a subgroup contained in the workspace, either interactively or automatically.
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In summary, we distinguish the following interaction options concerning the interactive
subgroup mining process that are shown in Figure 6.16.

• Explore: Explore the subgroup space and/or test specific subgroup hypotheses.

• Explore/Refine: Use a (discovered) subgroup as a starting point for further explo-
ration, or apply it for subgroup refinement.

• Tune/Refine: Tune or refine a given subgroup, by ’optimizing’ the value range of the
subgroup selectors contained in the subgroup description.

• Store: Add a subgroup to the subgroup workspace for later reference.

• Evaluate/Compare: Evaluate individual subgroups, or compare several subgroups
contained in a subgroup set.

• Compare Parameters: Assess the subgroup parameters using specialized visualiza-
tions in order identify the significant and interesting subgroups.

• Compare Relations: Explore the relations between subgroups in order to determine
an expressive high-quality set of subgroups.

Zoomtable

Subgroup Tuning Table

Subgroup Workspace

Circle Visualization

Box Visualization

Stacked Bar Visualization

ROC Visualization

Overlap Visualization

Cluster VisualizationExplore

Store

Evaluate/

CompareTune/

Refine

Overview Visualization
Compare

 Relations

Compare

Parameters

Explore/

Refine
Explore/

Refine

Explore/

Refine

Explore/

Refine

Explore

Store

Figure 6.16: Interactions – connecting the visualizations.
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6.1.4 Comparison and Application of the Visualizations

For visualizing, evaluating, and comparing the subgroup quality parameters of a set of
subgroups there are several applicable visualization options. Considering the proposed
visualizations there are characteristic advantages and disadvantages that we will discuss in
the following.
First of all, we will introduce well-known performance metrics that are commonly used,
e.g., to evaluate rules in machine learning or for system evaluation in information retrieval.
Then, these can be graphically displayed for the evaluation and the comparison of sub-
groups. The metrics stress certain aspects of the performance and quality of a subgroup in
order to ease the subgroup interpretation for the user. After that, we discuss characteris-
tics of the visualizations for comparing the subgroup quality parameters. We will describe
application areas and user strategies for the proposed visualization approaches.

Common Performance Metrics

In general, common performance metrics that are widely applied are useful for evaluating
and comparing subgroups since they denote well known concepts for evaluation from,
e.g., information retrieval or medical diagnostics. This is especially important for the
generation of actionable knowledge patterns [52] for which the integration of the user is
crucial. Furthermore, common metrics such as sensitivity and specificity can be used in
order to obtain an impression of the individual subgroups for an intuitive evaluation, e.g.,
such that the user can choose suitable performance thresholds as needed.
Suitable candidates for the performance metrics are given by the basic parameters of a
subgroup, and the comparison to their equivalent parameters in the general population.
Let us consider the target share of the subgroup p, and the size of a subgroup n. Then,
we can consider the difference of the target share of the subgroup compared to the target
share of the considered population p0 : p − p0, or its squared value (p − p0)

2. Similarly,
the subgroup size can be compared to the size of the population, e.g., simply considering
the difference N −n, or the fraction n

N
given by the relative coverage of a subgroup. Such

parameters are usually combined into a quality function, e.g., the binomial test, or the
relative gain measure discussed in Section 3.1.5.
If we consider a subgroup s for a binary target variable t as a classifier, then there are four
possible outcomes with respect to the predicted and the actual class of a case. Regarding
the predicted class, the case is classified to be positive if it is contained in the subgroup
(s = true) and false otherwise (s = false). The actual class of a case is determined by
considering the value of the target variable, i.e., either the target is contained in the case
(t = true), or not (t = false).
The results of such a subgroup classification task can be entered in a confusion matrix or a
2× 2 contingency table, as shown in Table 6.1. We distinguish the following situations: If
the case is really positive and it is classified as positive, then it is counted as a true positive;
otherwise, if the given positive case is classified as negative, then it is counted as a false
negative. If the case is truly negative and it is classified as negative, then it is counted as a
true negative; otherwise, if such a negative case is classified as positive, then it is counted
as a false positive.



6.1 Visual Subgroup Mining 111

t = true t = false
s = true tp fp
s = false fn tn

Table 6.1: Subgroup contingency table.

Using the counts in the contingency table we obtain the following parameters, that have in
part been defined before, but that we summarize for completeness in the following:
• the number of true positives tp, i.e., the number of cases of the subgroup containing

the target variable,

• the number of false positives fp, i.e., the number of cases that do not contain the
target variable but are contained in the subgroup,

• the number of false negatives fn, i.e., the number of cases that contain the target
variable but are not included in the subgroup, and

• the number of true negatives tn, i.e., the number of cases that do not contain the
target variable and are not contained in the subgroup,

where the subgroup size is obtained by n = tp + fp.
Based upon these basic parameters other metrics commonly used in information retrieval
and medical informatics can be derived, i.e., the precision, the recall, the sensitivity, and
the specificity, that can be defined as follows:

p = target share = precision =
tp

tp + fp
(6.4)

sensitivity = recall =
tp

tp + fn
(6.5)

specificity =
tn

tn + fp
(6.6)

Then, it is easy to see that the precision/target share measures the share of target class in-
stances contained in the subgroup, the recall/sensitivity measures the share of target class
instances of the subgroup compared to all target class instances, and the specificity mea-
sures the fraction of negative (non-target class) cases predicted as negative, as a contrast
to sensitivity/recall.
In contrast to the quality measures described in Section 3.1.5, the performance metrics
can be considered as local measures that emphasize certain quality aspects of a subgroup.
These local measures are often part of a quality measure that is then used to rank the global
quality or interestingness of a subgroup pattern. In the following section we will discuss
the local measures considering the characteristics of the proposed visualizations.

Characteristics of the Visualizations for Comparing Subgroup Parameters

For subgroup evaluation and for comparing subgroup parameters we can utilize the perfor-
mance metrics discussed above. Usually, there are some metrics that the user is especially
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interested in. In the following we discuss and summarize the different options for deter-
mining suitable visualization techniques: Usually there are several alternatives that the
user needs to choose from depending on the requirements at hand:
• Subgroup size/Number of positives: To compare the subgroup size of a set of sub-

groups, the circle visualization, and the stacked bar visualization can be used. In the
latter visualization a bar for each subgroup is shown: It displays the size and distri-
bution of the subgroup, relating to the number of true positives and false positives.
Therefore, these numbers can be compared quite easily, even for small subgroups.
The circle visualization is especially suited to compare an individual subgroup to the
total population, but fails for small subgroup sizes. For comparing the true positives
and false positives, the user has to consider the angles of circle segments which is
often difficult, especially for small subgroups. Then, the stacked bar visualization
can be applied that enables the comparison of a large number of subgroups and can
be used to evaluate even quite small subgroups.

• Target share/precision: Using the circle visualization the user can estimate the total
precision of a single subgroup if the subgroup is not too small. Several subgroups
can be compared in the box visualization more easily, since it directly shows their
precision. Furthermore, the stacked bar visualization allows to estimate the precision
of the subgroup that is given by the height of the sub-bars.

• Sensitivity and specificity: Sensitivity and specificity can be estimated using the box
visualization. The ROC graph also displays the sensitivity by the vertical position
of the subgroups. The specificity can be estimated indirectly using the false positive
rate, since specificity = 1− fp rate .

We summarize the characteristics of the visualizations for comparing the subgroup quality
parameters in Table 6.2: a +, or ++ indicates that the visualization is (well) applicable for
the task, while a− indicates the opposite; n/a means that the visualization is not applicable.

Subgroup Size #Positive Target Share/ Sensitivity and
(Small Sizes) Instances Precision Specificity

Circles + (−) − + n/a
Boxes n/a + ++ ++
Stacked Bars ++ (+) + ++ n/a
ROC n/a n/a n/a ++

Table 6.2: Summary of the visualization options – applicability.

To conclude, the box visualization is well suited to compare the target share, and sensi-
tivity and precision. However, subgroup sizes cannot be compared easily, since the posi-
tive/negative subgroup instances are represented by equal areas. Furthermore, as discussed
above, the circle visualization is not reasonable if the subgroups are quite small. Then,
for comparing typical subgroup parameters, the stacked bar visualization is a promising
choice since it shows all the main subgroup parameters, i.e., the size and precision. The
ROC graph can be used as a suitable supplement since it supplies the remaining param-
eters, i.e., the sensitivity and specificity directly and it can also be applied for evaluating
and comparing a large number of subgroups.



6.2 Using Interactive Subgroup Mining for Knowledge Refinement 113

6.2 Using Interactive Subgroup Mining for
Knowledge Refinement

In the following we will describe an approach for knowledge refinement utilizing an active
subgroup mining method which we presented in [6, 10, 11]. The proposed approach is
interactive and relies on the user to perform the knowledge adaptations and extensions, in
contrast to automatic knowledge refinement methods. Subgroup mining is used to indicate
potential factors that are the cause of an erroneous behavior of the knowledge system. In
the interactive approach, visualization techniques are essential in order to enable a reason-
able and tractable method.

6.2.1 Subgroup Mining for Interactive Knowledge Refinement

The refinement of knowledge systems is a crucial success factor for the implementation
and maintenance of systems deployed into real-world applications. When the knowledge
base is built manually, then typically refinements are necessary throughout the initial de-
ployment phase. Sometimes, the developed knowledge base is still incomplete. In con-
sequence, extensions and not only modifications of the knowledge have to be applied in
order to improve the reliability of the system.

Motivation for Semi-Automatic Knowledge Refinement

In the past, various approaches for knowledge refinement were proposed, e.g. [55]. More
recently, Knauf et al. [86] presented a refinement approach embedded in a complete valida-
tion methodology. Carbonara and Sleeman [30] describe an efficient method for selecting
effective refinements, and Boswell and Craw [24] introduce a set of general refinement
operators that are applicable in various application domains and that can be used within
different problem-solving tasks. All these approaches are classified as automatic refine-
ment techniques modifying rule based knowledge. The modifications are motivated by a
previous analysis step performing a blame allocation, i.e., identifying faulty knowledge.
Then, alternative strategies are applied in order to automatically generate possible adapta-
tions, and to select suitable refinements of the knowledge base. However, such methods
make two important assumptions that do not necessarily hold in a real-world setting.
The first assumption states that the considered knowledge base is mainly correct and only
requires minor modifications in the refinement step, i.e., the tweak assumption [30]. This
assumption does not hold, if the development of the knowledge base is in an earlier stage,
and if corrections or extensions are still necessary. In our application scenario described
in Section 9.2 the validity of the knowledge base was quite poor (about 86% accuracy)
and therefore no tweak assumption could be made. In contrast, we expected that important
rules were missing and that we have to acquire additional knowledge during the process.
For this reason, we decided to choose a mixed refinement/elicitation process, which em-
phasizes the interactive analysis and modification of the implemented rules based on found
subgroup patterns. Similarly, Carbonara and Sleeman [30] use an inductive approach for
generating new rules using the available cases. Diamantidis and Giakoumakis [38] de-
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scribe a framework for refinement by inductively creating a new knowledge base using
incorrectly solved cases annotated with justifying explicit explanations by experts. Also,
Kelbassa and Knauf [75] describe an approach supplementing formal methods with do-
main knowledge. Furthermore, Morik et al. [111,113] describe a knowledge-based system
(MOBAL) with learning and revision capabilities, e.g., for validation of knowledge against
actual patient data. In the system, the input of a domain specialist is integrated in the
validation and refinement process.
As the second assumption a collection of correctly solved test cases is expected which are
used for identifying faulty elements in the knowledge base for later refinement. Unfortu-
nately, this assumption is not valid in our setting since the available cases were manually
entered. Although the user is guided by an adaptive dialog during the case acquisition
phase, and consistency checks are applied, we frequently experienced falsely entered at-
tribute values (findings) in our case study. Thus, we cannot expect that all cases contain
the correct solution, and thus a thorough analysis of the cases within the process was also
necessary. In contrast, automatic approaches mainly do assume a correct case base.

A Subgroup-Driven Approach for Interactive Knowledge Refinement

In the next sections, we present a novel approach for the user-guided refinement of know-
ledge bases. The proposed method supports the user to perform the correct refinements in
an interactive process. Subgroup mining methods are used to discover local patterns that
describe factors potentially causing incorrect behavior of the knowledge system. It is im-
portant that no global refinement model of the knowledge base is generated but refinement
operators are proposed based on a local model. The proposed method keeps the domain
specialist/user in control of all steps of the refinement process. Furthermore, the user is
supported by visualization techniques to easily interpret the (intermediate) results.
This is especially important if the formalized knowledge is still incomplete, i.e., no tweak
assumption for the underlying knowledge base can be made. In such circumstances, ex-
tensions and not only modifications of the knowledge base are necessary. Furthermore, if
manually acquired case bases are used to refine knowledge systems, then the applied case
base may contain incorrectly solved cases, e.g., due to incorrectly entered attribute values
or diagnoses (solutions). Additionally, it is possible that automatic methods overfit the
learned (refinement) knowledge by over-generalization or over-specialization. This prob-
lem is increased by the presence of incorrectly solved cases. Then, automatic refinements
may not be acceptable for the user. We describe the process model and the approach in the
next subsections. For a case study of this approach, we refer to Section 9.2.

6.2.2 Subgroup Mining for the Refinement Task

In order to utilize subgroup mining for knowledge refinement, a special boolean target
variable measuring the classification error is constructed: Given a specific concept, e.g.,
a diagnosis, the variable measures if a diagnosis is established correctly by a diagnostic
system. Thus, we compare two attributes, i.e., a user diagnosis and a system diagnosis
using a derived boolean target variable. Considering this target variable, we can then
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extract factors which contribute to incorrectly (not) establishing the system diagnosis.
We assume that a diagnosis (solution) d ∈ ΩD is derived by (heuristic) rules. A rule r for
the diagnosis d can be considered as a triple

(
cond(r), conf(r), d

)
, where cond(r) is the

rule condition, conf(r) is the confirmation strength. A rule of the form

r = cond(r)
conf(r)→ d,

is used to derive the diagnosis d, where the rule condition cond(r) contains conjunctions
and/or disjunctions of (negated) attribute values vi ∈ VA. The state of a diagnosis is
gradually inferred by adding the confirmation strengths (points) of all the rules that have
fired; if the sum is greater than a specific threshold value, then the diagnosis is assumed to
be established.
We consider a binary target variable that is true for incorrectly solved cases. Then, we
try to identify subgroups with a high share of this ’error’ target variable. However, we
need to distinguish different error analysis states relating to the measures false positives
FP d(CB), false negatives FNd(CB), and the total error ERRd(CB):

FP d(CB) =
∣∣{c | CDc 6= ∅ ∧ d ∈ SDc ∧ d /∈ CDc}

∣∣ ,

FNd(CB) =
∣∣{c | CDc 6= ∅ ∧ d /∈ SDc ∧ d ∈ CDc}

∣∣ ,

ERRd(CB) =
∣∣{c | CDc 6= ∅ ∧ SDc 6= CDc}

∣∣ ,

where CDc are the correct diagnoses of the case c as determined by a domain specialist,
and SDc are the diagnoses derived by the system.
It is easy to see that we want to minimize the measures for the (general) refinement task,
while we want to maximize the measures for the discovered subgroups in order to identify
significantly erroneous and thus interesting subgroups. These are then used as candidates
for refinement: After subgroup interpretation and evaluation a set of subgroup factors is
extracted in order to support the interactive refinement task.
To identify the ’potential faulty factors’ PFF , which are indicators for refinement, we
consider the subgroup descriptions of the discovered subgroups containing a high share of
falsely solved cases. Then, there are two options: 1) The interesting factors are always
the principal factors describing the subgroup, i.e., the attribute values contained in the
subgroup description; 2) additionally, also the supporting factors of the subgroup can be
faulty factors, since their distribution differs significantly considering the incorrectly and
correctly solved cases. Then, the potential faulty factors PFF are defined as follows:

PFF = { f | f is principal or supporting factor }.

For the refinement task we also apply static test knowledge, i.e., immutable validation
constraints, in order to detect inconsistent behavior of the knowledge system. These con-
straints are provided by the domain specialist as subgroups for which a specific diagnosis
should always be derived. Using such subgroup pattern constraints, we can validate the
state of the knowledge base or the case base directly by assessing the distribution of the
diagnoses contained in these subgroups. After a refinement step has been performed, the
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test knowledge is always checked again, in order to exclude modifications which degrade
the performance of the system. Examples for the application of static test knowledge are
given in the case study in Section 9.2.

6.2.3 The Subgroup-Driven Interactive Refinement Process

For the interactive refinement process we apply the subgroup mining method to discover
local patterns describing a set of cases with a high share of incorrectly solved cases. Con-
sidering the subgroup descriptions, a set of factors is extracted which is potentially used
for the refinement steps. In summary, the incremental process for interactive knowledge
refinement mainly comprises seven steps that are depicted in Figure 6.17.

1. We select a diagnosis d ∈ ΩD and an analysis state e ∈ {FPd, FNd, ERRd}.
2. A set of subgroups Se is mined, either interactively by the domain specialist, or

automatically by the system. Then, for each subgroup si ∈ Se a set of potential
faulty factors PFF i contained in si is retrieved.

3. The subgroup descriptions and factors PFF i are interpreted by the user.

4. If needed, subgroup introspection methods are applied in order to support the inter-
pretation of PFF i.

5. Based on the analysis of the potential faulty factors guilty (faulty) elements in the
knowledge base or the case base are identified. This is a user guided step (see be-
low): If a set of potential faulty factors is meaningful in the given context, then a
knowledge base refinement is proposed. Otherwise, the set might indicate incor-
rect case descriptions. After appropriate modification steps have been applied, the
solutions of each case in the case base are recomputed.

6. The (changed) state of the system is assessed by checking the analysis measure e
for improvements; similarly the immutable validation constraints, if available, are
tested whether they still indicate a valid state.

7. If necessary, restart the process.

Refinement operators can either modify the knowledge base or change the applied case
base. The knowledge base is usually adapted to fit the available and correct cases. Alter-
natively, the case base is adapted, if particular cases are either wrong, or they denote an
extraordinary, exceptional state, which should not be modeled in the knowledge base.
For the application of the different refinement operators, which are applied after subgroup
interpretation and evaluation, we need to distinguish two cases: If the user decides that
the subgroup descriptions are valid and reasonable, then probably the knowledge base
needs to be corrected, i.e., modifications or extensions of the knowledge are necessary.
Otherwise, if the subgroup descriptions, i.e., the combination of factors are not meaningful,
then this can imply that the contained cases need corrections. However, these ’doubtful’
subgroups could also be caused by random correlations in the case base. In this case, the
user needs to manually assess the subgroups and cases in detail. We provide examples for
such exceptional situations in the case study discussed in Section 9.2.
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Figure 6.17: Process Model: Subgroup mining for interactive knowledge refinement.

In summary, we propose the following set of refinement operators:
• Adapt/modify rules: generalize or specialize conditions and/or actions. This action

is often appropriate if only one selector is contained in the subgroup, and if the
subgroup is assessed to be valid.

• Extend knowledge: add missing relations to the knowledge base. This operator is
often applicable when the subgroup description consists of more than one selector,
and if the dependencies between the selectors are meaningful.

• Fix case: correct the solution of a single case, or correct the attribute values (find-
ings) of a case, if the domain specialist concludes in a detailed case analysis that the
case has been labeled with the wrong solution.

• Exclude case: exclude a case completely from the analysis. If the behavior modeled
by the case cannot be explained by factors inherent in the knowledge base, e.g., by
external decisions, then this case should be removed.

Examples for the application of the refinement operators are given in the case study de-
scribed in Section 9.2.
If the user is not supported by visualization techniques, then an interactive refinement ap-
proach is typically not tractable, since the refinement space is usually (too) large. There-
fore, we can apply the visualizations presented in Section 6.1.1, especially the zoomtable
visualizations for obtaining an overview and assessing the discovered subgroups. More-
over, the subgroups can also be compared and evaluated using the visualizations described
in Section 6.1.2. For inspecting individual subgroups and cases, the exemplification tech-
nique described in Section 5.1.2 also turned out to be very helpful in the refinement setting.
The application of such techniques is also described in the case study in Section 9.2.
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6.3 Summary

In this chapter we have presented several visualization techniques for interactive and ex-
plorative subgroup mining. We introduced the zoomtable as the central visualization for
the active subgroup mining process, described the subgroup tuning table, and proposed the
subgroup workspace as the subgroup repository that is utilized for further post-processing
of a set of subgroups. Furthermore, we presented the stacked bar visualization for eval-
uation and comparison of subgroup quality parameters and proposed an overview and
clustering visualization for the comparison of selected subgroups. We described the in-
dividual techniques, presented typical application areas, and discussed related work. In
addition, we described the interactions of the proposed methods, and discussed how the
visualization approaches can be applied in the active subgroup mining process.
Furthermore, we presented a novel approach for interactive knowledge refinement that
utilizes the proposed visualization techniques as a central component. The refinement
approach uses subgroup mining methods to identify local factors describing hot spots for
knowledge adaptation and extension. In a semi-automatic approach the user can perform
the refinements and stay in full control of the refinement process which was very important
for the user as pointed out in the case study in Section 9.2.
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7 Knowledge-Intensive Active
Subgroup Mining with VIKAMINE

In this chapter, we present the VIKAMINE (Visual, Interactive and Knowledge-intensive
Analysis and Mining Environment) system and its components for knowledge-intensive
active subgroup mining. We first give an overview of the system before we provide
application-oriented views of the components and discuss these in detail. We explain how
VIKAMINE is applied in the proposed subgroup mining process described in Section 2.
We discuss how subgroup discovery can be performed, how background knowledge can
be included, and how subgroups can be introspected, analyzed, and compared using spe-
cialized visualizations and editors. Furthermore, we demonstrate how VIKAMINE can
be applied for interactive knowledge refinement as discussed in Section 6.2.

7.1 Overview

The system VIKAMINE is a rich client application implemented in Java. A JRE1 5 or
better is required for the application. Alternatively, a distribution of VIKAMINE con-
taining an appropriate JRE is available. The VIKAMINE system is an integrated environ-
ment and features editors and components for the automatic and interactive discovery of
subgroups, for subgroup introspection and analysis, for including and editing background
knowledge, and finally for visual inspection, analysis and comparison of subgroups. Tech-
nically, VIKAMINE is an environment that provides the facilities for subgroup mining
and can be extended by plugins for additional functionality.
The system itself is based on the VIKAMINE-Kernel that provides the basic functionality
for knowledge-intensive subgroup discovery, e.g.,
• the representation of the knowledge base and case base,

• the persistence management of mining sessions and mining results, and

• the algorithms for subgroup discovery, introspection and analysis.
As a convenient way to include and edit ontological domain knowledge in VIKAMINE,
we utilize the knowledge representation of the d3web system (described by Baumeister
in [18, Ch. 8]). Then, the d3web.KnowME-framework [18, Ch. 8.3] provided a suitable
basis for this functionality; it was extended as needed to apply it for the subgroup mining
task. For example, support for particular types of ontological background knowledge (that
are common in the d3web system) was enabled using the d3web.Kernel. In addition,
VIKAMINE integrates several editors of d3web.KnowME for some types of background

1Java Runtime Environment
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knowledge (c.f., Section 4) in order to apply new knowledge and to modify existing know-
ledge. d3web.KnowME has been developed at the Department of Computer Science VI
at the University of Würzburg. It is a Java-based reimplementation of the D3 [125, 128]
system as an environment for the development and application of knowledge systems.
Besides the editors concerning the acquisition of the presented types of knowledge, the
VIKAMINE system provides the other necessary functionality for the visual and active
mining paradigm, i.e., it implements the components supporting visualization, presenta-
tion and easy interaction capabilities. These are tightly coupled, and the VIKAMINE
environment facilitates the interaction between these in order to provide for a suitable sub-
group mining approach. So, each of the specialized components of VIKAMINE supports
parts of the proposed process, e.g., interactive subgroup mining, algorithms, visualization,
subgroup introspection and analysis.
The used case base can be stored in various formats, e.g., in the common ARFF2 or CSV3

formats. It can be imported, e.g., using the XML format of d3web, or by providing com-
mon ARFF and CSV files. The implemented knowledge base is stored in a zipped jar
file that includes all objects of the domain ontology, and the ontological knowledge. A
subgroup discovery session storing the information about the current subgroup discovery
context and its results can be exported to XML format. Alternatively, the knowledge base
file can also include session information and/or the data to facilitate easier reusability for
future sessions.
In this work, we want to introduce the most important aspects of the application
VIKAMINE for knowledge-intensive active subgroup mining in more detail. Further-
more, we will discuss how VIKAMINE can be applied for interactive knowledge refine-
ment. We show examples using the german credit database that was part of the Statlog
project. The dataset can be obtained from the UCI repository [115], and classifies instances
described by a set of attributes as good or bad for credit rating. For some examples, we
also use cases taken from the SONOCONSULT system (c.f., Section 9.1.2). For demonstrat-
ing the knowledge refinement approach we apply cases taken from the dental knowledge
system discussed in Section 9.2.1.

7.2 Using VIKAMINE for Subgroup Mining

The VIKAMINE tool can be applied for purely automatic, semi-automatic, and for in-
teractive subgroup mining. Concerning interactive subgroup discovery and analysis, an
intuitive tool is provided that enables simple navigation and easy interaction with respect
to the data and the space of subgroup hypotheses. For more automatic methods, the nav-
igation options become less important while the selection and definition capabilities are
essential: Since purely automatic methods cannot be guided directly by the user, appropri-
ate interestingness and quality criteria need to be specified. In addition, providing high-
quality background knowledge for constraining the search space and for controlling the
search process is often an important prerequisite.

2Attribute-Relation File Format, e.g., used in the WEKA [173] toolkit
3Comma Separated Values
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Figure 7.1 shows a screenshot of the main user-interface of VIKAMINE. In general, the
user interface is split into two main panes: The navigation and selection pane is shown
on the left and includes the attribute navigator (Annotation I) and the population panel
(Annotation II) defining the used instance population on the left. On the right, the interac-
tion pane is shown that includes the zoomtable (Annotation III), the current subgroup view
(Annotation V) and the subgroup statistics panes (Annotation IV).

I

II

III

IV
V

Figure 7.1: VIKAMINE: Main user interface.

In the following, we will first discuss the interactive approach and the respective automatic
methods. Then, we discuss how background knowledge can be integrated. After that, we
show how the subgroups can inspected, analyzed and compared in order to apply subgroup
selection and redundancy management of a set of subgroups. Finally, we describe how the
results and settings are stored, e.g., as a template for further analysis.

7.2.1 Interactive Subgroup Discovery

After the subgroup discovery task and its context have been set up using the navigation and
the selection pane, subgroup discovery can be performed interactively using the interaction
pane for the exploration and interactive examination of hypotheses.

Navigation and Selection Pane

The attribute navigator includes a tree structure containing the domain ontology, i.e., the
attributes and diagnoses, i.e., classes of the current data set (Annotation I). Furthermore,
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the population (Annotation II) can be defined in the population pane below the attribute
navigator in order to restrict the instance population. Next, the relevant attributes need
to be selected in the attribute navigator and are transferred to the zoomtable (Annotation
III). Then, these attributes are marked as active for discovery and analysis. Also, also the
population should be selected as needed.

Interaction Pane

The interaction pane includes the zoomtable view (Annotation III in Figure 7.1), c.f., Sec-
tion 6.1.1, in addition to various views that display statistical information (Annotation IV)
above the main zoomtable, and the current subgroup view (Annotation V). The main com-
ponent and starting point for semi-automatic subgroup mining is given by the zoomtable,
as described in Section 6.1.1. After the attributes have been added to the zoomtable they
are available for subgroup discovery and the current subgroup view can be (interactively)
modified. Usually the user is supported by the visualization of the distribution of the vari-
ables and by the visual markers contained in the zoomtable. Then, the specific selectors of
the current subgroup can be selected in the zoomtable directly. Alternatively, the current
subgroup can be modified using the elements of the navigation tree. However, then there is
no visual feedback concerning the variables that are not contained in the zoomtable. This
general workflow is summarized in Figure 7.2.

Define/

Modify

Define/Modify/Tune/Test

Select/Restrict

Select

Figure 7.2: VIKAMINE: Interactions for performing interactive subgroup discovery.
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Subgroup Tuning Table

A visualization that is orthogonal to the mechanisms provided in the interaction pane, i.e.,
the zoomtable and the current subgroup view, is provided by the subgroup tuning table
(c.f., Section 6.1.1). Similar to the zoomtable, attributes can be transfered from the nav-
igation tree to the subgroup tuning table. Then, a purely interactive subgroup discovery
session is possible, using a restricted search space. Only selectors corresponding to at-
tributes included in the tuning table can be examined with respect to the target variable:
a subgroup is shown in the rows of the table, and the selectors making up the subgroup
description correspond to the marked columns. Figure 7.3 shows an exemplary screenshot.
In this visualization single factors can be evaluated very easily. Furthermore disjunctive
subgroup descriptions can also generated in a very simple way.

Figure 7.3: VIKAMINE: The subgroup tuning table.

The tuning table displays the usual subgroup parameters, the relative gain of the sub-
groups, and their quality, and can be sorted according to these criteria. In the example,
the subgroups have been sorted according to the subgroup quality. The lower pane shows
the abbreviated attribute and value descriptions that correspond to the columns of the tun-
ing table. After interesting subgroup hypotheses have been identified, these can also be
included in the subgroup workspace by a drag-and-drop operation.
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7.2.2 Performing Automatic Subgroup Discovery

For automatic subgroup discovery VIKAMINE supports the algorithms presented in Sec-
tion 3.4, i.e., beam search, PRIM, Weighted PRIM, Apriori-SD and the SD-Map method.
After the subgroup discovery context has been defined by selecting the relevant attributes
and values, e.g., by including background knowledge and additional constraints, the auto-
matic subgroup discovery step can be started as shown in Figure 7.4.
The discovery process can be launched by the user either selecting a purely automatic
discovery option, or a mode that is similar to a debugger for conventional programming
languages. Then, the discovery process can be interrupted at any time by the user in order
to inspect and/or change the current state of the search task. Thereafter, the search process
can be continued. This provides for a ’supervised’ automatic subgroup mining step that
is more transparent for the user since the intermediate results of the search process can be
inspected. Additionally, a comprehensive subgroup search can be performed such that each
possible (binary) target variable is considered that can be constructed given the settings of
the zoomtable. Such a subgroup discovery task can be used for initial exploration of the
hypothesis space. However, then the inclusion of background knowledge is usually an
essential requirement, in order to constrain the search space.

I

II

Figure 7.4: VIKAMINE: Automatic subgroup discovery.
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Automatic subgroup discovery is configured in the subgroup settings dialog, in the
zoomtable, and in the current subgroup view. There are several options that can be config-
ured in the SettingsDialog (Annotation I) shown in Figure 7.4. These are mainly language
constraints, e.g., specifying the maximum length of the subgroup description, and the min-
imum subgroup quality. Additionally, a quality function needs to be selected that can also
be defined manually using a formula-editor to include the quality parameters.
Additionally, both the current subgroup view and the zoomtable state affect the automatic
discovery method. The currently active subgroup, i.e., the one that is contained in the
current subgroup view is used as the initial hypothesis for subgroup search. Furthermore,
only the variables that are enabled in the zoomtable are considered for automatic subgroup
discovery, i.e., the attributes for which the checkbox to the right of the attribute column
is selected. Further constraint knowledge can be provided to the system as discussed in
Section 7.2.5, e.g., using the context menus of the attributes contained in the zoomtable.
Then, the discovery process can be started.
The result applying the automatic subgroup discovery is a set of subgroups that is shown
in a tree-table view (Annotation II) in Figure 7.4. A detailed view is given in Figure 7.5.
This subgroup results table is a specialized version of the subgroup workspace, c.f., Sec-
tion 6.1.1, that is used just for displaying the results of a discovery run. Thus, it can be
considered as a temporary subgroup workspace. The interesting subgroups can be ana-
lyzed and can also be transferred to the global subgroup workspace. Furthermore, the
’local workspace’ features the same functionality as the global one, i.e., all subgroups can
also be inspected, analyzed and compared as discussed in the next sections. Then, the
interesting subgroups can be preselected in order to add only these to the global subgroup
workspace for later reference.

Figure 7.5: VIKAMINE: Results of subgroup discovery.
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7.2.3 Comparing Subgroups

The discovered subgroups can be inspected, evaluated and compared using the visualiza-
tions that we presented in Section 6.1.2. As described in Section 6.1.3 all these visual-
izations can be displayed on demand by the user given a set of subgroups contained in a
subgroup workspace. Figure 7.6 shows exemplary screenshot (from left to right) of the
circle, the box, the stacked bar visualizations, and the specialization graph.

Figure 7.6: VIKAMINE: Comparing subgroups in the circle, the box, the stacked bar, and
the specialization graph.

Figure 7.7 shows the overlap and clustering visualizations for comparing subgroup re-
lations, i.e., their similarity according to the subgroup extension as discussed in Sec-
tion 6.1.2. We refer to Chapter 6 for a detailed description of the visualizations shown
in Figure 7.7 and Figure 7.6.

Figure 7.7: VIKAMINE: Viewing subgroup overlap and clustering.
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7.2.4 Performing Causal Analysis

As discussed in Section 3.3.3 causal analysis can be applied for a set of subgroups. Then,
a subset of subgroups can be identified that are causally related to the target group. Causal
analysis can be performed by selecting a set of subgroups in a subgroup workspace, e.g.,
in a discovered set of subgroups, or in the global subgroup workspace. As described
theoretically in Section 3.3.3 a user-specified similarity threshold is applied during the
construction of the causal subgroup net in order to filter sets of similar subgroups.
For applying this visualization, we distinguish two options: The user can inspect a set
of subgroups consisting of similar/overlapping subgroups or a set of subgroups that is
rather independent. If a set of overlapping subgroups is selected for analysis, then the
visualization can be used in order to discriminate between the subgroups that are causal
for the target group and the subgroups that are similar to the dependent subgroups; these
are then connected to their most similar subgroups. In this case, the main purpose is to
reduce a set of similar subgroups in order to discover the most significant subgroups that
are causally related to the target group, and to identify the (conditionally independent)
subgroups that are only similar to the dependent ones. As an extension, also clusters of
subgroups could be analyzed with respect to suppressing other subgroups.
Alternatively, given a set of rather diverse (non-overlapping) subgroups, the visualization
can be used to distinguish subgroups that are causal for the target group, or (conditionally)
independent from the target group given the other subgroups. Then, the visualization is
applied in order to obtain this split of dependent and independent subgroups.
Figure 7.8 shows an example for the first analysis option, for the target group class=bad.
Then, two of the three subgroups contained in the visualization are causal for the target
concept, where the thickness of the edges shows the strength of the causal relation.

Figure 7.8: VIKAMINE: Causal analysis with an approximately equal subgroup.
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In the figure, the subgroup described by checking status=0 AND job=skilled AND other
parties=none AND foreign worker=yes is independent of the target group given the other
subgroups. It is a specialization of the causal subgroup checking status=0 AND job=skilled
AND foreign worker=yes that is almost equal to the parent subgroup but not to the more
general subgroup checking status=0 AND foreign worker=yes, using a similarity threshold
of 80%. In this case, the larger subgroup suppresses the smaller one, and their similarity
is indicated by an undirected thin edge. The overlap of the subgroups, comparing the
intersection and union of their instances, is shown in Figure 7.9 in row two and three.

Figure 7.9: VIKAMINE: Overlap of the causal subgroups and the non-causal subgroups.

Concerning the second analysis option, Figure 7.10 shows a set of subgroups where three
of the four subgroups are causal for the target group. The independent subgroup is not
approximately equal to any of the other subgroups. Thus, it is displayed separately and not
connected to the target group, nor to any other subgroup.

Figure 7.10: VIKAMINE: Performing causal analysis of subgroups.
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7.2.5 Including Background Knowledge

In the following, we show how background knowledge can be defined for being used
during the subgroup mining process as discussed in Chapter 4. First, we show how the
simplest class of knowledge, i.e., constraint knowledge can be provided. After that, we
discuss how the user can define ontological knowledge that is often known from exist-
ing knowledge systems. Then, we show how abstraction knowledge can be conveniently
defined and applied for subgroup mining using VIKAMINE.

Including Constraint Knowledge

Constraint knowledge (c.f., Section 4.2.1) can be provided for each object of the domain
ontology. Figure 7.11 shows constraint knowledge for the attributes in the zoomtable that
is enabled by a simple context menu and provides the boolean constraints for an attribute.
For example, attributes can be marked as ordinal, or the priority of the attribute can be
defined. Using the context menu, the respective types of knowledge can be defined by
one-click for specific attributes.
In the figure the value groups dialog is shown that can be used in order to define grouped
values for an attribute. Additionally, the figure shows the settings dialog which contains an
option to define global abnormality groups corresponding to aggregated value constraints.
Furthermore, normal or abnormal values can be excluded globally in order to restrict and
focus the discovery process, and language constraints, i.e., syntactical and quality con-
straints can be defined as well.

Figure 7.11: VIKAMINE: Defining/Editing constraint background knowledge
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7.2.6 Including Ontological Knowledge

Ontological knowledge (c.f., Section 4.2.2) can be conveniently provided using the on-
tological property editor of the d3web.KnowME system that has been integrated in the
VIKAMINE system. Figure 7.12 shows the property editor that displays and modifies the
ontological knowledge of the objects of the domain ontology. Then, e.g., the name of the
object, the value range, the weight of an attribute, and similarities between attribute values
can be defined. The figure shows the definition of abnormality information for the values
of the attribute checking status.

Figure 7.12: VIKAMINE: Entering ontological background knowledge.

7.2.7 Including Abstraction Knowledge

Abstraction knowledge plays an important role for knowledge-intensive subgroup mining.
As discussed in Section 4.2.3, abstraction knowledge given by derived attributes can be
provided and modified incrementally during the process. Figure 7.13 shows the attribute
editor of VIKAMINE that is used to define new derived attributes and to edit the attribute
definitions.
This example depicts the nominal derived attribute age groups (Annotation I) that is in-
ferred given the numeric attribute age. A more complex example is given in Annotation
II that displays the definition of the attribute age group/domestic workers and derives its
values using two attributes. As shown in the figure, the domain of an attribute is defined
using formula expressions for each value. A formula can include boolean and algebraic
operators in order to derive the specific attribute value. For numeric attributes usually the
algebraic operators are used whereas the boolean operators are used to define the final
value for a nominal attribute. The formula expressions can be given as free text and are
parsed to provide for a simple and transparent approach for the user. Formulas can also be
conveniently created using drag-and-drop operations, e.g., by dragging a value contained
in the zoomtable into the editor.
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III

Figure 7.13: VIKAMINE: Defining abstraction background knowledge.

7.2.8 Referencing Subgroup Background Knowledge

Using the component shown in Figure 7.14 discovered subgroups can be stored as sub-
group background knowledge. The subgroups are annotated with the name of the discov-
erer, the data, and the subgroup parameters. If a different data set, e.g., an updated data
set is used subsequently, then changes in the subgroup parameters can be observed. The
difference in the distributions of the subgroup parameters is shown in the column Compar-
ison and is color coded, such that green signifies no difference, and yellow and red indicate
larger differences in ascending order. The differences are computed using a χ2-test for in-
dependence, providing two significance levels (0.1, 0.05) in order to identify significant
deviations.
Similar to the subgroup knowledge pane discussed above, specific subgroups can also
be compared to the existing subgroup knowledge individually in order to identify over-
lapping subgroups, i.e., to locate subgroups that belong to the same cluster, as shown in
Figure 7.15.
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Figure 7.14: VIKAMINE: Applying subgroup background knowledge.

Figure 7.15: VIKAMINE: subgroup background knowledge comparison.

7.2.9 Storing Results and Settings for Subgroup Mining

The user settings for configuring the zoomtable and the population, the background know-
ledge that was defined for the subgroup mining task, and the mining results including the
subgroup background knowledge can be conveniently stored in a subgroup mining session.
This provides for a transparent mechanism in order to reuse the existing sessions.
The discovery session is stored in a session file that uses a human-readable representation
in XML format. Additionally, the mining results can also be conveniently exported to
Microsoft R© Excel, e.g., with respect to subgroups contained in the subgroup workspace
or in the subgroup tuning table.

7.2.10 Subgroup Introspection

For subgroup introspection (c.f., Section 5.1), let us consider the subgroup check-
ing status=<0 AND foreign worker=yes for the target variable (credit) class=bad. Then,
we can identify supporting factors that are characteristic for the subgroup as described in
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Section 5.1.1, in addition to the principal factors describing the subgroup. Furthermore,
we can obtain exemplary cases for either typical or extreme subgroup cases as discussed
in Section 5.1.2. We will demonstrate these options in the following.

Introspective Analysis of Characteristic Subgroup Factors

Figure 7.16 shows the ranked characteristic factors of the subgroup. The visualization
contains a table for the principal and for the supporting factors, one factor in each row.
These are also ranked using confirmation categories, i.e., (+, ++, +++) in ascending order.
Next to the categories the distributions of the factor considering the positive cases of the
subgroup and all the negative cases are shown.
It is easy to see that further (strong) indicators for a bad credit rating are given by saving
status≤100 or purpose=new car that obtained quite high confirmation categories, i.e., ++
and +++, respectively.

Figure 7.16: VIKAMINE: Subgroup introspection by characteristic factors. The first row
of the supporting factors shows the factor credit history=existing paid with a
low score (+) and the distribution of the factor in the true positive cases of the
subgroup (16 vs. 117) and all the negatives (21 vs. 679).

Applying Subgroup Exemplification

Besides listing the ranked characteristic factors of a subgroup, subgroup introspection can
also be performed by providing exemplary cases. Then, either typical cases, i.e., cases that
are most similar to a virtual case provided by the subgroup factors, or extreme cases that
are most diverse to the virtual case can be retrieved, as discussed in Section 5.1.2.
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Figure 7.17 shows two panes for the mentioned tasks. The subgroup factors are given in
the left pane, and the cases that were retrieved are shown in the right pane, with an assigned
similarity to the ’virtual subgroup case’. After these cases have been retrieved, they can be
easily inspected and modified in the case editor as discussed in the next section.

Case Viewer/ Editor

Figure 7.17: VIKAMINE: Subgroup introspection by exemplification.

The Case Viewer/Editor

For a detailed view of a case we can use the case management editor that was initially
part of d3web.KnowME, but was modified, extended and integrated in the VIKAMINE
system. The case editor/viewer is shown in Figure 7.18 and facilitates the inspection and
modification of cases. Although this component was originally developed for the im-
plementation of case-based tutoring systems (as part of the d3web framework), it is also
appropriate for the visual inspection of cases, e.g., for subgroup introspection.
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Figure 7.18: VIKAMINE: The case editor.

The main pane of the case editor shows the properties of a specific case. For a detailed
description of the case the editor provides the Metadata tab, that, e.g., contains fields
defining the name, the author, the creation date, and a verbose comment concerning the
case. The Overview tab, shown in Figure 7.18, enables the user to actually define and
inspect the observed attribute values and the diagnoses (solutions) of the case. We do not
consider the tabs Introduction and Endcomment, since these are only used in the context
of developing tutoring systems.

7.2.11 Performing Confounding Analysis

Suitable visualization methods are essential for the semi-automatic analysis of confound-
ing factors (c.f., Section 5.2) considering a given subgroup. Figure 7.19 shows the basic
setting of the analysis of confounding factors. In this example, in the domain of sonogra-
phy, the subgroup fatty liver=probable (SI-Fettleber, sonographisch=wahrscheinlich) with
respect to the target variable gall-stones (SI-Cholezystolithiasis, sonographisch=liegt vor)
is analyzed. Common confounding factors in the medical domain include the patients’
age, sex, and body-mass index (BMI). Thus, these factors were marked as potential con-
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founders. In the figure, the factors age (SI-Altersgruppen) and BMI (SI-BMI-Bewertung)
are then indicated as potential confounders and are marked in red color, as shown in the
lower pane. In general, the strength of these is color-coded using yellow, orange, and
red color for the strongest suspected confounders. Then, the stratification method (c.f.,
Section 5.2.3) can be applied for the individual factors as shown in Figure 7.20 and Fig-
ure 7.21, respectively.

Figure 7.19: VIKAMINE: Performing confounding analysis.

The top of the figures shows a graph displaying the positive predictive value (p), i.e., the
target share or the precision, of the target variable of the subgroup and the target share con-
sidering the total population in the different strata determined by the stratification variable.
A detailed view of the stratification is given by the numbers contained in the table at the
bottom of the figures. There, the stratification parameters are given that also contain the
positive predictive value, the quality of the subgroup, the relative gain, and the odds ratio
(or = tp·tn

fp·fn
). The odds ratio combines the predictive parameters of the subgroup, i.e., the

true/false positives and the true/false negatives, c.f., Section 6.1.4, and is a common mea-
sure used in epidemiology. It measures the effect of the subgroup variables on the target.
In addition to the positive predictive value this parameter can also be used to compare the
individual strata. The stratification plot gives an impression of the relations restricted to
the individual strata and can be used to identify confounding or effect modification. Then,
a detailed analysis can be performed by the user considering the statistical parameters.
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Figure 7.20: Example: Fatty liver vs.
Gall-Stones stratified by
age.

Figure 7.21: Example: Fatty liver vs. Gall-
Stones stratified by BMI.

7.3 Connecting the Components and Views of
VIKAMINE

Figure 7.22 shows most of the interaction options with respect to the components and
views that are provided by the VIKAMINE system. The individual components have been
discussed in detail in the previous sections. The figure stresses the interactions that are
possible considering the specific components. It includes all the visualizations and editors
that are applied for interactive subgroup mining, subgroup introspection and analysis and
for including background knowledge.
For an abstract view on the visualization techniques for interactive subgroup mining we
refer to Figure 6.16 in Section 6.1.3. As also depicted in this visualization, the zoomtable
and the subgroup tuning table are the main starting points for the user interactions. Further-
more, the attribute navigator plays a special role since it is used to define many elements
of the settings of the subgroup discovery session. Then, most of the user interactions
concerning sets of subgroups can be started by the subgroup workspace, but also by the
current subgroup pane. The subgroup workspace often acts as an intermediate component
for initiating actions. These can then be applied after several subgroups have been selected
and stored in the workspace.
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Attribute Navigator

Population Zoomtable

Current Subgroup

Subgroup Tuning Table

Subgroup Analysis
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Subgroup Background Knowledge

Subgroup
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Figure 7.22: VIKAMINE: Components and possible user interactions.
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7.4 Using VIKAMINE for Knowledge Refinement

Besides the general subgroup mining task described in the previous section, VIKAMINE
can also be applied for a quite specialized interactive subgroup mining approach, i.e., for
interactive knowledge refinement (c.f., Section 6.2). Then, all the components presented
in the previous sections can be applied. However, for the knowledge refinement approach
additional functionality is required. For this purpose, we embed and utilize a component
of the d3web.KnowME framework. We first discuss an overview visualization that can be
applied in order to obtain a first impression of the erroneous diagnosis distribution of the
case base. After that, we present the editor for applying the individual refinements.

Error Analysis Pane The error analysis pane shown in Figure 7.23 shows an example
taken from the case study described in Section 9.2, in the domain on dental medicine. We
focus on improving a diagnosis EX that indicates tooth extraction. In the rows of the table
of the error analysis pane, the general error state of the system concerning all diagnoses
(All), and for the given diagnoses EX with respect to the total population is shown. In
the figure the first two rows are identical by chance since we only considered a single
diagnoses (EX). If more than one diagnosis is considered, then the first row is usually not
identical to the further rows displaying the state of the other diagnoses. Furthermore, the
state considering individual subgroups is displayed in further rows of the table. Then, the
user can inspect, compare and test these subgroup hypotheses interactively.

Figure 7.23: VIKAMINE: Error Analysis Pane.

The Rule Editor For the interactive knowledge refinement approach, either the know-
ledge base is adapted, or the cases can be modified. We have described how to edit and
modify case knowledge in Section 7.2.10 using the case viewer/editor. For modifying the
knowledge base the rule editor is applied. For a selected object of the knowledge base,
i.e., Lockerungsgrad (tooth lax) in our example, all the matching rules that the objects
contributes to are shown in the top-right pane of the pane. The rules that are shown in the
top-left pane are concerned with the derivation of the selected object.
If a rule in one of the top panes is selected, then the rule is presented in the center pane in
detail: The rule can be modified, deleted, or duplicated in order to rapidly enter multiple
similar rules. Rule conditions and actions can be visually modified using context menus
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Figure 7.24: VIKAMINE: Using the rule editor for error analysis.

or applying the options in the bottom pane, respectively. Then, the modifications of the
rule can be applied. After the solutions of the case base have been recomputed using the
modified knowledge base, the changed state of the system can be assessed using the error
analysis pane in an incremental fashion.

7.5 Summary

In this chapter, we have given an overview of the VIKAMINE system that implements
the proposed knowledge-intensive active subgroup mining approach. We have shown that
VIKAMINE offers various components, i.e., visualizations and editors for this task. The
components are used for general subgroup mining, and they further provide the functional-
ity required for embedding and modifying background knowledge, for subgroup introspec-
tion and analysis, and for visual exploration and comparison of the discovered subgroups.



8 Experimental Evaluation

In this chapter we provide a practical experimental evaluation of the subgroup discovery
methods described in Section 3.4, i.e., beam search, PRIM, Weighted PRIM, Apriori-SD,
and SD-Map. More specifically, we compare the proposed novel SD-Map algorithm to the
other (standard) algorithms concerning its efficiency, and its effectiveness. For a qualita-
tive evaluation of the subgroup mining process, we refer to Chapter 9: There, we describe
five case studies that demonstrate the application and benefit of the proposed subgroup
mining approach. In the evaluation we focus on the application of subgroup mining for
descriptive induction. Therefore, in contrast to other evaluations we do not focus on a
predictive setting, for which usually the accuracy of a subgroup discovery method is mea-
sured. The evaluation and analysis of subgroup discovery methods for predictive tasks has
been described, e.g., by Lavrac et al. [93] and Kavsek et al. [73].
Since our context is subgroup mining for descriptive induction, we consider the quality
of the discovered results and the scalability of the particular methods. In the evaluation
we apply synthetic data. Using a novel data generator, we specify the data characteris-
tics for data generation in advance and then generate according data sets with different
sizes. This enables a reliable comparison of the subgroup discovery algorithms in order
to estimate their efficiency and scalability. For measuring the effectiveness of a subgroup
discovery method, we check specific high-quality patterns that are usually difficult to lo-
cate by heuristic methods. Additionally, we also applied the synthetic data sets used in
evaluating the efficiency for an empirical comparison.
In the next section we first describe the proposed novel approach for generating synthetic
data for the evaluation of data mining methods. We then discuss the characteristics of the
applied subgroup discovery methods. After that, we describe the setting of the evaluation,
the generated data sets, and finally present and discuss the results of the evaluation.

8.1 A Data Generator for the Evaluation of Data
Mining Methods

As discussed in Section 1.3.2, the evaluation of data mining methods is a general research
problem: usually the quantitative and qualitative review of a method and its comparison
with related methods is of scientific and practical interest.
We see a general problem when one wants to properly evaluate a learning method, be-
cause a priori often no data base with appropriate samples is available. At best, a data base
embodies a sufficiently large collection of data sets with varying sizes but the same de-
scribing characteristics at different complexity levels. Such a setting allows for a complete
and representative evaluation of the method and the comparison to other techniques.
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In this section we present a novel approach to generate data sets for the evaluation and
comparison of data mining methods. The approach allows for the precise definition of the
characteristics of the data set and its size: The characteristics of the data can be intuitively
specified using subgroup descriptions, and are later refined using fragments of Bayesian
networks. Based on these descriptions a final Bayesian network is generated. Then, a
collection of data sets with varying size can be created according to the given semantics.
In the following, we give an overview of the process model for data generation in Sec-
tion 8.1.1. Then, the modeling and data generation steps are described in detail in Sec-
tion 8.1.2. After that, we discuss related work.

8.1.1 Overview – Process Model for Generating Data

In this section, we first give an informal introduction to Bayesian networks that are used
in the modeling and generation steps. After that, we present the process model for data
generation which is discussed in more detail in the next sections.

Bayesian Networks

A Bayesian network consists of a set of attributes and a set of directed edges connecting
the attributes (c.f., [69]). For each attribute a the range dom(a) has to contain a finite
set of distinct values. A directed acyclic graph is defined by the attributes and the set of
edges inducing dependency relations between pairs of attributes. For each attribute a and
its parents pa(a) (induced by the edges) a conditional probability table (CPT) is attached.
For an attribute with no parents an unconditioned prior probability is used.

Process Model

In the following, we define the incremental process model for generating data. We apply
the data generation model given by a Bayesian network as the underlying knowledge rep-
resentation: Using the network, we are able to express the dependency relations between
the individual attributes capturing the specific data characteristics. Then, we can generate
the output data quite easily, e.g., by applying sampling algorithms.
The difficult part is the construction of the Bayesian network itself which is usually non-
trivial: The basic elements of the network, i.e., the nodes with the attached conditional
probability tables are easy to model at the local (node) level. In contrast, entering all the
conditional probabilities is often a difficult problem, e.g., if relations between nodes need
to be considered that are not directly connected.
Therefore, we aim to help the user in an incremental process, where the data character-
istics can be described from abstract to more specific ones. Parts of the data generation
model can be described using subgroup patterns which are structurally mapped to the de-
fined Bayesian network in turn. Then, these patterns (or constraints) can be checked on
the model, and inconsistencies of the model can be identified. Alternatively, the Bayesian
network can be defined or modified directly with an interactive adaptation step using the
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given (subgroup pattern) constraints as test knowledge The process consists of the follow-
ing steps shown in Figure 8.1.

1. Define domain ontology: In the process we first define the domain ontology, i.e.,
the set of attributes and values used for the data generation.

2. Specify data generation model: The Bayesian network or fragments of the net-
work can be either be specified manually, or it can be generated automatically by
applying subgroup patterns that describe the interesting data characteristics: These
patterns describe relations between a dependent and several independent variables,
with certain characteristics given by the subgroup parameters, i.e., the subgroup size
and the target share of the subgroup.
The given patterns and network fragments are structurally merged into the data gen-
eration model for the output generation. The relations between the variables are
represented in the network by connections of the individual nodes. However, the
strength of these relations may not yet be adequately represented by the conditional
probability tables. Thus, using the subgroup parameters, constraints are derived in
order to check these relations. Such constraints can also be supplied by the user
directly. Thus, after the model has been initialized by the user the model is tested
given the available set of constraints.

3. Adapt specification/optimize model: If the model fits the constraints, then the pro-
cess is finished, and the data generation model is ready for use. Otherwise, an opti-
mization step is applied in order to adjust the conditional probability tables contained
in the network. Alternatively, the user can also either adapt the patterns/constraints,
modify the network structure, or try to edit the conditional probability tables by
hand.

4. Generate data: After the data generation model has been fit to the specification
of the user, the final data generation step is performed using a sampling algorithm.
Given the network we apply the prior-sample algorithm [69] also known as forward-
sampling: In a top-down algorithm for every node a value is computed according to
the values of its parent nodes.

Case base

Specify data 

generation

model

Data

generation

model
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specification?
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No
Adapt
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Figure 8.1: Process model for data generation.
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8.1.2 Interactive Data Specification

In this section, we describe the interactive data modeling approach: After modifications
by the user the data generation model can always be adjusted in an interactive process. As
discussed above, we use a Bayesian network to represent the data generation model: The
network can be approximated by patterns, or the user can manually define the Bayesian
network. In either case, the network can be adapted with respect to the specification in a
final interactive step.

Model Approximation by Patterns A collection of subgroup patterns describe de-
pendencies between a target variable and a set of explaining variables. Using such sub-
group patterns a two layered network can be constructed automatically. Either the target
variable can be designated as the parent of the explaining variables, or as the child of the
set of variables.
As an example, let us consider propositional conjunctive rules with the target variable in
the rule head. Using subgroup patterns we can model categoric rules as well as probabilis-
tic rules. For categoric rules we see that these have a target share p = 1, i.e., the target
concept is always established. For probabilistic rules the target share is given by p ∈ [0; 1].
For example, considering test data for discovering association rules [2], it is easy to see
that the target share relates to the concept of confidence, because p is equivalent to the
conditional probability p(t | sd) of the target variable t given the subgroup description sd;
the support of an association rule is given by the joint probability supp = p(t∧ sd). Then,
we can describe the interesting patterns for data generation quite easily by specifying these
parameters.

Interactive Modeling of a Bayesian Network In addition to the specification of a
set of subgroup patterns the user can also define the Bayesian network directly by connect-
ing the nodes/attributes. Additionally, the conditional probability tables of the nodes in the
network can be adapted. If additional nodes are entered manually, then the entries of the
conditional probability tables need to be specified. However, this step is usually the most
difficult one. Therefore, we provide an interactive adaptation step as discussed below.
In an advanced step the network structure can be enriched using hidden nodes that enable
further possibilities for data generation: Hidden nodes are used to add constraining rela-
tions of the active nodes that are used for data generation. The hidden nodes are used for
the data generation step, but they are not visible in the generated data.

Constraint-based Model Adaptation The major step during the construction of the
data generation model is the adaptation of the (partially) defined Bayesian network. We
can apply constraints represented by joint and conditional probabilities of the network that
can be derived from the defined subgroup patterns. Additionally, the user can manually
specify such constraints. The set of constraints can then be applied in order to measure the
state of the model, and to verify the specification.
The specified constraints are used to optimize the conditional probability tables of the
given network since the constraints are defined using the entries contained in the con-
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ditional probability tables of the nodes of the network. Then, a hill-climbing constraint
satisfaction problem (CSP) solver is used to fit the model to the constraints minimizing
a global error function. After the CSP-solver has been applied the resulting state of the
model can be controlled by the user interactively: The deviations of the defined patterns
and the patterns included (implicitly) in the network are compared. Then, the model is
tuned if necessary.
For each target variable a constraint is generated using the specified total target share
considering the entire population, i.e., the prior probability of the target variable p(t).
Constraints for the parameters of the subgroup patterns are based on the contained target
variable t and the set of selectors in the subgroup description sd = {e1, e2, . . . , en}. Two
constraints are generated for each pattern, i.e., the subgroup size equivalent to the joint
probability p(e1, e2, . . . , ek), ei ∈ sd, and the target share of the subgroup equivalent to the
conditional probability p(t | e1, e2, . . . , ek), ei ∈ sd. Using the subgroup patterns defined
for a target variable the user can select from two basic network structures that are generated
automatically if the respective nodes contained in the subgroup description are not already
contained in the network: Either the target variable is the parent of the subgroup selectors
(Figure 8.2(a)), or the target variable is the child of the subgroup selectors (Figure 8.2(b)).
The first figure depicts the relation ’IF target TV THEN selectors Si’; the latter models the
inverse relation ’IF selectors Si THEN target TV’.

...S1 S2 SN

TV

(a) If target TV, then selectors Si

...S1 S2 SN

TV

(b) If selectors Si, then target TV

Figure 8.2: Possible network structures for modeling the dependency relations between
the target (dependent) variable and the selectors (independent variables).

These options need to be selected based on the desired relations of the data generation
model. Both structures have certain advantages and drawbacks concerning the optimiza-
tion step: Option a) includes a simple definition of the prior probability of the target vari-
able; using the CPTs of the children selectors it is very easy to adapt the parameter sub-
group size. On the other hand, option b) allows for an easier adaptation of the subgroup
target shares (contained as values in the CPT of the target variable). Furthermore, option
b) typically results in larger CPTs. This allows for better adaptation possibilities for the
optimization algorithm. However, the size of the CPT of the target is exponential with
respect to the number of parent selectors.
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8.1.3 Constraint-Based Adaptation of a Bayesian Network

In the following we discuss how the constraint-based adaptation of the data generation
model is implemented. We first describe how we compute arbitrary probabilities in the
Bayesian network. After that, we show how the CPT entries of the network are adapted
using a CSP-solver.

Computing Arbitrary Joint Probabilities In order to check and to optimize the
constraints specified for the data generation model we need to compute joint probabilities
of node values corresponding to (arbitrary) combinations of subgroup selectors. Addi-
tionally, conditional probabilities of a target variable given a set of selectors also need
to be calculated. It is easy to see that if we can compute arbitrary joint probabilities in
the Bayesian network, then we can also compute arbitrary conditional probabilities. In
principle, arbitrary joint probabilities can be estimated using a sampling method, e.g., the
forward sampling algorithm discussed in Section 8.1.1, by counting the respective joint
occurrences. However, this is only an approximation of the real probabilities and also
requires many generated samples. Therefore, we propose to compute arbitrary joint prob-

Algorithm 10 Computing arbitrary joint probabilities.
Require: Joint probability W , where var(W ) are the variables of W

1: Group nodes by layers: Nodes with a longest path to a root node of size k are sorted
into layer k.

2: Current network layer n := 0.
3: repeat
4: for all nodes K of layer n do
5: if K ∈ val(W )

then val+ = {v | v ∈ values(K) ∧ v ∈ W},
else val+ = values(K)

6: for all vK ∈ val+ do
7: Compute the prior probability p(vK) of the relevant node values val+:

p(vK) =
∑

i( p(vK | vpar(K)i) ·
∏

j p(vj) ), where vpar is a combination of
the node values of the parent nodes and vj ∈ vpar is a single value of such a
parent node.

8: Let conchildren(K) be the set of child nodes of node K that are linked to a node
contained in W , and that are not connected to each other. For every value com-
bination vchildren(K) of the nodes contained in conchildren(K), we compute:
P (vK , vchildren(K)) = P (vK) ·

∏
i P (vi | vK), where vi ∈ vchildren(K)

9: n = n + 1
10: until the next network layer is empty or the desired joint probability can be computed.

abilities directly using the atomic CPT values, and cache the used calculation rules. Then,
as long as the structure of the network does not change, the modification of individual CPT
values and their effect on specific joint and conditional probabilities can be immediately
calculated.
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The proposed approach is a top-down method shown in Algorithm 10: Starting with the
root nodes of the network, in a recursive process the probabilities of the children nodes can
be computed given the prior probabilities of their parents. Calculation rules (for computing
the individual probabilities) created by the algorithm are stored for later reference. Then,
these can be reused, e.g., for the automatic adaptation of CPT-entries or for computing
joint probabilities for nodes in diverging connections in the algorithm. The computation
works in a breadth-first manner and terminates early, if the desired joint probability can be
already computed.

Automatic Adaptation of the CPT Entries As discussed above the explicit con-
straints specified by a set of subgroup patterns refer to probabilities that can be cal-
culated using atomic CPT entries of the Bayesian network. In addition, the net-
work includes also implicit constraints, i.e., the completeness relation for a given CPT:∑

i p(xi | parents(X)j) = 1, for a given node X with values xi and parents parents(X),
with the corresponding values parents(X)j . The explicit constraints can also be disabled
during the optimization step by the user on demand, e.g., if it is clear that they cannot be
fulfilled. Additionally, a priority category can be assigned to each constraint, i.e., low,
normal, high, that is considered when selecting the adaptation strategy.
In order to optimize and to adapt the network, we need to compare the values of the explicit
constraints with their current values. Then, we apply a hill-climbing constraint satisfac-
tion problem-solver to solve possibly occurring inconsistencies. For the adaptation of the
data generation model, we use the created calculation rules for the joint probabilities (see
Algorithm 10) corresponding to the constraints. After that, we apply a recursive approach
terminating in the adaptation of CPT entries. Let us consider three probabilities p1, p2, p3

in a Bayesian network. We distinguish the following three elementary cases for computing
p1 given p2 and p3:

1. p1 = p2 + p3,

2. p1 = p2 · p3, and

3. p1 = p2/p3.
Using these relations, we can describe any probability computation recursively, terminat-
ing when we reach a CPT entry. Based upon the structure of the probability computation
we adapt the value of the left hand side, modifying the values on the right hand side, i.e.,

p1 ↑=
p2 ↑
p3 ↓

or p1 ↑= p2 ↑ · p3 ↑

The arrows indicate the direction of the adaptation. The current step size defines the value
to increase or to decrease a CPT entry in every adaptation step. The constraint-based
adaptation method is shown in Algorithm 11.
To compute the global improvement of the constraints we first apply a localized error
function v(c) for a constraint c:

v(c) = (goal value(c)− current value(c))2 · priority(c) .
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Algorithm 11 CSP-Solver for the constraint-based adaptation of the data generation
model.
Require: Step size step, maximum number of iterations k

1: Group constraints such that constraints referring to a common set of nodes (and sub-
groups) are grouped into one constraint group G ∈ G.

2: repeat
3: for all constraint groups G ∈ G do
4: for all constraints c ∈ G do
5: Determine the direction of the adaptation d, according to the current constraint

value and the specified (goal) value defined by the constraint c
6: for all operands o of the right hand side of c, set the adaptation direction to d

do
7: If o is a CPT entry: Modify the value according to d and step size step.

Update the global improvement I and revert the modification.
Otherwise, if o is not a CPT entry, then apply step 6 recursively for the
constraint o

8: Re-apply the modification with the best improvement value I
9: until all constraints are fulfilled or the maximum number of iterations k has been

reached.

The sum of these local errors is compared to the global error in the previous adapta-
tion step. An improvement can be measured, if errorprevious > errorcurrent. In conse-
quence, we choose the adaptation with the maximum improvement value. Besides this
hill-climbing algorithm other algorithms, e.g., simulated annealing, could be used alterna-
tively. In our own work simulated annealing showed comparable results with respect to
the hill-climbing approach.

8.1.4 Related Work and Discussion

Salzberg [141] provides a detailed discussion of the use of synthetic data for the evalu-
ation of machine learning methods: in order to reliably evaluate a (new) machine learn-
ing method in comparison with existing algorithms the characteristics of the data sets
need to be considered. The UCI website [115] lists three simple data generators, i.e., the
quadruped animals data generator, the DGP/2 generator, and the waveform data gener-
ator. These generate data consisting of continuous attributes having randomly assigned
values. So, the data generators provide no real control of the data generation process.
Agrawal and Srikant [2] also describe a data generator to create synthetic transaction data.
The generator is a special-purpose tool, because it can only be used to generate transac-
tion data with specific parameters, e.g., for specifying the maximal size of transactions or
the average size of the transactions. The QUEST [63] data generator is based on the data
generator described in [2].
The SCDS/DATGEN [106] generator uses a limited domain representation to generate
the data: column (attribute) types can be specified together with additional constraints.
However, no fine-grained specification of the relations between the attributes is possible.
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Of course, as a general data generator the HUGIN [5] system may be used. This system
uses Bayesian networks, but no approximate specification of the network is possible as
described in the presented approach.
In contrast to the approaches for generating synthetic data mentioned above the presented
approach combines two central ideas from the SCDS and HUGIN systems: we can use
simple patterns to develop the generator model, but we can also use the advanced rep-
resentation of Bayesian networks with instant consistency tests. The mentioned systems
only use one of these mechanisms, i.e., rules (SCDS) or Bayesian networks (HUGIN). In
contrast, we combine both representations and provide the opportunity of an interactive
adaptation of the data specification.

8.2 Experimental Evaluation of the Subgroup
Discovery Methods

In the following, we will focus on a practical experimental evaluation of the subgroup
discovery algorithms described in Section 3.4. For the evaluation and comparison of the
algorithms, we distinguish two tasks: measuring the efficiency and estimating the effec-
tiveness of the approaches for subgroup discovery.
• Efficiency The efficiency of a discovery algorithm mainly considers the scalability

of the method and its runtime complexity. Therefore, we evaluate the algorithms
concerning the dimensions of the search space, as discussed in Section 3.4.1, i.e.,
with respect to the number of attributes, the number of attribute values, and the
number of instances contained in a particular data set.
Since we utilize synthetic data with varying sizes but the same data characteristics
the results can be obtained reliably. We compare the proposed novel subgroup dis-
covery method SD-Map to the discussed subgroup discovery methods, i.e., beam
search, PRIM, Weighted PRIM, and Apriori-SD.

• Effectiveness In contrast to the efficiency, estimating the effectiveness of an algo-
rithm that is used for descriptive induction is more difficult. Considering a predictive
evaluation usually the accuracy of the methods needs to be measured.
In contrast, the effectiveness of an algorithm applied for descriptive subgroup dis-

covery depends on the quality of its results: In general, the descriptive quality of a
set of discovered subgroup patterns is determined by the applied quality function.
Its selection is usually domain and user dependent. If the user applies an appropriate
quality function, then the most interesting high-quality subgroups can be presented,
and they can be evaluated based upon the final judgment by the user. We can then
estimate if an algorithm is able to discover the best, i.e., the most interesting sub-
groups: In general, if method A discovers significantly more interesting subgroup
patterns than method B, then we may infer that method A is more effective.

So, more specifically, if method A is able to discover highly interesting patterns, i.e.,
the most interesting n patterns, that method B is not even able to identify, then it is
easy to see that the first method outperforms the latter. This is due to the fact that if
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these interesting patterns are truly interesting (as judged by the user), then method B
fails since it cannot even locate the subgroups. Thus, for evaluating the effectiveness
of the subgroup discovery algorithms we can estimate the share of the most interest-
ing (reference) patterns that a particular algorithm is able to discover.
Thus, we can measure how many of the retrieved results of a subgroup discovery
method are really interesting by comparison to a reference set that includes the best
subgroups in order to evaluate the effectiveness of the algorithm. Of course, the
specific results depend on the applied data set and its characteristics.
We apply synthetic data for evaluating the effectiveness: We distinguish two situa-
tions: We apply data that contains high-quality patterns, but does not impose special
restrictions on these. Additionally, we also utilize data that includes patterns which
are especially difficult to locate by heuristic search methods. In contrast, exhaustive
search methods, e.g., SD-Map and Apriori-SD, cover the whole search space that is
not pruned by the minimum support threshold. Thus, these are able to identify such
high-quality patterns.

In this section we will first discuss the evaluation criteria concerning common character-
istics and problems of particular subgroup discovery methods that are compared in the
evaluation. After that, we describe the evaluation setting and the applied data. Next, we
present and discuss the results of the evaluations, and put these into context.

8.2.1 Characteristics of the Subgroup Discovery Methods

Concerning the characteristics of the subgroup discovery methods, we distinguish between
heuristic, i.e., beam search and PRIM, and exhaustive methods, i.e., Apriori-SD and SD-
Map. Heuristic search methods usually apply guiding heuristics in order to achieve their
goal, and ignore certain parts of the search space that do not seem promising according
to the used heuristics. Then, the heuristic methods mainly trade-off the runtime for the
completeness of the search process. In the worst case a heuristic algorithm could even
discover none of the n most interesting patterns, compared to an exhaustive method.

Heuristic Methods In the context of subgroup discovery mainly greedy heuristics are
applied. Beam search applies a very greedy strategy and only maintains a list of the cur-
rently k best hypotheses that are considered in further steps. Thus, beam search mainly
depends on the parameter beam width w that specifies the number of best hypotheses that
are expanded (and stored) at each step. Furthermore, the applied implementation of beam
search also utilizes a minimum support threshold that is used to prune patterns that do not
fulfill this threshold. Beam search does not guarantee to find all optimal solutions. For
example, if only a combination of selectors is interesting, where each selector alone is not,
then the combination might not be identified [82]. Similarly, interesting combinations of
three factors cannot be discovered, if any contained combination of two elements is not
promising and thus pruned.
The PRIM algorithm employs a (greedy) top-down peeling phase accumulating a subgroup
trajectory, i.e., a candidate set of subgroups. Peeling is stopped by a minimum support
threshold. After that, it tries to improve the best subgroup contained in the trajectory by
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a following bottom-up pasting phase, to correct possible errors of the peeling step. This
more patient search strategy is applied repeatedly until a stopping criterion, given by a
minimum support threshold is reached.
A major problem of the basic PRIM algorithm applied for subgroup discovery is the cov-
ering approach since it prevents overlapping subgroups. The Weighted PRIM method uses
a weighted covering approach in order to improve upon this situation.
In contrast to beam search, the PRIM algorithm tries to be less greedy due to its patient
search strategy by applying the peeling and subsequent pasting steps. However, the PRIM
method cannot guarantee to discover all optimal subgroups as well. Only if the peeling
steps are promising, or the pasting steps compensate for an error of the peeling phase, then
the algorithm can potentially locate subgroups that beam search cannot identify.

Exhaustive Methods The Apriori-SD and the SD-Map method are exhaustive discov-
ery methods: For a minimum support threshold of zero all possible subgroup patterns in
the search space are considered. Thus, the minimum support threshold is the main fac-
tor governing the size of the search space they need to process. This size is then usually
also proportional to their runtimes. However, the runtime is also dependent on the applied
number of cases/instances contained in the data set. While Apriori-SD needs to repeat-
edly scan the whole data set during its candidate-generation-and-test phase, SD-Map uses
a clever data structure to perform these steps more efficiently.
Furthermore, SD-Map only needs to perform two scans of the applied data set. In contrast,
the problem of traversing the data set multiple times is not only restricted to Apriori-SD
but it is also performed by beam search and the PRIM-based algorithms.

Description Languages The applied description language is one major difference
between the PRIM-based methods and SD-Map, Apriori-SD, and beam search. For sub-
group discovery usually (strictly) conjunctive languages are used that consist of two sub-
types. We can distinguish conjunctions of selectors including internal disjunctions, and
conjunctions of selectors only using single attribute values, i.e., not including internal dis-
junctions.
PRIM includes internal disjunctions of subgroup selectors, whereas the Apriori-SD and
SD-Map algorithms are applicable for both types of the description language: The used
selector set that can either include internal disjunctions or not. Beam search can be modi-
fied in a straight-forward way, such that a selector can be added or an internal disjunction
can be eliminated during the beam expansion.
If internal disjunctions are considered, then the search space is significantly enlarged in
general: The search space is exponential in the number of attributes depending on the
number of attribute values. Since the number of attribute values grows exponentially by
utilizing selectors with internal disjunctions, so does the search space.
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8.2.2 Evaluation Setting and Data

The PRIM-based methods, beam search, and the Apriori-SD approach were implemented
in Java to the best of our knowledge, based on the reports in the literature. We refer to
Section 3.4 for a description of the algorithms. The SD-Map method was implemented
according to the algorithm presented in Section 3.4.6. All experiments were performed
on a single-processor 3.0 GHz Pentium 4 PC machine running Windows XP, providing a
maximum of 1GB main memory for each experiment (the size of the main memory was
never a limiting factor in the experiments).
For evaluating the efficiency of the algorithms, we created several data sets with different
sizes but with the same data characteristics each, applying the data generator presented in
Section 8.1. We generated data for an artificial vehicle insurance domain, and defined 15
attributes with a mean of 3 attribute values as shown in Table 8.1.

Attributes Attribute Values Pos.
Age < 25, 25-50, > 50 3
Insurance Rate low, medium, high TV
Car Type sportscar, van/sedan, truck 1
Coverage Before < 5 years, ≥ 5 years 12
Employment unemployed, employed 8
Incidents in Last 3 Years none, 1-2, ≥ 3 13
Income none, low, average, high 2
Insurance Type 3rd party, comprehensive 7
Location rural, city 6
Occupation unemployed, public, employee, self-employed 10
Other Drivers none, spouse, driver> 25, any driver 15
Parking public, garage 5
Personal Status single/sep/divorced, married 9
Sex male, female 4
Uses of Vehicle private, business 14
Vehicle Age < 2 years, 2-10 years, > 10 years 11

Table 8.1: The artificial vehicle insurance domain. Insurance Rate = low is used as the
target variable (TV) in the experiments.

Figure 8.3 shows the applied Bayesian network: The conditional probability tables of the
network were initialized with uniform value distributions, i.e., each value in the table of
an unconditioned node is equiprobable. Moreover, the distributions corresponding to the
conditional entries of a conditioned node is also given by a uniform distribution. Since
the minimum support threshold is the parameter that is common to all search methods we
apply it in order to compare their scalability with different parameter settings. We apply
a relative support level corresponding to the absolute minimum support threshold divided
by the size of the case base. We furthermore vary the number of attributes included in the
data sets, the number of values, and the total number of instances.
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For evaluating the effectiveness, we generated special data sets based on the artificial vehi-
cle insurance domain: The data includes special patterns that are difficult to detect by the
heuristic methods. Then, we measured how many of these could be discovered by each
method. We describe the applied synthetic data in Section 8.2.4.

Figure 8.3: Artificial vehicle insurance domain: Basic Bayesian network used for generat-
ing synthetic evaluation data.

8.2.3 Evaluating the Efficiency

Utilizing the data generator we first created data sets containing 1000, 10000 and 100000
instances with 15 attributes (as shown in Table 8.1) with a mean of 3 attribute values. In
each of these data sets, there are exponentially numerous frequent attribute combinations
as the support level is reduced, considering the total search space of about 1010 patterns,
c.f., Section 3.4.1. We measured the runtimes of the algorithms by averaging five runs
for each algorithm for each of the test data sets. For the beam search method we applied
a quite low beam width (w = 10) and a medium sized beam width (w = 50) in order to
compare an especially fast beam search approach and a less restricted beam search method
to the other techniques.
Similar to the PRIM and Weighted PRIM methods, beam search could never discover all
of the interesting subgroups compared to the exhaustive methods in these experiments, as
discussed in Section 8.2.4. We applied the relative gain quality function (see Equation 3.4,
p. 28) in the experiments; however, we also show the results of the binomial-test quality
function (see Equation 3.1, p. 27) for an empirical comparison. It is easy to see that
different quality functions can affect the run-time performance of the heuristic methods.
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We varied the support threshold in order to estimate the performance of the algorithms con-
cerning larger subgroups but also with respect to quite small subgroups that are considered
as interesting in some domains, e.g., in the medical domain. Applying the algorithms we
used two different low support levels, 0.01 and 0.05, since all search methods utilize the
minimum support threshold either for pruning, or as a stopping criterion. Furthermore,
we varied the number of attributes provided to the subgroup discovery method in order to
study the effect of a restricted search space compared to larger ones. Thus, by initially
utilizing 5, then 10 and finally 15 attributes, an exponential increase in the search space
for a fixed data set could be simulated.
We thus performed 18 experiments for each algorithm (and for each quality function): The
individual experiments are given by the combination of the different parameter settings and
search dimensions, i.e., by the number of attributes included, the number of considered
cases, and the minimum support level.
As discussed in Section 8.2.1, we need to distinguish two cases for an accurate comparison
of the different subgroup discovery algorithms: methods that use a strictly conjunctive sub-
group discovery language without internal disjunctions, and methods that include selectors
with internal disjunctions. Therefore, the subgroup discovery algorithms were sorted into
two groups accordingly. We consider beam search, Apriori-SD and the SD-Map algorithm
applying a description language without internal disjunctions; the PRIM, Weighted PRIM,
Apriori-SD, modified beam search algorithms, and an adapted SD-Map method are evalu-
ated for the second option, i.e., using selectors with internal disjunctions. In the following,
we will describe the experiments and discuss the results.

Strictly Conjunctive Descriptions without Internal Disjunctions We first con-
sider the subgroup discovery algorithms that utilize strictly conjunctive subgroup descrip-
tions without internal disjunctions, i.e., the SD-Map, Apriori-SD and the beam search
method using a beam width w = 10, and also a larger beam width w = 50. The results are
shown in the table in Figure 8.4 for both the 0.01 and the 0.05 minimum support level.
These results show that the SD-Map algorithm clearly outperforms the other methods
in these experiments. As shown in Figure 8.6 all methods perform linearly (double-
logarithmic scale) when the number of cases/instances is increased. However, the SD-
Map method is at least faster by one magnitude compared to beam search, and about two
magnitudes faster than Apriori-SD. When the search space is increased exponentially, Fig-
ure 8.7 (logarithmic scale) shows that all search method scale proportionally. However, the
SD-Map method is still significantly faster than the beam search method, even if SD-Map
needs to handle an exponential increase in the size of the search space. The SD-Map
method also shows significantly better scalability than the Apriori-SD method for which
the runtime grows exponentially for an exponential increase in the search space (number
of attributes). In contrast, the run time of the SD-Map method grows in a much more con-
servative way. This is due to the fact that Apriori-SD applies the candidate-generation and
test strategy that depends on multiple scans of the data set and thus on the size of the data
set. SD-Map benefits from its divide-and-conquer approach adapted from the FP-growth
method by avoiding a large number of generate-and-test steps.
As shown in the table in Figure 8.4 minimum support pruning has a significant effect on
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MinSupport=0.01

#Attributes 5 10 15 5 10 15 5 10 15

SD-Map 0.06 0.19 1.0 0.2 0.6 4.4 2.0 3.9 24.2

Beam search (w=10) 0.7 2.2 4.8 6.8 26.4 45.8 63.0 275.4 421.3

Beam search (w=50) 2.8 10.9 26.2 24.5 106.3 205.3 230.8 1080.2 1792.3

Apriori-SD 1.3 39.2 360.1 11.7 366.0 2336.1 108.7 3762.1 22128.5

MinSupport=0.05

#Attributes 5 10 15 5 10 15 5 10 15

SD-Map 0.02 0.05 0.14 0.2 0.4 1.1 2.0 3.7 9.2

Beam search (w=10) 0.5 1.8 3.1 4.6 12.2 25.7 49.4 173.0 295.8

Beam search (w=50) 0.7 6.6 11.9 6.5 61.4 113.7 71.0 620.6 1138.4

Apriori-SD 0.3 2.3 6.0 2.4 23.2 63.7 23.7 229.5 632.6

Runtime (sec.) - Conjunctive Description Language (No Internal Disjunctions)

100000 instances

Runtime (sec.) - Conjunctive Description Language (No Internal Disjunctions)

1000 instances 10000 instances

1000 instances 10000 instances 100000 instances

Figure 8.4: Efficiency: Runtime – algorithms for a conjunctive description language with-
out internal disjunctions.

the exhaustive search methods. The runtime for SD-Map is reduced by more than half; for
Apriori-SD the decrease is even more significant, resulting in an exponential reduction of
its runtime. In contrast, minimum support pruning does not have such a drastic effect on
the beam search methods.
For reference, the table in Figure 8.5 shows the runtimes of the heuristic algorithms for
the same experiments using the binomial-test quality function. It is easy to see that the
runtimes do not differ significantly compared to the experiments using the relative gain
quality function.

MinSupport=0.01

#Attributes 5 10 15 5 10 15 5 10 15

Beam search (w=10) - Relative Gain QF 0.7 2.2 4.8 6.8 26.4 45.8 63.0 275.4 421.3

Beam search (w=10) - Binom. QF 0.7 2.3 5.1 6.0 26.5 48.8 66.4 274.4 432.6

Beam search (w=50) - Relative Gain QF 2.8 10.9 26.2 24.5 106.3 205.3 230.8 1080.2 1792.3

Beam search (w=50) - Binom. QF 2.9 13.7 26.7 23.4 114.8 228.5 249.3 1076.3 1998.6

MinSupport=0.05

#Attributes 5 10 15 5 10 15 5 10 15

Beam search (w=10) - Relative Gain QF 0.5 1.8 3.1 4.6 12.2 25.7 49.4 173.0 295.8

Beam search (w=10) - Binom. QF 0.5 1.9 3.1 4.6 13.8 29.8 49.2 170.5 290.1

Beam search (w=50) - Relative Gain QF 0.7 6.6 11.9 6.5 61.4 113.7 71.0 620.6 1138.4

Beam search (w=50) - Binom. QF 0.7 6.5 12.0 6.5 61.9 114.2 71.4 617.2 1137.5

Runtime (sec.) - Conjunctive Description Language (No Internal Disjunctions)

1000 instances 10000 instances 100000 instances

1000 instances 10000 instances 100000 instances

Runtime (sec.) - Conjunctive Description Language (No Internal Disjunctions)

Figure 8.5: Efficiency - beam search using the relative gain and the binomial-test quality
function: Runtimes for a conjunctive description language without internal
disjunctions.
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Figure 8.6: Efficiency: Runtime vs. size of the case base/number of instances, for 15
attributes with a mean of 3 values.
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Figure 8.7: Efficiency: Runtime vs. size of search space (number of attributes), for 100000
cases.
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The tables in Figure 8.8 also show the runtimes of the algorithms for data containing
missing values. It is easy to see, that the performance/scalability results of the algorithms
are similar to the non-missing case. However, the runtimes are significantly decreased,
since the missing values were introduced with a frequency equal to the other values of an
attribute in the data generation step, according to an uniform distribution of the values for
each attribute. Thus, the minimum support pruning techniques are able to exclude more
subgroups below the thresholds.

MinSupport=0.01

#Attributes 5 10 15 5 10 15 5 10 15

SD-Map 0.06 0.1 0.4 0.2 0.7 2.2 2.1 4.6 17.1

Beam search (w=10) 0.5 1.4 2.4 3.8 9.2 15.7 35.9 91.2 155.7

Beam search (w=50) 1.6 5.0 13.4 8.1 51.9 57.2 77.6 513.0 540.2

Apriori-SD 0.4 3.3 14.0 3.3 29.5 135.2 32.8 313.2 1367.5

MinSupport=0.05

#Attributes 5 10 15 5 10 15 5 10 15

SD-Map 0.02 0.04 0.1 0.2 0.4 0.7 1.8 3.5 6.6

Beam search (w=10) 0.2 0.5 0.9 1.9 5.2 8.7 17.2 51.4 85.3

Beam search (w=50) 0.2 0.7 1.9 2.2 7.5 19.2 17.5 64.6 167.6

Apriori-SD 0.1 0.4 1.1 1.0 4.2 10.6 8.8 38.4 101.0

1000 instances 10000 instances 100000 instances

Runtime (sec.) - Conj. Description Language (No Internal Disjunctions) - Missing Values

Runtime (sec.) - Conj. Description Language (No Internal Disjunctions) - Missing Values

1000 instances 10000 instances 100000 instances

Figure 8.8: Efficiency: Runtime – algorithms for a conjunctive description language with-
out internal disjunctions and missing values.

The table in Figure 8.9 shows the scalability of the SD-Map method using a fixed support
value (minimum: 10 cases/instances) for growing sizes of the case base (as before). We
compare it to the fastest heuristic search method in our evaluations, i.e., beam search with
a beam width w = 10.
It is easy to see, that SD-Map scales very well. Since the remaining subgroup discovery
methods perform usually slower than the beam search method, we conclude that SD-Map
is also significantly faster than the other methods when using a fixed absolute support
threshold.

MinSupport=10

SD-Map 0.1 0.2 1.0 0.2 1.5 38.9 2.5 6.5 433.7

Beam Search (w=10) 0.8 2.5 5.5 7.8 36.8 70.5 71.2 365.3 725.7

1000 instances 10000 instances 100000 instances

Runtime (sec.) - Conjunctive Description Language (No Internal Disjunctions) - Fixed Support

Figure 8.9: Efficiency: Runtime – algorithms for a conjunctive description language with-
out internal disjunctions and fixed absolute support threshold (minimum sup-
port count: 10 instances).
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Conjunctive Descriptions Language with Internal Disjunctions Concerning
(strictly) conjunctive description languages with internal disjunctions, we compared the
adapted SD-Map method to the beam search algorithm, Apriori-SD, and the PRIM-based
method. We considered both alternatives of the SD-Map method for handling internal
disjunctions as discussed in Section 3.4.6. For this evaluation we applied the same data
set that we used for the evaluation considering (strictly) conjunctive subgroup descriptions
without internal disjunctions. By extending the description language with internal disjunc-
tions the size of the search space is increased exponentially: in our example dataset, the
unpruned search space grows from about 1010 to about 5 · 1013.
The evaluation results are shown in the table in Figure 8.10 for the 0.01 and 0.05 minimum
support levels. Concerning the beam search method we show results for a beam width of
w = 10 and for w = 50. Since using internal disjunctions significantly extends the search
space larger beam sizes are usually required for the enlarged search space, as shown in the
next section.

MinSupport=0.01

#Attributes 5 10 15 5 10 15 5 10 15

SD-Map (Negated S.) 0.1 5.1 643.5 0.3 6.9 1040.4 2.8 11.8 2199.1

SD-Map (Naive) 0.1 8.4 927.3 0.6 18.8 2550.4 5.7 32.2 8650.4

Beam search (w=10) 6.1 10.3 21.4 42.6 118.7 142.1 418.9 1156.7 1373.2

Beam search (w=50) 27.4 54.1 147.6 220.4 719.3 1470.0 3432.6 5460.2 11528.8

PRIM 27.8 72.4 139.4 221.8 513.7 920.9 1920 5437.4 9033.3

WeightedPRIM 70.0 189.8 370.2 619.1 1613.8 2688.6 5832 14949 24246.1

Apriori-SD 22.4 34321 * 207.1 * * 2019 * *

MinSupport=0.05

#Attributes 5 10 15 5 10 15 5 10 15

SD-Map (Negated S.) 0.05 0.4 8.5 0.3 1.4 38.7 2.8 6.1 144.5

SD-Map (Naive) 0.09 0.8 13.9 0.6 3.5 91.0 5.5 12.9 425.6

Beam search (w=10) 3.6 6.9 15.9 34.1 63.7 142.9 450.2 473.5 1093.6

Beam search (w=50) 13.5 39.0 124.7 177.7 387.0 706.8 1288 3753.4 5519.1

PRIM 2.6 6.5 9.2 25.2 55.3 84.9 228.3 648.1 865.8

WeightedPRIM 5.1 13.6 24.5 48.8 124.4 190.5 434.7 1210.1 1818.6

Apriori-SD 6.9 124.3 7307.4 59.7 1000.2 23846.3 609.3 10148.3 208849

Runtime (sec.) - Conjunctive Description Language (Internal Disjunctions)

1000 instances 10000 instances

Runtime (sec.) - Conjunctive Description Language (Internal Disjunctions)

1000 instances 10000 instances 100000 instances

100000 instances

Figure 8.10: Efficiency: Runtime – algorithms for a conjunctive description language with
internal disjunctions (Runtimes for settings marked with * took longer than
72 hours and were not recorded.).

It is easy to see, that the runtime increases double-exponentially for all the methods consid-
ering an double-exponentially growing search space. Figure 8.11 shows the performance
of the subgroup discovery methods for both an increasing number of cases and an increas-
ing search space (for the 0.05 support level).
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Figure 8.11: Efficiency: Runtime vs. number of cases and size of the search space (number
of attributes) for conjunctive subgroup descriptions and internal disjunctions
(0.05 support level).
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Considering the beam search method the results basically confirm the statements made in
the previous section for the description language not using internal disjunctions. However,
since the search space is significantly extended, it is easy to see that the exhaustive methods
take significantly longer than in the experiments described above. Furthermore, a first
glance at the results may indicate the beam search scales better than the SD-Map. This is
true for very large search spaces and very low beam widths, i.e., for a beam width w = 10.
However, SD-Map scales significantly better for a restricted search space, and furthermore
outperforms beam search, if larger beam widths are applied, e.g., for a beam width w = 50.
The run time of the SD-Map algorithm is significantly reduced by choosing a higher min-
imum support threshold, as shown in Figure 8.10. Comparing the techniques for handling
internal disjunctions in the SD-Map method, it is easy to see that using negated selectors
scales significantly better than the naive technique: In the latter case, we need to consider
that we extended the domains of the attribute values by overlapping (aggregated) attribute
values in the frequent pattern tree. On the one hand, these overlapping values can increase
the degree of (node) sharing close to the root of the tree. On the other hand, if overlapping
attribute values are included in the tree, then the height of the tree and every constructed
conditional frequent pattern tree is increased by overlapping aggregated attribute values
higher up in the tree. Thus, the advanced technique, using special negated selectors cover-
ing all internal disjunctions of an attribute is usually preferable in such situations.
The results for the PRIM methods are similar to those of the beam search algorithm with
a larger beam width. However, the results show that minimum support pruning has a more
significant impact since the PRIM method utilizes the threshold as a stopping criterion.
Furthermore, the basic PRIM method shows better scalability than the Weighted PRIM
method due to its strict covering strategy compared to the weighted covering approach
that commonly causes many more iterations of the algorithm.
For reference, the table in Figure 8.12 shows the runtimes of the heuristic algorithms for
the same experiments using the binomial-test quality function. It is easy to see that the
runtimes do not differ significantly compared to the experiments using the relative gain
quality function – with one exception: The PRIM method is slightly faster which can be
explained by the strict covering strategy: If larger subgroups are excluded in earlier steps,
then the instance space is reduced faster.
In summary, the results show that the SD-Map method is applicable even for large search
spaces. It scales better than the heuristic methods even for low minimum support levels,
if we do not consider beam search with very low beam values. Moreover, if we consider
higher support levels, then the efficiency of the SD-Map method compared to the other
algorithms is even more significant. If we consider larger data sets for subgroup discovery,
then the advantages of the SD-Map method become even more evident. For the subgroup
discovery task using a conjunctive description language including internal disjunctions the
search space is enlarged double-exponentially. Therefore, we also experienced a double-
exponential growth with respect to the runtimes of the algorithms. However, this situation
is often not so difficult, since we can apply background knowledge in order to reduce the
domains of attributes such that only special disjunctions are included in the search space
as discussed in the case studies in Section 9. The evaluation results indicate that a careful
reduction of internal disjunctions, e.g., using background knowledge, usually pays off.
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MinSupport=0.01

#Attributes 5 10 15 5 10 15 5 10 15

PRIM 27.8 72.4 139.4 221.8 513.7 920.9 1920 5437.4 9033.3

PRIM - Binom. QF 20.2 55.4 116.6 199.0 464.9 873.2 1774.0 4405.8 7836.5

WeightedPRIM - Relative Gain QF 70.0 189.8 370.2 619.1 1613.8 2688.6 5832 14949 24246.1

WeightedPRIM - Binom. QF 60.5 150.8 284.8 533.2 1384.1 2336.6 5589.5 14716.1 24372.4

MinSupport=0.05

#Attributes 5.0 10.0 15.0 5.0 10.0 15.0 5.0 10.0 15.0

PRIM - Relative Gain QF 2.6 6.5 9.2 25.2 55.3 84.9 228.3 648.1 865.8

PRIM - Binom. QF 2.6 6.5 11.9 22.8 54.5 87.4 190.0 543.6 795.3

WeightedPRIM - Relative Gain QF 5.1 13.6 24.5 48.8 124.4 190.5 434.7 1210.1 1818.6

WeightedPRIM - Binom. QF 5.1 12.5 22.3 38.5 99.7 176.4 423.1 1172.2 1947.1

1000 instances 10000 instances 100000 instances

1000 instances 10000 instances 100000 instances

Runtime (sec.) - Conjunctive Description Language (Internal Disjunctions)

Runtime (sec.) - Conjunctive Description Language (Internal Disjunctions)

Figure 8.12: Efficiency - (Weighted) PRIM using the relative gain and the binomial-test
quality function: Runtimes for a conjunctive description language with inter-
nal disjunctions.

8.2.4 Evaluating the Effectiveness

As discussed above in Section 8.2, heuristic method do not guarantee to discover the op-
timal solution. Therefore, in order to compare different subgroup discovery methods with
respect to their effectiveness, we can measure how many of the k best retrieved results of a
subgroup discovery method are really interesting by comparison to the real k best results.
In general, for obtaining the reference subgroups we can apply any exhaustive method. Of
course, then the specific results, i.e., the best subgroups depend on the applied data set and
its characteristics.
In order to compare the discovered subgroups to the reference subgroups, we need to
assess the similarity of pairs of subgroups. We can apply the technique described in Sec-
tion 3.3.1: We regard two subgroups as equal not only based on their subgroup description
but taking the extension of the subgroup into account, i.e., the covered instances. So, for
two subgroups si, sj , the similarity sim(si, sj) is given by the fraction of the intersection
and the union size:

sim(si, sj) =
si ∩ sj

si ∪ sj

.

where sim(si, sj) = 0 for disjoint subgroups and 1.0 for equal subgroups. Thus, if the
similarity between the subgroups is equal to 1.0, then we get an exact match. In this
way, subgroups can be ’equal’ to each other even if they are described by different sets of
selectors.
In the following, we present and discuss the results of the evaluation using the data set
containing especially modeled reference patterns. Additionally, we also applied the data
that we used for evaluating the efficiency of the algorithms. We present the latter results
for an empirical comparison – as an example for data sets that does not include specifically
modeled patterns that are hard to detect by heuristic discovery techniques.
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Synthetic Data - Empirical Comparison

As simple test for effectiveness, we applied the data used for the efficiency evaluations
that was not especially modeled in order to contain ’difficult’ subgroup patterns. Then, we
compared the SD-Map algorithm to the other approaches using these data sets. The results
are shown in the tables in Figure 8.13.

Matched Similar Matched Max Quality Min Quality Mean Quality SD-Size

SD-Map (Reference) 10 10 2.97 2.28 2.60 5-6

Beam search (w=10) 3 3 2.56 1.77 2.09 4-5

Beam search (w=20) 6 6 2.97 1.93 2.37 4-5

Beam search (w=50) 6 6 2.97 2.07 2.40 4-5

Beam search (w=100) 7 7 2.97 2.22 2.48 4-5

Apriori-SD 10 10 2.97 2.28 2.60 5-6

Matched Similar Matched Max Quality Min Quality Mean Quality SD-Size

SD-Map (Reference) 10 10 2.97 2.97 2.97 5-8

Beam search (w=10) 2 2 2.97 0.51 1.62 2-5

Beam search (w=20) 2 2 2.97 0.46 1.72 2-5

Beam search (w=50) 4 4 2.97 1.71 2.36 4-5

Beam search (w=100) 4 4 2.97 1.85 2.56 5-7

PRIM 4 4 2.97 1.77 2.40 8-9

Weighted PRIM 4 4 2.97 2.33 2.67 7-8

Matched Similar Matched Max Quality Min Quality Mean Quality SD-Size

SD-Map (Reference) 20 20 2.97 2.64 2.94 5-8

Beam search (w=10) 2 2 2.97 0.09 0.94 1-7

Beam search (w=20) 2 2 2.97 0.08 1.05 1-7

Beam search (w=50) 4 4 2.97 0.34 1.63 2-5

Beam search (w=100) 4 4 2.97 0.90 1.91 2-7

PRIM 4 4 2.97 1.32 1.97 8-9

Weighted PRIM 4 4 2.97 1.57 2.23 6-8

Effectiveness - Conjunctive Descriptions, k = 10

Effectiveness - Conjunctive Descriptions (Internal Disjunctions), Covering, k = 10

Effectiveness - Conjunctive Descriptions  (Internal Disjunctions), Covering, k = 20

Figure 8.13: Results: Evaluating the effectiveness for strictly conjunctive subgroup de-
scriptions with and without internal disjunctions. The column Matched indi-
cates the number of subgroups that are contained in the reference set of sub-
groups, while the column Similar Matched denotes the number of subgroups
that are at least equal to any subgroup contained in the gold standard with
a similarity above 80%. The columns Max Quality, Min Quality and Mean
Quality give the maximum, minimum and mean quality of the retrieved set
of subgroups. Finally, the last column SD-Size provides the minimum and
maximum size of the contained subgroup descriptions.

We checked the quality of the k = 10 best subgroups discovered during the evaluation
runs considering the full set of 15 attributes using the 0.01 minimum support level: SD-
Map (as well as Apriori-SD) always returned subgroups for which their quality was always
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equal or significantly better than the subgroups discovered by the beam search method and
the PRIM(-based) algorithms. We also tested, how many of the 10 best subgroups could
be discovered compared to the reference set of the 10 best subgroups, that was obtained
using the exhaustive SD-Map method, at the 0.01 minimum support level. Additionally,
we also measured how many of the discovered subgroups were at least 80% similar to the
reference subgroups. The results table also includes the maximum, minimum and mean
quality of the discovered set of subgroups, and the range of the sizes of the contained
subgroup descriptions. For the setting using internal disjunctions we also assessed the
k = 20 best subgroups, in addition to the 10 best subgroups.

Results and Discussion Concerning the conjunctive description language with se-
lectors not using internal disjunctions, beam search with a growing beam size discovered
more and more of the 10 best subgroups. However, as indicated in the table, the size of
the subgroup descriptions was always less than the largest subgroups discovered by an
exhaustive method. This explains, why beam search could never discover all of the best
10 subgroups: It is obvious that larger combinations of factors were not considered in the
search process. We investigate and evaluate such situations in the next section in more de-
tail, using especially modeled reference subgroups that are hard to discover using heuristic
search approaches.
In order to compare the algorithms that employ a description language including selectors
with internal disjunctions, e.g., utilizing the PRIM and the Weighted PRIM method, we
needed to apply a post-processing step for the reference (SD-Map) method: since PRIM
and Weighted PRIM apply a covering step, we post-processed the set of subgroups ob-
tained from SD-Map using a weighted covering method, c.f., Section 3.3.2. Then, we
estimated the quality of the best k=10 and the best k=20 subgroups retrieved by the in-
dividual subgroup discovery methods. We also applied the covering technique for the
adapted beam search method that is shown for comparison to the other heuristic methods.
The results for the subgroup discovery methods using selectors with internal disjunctions
also indicate, that beam search with growing beam size discovers more and more of the
subgroups contained in the reference set, as expected. However, due to the weighted-
covering approach, the size of the subgroup descriptions differs significantly from the size
of the subgroup descriptions of the reference set. Furthermore, the quality of the set of
subgroups obtained by the beam search techniques is usually below the quality of the
other heuristic methods.
Concerning the basic PRIM algorithm the number of the discovered reference subgroups
is equal to the other best heuristic techniques. Concerning the size of the subgroup de-
scriptions it is easy to see that the PRIM method can present subgroups that contain many
redundant selectors. As expected, the quality of the subgroups retrieved by the Weighted
PRIM method is higher compared to the basic PRIM method, since the Weighted PRIM
algorithm applies a weighted-covering approach compared to the basic PRIM technique
that applies a strict (excluding) covering method. Compared to beam search, the Weighted
PRIM method also discovered ’better’ sets of subgroups, i.e., a set with a higher minimum
and mean quality.
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Estimating the Effectiveness Using Synthetic Data Containing Specifically
Modeled Reference Subgroups

In order to compare the exhaustive methods to the heuristic methods we generated a data
set containing special high-quality subgroup patterns (the reference set): These subgroups
are described by combinations of factors that are only interesting in themselves, but subsets
of these factors are not interesting and should therefore be pruned, e.g., by the beam search
method. We provided 10 high-quality subgroups that are depicted in Table 8.2.

Subgroup Descriptions p size
Car Type=truck AND Insurance Type=comprehensive AND Location=rural 0.9 0.12
AND Parking=public AND Sex=female AND Uses of Vehicle=private (0.93) (0.13)
Car Type=van/sedan AND Employment=employed AND Incidents/Last 3 Yrs=1-2
AND Insurance Type=comprehensive AND Location=rural 0.9 0.12
AND Uses of Vehicle=private (0.91) (0.11)
Age=25-50 AND Incidents/Last 3 Yrs≥3 AND Parking=garage 0.85 0.13
AND Personal Status=single, sep/div AND Uses of Vehicle=business (0.83) (0.12)
Employment=employed AND Incidents/Last 3 Yrs=none AND Income=low 0.85 0.13
AND Location=city AND Sex=male (0.83) (0.12)
Employment=employed AND Incidents/Last 3 Yrs=1-2 0.85 0.13
AND Occupation=self-employed AND Parking=public AND Sex=female (0.83) (0.12)
Incidents/Last 3 Yrs=1-2 AND Income=low AND Occupation=self-employed 0.85 0.13
AND Personal Status=married (0.83) (0.12)
Car Type=truck AND Employment=unemployed AND Incidents/Last 3 Yrs=none 0.85 0.13
AND Other Drivers=spouse AND Personal Status=single, sep/div (0.83) (0.12)
Age=25-50 AND Car Type=truck AND Location=city AND Parking=garage 0.8 0.15
AND Sex=male (0.8) (0.15)
Age=25-50 AND Car Type=truck AND Parking=garage 0.8 0.15
AND Personal Status=single, sep/div AND Sex=male (0.8) (0.15)
Age=25-50 AND Employment=employed AND Parking=garage 0.8 0.15
AND Personal Status=single, sep/div AND Sex=male (0.8) (0.20)

Table 8.2: Effectiveness: subgroups for the target variable Insurance Rate = low. The last
two columns show the subgroup parameters, i.e., the target share (p) and the
size. The specified parameters are given above the observed values in the data
shown in brackets.

The network shown in Figure 8.3 was modified and tuned accordingly, such that the
attributes/selectors Incidents in Last 3 Years, Sex=female, Parking=garage, and Loca-
tion=city were not interesting in themselves, but only the specific combinations listed
above were high quality subgroups above the minimum support level (0.01). Thus, if
we especially consider the single selectors Incidents in Last 3 Years, Sex=female, Park-
ing=garage, and Location=city, then adding them to a subgroup in an earlier stage de-
creases its quality. The quality is increased only in the specific situations described by the
subgroups shown in the table above. Then, the data generation model was adapted in order
to ensure that the specified patterns are the best k = 10 patterns contained in the data set.
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For evaluating the effectiveness, and for comparing the heuristic discovery methods to the
exhaustive discovery method we obtained the k best subgroups of each heuristic discovery
approach. Then, we compared it to the reference result. For the algorithms providing con-
junctive subgroup descriptions without internal disjunctions the reference set of subgroups
is given by the set of the k=10 modeled high-quality subgroups.
Considering the subgroup discovery methods that generate conjunctive subgroup descrip-
tions with internal disjunctions we applied the same data. However, in this case there were
even better subgroups than in the first case (not applying internal disjunctions), since the
above reference subgroups were modeled using the data generator that uses subgroup de-
scriptions without internal disjunctions. By using selectors with internal disjunctions often
(very) small but highly accurate subgroups, i.e., subgroups with a target share equal to 1.0,
can be generated due to ’overfitting’ of the description language. In general, using internal
disjunctions significantly extends the search space, and can cause a large set of subgroups
that can be described by alternative subgroup descriptions. Additionally, internal disjunc-
tions can lead to the discovery of very many subgroups that overlap significantly due to
small changes in the discovered subgroup descriptions, if one internal disjunction is added
or removed considering a specific basic subgroup description. Since the PRIM-based al-
gorithms apply a (weighted) covering step usually the set of overlapping subgroups is
already reduced. However, in order to compare these to the other algorithms, e.g., to SD-
Map, beam search and Apriori-SD that do not necessarily apply a covering technique, we
need to apply an additional post-processing step in order to enable a reliable comparison
of the results of the algorithms. Therefore, we post-processed the results of SD-Map and
beam search using a weighted covering approach, c.f., Section 3.3.2. We estimated the
quality of the best k=10 and the best k=20 subgroups retrieved by the individual subgroup
discovery algorithms. For obtaining the reference subgroups, we can apply the SD-Map
method since we utilize a common minimum support level for all the search methods.
The evaluation results are shown in the tables in Figure 8.14. We measured the number
of discovered subgroups that were also contained in the subgroup set of the reference
subgroups (Matched), and the number of subgroups that were similar to these (Similar
Match); a subgroup was put into this category, if its similarity to a subgroup contained
in the reference set was above a similarity threshold of 80%. Furthermore, we measured
the maximum, the minimum, and the mean quality of the retrieved subgroups. For the
experiments we applied the relative gain quality function, since this quality function can be
used in order to identify quite small nuggets in the data. Accordingly, a suitable minimum
support level needs to be determined. For the evaluation, we set the same low level (0.01)
for each of the search methods. The defined search space contained all 15 independent
variables of the domain.
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Matched Similar Matched Max Quality Min Quality Mean Quality

SD-Map (Reference) 10 10 2.43 1.90 2.07

Beam search (w=10) 0 0 1.68 1.32 1.51

Beam search (w=20) 1 1 2.04 1.53 1.70

Beam search (w=50) 3 3 2.04 1.76 1.85

Beam search (w=100) 5 5 2.04 1.83 1.92

Apriori-SD 10 10 2.43 1.90 2.07

Matched Similar Matched Max Quality Min Quality Mean Quality

SD-Map (Reference) 10 10 2.76 2.76 2.76

Beam search (w=10) 1 1 2.76 0.36 1.39

Beam search (w=20) 1 1 2.76 0.84 1.72

Beam search (w=50) 4 4 2.76 1.50 2.35

Beam search (w=100) 4 4 2.76 2.00 2.46

PRIM 1 1 2.76 1.90 2.20

Weighted Prim 2 2 2.76 2.04 2.39

Matched Similar Matched Max Quality Min Quality Mean Quality

SD-Map (Reference) 10 10 2.76 2.43 2.69

Beam search (w=10) 1 1 2.76 0.06 0.78

Beam search (w=20) 1 1 2.76 0.32 1.13

Beam search (w=50) 4 4 2.76 0.76 1.63

Beam search (w=100) 4 4 2.76 0.76 1.93

PRIM 1 1 2.76 1.14 1.87

Weighted Prim 2 2 2.76 1.72 2.13

Modeled Reference Patterns: Effectiveness - Conjunctive Descriptions, k = 10

Modeled Reference Patterns: Effectiveness - Internal Disjunctions, Covering, k = 20

Modeled Reference Patterns: Effectiveness - Internal Disjunctions, Covering, k = 10

Figure 8.14: Results: Evaluating the effectiveness for strictly conjunctive subgroup de-
scriptions with and without internal disjunctions, for the 10 modeled refer-
ence subgroups. For the setting using internal disjunctions we additionally
considered the 20 best (reference) subgroups. The column Matched indicates
the number of subgroups that are contained in the reference set of subgroups,
while the column Similar Matched denotes the number of subgroups that are
at least equal to any subgroup contained in the gold standard with a similarity
above 80%. The columns Max Quality, Min Quality and Mean Quality give
the maximum, minimum and mean quality of the retrieved set of subgroups.
Finally, the last column SD-Size provides the minimum and maximum size of
the contained subgroup descriptions.



170 Chapter 8: Experimental Evaluation

Results and Discussion As shown in the tables, neither heuristic method achieved
the performance of the exhaustive methods. Considering the methods that apply a descrip-
tion language using selectors with internal disjunctions, it is obvious that the beam search
approach could retrieve some of the reference subgroups using high values for the beam
width. However, even using a beam width of 100, it could only identify half of the tar-
geted subgroups reference subgroups. This confirms the expectations with respect to the
characteristics of beam search, as discussed in Section 8.2.1. Furthermore, the Apriori-
SD algorithm was able to identify the same set of high-quality subgroups as the reference
SD-Map method, as expected.
Concerning the approaches that use internal disjunctions, we also observe that beam search
with larger beam width is also able to discover more of the reference subgroups. However,
as in the case of using no internal disjunctions, concerning the number of matched refer-
ence subgroups only a minority was retrieved, even for large values of the beam width.
The basic PRIM method was only able to identify one of the best subgroups. This is prob-
ably due to its strict covering strategy, since then all instances covered by a subgroup are
removed from further consideration. The effect of the covering strategy can be estimated
by considering the low minimum quality of the discovered set of subgroups. This quality
is significantly lower compared to the Weighted PRIM or beam search approaches.
The Weighted PRIM method identified two of the best subgroups. This can probably
also be explained by the covering strategy for which overlapping subgroups obtain a qual-
ity penalty. For example, this can be observed by comparing the beam algorithm with
a width of 100 that obtained 4 of the best subgroups, compared to 2 discovered by the
Weighted PRIM method. However, the quality parameters of the subgroups identified by
the PRIM method are better, especially considering its best 20 subgroups. In general, the
performance of the Weighted PRIM method can potentially be aggravated by the minimum
support threshold applied in the algorithm: If there are very many overlapping subgroups,
then the subgroups considered as starting points in the top-down peeling phase will soon
be pruned due to the minimum support threshold, even if they are potentially promising
candidates in the following bottom-up pasting phase. Considering the quality parameters
of the subgroups we see that the Weighted PRIM method shows significantly better aver-
age quality parameters than the basic PRIM method. Moreover, it also outperforms the
beam-search method for low values of the width of the beam.
In summary, only the exhaustive methods were able to discover all of the interesting ref-
erence subgroups included in the test data set. The heuristic methods showed mixed re-
sults: As expected, beam search showed better results using an increased beam width.
For a quite large beam width it showed even better results than the PRIM methods. The
Weighted PRIM method scored better than the basic PRIM method applying a covering
strategy, but the patient search strategy could not achieve better results in our setting than
the beam search approach. In contrast to an automatic application, the PRIM-based ap-
proaches might be more interesting if the trajectory of discovered subgroups is presented
to the user for interactive subgroup selection.
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8.2.5 Conclusion

Concerning the efficiency of the different algorithms we applied data sets of small (1000
cases/instances), medium (10000 cases) and large size (100000 cases) in the experiments.
Thus, we evaluated the performance and effectiveness of the algorithms within the bounds
of up to 100000 cases and up to 15 attributes. Such data sets are often realistic for many
domains, e.g., for the medical domain, and they can still be handled by interactive ap-
proaches. As shown by the results of the evaluation, the runtime of the different algo-
rithms mainly depends on the number of attributes (selectors), the number of cases, and
the pruning/minimum support threshold. The number of selectors and the minimum sup-
port threshold affect the size of the search space, while the number of cases determines the
time spent on scanning the used data set, e.g., for evaluating a subgroup hypothesis.
With respect to the effectiveness of the algorithms, we compared the heuristic methods to
the exhaustive techniques concerning their ability to detect the k best subgroups, and also
included specific ’pathological’ patterns that are hard to detect by heuristic strategies. If
such patterns are present in the data set, then they can be considered as especially inter-
esting, since they consist of factors that are not interesting by themselves, but only in their
combination [82]. Even if the data set does not contain such pathological patterns, then
the comparison of the discovered patterns to the best ’reference’ patterns might still yield
a significant share of non-discovered, but highly interesting patterns. This can be observed
in the empirical evaluation when estimating the effectiveness of the heuristic methods.
In the context of the experiments the evaluation results indicate, that
• the novel SD-Map method is usually more efficient compared to the heuristic meth-

ods, and also scales significantly better than the exhaustive Apriori-SD algorithm.
• Furthermore, SD-Map is also significantly more effective than the heuristic tech-

niques, and also discovers subgroups with a substantially better quality.
As discussed above, the (runtime) bounds for the subgroup discovery methods, and their
applicability are determined by the applied number of cases, the minimum support thresh-
old, and the number of selectors – relating to the size of the search space. In the following,
we discuss some further issues with respect to these criteria:
• Data sets that are by orders of magnitude larger than these applied in the evalua-

tion can be problematic for all of the presented search methods, especially for an
interactive approach. For the methods that need to scan the data set multiple times
(for each subgroup hypothesis) clearly the runtime becomes a limiting factor. This
can already be observed by considering the results of the Apriori-SD method on the
large data set (100000 instances), or for beam search with a large beam width.
Intelligent sampling approaches, as discussed in Section 3.1.6 may then be a promis-
ing option for applying very large data sets: neglecting the runtime of the algorithms,
heuristic discovery methods are always applicable for large data sets. However, there
are no guarantees with respect to the interesting subgroups that they ’miss’ or ’ig-
nore’. Therefore, if SD-Map can be embedded in an intelligent sampling approach
then, then the algorithm is also applicable for potentially arbitrarily large data sets
with a guaranteed error bound (depending on the sample size) concerning the quality
of its returned results (subgroups).
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• If a very low minimum support threshold is selected, then the memory requirements
of SD-Map can be problematic, i.e., if the generated ’clever’ data structure (the
adapted FP-tree) does not fit into the main memory: However, usually the con-
structed data structure is rather compact compared to the whole data base [58]. In
general, an appropriate threshold needs to be selected by the user, who will usually
favor larger thresholds due to statistical considerations.
• If we compare the evaluation using internal disjunctions to the one not using internal

disjunctions, then we can observe the result of a (double) exponentially increasing
search space: The runtime of SD-Map increases accordingly, while the runtimes of
the heuristic methods do not seem to increase so severely. Thus, for very many at-
tributes the run-time of a heuristic search method (e.g., beam search) might be faster
than SD-Map. However, in principle this is the price to pay for the exhaustive search
process: Heuristic methods ignore paths in the search space that are considered by
the exhaustive methods. If the search space becomes larger, then more paths and
therefore also more patterns are ignored by the heuristic approaches.
In the proposed subgroup mining process, the search effort can be restricted and
focused interactively by applying background knowledge: We can apply attribute
exclusion and value exclusion/combination constraints in order to restrict the set
of selectors, especially considering internal disjunctions. Furthermore, derived at-
tributes can be a huge gain for both restricting and focusing the search effort, as
discussed in Section 9.1. Then, if the set of selectors and thus also the size of the
search space is reduced, the scalability of the discovery methods, especially consid-
ering the SD-Map algorithm, can be significantly increased further.

8.3 Summary

In this chapter we have provided an experimental for the subgroup discovery methods
described in Section 3.4, i.e., beam search, PRIM, Weighted PRIM, Apriori-SD, and the
novel SD-Map method. Concerning a theoretical evaluation of their computational com-
plexity, we refer to [48] with respect to the complexity of the PRIM method. Considering
the Apriori-SD method that relies on the basic Apriori algorithm, [2,87] provide a detailed
discussion and analysis. The SD-Map algorithm is based on the FP-growth method for
which the theoretical complexity is discussed in [58, 87].
We first described a general data generator for generating synthetic data in order to evaluate
the efficiency and effectiveness of subgroup discovery methods: For the evaluation, we
generated data sets with different sizes but the same data characteristics. We measured
the efficiency of the algorithms, i.e., their empirical scalability depending on the size of
the search space, and on the size of the used data set. Additionally, we estimated the
effectiveness of the algorithms: We applied a ’normal’ data set, and also used a special data
set containing patterns that are difficult to detect using the heuristic methods. Then, we
compared the k best results of each algorithm to the overall k best patterns. In the context
of the experiments the evaluation results indicate, that the proposed SD-Map algorithm
is usually superior to the other algorithms concerning its efficiency, and is always equal
(Apriori-SD) or substantially better (heuristic algorithms) concerning its effectiveness.
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In this chapter, we describe applications of the subgroup mining method by several case
studies. First, we discuss the application of subgroup mining for general knowledge dis-
covery and we present a case study in the medical domain of sonography. After that, we
introduce an approach of subgroup mining for quality control that was also performed in
the medical domain of sonography. In these domains, we were able to utilize structured
real-world data that was quite well suited for the subgroup mining task and did not require
extensive data-preprocessing steps. Thereafter, we provide two case studies using real-
world data in the service-support domain, and for analyzing general questionnaires. Then,
we show an application of subgroup mining for knowledge refinement demonstrated by a
case study in the domain of dental medicine.

9.1 Subgroup Mining for Knowledge Discovery

The discovery of new patterns in the data is one of the classical tasks for subgroup mining
methods. An important application in the medical domain is the identification of sophis-
ticated high risk groups, that describe groups of patients with a significantly higher risk
for a disease than the general population or the group of healthy subjects. Then, such
high-risk subgroups can be used for future screening of patients for preventive treatment.
Subgroup discovery methods, especially semi-automatic methods, c.f., [53], are often a
robust technique to be applied for high risk group detection. A related topic for subgroup
discovery and analysis is given by basic statistical analysis considering a dependent and
several independent variables to discover quite simple models; e.g., in the medical domain
the identification of single (risk) factors, i.e., subgroups containing only one selector, is a
central topic for clinical epidemiology. Given a certain disease and an exposure variable,
the influence of this specific variable is tested separately.
In the following we will describe four case studies for applying subgroup mining for know-
ledge discovery. First, we discuss the issue of using high-quality structured real-world data
and also utilizing general ’real-world’ data: In the latter case, usually preprocessing tech-
niques need to be applied. The first case study applies subgroup mining in order to identify
new, interesting and previously unknown relations concerning inter-organ associations in
the domain of sonography. The second case study utilizes subgroup mining for quality
control by profiling sonographic examiners. The third and fourth studies demonstrate the
application of subgroup discovery in a technical service support domain, and for analyzing
general questionnaires.
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9.1.1 Data Preparation for Improving the Quality of the Data

It is a well known issue that data preparation is a key step in the data mining process.
Usually more than half [32, 60] of the time of a data mining effort is devoted to data
preprocessing, e.g., data cleaning, integration and transformation. This refers to improving
the quality of the data and to make it finally applicable for the data mining algorithms. For
the presented subgroup discovery approach we require attributes to be nominal so numeric
attributes need to be discretized. Furthermore, often attributes need to be aggregated into
derived attributes for statistical reasons since the applied subgroup quality functions are
usually based on statistical tests. In addition to the set of attributes also the concept(s) of
interest needs to be defined suitably, e.g., by data abstraction, c.f., [89, 92].
For our case studies we encountered quite different data sets with respect to their quality.
The data obtained in the medical domain already had a rather high quality: we were able to
utilize data that was acquired using a fielded documentation and consultation system. Con-
cerning this data we did not need to apply data preprocessing and cleaning steps, since the
data was acquired using a structured data acquisition strategy of the system. The necessary
steps that were implemented in order to make the data applicable for subgroup discovery
and analysis consisted in deriving further virtual attributes, i.e., applying abstraction know-
ledge, and tuning the existing derived attributes in order to minimize missing values. We
did not need to specifically consider numeric attributes since the data base usually con-
tained nominal abstractions that were derived from the numeric attributes. Therefore, the
data was rather suited for the data analysis task applying subgroup mining.
On the other hand, we also used other real-world data for which we applied (simple) data
preparation steps, i.e., in the case study performed in the service support domain and for
the case study for evaluating general questionnaires. For example, numerical attributes
needed to be discretized such that this data was usable in the subgroup mining task. There-
fore, we encountered the usual problem that data-preprocessing and cleaning needed quite
a lot of time compared to the actual data mining step, as confirmed by other case studies,
e.g., [32, 60]. We will discuss the approach, the challenges, and the techniques that we
applied in the individual case studies in detail. Additionally, we also applied background
knowledge in order to increase the interestingness of the patterns. For example, attributes
were aggregated into derived attributes; for other attributes, we applied value aggregation
constraints to arrive at meaningful and statistically valid data. Then, these steps were in-
tegrated into the general active subgroup mining approach, and enabled an intuitive an
incremental adaptation of the abstractions, which were often ’finalized’ during the anal-
ysis. We will discuss the impact and benefit of applying background knowledge in the
respective case studies.

9.1.2 Mining Subgroups in the Medical Domain of Sonography

In this section we describe a case study for the application of the knowledge-intensive pro-
cess in the medical domain of sonography that we have presented in [14]. The goal of the
study was to identify new and interesting associations, especially focusing on inter-organ
relations, e.g., identifying association between liver and kidney diseases and symptoms.



9.1 Subgroup Mining for Knowledge Discovery 175

The SONOCONSULT System

Our context is a structured documentation system in medicine, being used for documenting
the results of specialized examinations. The cases are detailed descriptions of symptoms
and findings of the examination(s), together with the inferred diagnoses (faults), i.e. a
case consists of a list of attribute-value pairs (observations) together with a list of solution
elements. Both observations and diagnoses may be ordered hierarchically due to the struc-
tured data gathering strategy, i.e., findings are usually first specified in general terms and
then further detailed with follow-up questions, and diagnoses have a specialization hierar-
chy as well. This setting yields a high quality of the case base with detailed and usually
correct case descriptions.
The case study utilizes cases taken from the knowledge-based documentation and consul-
tation system for sonography SONOCONSULT [62, 127], an advanced and isolated part
of HEPATOCONSULT [28]. SONOCONSULT is in routine use in the DRK-hospital in
Berlin/Köpenick and has been developed with the knowledge system D3 [125]. In ad-
dition to an documentation system, SONOCONSULT also infers diagnoses with heuristic
expert knowledge: The derived diagnoses are presented by the system, but the user has to
enter his own final case comment in a free text field. SONOCONSULT documents an aver-
age of 300 cases per month and generates a conventional report with a rule-based template
from the structured input entered in hierarchical questionnaires. The derived diagnoses
are usually consistent with the documented findings of a domain specialist as shown in
a medical evaluation (c.f. [62]), resulting in a high-quality case base with detailed case
descriptions. The domain ontology of SONOCONSULT contains 427 basic attributes with
about 5 symbolic values on average, 133 symptom interpretations, which are rule-based
abstractions of the basic attributes, and 221 diagnoses.

Mining Interesting Subgroups Concerning Inter-Organ Relations In
Sonography

For the first case study the applied SONOCONSULT case base contained 4358 cases. The
potentially huge search space for subgroup discovery is indicated by the size of the domain
ontology of SONOCONSULT that consists of 560 basic attributes, not including 221 diag-
noses contained in the SONOCONSULT domain since the diagnoses are usually inferred
by special basic attributes directly. Subgroup discovery was performed applying a beam
search approach with a beam size of 10. The discovered subgroups were evaluated by do-
main specialists according to (clinical) novelty, interestingness, and actionability aspects,
utilizing the relative gain quality function qRG as defined in Section 3.1.5.
In diagnostic domains often data abstraction can be applied according to a solution hier-
archy such that the set of raw attributes, i.e., the low-level objects, are aggregated into
higher-level (intermediate) findings and solutions. These often correspond to known diag-
nostic concepts. In order to increase the interestingness of the mined results the domain
specialist focused on high-level abstractions such that the correlations and dependencies
between the raw attributes were formalized by abstracted attributes in order to capture
known relations. These could also be confirmed by subgroup discovery experiments uti-
lizing the raw attributes and analyzing their associations.
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The expert utilized 45 derived attributes, that consisted of symptom interpretations directly
indicating a diagnosis and intermediate concepts which are used in clinical practice, for
example pleura-effusion, portal hypertension, or pathological gallbladder status.
Furthermore, constraints were formalized, that prevented the combination of certain at-
tributes, to restrict the search space. Some examples are depicted in the Table 9.1, where
the dependent and independent variables are directly related to each other.

Target Variable Independent Variable
Chronic Pancreatitis Pancreas Disease
Pancreas Disease Carcinoma of the Pancreas
Body Mass Index Relative Body Weight

Table 9.1: Examples of known/uninteresting relations.

The newly defined abstraction knowledge was applied extending the search space to the
expert-defined attributes. For each attribute a in the set of derived attributes and each value
vi ∈ dom(a), a subgroup discovery context SC ai ∈ ΩSC was generated using the binary
target variable (a = vi).
The impact of the added background knowledge was proven by a greater acceptance of
the subgroup discovery results by the expert. However still too many subgroups were not
interesting for the expert, because too many normal values were included in the results,
e.g., liver-size = normal, or fatty liver = unlikely. This motivated the application of ab-
normality information to constrain the search space to the set of abnormal values of the
attributes. Additionally, the expert suggested to group sets of values into disjunctive value
sets defined by abnormality groups, e.g., combining the values possible and probable for
some attributes. Furthermore, ordinality information was applied in order to construct
aggregated values of ordinal attributes like age or liver size.

Target Variable Def. Pop. Subgroup Description
Aorta-sclerosis = calcified 1418 Pancreas Disease={probable; possible}
Aorta-sclerosis = calcified 75 Pancreas Disease={probable; possible}

AND Ascites = present

Table 9.2: Example: Missing value problem.

Further investigation showed that missing values play a central role in the discovery pro-
cess. Sometimes the defined population significantly decreased, when adding a selection
expression to a subgroup description, compared to the parent subgroup. An example is
given in Table 9.2; the defined population is indicated in the second column.
In this example, the attribute ascites has many missing values. This problem was solved by
adapting the derived attributes to indicate when a missing value corresponds to the value
’disease not present’. Then, the final set of interesting subgroups was obtained.
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Results

Figure 9.1 shows exemplary discovered subgroups with respect to the target variable gall-
stones, that were considered as interesting for clinical practice (lines 1-6). All these sub-
groups were at least significant at the 10−6 level. The individual subgroups are shown in
the rows of the table. Subgroup parameters given in the columns are: (Subgroup) Size,
TP (true positives), FP (false positives), Pop. (defined population size), RG (relative gain
qRG), and Bin. QF (the value of the binomial quality function qBT , c.f., Section 3.1.5).
The domain specialists evaluated the discovered subgroups concerning their interesting-
ness for clinical practice: For them, the relative gain was the primary criterion to rank the
subgroups in a first step. Then, as a combined (helper) measure for subgroup size and gain
quality, the value of the binomial quality function qBT was used for post-processing the set
of subgroups.

Target Variable: Gallstones

# Age Sex Liver size Aorta sclerosis

1 2 3 m f 1 2 3 4 5 6 n c Size TP FP Pop. p0 p RG Bin. QF

1 X X X X X X 89 37 52 3171 0.172 0.416 1.71 6.17

2 X X X X X X X 119 46 73 3171 0.172 0.387 1.5 6.31

3 X X X X X X X 132 51 81 3171 0.172 0.386 1.5 6.66

4 X X X X X X 190 68 122 3177 0.172 0.358 1.3 6.99

5 X X X X X 207 72 135 3171 0.172 0.348 1.23 6.92

6 X X X X X X X 64 22 42 3171 0.172 0.344 1.2 3.67

7 X 1651 414 1237 3743 0.177 0.251 0.51 10.57

8 X X 1334 310 1024 3749 0.177 0.232 0.38 6.66

9 X 1776 408 1368 3749 0.177 0.23 0.37 8.1

10 X X X 894 178 716 3177 0.172 0.199 0.19 2.52

Age: Sex: Liver size: Aorta sclerosis:

1 = <50 m = male 1 = smaller than normal 4 = slightly increased n = not calcified

2 = 50-69 f = female 2 = normal 5 = moderately increased c = calcified

3 = >=70 3 = marginally increased 6 = highly increased

Figure 9.1: Examples of the discovered subgroups: The clinically interesting subgroups
are shown in lines 1-6. For example, the first line depicts the subgroup (89
cases) described by Age ≥ 70 AND Sex=female AND Liver size={slightly or
moderately or highly increased} and Aorta sclerosis=calcified with a target
share (gallstones) of 41.6% (p) compared to 17.2% (p0) in the general popula-
tion, with a relative gain of 171% (RG).

Discussion

Especially interesting for the expert proved the situations, when a specialization of a sub-
group significantly improved its quality (#5 vs. #2). Additionally, an important criterion to
determine sound subgroups was the comparison of possible value combinations for ordinal
and nominal attributes (e.g., #6 vs. #2, or #3 vs. #2).
For clinical practice, the expert preferred small subgroup descriptions if the subgroups
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were comparable concerning the relative gain measure. This is in line with the heuristic
of preferring simpler knowledge for actionability. However, significant improvements in
a subgroup specialization often countered the increase in the length of the subgroup de-
scription, e.g., #7, #9, #10 vs. #1. Furthermore, the baseline qualities of known factors
(e.g., age, gender) (c.f., #6 to #10) were also very important for the domain specialist as
a reference for subgroup comparison. In summary, the interpretation and judgment of the
subgroup discovery results ultimately depends on the expert: Even if a suitable quality
function is applied, the expert still needs to semantically interpret the subgroup descrip-
tions for the final assessment of a subgroup. For the above examples shown in the table,
subgroup #1 was considered the most interesting subgroup.

9.1.3 Subgroup Mining for Quality Control

In this section we describe a case study of subgroup mining for identifying characteristic
profiles of examiners concerning their documentation habits that we presented in [15].
The case study was performed in the medical domain of sonography using cases from the
SONOCONSULT system described in Section 9.1.2. We first introduce the analysis task
and its clinical relevance. Then, we present and discuss the results of the case study.

Profiling Examiners for Quality Control

In the medical domain quality control is becoming more and more important (e.g., [157]).
Then, intelligent subgroup mining methods can be applied for data- and interest-driven
analysis: Our application domain is the domain of sonography. Sonographic examina-
tion and documentation is highly dependent on the skills of the examiners. Individual
examiners rotate according to a defined schedule (e.g., every 6 months). Before perform-
ing the examinations, they get special training and can always consult more experienced
colleagues. However, while performing the examination they are on their own. Then, it
is easy to see that the quality of the examinations is dependent on the individual experi-
ence and skills of the examiners. Therefore, documentation and interpretation habits of
examiners may differ significantly, which is problematic considering the consistency and
quality of the documented examinations; e.g., some examiners may be more competent in
identifying specific symptoms concerning certain diagnoses or organ systems than others.
While a gold standard for the correct examination and documentation is not available in
sonography, the detection of systematic discrepancies among different examiners is clin-
ically important in itself. To identify deviations with respect to the documentation habits
of individual examiners, subgroup mining is used to discover novel and unexpected (docu-
mentation) patterns, i.e., certain combinations of symptoms that are observed significantly
more (in-)frequently in conjunction with certain examiners. Then, appropriate measures
such as special training courses or discussion with colleagues can be suggested.
For this case-study we utilized cases from the SONOCONSULT system described above in
Section 9.1.2. The applied SONOCONSULT case base contained 7096 cases.
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Results

The domain specialist performed subgroup mining considering specific diagnostic areas
and organ systems, e.g., liver and kidney diseases, using the VIKAMINE system. Then,
the relevant factors that were important for deriving the diagnoses of a certain area were
identified; these were then provided to the subgroup method in order to constrain the search
space and to focus the search method.
Furthermore, the domain specialist provided normality information to filter out some un-
interesting normal values, e.g., liver vessels = normal. Aggregated values were defined
to build disjunctive values, e.g., liver plasticity = moderately or strongly reduced. Addi-
tionally, several derived attributes (abstractions) were defined to limit missing values. For
example, diagnostic attributes like cirrhosis of the liver were either defined or tuned in
order to minimize missing values by providing a default normal value. After that, the pro-
posed process model was applied, starting with automatic methods: Thereafter, the results
were analyzed and refined interactively.

# E LP LS LE LV LC Subgroup Parameters

mr sr uk kn mi si rp tp po pr Size TP FP Pop. p0 p RG

1 E1 X 13 0 13 2295 0,164 0 -1,19

2 E2 X 689 25 664 2294 0,123 0,036 -0,8

3 E3 X X X X 129 91 38 2294 0,129 0,705 5,12

4 E3 X 248 116 132 2295 0,128 0,467 3,01

5 E3 X X X 385 131 254 2294 0,129 0,34 1,87

6 E3 X X 420 132 288 2295 0,128 0,314 1,64

7 E3 X 13 4 9 2295 0,128 0,307 1,59

8 E3 X X 102 0 102 2294 0,13 0 -1,14

9 E5 X 13 9 4 2295 0,057 0,692 11,8

10 E5 X X X 227 85 142 2295 0,057 0,374 5,89

11 E5 X 248 87 161 2295 0,057 0,35 5,45

12 E5 X X 420 96 324 2295 0,057 0,228 3,18

13 E5 X X 440 56 384 3918 0,053 0,127 1,46

14 E5 X X X X X X X 271 39 232 2294 0,057 0,143 1,61

15 E5 X 221 6 215 2295 0,057 0,027 -0,55

16 E5 X X X X X 109 0 109 2294 0,058 0 -1,06

LP = Liver Plasticity LS = Liver surface LC = Cirrhosis of the liver

mr = moderately reduced uk = uneven, knotty po = possible

sr = strongly reduced kn = knaggy pr = probable

LE = Liver Echogenicity LV = Liver Vessels

mi = moderately increased rp = rarefication of portal branches

si = strongly increased tp = tapering of portal branches

Table 9.3: Examples of discovered subgroups and individual factors concerning documen-
tation habits of individual examiners for liver diseases; these were assessed as
interesting by a domain specialist. The first line depicts the subgroup (target
variable Examiner=E1) described by Liver surface = knaggy with a target share
of 0% (p) in the subgroup compared to 16.4% (p0) in the total population with
a relative gain of -119% (RG).
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The cases that were used in the case study were acquired by 8 different examiners (E1 - E8,
shown in column E). We used the relative gain quality function qRG (c.f., Section 3.1.5),
which was easy to interpret for the experts. Then, deviations concerning findings or com-
binations of findings were measured.
Each row of the Table 9.3 depicts a subgroup with the subgroup parameters Size (subgroup
size), TP (true positives), FP (false positives), Pop. (the defined population), the default
and subgroup target share p0 and p, respectively, and RG, i.e., the value of the relative gain
quality function qRG.
Applying the process model, the domain specialist considered the visualization compo-
nent very helpful, since it enabled an easy step by step analysis: Single factors could be
identified first, and then subgroups could be refined. Furthermore, subgroups discovered
by the automatic search method were also evaluated and refined interactively.

Discussion

The results in Table 9.3 show significant differences in the documentation habits of the
individual examiners. Negative relative gain (RG) values indicate that the examiner doc-
umented/interpreted certain findings less frequently than his colleagues, while a positive
relative gain indicates the opposite. For a comprehensive overview, we also show some
single factors in addition to significant factor combinations, which were also very interest-
ing for the domain specialist. Especially significant deviations are shown in lines 3, 10 and
11, which are very descriptive for the respective examiners. Line 3 also shows a significant
correlation with the diagnosis cirrhosis of the liver combined with the relevant findings.
Lines 1, 7, and 9 show a surprising result: The examiners E3 and E5 are the only examiners
that document a specific finding, i.e., Liver surface = knaggy in comparison to their col-
leagues. Further investigation turned up that the specific attribute value was added to the
consultation system in a later step. Therefore, only some examiners had the opportunity to
use this finding.
Furthermore, as shown in the table, examiner E5 (lines 10-16) deserves special attention,
since the shown documentation habits differed most significantly compared to the peer
examiners. Especially interesting were the subgroups depicted in line 13, 14 and 16: It
is easy to see that examiner E5 documents a cirrhosis of the liver = probable or possible
more frequently than his peers. An even more significant subgroup is shown in line 14
that shows a specialization of the subgroup in line 13. For the very indicative finding
combination in line 16 (regarding the diagnosis cirrhosis of the liver) even no case of
E5 could be identified. It is striking that E5 uses very special patterns for inferring the
diagnosis cirrhosis of the liver compared to his colleagues, e.g., symptoms of plasticity are
much more frequent (lines 10-12) whereas liver surface = uneven, knotty is significantly
infrequent (lines 15, 16).
In summary, these results show a high variability of documentation and interpretation
habits of the different examiners. They indicate the need for further prospective studies.
These results are a starting point for initiating a discussion on training or standardization
actions to increase the inter-examiner homogeneity of the sonographic reports.
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9.1.4 Subgroup Mining for Improving Service Support

In the following we describe a case study in the service support domain. Unfortunately,
at the moment we are only able to describe the case study in a very general way: The
company that we obtained the data from did not yet want publish the results of the case
study, i.e., they did not want to make the results available to the general public yet.
In any case, the general scenario is as follows: If a customer experiences a fault concerning
a certain product, then he/she may call a respective call-center. The call-center documents
the case, i.e., the customer is either asked for important observations or these are obtained
by the service-support system in order to clarify the actual fault. Then, if a solution can
be determined it is proposed to the customer, and the case is marked as solved, otherwise
it is marked as unsolved. An additional complication occurs, if the determined solution is
actually the wrong solution. Then, the customer is usually not satisfied and will call again.
We obtained a sample of 20.000 cases taken from a database that is originally more than
one magnitude larger. The domain contained more than 3.000 attributes from which about
20 were considered interesting for the analysis. We applied common data preprocessing
techniques, e.g., discretizing numeric attributes and removing unnecessary attributes.
In the analysis we aimed to discover new knowledge concerning several analysis tasks:

• detecting dependencies between groups of observations and the state of the solution,

• relating the dependencies to the costs associated with the given observations,

• identifying spatial dependencies, e.g., corresponding to deviations concerning the
individual call-centers and differences of e.g., rural vs. urban regions,

• discovering associations between solution categories, groups of observations, and
spatial categories, and

• finding potential associations between the spatial attributes, the observations, and
the solution state which can be used to indicate differences concerning the quality
levels of the determined solutions.

We applied background knowledge in order to aggregate several attributes into more mean-
ingful attributes corresponding to groups of observations and groups of solutions. For
some attributes we could also formulate appropriate constraints to generate aggregated val-
ues that contained more meaningful and statistically valid values. Furthermore, we needed
to group the individual customers according to their spatial categories, and introduced
abstracted attributes considering the solution status and the fact if the provided solution
was really correct, or if the customer called again. Then, this indication also proved very
interesting in the analysis.
In the case study we applied the novel SD-Map method for subgroup discovery: The
method scaled very well considering the size of the search space, and the number of con-
sidered cases. In the interactive approach, the SD-Map algorithm then also provided a very
good user experience by short feedback cycles. We obtained results that indicated signif-
icant dependencies between the individual regions, the observation and solution groups,
and the true status of the solutions.
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9.1.5 Evaluation and Analysis of Questionnaires

In this section we describe a case study that shows the applicability of the subgroup min-
ing approach for the general evaluation of questionnaires. An example of this approach is
demonstrated by using data of an evaluation study in the domain of a medical case-based
training system. More specifically, the data that was used for the case study was obtained
during the evaluation of the case-based training system d3web.Train in the medical do-
main of rheumatology. The data was acquired in a follow-up study to the study presented
in [131] and includes data collected from paper questionnaires, on-line questionnaires,
clickstream data and usage statistics when finishing a case of the system. The case study
aimed to provide a comprehensive survey toward the indication of the impact and bene-
fit of the capabilities of the system and the performance of the students. Then, descriptive
and explaining subgroups were discovered for each of the analysis goals. We present some
exemplary results below.
In the following we first shortly describe the d3web.Train system. Then, we present the
general evaluation setting and provide some exemplary results that we obtained during the
case study. After that, we discuss these results in detail.

The d3web.Train System

d3web.Train is an intelligent case-based training system that is provided on the web. Dur-
ing the training sessions, the system aims to enable the student to act as a remote doctor
working on an electronic patient record, i.e., a virtual patient. In order to achieve this goal
d3web.Train facilitates easy access to five major interactions: (1) Ordering examinations,
(2) interpreting results, e.g., pictures like a radiograph , (3) choosing a set of diagnoses ,
(4) making treatment decisions, and (5) planning follow-up treatment.
Commonly, the actions 2 and 3 are most often applied by the students. Therefore during
the study [131] only these two actions types were considered. This simplifies the user
interface and allows the students to work through a case quite fast. Furthermore, the system
includes intelligent and adaptive help techniques in order to support the student during the
interaction sessions.

Results

The applied case base obtained from the study consisted of 56 cases that were provided in
CSV Format. The domain ontology consisted of 67 attributes, with 47 nominal and 20 nu-
meric attributes, e.g., attributes corresponding to the sex of the students (Sex), whether the
students collaborated (Collaboration), the training time per case (Training Time), whether
the students needed a shorter or longer training phase (Training Phase), the outcome of
the training, i.e., the test result (Result), or the general acceptance or rating of the system
(Course Rating) as assessed by the students (the described attributes are also contained in
the subgroup results in table 9.4). The nominal attributes consisted of 42 binary attributes
and 5 ordinal attributes.
For subgroup mining, the domain specialist discretized the numeric attributes manually or
using an equal-width binning method. Furthermore, the 42 most important and interesting
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attributes were selected from the set of 67 attributes in order to prevent overfitting due to
the limited number of cases and the curse of dimensionality.
We applied the SD-Map method utilizing the classic binomial-test quality function and
restricted the length of a subgroup to 3 selectors for easier understandability and inter-
pretability for the domain specialist. Strictly irrelevant subgroups were excluded in order
to minimize overlapping and redundant subgroups. Furthermore, the minimum support
was restricted to a minimum of 5 positive instances in order to guarantee statistical signif-
icance even in the presence of a small sample size. Additionally, we applied background
knowledge to improve the representational expressiveness of the subgroup descriptions:
For ordinally scaled attributes we derived aggregated values by applying ordinal con-
straints to arrive at more meaningful subgroup descriptions. Then, we formulated sub-
group discovery contexts for each attribute and attribute value as the target variable, in-
cluding the derived ordinally aggregated values. This resulted in a quite large search space
given by the 42 attributes.
The domain specialist evaluated the discovered subgroups concerning their interestingness
and unexpectedness: The relative gain measure was the primary criterion to rank the sub-
groups in a first step, but also the subgroup size played an important role. The subgroups
were evaluated individually considering both factors, focusing on the larger subgroups
for subgroups with a similar quality. Examples of the discovered subgroups that the do-
main specialist considered interesting are given in Table 9.4. The individual subgroups are
shown in the rows of the table. Subgroup parameters given in the columns are: (Subgroup)
size, the target share in the general population p0 and in the subgroup (p), and the relative
gain value, c.f., Section 3.1.5.

No. Target Subgroup Description Size p0 p Rel. Gain
1 Collaboration=Major Sex=female AND 12 0.29 0.67 1.87

Result=Very Good
2 Collaboration=Major Result=Very Good 20 0.27 0.4 0.68
3 Collaboration=Major Sex=female 19 0.29 0.42 0.66
4 Result=Very Good Learning Phase = Some AND 8 0.53 0.99 1.88

Net Competence = Minor AND
Sex=female

5 Result=Very Good Training Time = Minor AND 16 0.548 0.813 1.07
Net Competence = Minor

6 Result=Very Good Net Competence = Minor AND 16 0.53 0.75 0.87
Sex=female

7 Result=Very Good Sex=female 35 0.46 0.52 0.21
8 Result=Very Good Course Rating=Good AND 13 0.53 0.85 1.26

Net Competence = Minor AND
Sex=female

Table 9.4: Examples of discovered subgroups. The first line depicts the subgroup (target
variable Collaboration=Major) described by Sex=female AND Result = Very
Good with a target share of 67.0% (p) in the subgroup compared to 29% (p0) in
the total population with a relative gain of 187% (Rel. Gain).
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Discussion

The results are shown in Table 9.4: We focus on the aspects whether the students collab-
orated and consider the test result of the students. Female students generally collaborated
more often (subgroup #3), as did the students that achieved very good test results (sub-
group #2). Then, the specialization taking both factors into account shows a significant
increase as well (subgroup #1).
Considering the test results, female students achieved somewhat better test results than
their male counterparts (subgroup #7). What proved quite interesting and unexpected was
the fact that female students with a minor net competence (subgroup #6) obtained quite
good results. This is even more significant in the subgroups #4 and #5 where this is dif-
ferentiated for the students that needed a minor to medium training time and the students
that were open-minded concerning web-based training systems even if they had very little
previous experience with such systems (subgroup #5 is given as a reference for this effect).

9.2 Subgroup Mining for Knowledge Refinement

In Section 6.2 we presented a method for interactive knowledge refinement using subgroup
mining. In the following we present a case study for the described method: First we in-
troduce the applied medical domain (dental medicine) and describe the knowledge system
that was used for data acquisition. After that we present practical experiences with the
described approach.

9.2.1 The Prothetic System

The case study was conducted with a consultation and documentation system for dental
findings regarding any kind of prosthetic appliance. The system was developed by the
department of prosthodontics at the Würzburg University Hospital in cooperation with the
department of computer science VI of the University of Würzburg. The knowledge base
was developed by the domain specialists using the knowledge system D3 [125].
The systems aims to decide about a diagnostic plan using the clinical findings to accom-
modate the patient with denture. In the first (diagnostic) level the system proposes the
teeth that could be conserved and the teeth that should be extracted.
The cases always contain the standard findings acquired in the first consultation with the
patient, and additional findings from x-ray examinations, e.g., abnormal x-ray findings
(apical, periradicular), grade of tooth lax, endodontic state (root filling, pulp vitality), root
quantity, root length, crown length, level of attachment loss, root caries, tooth angula-
tion and elongation/extrusion. The cases are manually entered by the examiners using an
interactive dialog. For a given tooth all findings are stored in a single case in a data base.
In the knowledge base each finding obtains a point score depending on its quality. The
outcome of the addition of the single scores is the dental score of the examined tooth. If
the total dental score is less or equal than 40 points, then the tooth should be conserved. If
the dental score is greater than 40 points, then the tooth has to be extracted (EX).



9.2 Subgroup Mining for Knowledge Refinement 185

The system tries to support the dentist with time-efficient planning of patients’ denture.
Additionally, it should increase the efficiency of clinical work by chairside taking findings
that are immediately translated to a prosthodontic therapy decision.
In the future, it is also envisioned to use the diagnostic decision tool as a knowledge-based
system for dental student education in order to train the ensuing diagnostic work up. Then,
students can learn recognition and interpretation of symptoms and clinical findings by
comparing their diagnosed solutions with the derived solutions of the system.

9.2.2 Results

To assess the quality of the system we compared the results of the system with the solutions
of a domain specialist, both using the same set of findings. The initial case base contained
802 cases. 24 cases were removed from the case base, because the corresponding teeth
had been extracted by prosthodontic reasons during planning denture. Although these
teeth had a better dental score their extraction (EX) was decided, e.g., to prevent irregular
construction in denture which can cause problems in future.
Finally, the applied case base contained 778 cases corresponding to 778 examined teeth.
We investigated the diagnosis corresponding to tooth extraction/non extraction. Consider-
ing this diagnosis the case base contained 108 false positive and 670 correct cases without
any refinement of the knowledge base.
The subgroup mining approach for knowledge refinement was performed in two phases.
We presented first results in [6] where we managed to reduce the error rate by 50%. After
that, we were further able to improve the knowledge system to a final accuracy/precision of
95% as described in detail below. Especially the subgroup introspection methods discussed
in Section 5 were essential tools for the domain specialists performing the knowledge
refinements in the second phase.

Knowledge Refinement - Phase I

First subgroup mining efforts turned out unexpected subgroups with a very high share of
incorrectly solved cases. However, some subgroup descriptions were very difficult to in-
terpret by the domain specialist, since they contained finding combinations that should
establish the diagnosis EX categorically. Therefore, the domain specialist provided im-
mutable test knowledge represented as subgroup pattern constraints. Examples are shown
in Table 9.5. The given subgroup descriptions indicate certain knowledge, when the diag-
nosis EX should be categorically established.
Using these subgroups the domain specialist was immediately able to locate incorrect
cases, due to problems concerning data acquisition, i.e., noise in cases. Either the cases
contained a false solution or incorrectly entered attribute values. In total, 19 cases were
corrected: 16 contained false diagnoses, and 3 contained incorrect case descriptions.
Using the refined case base further analysis by automatic subgroup mining turned up sev-
eral subgroups which were assessed as dubious by the expert, e.g., a subgroup described
by tooth lax = medium ∧ tooth position = 2 ∧ tooth quadrant = 2. However, these
subgroups had a high share of incorrectly solved cases.



186 Chapter 9: Experiences – Case Studies

No. Subgroup Description (findings) Diagnosis
1 tooth lax = medium ∧ attachmentloss = strong EX
2 attachmentloss = very strong EX
3 tooth lax = strong ∧ root quantity = 3 EX
4 tooth lax = strong ∧ root caries = deep caries EX

Table 9.5: Examples for immutable test knowledge.

Since the combined potential faulty factors did not indicate anything particular, the domain
specialist checked the contained cases. It turned out, that the false positives and false
negatives with respect to the diagnosis EX had a high share of incorrect case descriptions
and incorrectly assigned solutions. In total, 12 further cases were fixed.

No. Subgroup Description Diagnosis Points
1 abnormal x-ray = only apical EX 10→ 5
2 tooth lax = medium ∧ root length = longer than crown length EX -20
3 tooth lax = minor ∧ attachmentloss = strong EX -20
4 root caries = minor or on surface EX 10→ 5
5 tooth lax = none ∧ attachmentloss = strong ∧ endodontic state = possible EX -10

Table 9.6: Examples of discovered subgroups and the according refinements, both for
Phase I and Phase II of the case study.

Using subgroup mining for the refinement of the knowledge system we managed to im-
prove the knowledge base by reducing the number of incorrectly solved cases down to 54
cases: The domain specialist tagged several subgroups mined by the system as significant,
which were then used for knowledge base refinement. We modified and added several
rules, examples are given in Table 9.6.
Subgroup description #1 is an example for a simple modification. For abnormal x-ray =
only apical we modified the score, such that the rule only contributes 5 points. Considering
the last two subgroup descriptions, the corresponding rules exemplify two general mecha-
nisms: In rule #2 the condition root length = longer than crown length counts as negative
for extraction, and relativizes the factor tooth lax = medium which is positive for extrac-
tion. Such an interaction can also work the other way round, i.e., when a positive factor
relativizes a negative one. Then, for extraction, we would have to add points, e.g., for tooth
lax = medium and attachmentloss = minor. For subgroup description #3 the selectors tooth
lax = minor and attachmentloss = strong are both positive for extraction, but since they
are assessed independently in the rule base they should not be over-emphasized by being
counted twice. Therefore, the score points of the corresponding rules were decreased.
The system also discovered some subgroups that could not be interpreted by the experts
afterwards and thus were ignored, e.g., tooth lax = medium ∧ root quantity = 1.
In summary, we managed to reduce the number of incorrectly solved cases from 108 to 54
by 50% in the first phase. In consequence, we increased the precision of the knowledge
base from 86% to 93%.



9.3 Summary 187

During the case study especially the interactive part of the method was very well accepted
by the domain specialist, who was supported by the presented visualization methods and
could directly inspect and change the subgroups and cases by himself. Furthermore, the
domain specialist considered it very helpful and important to stay in full control of the
refinements during the steps of the refinement process.

Knowledge Refinement - Phase II

The experiences obtained throughout the first part of the case study motivated the appli-
cation of further methods for subgroup introspection, since the remaining 54 incorrectly
solved cases contained very small subgroups of erroneous cases. Thus, these ’hot spots’
needed to be analyzed in detail, either statistically or by viewing the detailed cases. In this
phase, we were also able to locate further erroneous case descriptions due to the detailed
introspection facilities. The domain specialist identified 4 further cases that had either in-
correct case descriptions or wrongly assigned diagnoses. In addition, one further case was
identified that had been extracted due to prosthodontic reasons. Thus, this case was also
removed from the case base, which then consisted of 777 cases in total. Considering these,
the case base contained a set of 53 incorrectly solved cases.
Concerning the subgroup introspection techniques, both the presentation of characterizing
subgroup factors and exemplifying cases were key features for the domain specialist, who
performed the analysis. Furthermore, the exemplification method allowed for a compre-
hensive overview on the sub-population defined by a small set of exemplary cases which
was very helpful throughout the analysis.
Examples for further rules that were added in phase II of the project are given by the
subgroup descriptions #4 and #5 shown in Table 9.6. These were observed in small sub-
populations, and therefore the introspection techniques proved highly useful in determin-
ing and validating such relations. Rule #4 is similar to rule #1 while it was observed in
a significantly smaller number of cases. The highly specific rule #5 is an exception rule
similar to rule #2: Factor tooth lax = none observed in that situation is a strong factor
which counts as negative for extraction. So far, we were able to improve the knowledge
base by reducing the number of incorrectly solved cases by 61% from a total of 107 (108)
to 42. Thus, we managed to improve the precision of the knowledge base from an initial
accuracy of 86% to the final accuracy of 95%.

9.3 Summary

In this chapter we have presented several case studies for the application of the proposed
knowledge-intensive active subgroup mining approach. Focusing on a knowledge discov-
ery task, the techniques were applied in several domains, i.e., in the medical domain, in
a technical domain, and for evaluating and analyzing questionnaires. As a subtask of the
knowledge discovery paradigm we showed how the subgroup mining approach can also be
used for general quality control. Furthermore, we described the application of subgroup
mining for interactive knowledge refinement using data from a fielded knowledge system
in the domain of dental medicine.
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We presented and discussed the results of the case studies that show the benefit and appli-
cability of the proposed methods. We especially discussed how the application of back-
ground knowledge, the visual subgroup mining approach, and the subgroup introspection
techniques helped the users during the discovery, and analysis steps.
In summary, the proposed techniques proved essential when performing the case studies:
The users evaluated the visual techniques of great importance since they were enabled to
stay in full control of the discovery process. Furthermore, the acceptance of the discovered
patterns was greatly increased in contrast to applying only automatic methods. Including
background knowledge to focus and restrict the subgroup discovery process proved essen-
tial in order to obtain meaningful and interesting subgroups. Furthermore, the subgroup
introspection techniques were rated as especially useful to get alternative views on sub-
groups. Then, additional evidence could be retrieved and furthermore typical or extreme
cases of a selected subgroup could be analyzed in detail, which was also especially helpful
in the knowledge refinement application.
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10 Summary

Data analysis and data mining is already widely applied and still becoming increasingly
important in the world of today. The mining task, i.e., discovering novel, potentially useful
and interesting knowledge from (large) databases is still challenging. Subgroup mining,
as a broadly applicable subfield of data mining and knowledge discovery often suffers
from large search spaces if these are not constrained sufficiently. Furthermore, especially,
novelty and interestingness criteria of the user are often hard to satisfy if a lot of back-
ground knowledge about the applied domain is already available. In order to improve the
described situation, we have presented several novel techniques for knowledge intensive
active subgroup mining. These include efficient and effective subgroup discovery meth-
ods, background knowledge in order to constrain and focus the subgroup mining method,
techniques for active and user-guided subgroup introspection and analysis, and visualiza-
tion methods to guide the mining phase itself and to interpret and evaluate its results.

10.1 Methods for Knowledge-Intensive Active
Subgroup Mining

In order to enable effective and efficient methods for subgroup discovery, we have pre-
sented the novel SD-Map algorithm that is an exhaustive method only depending on a
minimum support threshold. As seen in the evaluation (c.f., Chapter 8), SD-Map provides
significant time and quality improvements compared to the standard methods.
Concerning the knowledge-based component of the process, we have described how to
integrate several classes and types of background knowledge into the mining process in
order to focus the search process and to constrain the search space. Constraint knowledge,
ontological knowledge and abstraction knowledge can be applied for this task: Constraints
are given by low-level knowledge that is simple to apply; ontological knowledge is high-
level knowledge that is easy to formulate by the user. Additionally, it can then be used to
infer new constraints. Abstraction knowledge plays an important part in order to increase
the expressiveness and the interestingness of the analysis objects and to minimize missing
values. The background knowledge can either be supplied by the user, or several types of
knowledge can also be learned (semi-)automatically (c.f., Section 4.4).
We introduced subgroup introspection and analysis techniques that provide larger views
on the individual subgroups, their inherent relations, and the contained objects. Introspec-
tion methods are particularly useful for characterizing a subgroup either in the form of
important subgroup factors, or using a set of typical or extreme subgroup cases in order to
obtain an impression of the subgroup objects. For subgroup analysis we have proposed an
approach for the user-guided analysis of confounding factors concerning a given subgroup.
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Interactive visualization approaches are a key technique for active subgroup mining. Using
suitable visualization methods the user can be guided toward the interesting patterns. Fur-
thermore, user integration can both increase the degree of confidence concerning the dis-
covered findings and the transparency of the mining steps. Interactive methods empower
the users to perform the subgroup discovery steps by themselves and allow the evaluation
and comparison of the discovered sets of subgroups during the incremental discovery pro-
cess. In addition to the interactive approach for subgroup mining we also presented an
adaptation of the proposed techniques for interactive knowledge refinement.

10.2 Knowledge-Intensive Active Subgroup Mining
in Practice: VIKAMINE

As usual, the practical significance and impact of the proposed subgroup mining approach
depends on the availability of high-quality tools: We have presented the VIKAMINE sys-
tem that provides a highly integrated environment for the knowledge-intensive active sub-
group mining process. VIKAMINE implements the described subgroup discovery meth-
ods and offers the options for including background knowledge into the mining process.
Furthermore, the discussed subgroup introspection and analysis techniques are transpar-
ently supported, in addition to a variety of visualization techniques that enable the user to
choose the right tool for the task. Then, subgroup mining can be performed automatically,
interactively or in any combination of both approaches.

10.3 Evaluation and Experiences

We have performed an experimental evaluation of the proposed subgroup discovery meth-
ods as described in Section 8. Concerning the proposed subgroup discovery methods the
adaptation of the PRIM method using a weighted covering approach proved superior to the
basic PRIM algorithm. Moreover, compared to the other subgroup discovery methods, the
proposed novel exhaustive SD-Map algorithm showed impressive results concerning both
its efficiency and effectiveness: The efficiency (scalability) is significantly better compared
to the exhaustive Apriori-SD method. SD-Map is usually also more efficient than the ap-
plied heuristic methods. Additionally, it is more effective than the heuristic methods, and
also obtained subgroups with a higher quality in the presented evaluation.
Five case studies showed the applicability and benefit of the presented approach: We dis-
cussed two case studies in the medical domain of sonography and two case studies in a gen-
eral/technical domain, with respect to the goal of discovering interesting knowledge. One
case study in the domain of dental medicine was performed considering the method for
interactive knowledge refinement. For all case studies, especially for those performed in
the medical domain, background knowledge proved greatly beneficial in order to increase
the interestingness of the mined patterns, and to restrict the search space. In summary, the
acceptance of the discovered knowledge was greatly increased by the active integration of
the user into the subgroup mining process.



11 Outlook
The presented active and knowledge-intensive approach for subgroup mining is a suitable
combination of several techniques for the discovery of novel, interesting and potentially
useful knowledge in the form of subgroup patterns. However, for nearly all of the presented
methods there is still room for future work. In the following, we will discuss the most
promising directions, that we are planning to consider in the future.

11.1 Extending the Subgroup Discovery Methods
for Numerical, Temporal and Textual Data

Most subgroup mining methods rely on the availability of nominal attributes that are used
in the subgroup descriptions. However, often also numeric data is collected that then
needs preprocessing before the subgroup discovery methods can be applied. Appropriate
(interactive) discretization methods are further promising options for an easier adoption of
subgroup mining methods in such domains: Then, the user can be supported effectively,
e.g., by proposing appropriate splits of the value ranges.
Due to the wide-spread adoption of computer-based systems and subsequent data collec-
tion facilities, temporal data analysis is becoming increasingly important. Then, time pro-
vides an additional dimension for subgroup mining. Thus, temporal subgroup mining that
considers different time episodes and trend analysis for identifying interesting deviating
patterns is a promising option for further research.
Besides numeric and temporal extensions, a further opportunity is given by applying tex-
tual subgroup mining, e.g., for text categorization and classification. Then, subgroups can
be discovered in order to describe and to classify documents based on the contained terms.
Moreover, further intelligent visualization and analysis methods can provide suitable com-
plements for the described extensions in order to guide and support the user.

11.2 Automating the Interactive Knowledge
Refinement Approach

The presented subgroup-driven approach for interactive knowledge refinement is purely
user-guided. Therefore, supplementing the current method with automatic techniques for
knowledge refinement could be a useful extension, i.e., (semi-)automatic) refinement tech-
niques to support the user. Especially, a semi-automatic refinement method that is adapted
to the used knowledge representation (rules with scores) could be an interesting option to
consider in the future. We have presented preliminary work for that task in [19].



194 Chapter 11: Outlook

11.3 Automatic Support for the Construction of
Background Knowledge

The knowledge-intensive approach already provides for (semi-)automatic learning meth-
ods in order to support the acquisition of background knowledge. This could be improved
further by providing learning methods for classes of knowledge that are especially costly
to acquire. For example, in order to facilitate the creation of abstraction knowledge, meth-
ods for constructive induction [3, 156] are promising approaches in order to generate de-
rived attributes automatically. Possible extensions include semi-automatic techniques for
proposing potential useful background knowledge.
In addition, the integrated learning methods could be supplemented by wizards integrated
into the VIKAMINE system in order to support the user. Then, an interactive approach
could be implemented in contrast to the methods that are currently performed in batch
mode and enable a later post-processing only.

11.4 Hierarchical Subgroup Mining

Often a lot of redundant or very similar subgroups are discovered during subgroup mining.
Then, the understandability can be greatly increased if the set of subgroups can be reduced
in order to include only the relevant subgroups. This can be accomplished utilizing con-
ventional methods for redundancy management of subgroups. However, a promising issue
to consider is given by hierarchical subgroup mining methods. Then, a subgroup discovery
method could first consider clusters of subgroups in the search process, and refines these
according to a specified hierarchy. Additionally, the clusters could also be refined incre-
mentally, if they are considered as interesting for the user. This could also be integrated
with causal analysis methods.

11.5 Integration of Validation Methods

Evaluation and validation of the subgroup mining results are important tasks for subgroup
mining: Usually, the mined subgroups need to be evaluated and interpreted by the user
in order to assess their interestingness. Then, the interesting subgroups can be validated
in later steps, e.g., using further test data sets, or by performing prospective studies col-
lecting new data. Currently, validation techniques for subgroups are not included into the
proposed subgroup mining approach, since validation is an optional step in the process
model. Therefore, an integrated approach for subgroup evaluation and validation is a very
interesting issue for future research.
Additionally, integrating (automatic) methods for studying and profiling subgroup mining
results using continually-collected case data, e.g., using patient data or data concerning the
quality of examinations concerning their validity is another promising direction.
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11.6 Discovering Noisy Subgroups

The detection and elimination of outliers and noise in the data is a general research prob-
lem. Especially, if there is noise due to systematic errors, e.g., in documented patient
records in the medical domain, then identifying such situations is a rather important task.
Similar to the knowledge refinement technique presented in Section 6.2, then potentially
erroneous cases could then be identified and could eventually be corrected. Background
knowledge describing the expected patterns could also be integrated into such an approach,
c.f., Section 4.3.3 and Section 6.2.2. Therefore, subgroup mining methods that help to lo-
cate such factors, that are responsible for the noise or that occur in such situations, provide
interesting opportunities to consider in the future.

11.7 Supplementing SD-Map with Intelligent
Sampling Techniques

Another interesting issue for future research is given by the combination of the fast exhaus-
tive SD-Map algorithm with sampling approaches. While there exist sampling approaches
that include heuristic algorithms, exhaustive algorithms guarantee to find the exact solu-
tions. Since sampling approaches can apply smaller data sets and reduce the required size
of the data set with respect to a user-defined error-bound for the quality of the discovered
subgroups, a combination will still fulfill these error-bounds.
Currently, the SD-Map method does not require that all data is contained in the main mem-
ory, but only two sequential scans of the data set are necessary. Then, a condensed rep-
resentation is created that is usually significantly smaller than the complete data set [58].
However, supplementing the SD-Map algorithm with ’intelligent’ sampling techniques
(c.f., Section 3.1.6) that avoid a ’naive’ sampling of the data set (e.g., [162]) are thus a
promising option to consider for future work, since they potentially enable the application
of the SD-Map method for even larger, and potentially arbitrarily large data sets.
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