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Intelligence is the ability of the intellect that allows us to comprehend
that everything is incomprehensible.

Charles Émile Picard





1 Introduction

One of the central problems in chemistry is to control the outcome of reactions.
This is usually realized by adjusting temperature, concentration or pressure, i.e. on
the macroscopic level. In this way, the yield of kinetically favored products can be
maximized, while the formation of unwanted ones is suppressed. Another means
is the use of catalysts or enzymes, which in�uence the reaction on a microscopic
scale. Even products, which are not dynamically favored, can be synthesized in
this manner. Nevertheless, no general solution is provided to the primary goal.

A di�erent way to control chemical reactions is the application of electro-magnetic
radiation to molecular species. In general, every molecular system can be modi�ed
by a molecule-�eld interaction to yield a desired product. This universality arises
from the large variety of parameters, which can be adapted to yield electro-magnetic
�elds of the most di�erent shapes and colors. In this way, chemical bonds can be
broken and formed selectively.

To e�ectively apply light to a given chemical system, usually lasers are used. The
latter provide high intensities of coherent radiation, which is desirable to exert con-
trol on the molecules. Of course, the employed light has to be distinctly shaped in
order to achieve a prede�ned objective. But how have phase and amplitude of the
electro-magnetic �eld to look like? This problem is addressed by several theories,
and also experimental techniques are available, see e.g. the monographs [1�3] and
review articles [4�11]. These methods are also shortly summarized in chapter 4.
One of the theoretical approaches is called �local control theory� and will be the
main subject in this thesis.

As laser light is polarized, also directional aspects have to be considered. The
treatment of vectorial properties, especially the orientation of a molecule with re-
spect to the polarization vector of the electric �eld, is often di�cult and/or time-
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consuming. This extension goes beyond existing work, where the rotational degree
of freedom nearly always is neglected. In this work, vectorial properties are explic-
itly addressed in many of the studied examples. Hence, the existing gap is narrowed.

The temporal structure of the regarded laser �elds is associated with the timescale
of quantum-mechanical motion. As rotations and vibrations occur within picosec-
onds (1 ps = 10−12 s) or even femtoseconds (1 fs = 10−15 s), the duration of the
pulses have to be comparable or even shorter. Such ultra-short laser pulses are
nowadays experimentally available. They made possible the real-time observation
of the nuclear motion within molecules, which exhibits velocities of approximately
1 km

s and covers distances of a few Ångstrøm (1 Å = 10−10 m). The corresponding
research �eld is often termed �femtochemistry� [12] and Ahmed Zewail was awarded
the Nobel Prize in 1999 for his outstanding achievements in this area [13]. Soon
after the availability of femtosecond pulses, di�erent shaping techniques were ap-
plied, which had already been established in the picosecond range [14]. In this way,
phase, amplitude and polarization of the electro-magnetic �elds can be formed and
adapted in almost any arbitrary design.

The shaping of laser �elds is not only useful for chemical reaction control. By
this manner, also the properties of the underlying system can be investigated in
more detail than it would be possible with other means. Albeit not treated here,
the feasibility of shaping laser pulses opens up a wealth of applications in quantum
optics, quantum computing, telecommunications, etc. [15].

Today, we are still at the beginning of this interesting �eld of research. The sys-
tems investigated are usually two- or three-atomic molecules or simpli�ed models
of larger systems. A very well known vision of how far the development in this
domain could proceed in the future, occurs in the science �ction movies of �Star
Trek�. Here, machines � called replicators � synthesize e.g. a cup of co�ee by shin-
ing light on a beam of atoms. Beforehand, a source for the atoms is needed. In this
context, the global waste problem could be solved. So the �rst step would be to
split up waste into atoms, which afterwards could be reassembled in a desired way.
In other words, we are far away from what can be dreamed of, but the foundation
is layed. This work aims at a deeper understanding of the relation between laser
control �elds, molecular dynamics and the selectivity of a control process.
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It is organized as follows: The theoretical background of the performed numeri-
cal calculations is presented in chapter 2. Here, classical and quantum-mechanical
dynamics are discussed, as well as properties of electro-magnetic �elds. Numerical
methods are summarized in chapter 3, where e.g. a fast algorithm for wavefunction
propagation including the rotational degree of freedom is described. The state of
the art in control strategies is reviewed in chapter 4. From the various approaches,
local control theory, which is employed in this thesis, is analyzed in more detail in
chapter 5.

Numerical examples are presented in the subsequent chapters. Energy transfer
induced by a control �eld is studied within a restricted model in chapter 6. There,
the goal is to deposit enough energy in a molecule so that fragmentation is e�ective.
In this case, sodium iodide is taken as model. The limitations of the model system
are successively abolished and processes like predissociation due to a non-adiabatic
coupling are included.

In chapter 7, the rotational degree of freedom is fully taken into account. As a �rst
example, the in�uence of a static electric �eld on the NaI rotational-vibrational
dynamics is discussed. Afterwards, the e�ects of control �elds are investigated.

Directed quantities are also considered in chapter 8, where the rotation of a func-
tional group around a bond axis in a molecule is controlled. As in the preceeding
chapters, it is shown, that local control theory yields pulse shapes, which are easily
understood.

The counterpart to fragmentation is association, which is examined in chapter 9.
This topic has attracted many scientists recently due to the availability of methods
to trap molecules. Here, local control theory is applied for the �rst time to the
process of photoassociation.

In chapter 10, an approach di�erent from local control is chosen to systematically
analyze the properties of control �elds. After an electronic excitation (pumping)
with an unshaped pulse, the e�ectivity of a selective de-excitation (dumping) with
tailored pulses is investigated. Thus, the new concept of a pump/shaped-dump
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scheme is applied [16, 17], while in common control experiments the �rst pulse is
shaped and eventually following pulses remain unchanged. In this work, only one
or two pulse parameters are scanned systematically, while the other parameters
are �xed. The e�ciency of the di�erent resulting pulse shapes is compared and
connections to the physics of the underlying system are established with the help
of control landscapes.

Finally, the results are summarized in chapters 11 and 12.



2 Basic principles

2.1 Classical dynamics
In 1687, Sir Isaac Newton published his work �Philosophiae Naturalis Principia
Mathematica� [18]. It contains Newton's equations of motion, which form the foun-
dation of classical mechanics. Joseph Louis Lagrange introduced a re-formulation
in 1788 [19].
In Lagrangian mechanics, especially the motion of bodies restricted by certain con-
straint conditions is considered [20]. The constraints can take di�erent forms, e.g.
a mass point bound to a surface.
Generalized coordinates {qi} are employed, because the equations show the same
form for di�erent representations. For the ease of writing, in what follows only
one coordinate q and its time derivative, i.e. velocity v = dq

dt
= q̇ is used. The

Lagrangian equation of motion then reads [20, 21]

d

dt

(
∂L
∂q̇

)
=
∂L
∂q
, (2.1)

where L is the so-called Lagrangian, de�ned as the di�erence between kinetic energy
T and potential energy V . For a particle of mass m, this results in

L =
1

2
mq̇2 − V (q). (2.2)

Due to fact that V is independent of the generalized velocity

∂V

∂q̇
= 0 (2.3)

and T is independent of the generalized coordinate

∂T

∂q
= 0, (2.4)
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the connection between the Newtonian and the Lagrangian mechanics can be easily
seen:

∂L
∂q

=
d

dt

(
∂L
∂q̇

)
(2.5)

⇒ −∂V
∂q

=
d

dt

(
∂ 1

2
mq̇2

∂q̇

)
(2.6)

⇒ F = mq̈ (2.7)

Here, F is the force, connected to the potential energy via

− F =
∂V

∂q
. (2.8)

This is the basic equation used for molecular dynamics simulations and the classical
calculations in this work. Here, a trajectory, i.e. the route of a particle's position
in space is evaluated via

q(t+ dt) = q(t) + q̇(t) · dt (2.9)

q̇(t+ dt) = q̇(t) + q̈(t) · dt = q̇(t) +
F

m
· dt = q̇(t)−

∂V
∂q

m
· dt (2.10)

These equations are exact within �rst order, but can be easily extended to second-
order correctness, see section 3.1.

A re-formulation of the Lagrangian mechanics was pointed out in 1833 by William
Rowan Hamilton [22]. One advantage among others of the Hamiltonian formalism
is that it allows for an extension to quantum mechanics (see section 2.2). It involves
rather the generalized momenta p = mq̇ than the generalized velocities q̇. From
eqns. (2.3-2.7), the relation to the Lagrangian already is uncovered:

∂L
∂q̇

= mq̇ = p (2.11)

Additionally, the Lagrangian is replaced by the Hamiltonian H, which is the sum
of kinetic and potential energy:

H =
p2

2m
+ V (q) (2.12)

The two functions H and L are connected via a Legendre transformation:

H = H(q, p, t) = pq̇ − L(q, q̇, t) (2.13)
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The equations of motion in the Hamiltonian representation are:

∂H
∂p

= q̇ (2.14)

∂H
∂q

= −ṗ. (2.15)

Regarding more than one particle (e.g. in the case of di�erent starting conditions),
an ensemble of trajectories qi can be investigated. Statistical weights are introduced
by a probability Pi to construct a classical density

ρ(q, t) =
∞∑
i

qiPi. (2.16)

The classical density's motion is expressed by the classical Liouville equation

dρ

dt
=
∂ρ

∂t
+

[
∂ρ

∂qi
q̇i +

∂ρ

∂pi

ṗi

]

=
∂ρ

∂t
+

[
∂ρ

∂qi

∂H
∂pi

− ∂ρ

∂pi

∂H
∂qi

]
= 0.

(2.17)

The total time derivative of the classical density vanishes because the density along
a trajectory is constant (Imagine a drop of water moving on an uneven surface:
The drop gets narrower and wider but the amount of water stays the same). The
Liouville theorem is often restated using Poisson brackets (the quantum mechanical
analogue is the commutator, see section 2.2):

∂

∂t
ρ = −{ρ,H} . (2.18)

The above expression is reduced to Hamiltonian equations of motion for a density
represented by a δ-function [23].

2.2 Quantum dynamics
The publication of Louis de Broglie's thesis on matter waves in 1924 [24], together
with works from 1905 by Albert Einstein, lay the foundation for the concept of wave-
particle duality [25]. The idea of particles as waves (and vice versa) was developed
into the theory of quantum mechanics by Erwin Schrödinger and many others.
Here, the Hamiltonian formulation of classical mechanics is adopted with some
modi�cations. Classical variables are assigned to quantum mechanical operators
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(principle of correspondence) and the vectors q(t) are replaced by state vectors
|ψ(q, t)〉 in Hilbert space. The resulting equation of motion is the time-dependent
Schrödinger equation

ih̄
∂

∂t
|ψ(q, t)〉 = Ĥ|ψ(q, t)〉. (2.19)

The Hamilton operator Ĥ, similar to the classical Hamiltonian, consists of the sum
of kinetic and potential energy operators (T̂ + V̂ ).

Originally, Schrödinger derived his wave equation as an eigenvalue problem in time-
independent form [26]

(Ĥ − E)|ψ(q)〉 = 0, (2.20)

where E is the system's eigenenergy.
As Briggs and Rost pointed out, this equation is a real quantum mechanical one,
while the time-dependent form is a mixed quantum-classical equation [27, 28]. The
time enters only by introducing classical approximations. To show this, the universe
is divided into the quantum system of interest (index S) and an environment (index
E):

[ĤS(q) + ĤE(Q) + ĤI(q,Q)]Ψ = EΨ. (2.21)

Here, ĤI is the interaction between the system with coordinates q and the environ-
ment with coordinates Q. Accordingly, the total wavefunction can be expanded

Ψ(q,Q) =
∑
m

χm(Q) φm(q,Q). (2.22)

As a consequence of the environment being much �larger� than the quantum system,
the coupling ĤI is asymmetric. In other words, a state χ of the environment hardly
depends on the system's variables q, while a state φ of the system depends on the
environment's variables Q. The �rst approximation is to neglect the coupling of
the system to the environment and to ease the expansion of the total wavefunction

Ψ(q,Q) = χ(Q) φ(q,Q). (2.23)

The second approximation is to make the ansatz of a semi-classical wavefunction
[29] for a state χ of the environment:

χ(Q) = A(Q) · e i
h̄

W (Q), (2.24)
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where W (Q) =
∫
dq p =

∫
dq

√
2m[E − V (q)] is the classical action. This is jus-

ti�ed by the environment being large and quasi-classical. Nevertheless, its exact
eigenvalue equation

(ĤE + ÛS)χ = Eχ, (2.25)

with ÛS representing the small in�uence of the system on the environment, is used
to obtain the precursor to the time-dependent Schrödinger equation:

χ(ÛS − ĤE − ĤI)φ =
h̄

i
χ

1

m

∂W

∂Q

∂φ

∂Q
. (2.26)

Here, the classical approximation of h̄ → 0 is applied. Now employing that the
spatial derivative of the action is the classical momentum

∂W

∂Q
= p = m

∂Q

∂t
, (2.27)

leads to the form
(ĤE + ĤI − ÛS)φ = ih̄

∂φ

∂t
. (2.28)

A phase or gauge tranformation with

φ = e
i
h̄

tR
−∞

dt′ÛS(t′)
ψ (2.29)

and consequently,

ih̄
∂φ

∂t
= ih̄

∂

∂t
e

i
h̄

tR
−∞

dt′ÛS(t′)
ψ

= −ÛS(t)e
i
h̄

tR
−∞

dt′ÛS(t′)
ψ + ih̄e

i
h̄

tR
−∞

dt′ÛS(t′)∂ψ

∂t

(2.30)

leads to the well-known time-dependent Schrödinger equation for the system only:

(ĤE + ĤI)ψ = ih̄
∂ψ

∂t
. (2.31)

The interaction term ĤI can be e.g. classical electro-magnetic �elds. In other
words, ĤI depends on classical variables.
To summarize, the key approximation is to treat the environment classically in or-
der to introduce the time-dependence.
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The solution of the time-dependent Schrödinger equation for a given initial wave-
function |ψ(t0)〉 is obtained by separation of variables and subsequent integration,
leading to (for a time-independent Hamiltonian only)

|ψ(t)〉 = e−
i
h̄
·Ĥ·(t−t0)|ψ(t0)〉, (2.32)

where e− i
h̄
·Ĥ·(t−t0) = Û(t, t0) is the so-called propagator. For a time-dependent

Hamiltonian, a propagator of the form

Û(t, t0) = e
− i

h̄

tR
t0

Ĥ(t′)dt′

(2.33)

could be presumed. This however, holds only for operators, where the following
commutator vanishes:

[Ĥ(t),
∂Ĥ

∂t
] = Ĥ(t)

∂Ĥ

∂t
− ∂Ĥ

∂t
Ĥ(t) = 0. (2.34)

Otherwise, the evaluation of ∂
∂t
eĤ(t) according to the chain rule to ∂Ĥ

∂t
eĤ(t) is not

valid [30]. The general form is obtained, when assuming that a propagator exists,
which achieves the time evolution

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉. (2.35)

Because this must hold for any wavefunction and any time, the result for t0 is:

Û(t0, t0) = 1. (2.36)

Furthermore, if the time evolution is inserted into the time-dependent Schrödinger
equation

∂

∂t
Û(t, t0) |ψ(t0)〉 = − i

h̄
Ĥ(t) Û(t, t0) |ψ(t0)〉, (2.37)

then this expression must also be ful�lled for any initial wavefunction. Conse-
quently, the following expression is also valid:

∂

∂t
Û(t, t0) = − i

h̄
Ĥ(t) Û(t, t0). (2.38)

Integration yields the general form

Û(t, t0) = 1− i

h̄

t∫

t0

dt′Ĥ(t′)Û(t′, t0). (2.39)
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An approximate solution to this equation can be obtained by iteration

Û(t, t0) = 1− i

h̄

t∫

t0

dt′Ĥ(t′)


1− i

h̄

t′∫

t0

dt′′Ĥ(t′′)


 . . .







= 1− i

h̄

t∫

t0

dt′Ĥ(t′) +

(
i

h̄

)2
t∫

t0

dt′
t′∫

t0

dt′′T Ĥ(t′)Ĥ(t′′) + . . . ,

(2.40)

where T is a time-ordering operator, since the equation is only satis�ed if t ≥ t′ ≥
t′′ ≥ . . . ≥ t0. Now, the expansion can be rewritten as

Û(t, t0) = T e
− i

h̄

tR
t0

Ĥ(t′)dt′

. (2.41)

The time-ordering problem is usually circumvented in numerical applications by
using very short time intervals (see section 3.2).

2.3 Properties of electro-magnetic �elds
The time dependency of a Hamiltonian usually arises from scattering processes or
the interaction of the system with electro-magnetic radiation. Such a problem would
be treated exactly within quantum electrodynamics. The latter was developed to
a large extent by Richard Feynmann, Julian Schwinger and Sin-Itiro Tomonaga,
who were awarded the Nobel Prize in physics 1965 for their work. But since in the
limit of large photon numbers the �elds can be treated classically, which is the case
throughout this work, only classical aspects are addressed, here.

The basis for classical electrodynamics are Maxwell's equations, published in 1865
by James Clerk Maxwell [31]. Together with the Lorentz force equation and New-
ton's second law of motion, they provide a complete description of the classical
dynamics of interacting charged particles and electromagnetic �elds [32].
Due to the fact that the magnetic interaction of the �eld with a particle usually
is much weaker than the electric one, the discussion is restricted to electric �elds.
From the Maxwell's equations, the wave equation for electric �elds ~E in the vacuum
can be derived [33]

1

c2
∂2

∂t2
~E = ∇2 ~E, (2.42)
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with c being the speed of light. A solution to this equation is
~E(~q, t) = ~ε cos

(
ω0t− ~k~q

)
, (2.43)

where ~k is the wave vector and ~ε is the polarisation vector. Under the assumption
that an envelope function A(t) varies little within one optical cycle, the following
equation is also valid (compare �slowly-varying envelope approximation�) [33, 34]:

~E(~q, t) = ~ε A(t) cos
(
ω0t− ~k~q

)
, (2.44)

The polarisation vector ~ε will be dropped in what follows, because only the absolute
value of the �eld will be regarded.
Additionally, the dipole approximation is used, i.e. the position dependency ~k~q is
neglected due to the wavelength of the �eld being much larger than the system's
dimension. Now, the above equation can be rewritten as

E(t) =
A(t)

2

(
eiω0t + e−iω0t

)

= A(t) < (
eiω0t

)
.

(2.45)

Here, the argument ω0t is called the temporal phase. The envelope function resem-
bles a Gaussian for usual laser pulses

A(t) = E0 e
−βt2 . (2.46)

The pulse duration τE is given as the full width at half maximum (FWHM) of this
function, which is connected to the exponential factor β via:

β =
4 ln2

τ 2
E

. (2.47)

It is important, not to confuse this τE with the pulse duration τI (often used in
experimental publications) according to the temporal intensity function I(t). The
latter is de�ned proportional to the temporal average of E(t)2 over one oscillation
period T = 2π

ω
,

I(t) = ε0cn
1

T

t+T
2∫

t−T
2

dt′E(t′)2

=
1

2
ε0cnA(t)2,

(2.48)

with the vacuum dielectric constant ε0, the speed of light c and the refractive index
n. The intensity I(t) is usually given inW/cm2, while V/cm is used for the temporal
amplitude A(t).
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2.3.1 Chirp and Fourier transform
The momentary light frequency of a laser puls is de�ned as the time derivative of
the temporal phase Φ(t):

ω(t) =
dΦ(t)

dt
. (2.49)

In the electric �elds mentioned above, the phase was Φ(t) = ω0t and thus, the
momentary frequency was constant (ω(t) = ω0). This is not neccessarily the case
and for a general form, the phase term may be expanded as Taylor series around t0

Φ(t) = a0 + a1(t− t0) +
a2

2
(t− t0)2 + . . . =

∞∑
j=0

aj

j!
(t− t0)j, (2.50)

where the former ω0 was renamed a1, consistently.

Regarding the temporal derivative of the instantaneous frequency dω(t)
dt

= d2Φ(t)
dt2

,
three cases can be distinguished

• dω(t)
dt

> 0 (up-chirp),

• dω(t)
dt

= 0 (unchirped),

• dω(t)
dt

< 0 (down-chirp).

The special case, when a2 is not equal to zero, but all higher aj are, is called linear
chirp, because then the momentary frequency ω(t) changes linearly in time.

An equivalent description of the temporal �eld E(t) is obtained by its frequency
domain representation E(ω). The latter can be evaluated by a complex-valued
Fourier transform

E(ω) =
1√
2π

∞∫

−∞

dt E(t) e−iωt. (2.51)

The �eld in time domain is recovered by the inverse Fourier transform

E(t) =
1√
2π

∞∫

−∞

dω E(ω) eiωt. (2.52)

As E(t) is real valued, E(ω) is hermitian, i.e. it obeys the condition (∗ =̂ complex
conjugation)

E(ω) = E∗(−ω). (2.53)
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Hence, the knowledge of the positive frequency part

E+(ω) =




E(ω) if ω ≥ 0,
0 if ω < 0

(2.54)

is su�cient for a full characterization of the �eld. The use of complex-valued
functions for the real electric �eld E(t) simpli�es the Fourier analysis. Therefore,
E+(t) is de�ned as the part which contains only the positive frequency segment of
spectrum. The former is also known as analytic signal. Its complex conjugate E−(t)

contains the negative frequencies. Accordingly, E+(t) is de�ned with a positive
exponential

E+(t) = A(t) eiΦ(t), (2.55)

while E+(ω) consequently must be de�ned with negative exponential

E+(ω) = A(ω) e−iΦ(ω). (2.56)

Just as the temporal phase Φ(t), the spectral phase Φ(ω) can be expanded as Taylor
series around ω0 (= a1 from temporal phase expansion)

Φ(ω) = b0 + b1(ω − ω0) +
b2
2

(ω − ω0)
2 + . . . =

∞∑
j=0

bj
j!

(ω − ω0)
j. (2.57)

Analoguous to introducing a chirp by aj≥2 6= 0, a chirp can also be achieved by
bj≥2 6= 0. The di�erence between these two ways of chirping is the pulse duration
and intensity for conserved pulse energy. The energy Ĩ of the pulse is proportional
to the time integral of the squared electric �eld

Ĩ ∼
∞∫

0

dt E(t)2. (2.58)

While the envelope of a temporal-chirped pulse stays the same as for an unchirped
one, the pulse duration gets longer and the intensity in time domain becomes smaller
for a frequency-chirped pulse. The latter is the experimental accessible way.

This is now illustrated with some examples regarding a linear chirp. A Gaussian is
employed as envelope function and therefore, the general formula [35]

∫ ∞

−∞
dx e−ax2+bx =

√
π

a
e

b2

4a (2.59)
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is helpful for the Fourier transform below. The starting point is an electric �eld of
the form

E(t) = A0 e
−β(t−t0)2 ei[a0+a1(t−t0)+

a2
2

(t−t0)2], (2.60)

with

A0 =
1√
2π

√
π

γ + i b2
2

eib1ω0 B0, β =
γ

4γ2 + b22
, t0 = b1,

a0 = −b0, a1 = ω0, a2 =
b2

4γ2 + b22
.

The Fourier transform yields

E(ω) = B0e
−γ(ω−ω0)2e−i[b0+b1(ω−ω0)+

b2
2

(ω−ω0)2], (2.61)

with

B0 =
1√
2π

√
π

β − ia2

2

e−ia1t0 A0, γ =
β

4β2 + a2
2

, ω0 = a1,

b0 = −a0, b1 = t0, b2 =
a2

4β2 + a2
2

.

It can be readily seen, that a pulse not centered around time zero, simply means
a non-zero �rst-order spectral phase coe�cient b1. If the FWHM of the Gaussian
�eld envelope in frequency domain $E is compared with its counterpiece in time
domain τE via a Fourier transform, the following relation is found:

$E τE = 8 ln2. (2.62)

The corresponding expression for the respective FWHM of the intensity functions
is termed time-bandwidth product and is evaluated as

$I τI = 4 ln2, (2.63)

where
β =

2 ln2

τ 2
I

(2.64)

and
γ =

2 ln2

$2
I

(2.65)

were used. Note however, that the temporal intensity and the spectral intensity
are not directly connected via a Fourier transform.
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Fig. 2.1 shows �rstly a transform limited (i.e. unchirped) pulse with parameters
A0 = 1 a.u., τE = 10 fs, t0 = 0 fs, a0 = 0 and a1 = 800 nm is adopted. Then, a
temporal chirp of a2 = ±0.14/fs2 is added.
In Fig. 2.2, a phase factor a0 = −π

2
, t0 = 15 fs and a frequency chirp of b2 = 50 fs2

are applied to the original pulse. Here, the analytic form of the frequency-chirped
pulse in time domain, with respect to the parameters of the unchirped pulse (indi-
cated by a prime), is obtained via (since a′2 = 0 and thus, γ = 1

4β′ )

A0 =

√
1

1 + i2β′b2
A′0, β =

1
1
β′ + 4β′b22

, t0 = t′0,

a0 = a′0, a1 = a′1, a2 =
b2

1
4β′2 + b22

.

Another interesting pulse form is achieved, if applying a �triangular� phase in fre-
quency domain, according to

E(ω) = B0e
−γ(ω−ω0)2e−i[b0+b1|(ω−ω0)|]. (2.66)
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Figure 2.1: Left panels: �eld in time domain; right panels: �eld in frequency
domain. Upper panels: unchirped; middle panels: up-chirped with
a2 = 0.14/fs2; lower panels: down-chirped with a2 = −0.14/fs2.
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Figure 2.2: Left panels: �eld in time domain, the original pulse is depicted in gray
for comparison; right panels: �eld in frequency domain. Upper panels:
sine pulse with a0 = −π

2 ; middle panels: pulse centered around t0 =
15 fs; lower panels: up-chirped with b2 = 50 fs2.

The resulting temporal �eld exhibits a double peak structure (see Fig. 2.3). The
reason is, that parts with higher energy than the carrier frequency are shifted to
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Figure 2.3: Field shaped with a triangular spectral phase b1 = 15 fs. Left panel:
�eld in time domain, the original pulse is depicted in gray for com-
parison, right panel: �eld in frequency domain and triangular spectral
phase b1 |(ω − ω0)|.
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earlier times, while parts with lower energy are shifted to later times. This is only
valid for positive b1, whereas for negative b1 the shifting is reversed. Hence, one
also speaks of a �blue pulse� followed by a �red pulse� in the case of positive b1.
An example is shown in Fig. 2.3. Starting from the same unchirped pulse as in
Fig. 2.1, a triangular phase with b1 = 15 fs is applied in frequency domain. The
�eld in time domain is then evaluated via Fourier transform.

2.4 Interaction of electro-magnetic �elds with
matter

The interaction of a molecule with a time-dependent electric �eld leads to a time-
dependent Hamiltonian of the general form

Ĥ(t) = Ĥ0 + Ŵ (t), (2.67)

where Ĥ0 is the Hamiltonian of the unperturbed system and Ŵ (t) the time-dependent
interaction. For a purely vibrational excitation, the molecule has to exhibit a per-
manent dipole moment µ. Then the interaction term Ŵ (t) is of the form

Ŵ (t) = −~µ ~E(t). (2.68)

With the angle θ between the �eld vector on the dipole moment vector, the absolute
value is obtained as

Ŵ (t) = −µ E(t) cos θ. (2.69)

In the case of a transition between two electronic states |1〉 and |2〉, the Hamiltonian
is usually written as

Ĥ(t) =

(
T̂ + V1 −~µ12

~E(t)

−~µ12
~E(t) T̂ + V2

)
(2.70)

or

Ĥ(t) = |1〉(T̂+V1)〈1|+|1〉(−~µ12
~E(t))〈2|+|2〉(−~µ12

~E(t))〈1|+|2〉(T̂+V2)〈2| (2.71)

with the kinetic energy operator T̂ , the potential energy Vn in state |n〉 (n = 1, 2)

and the transition dipole moment ~µ12. Here, the projection of the �eld vector on
the transition dipole moment vector leads to

− ~µ12
~E(t) =




µ12 E(t) cos θ for a parallel transition
µ12 E(t) sin θ for a perpendicular transition.

(2.72)
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The type of transition (parallel or perpendicular) is determined by the symmetry
of the involved states.

Regarding the special case of a static electric �eld, the Hamiltonian is not time-
dependent and the corresponding Schrödinger equation yields �eld-dressed eigen-
states [36, 37]. The latter are also termed pendular states [38], because the corre-
sponding molecule is oriented to some extent and librating like a pendulum around
the preferred direction.

2.4.1 Time-dependent perturbation theory
The interaction of a weak laser �eld with a molecule can be described within time-
dependent perturbation theory [39]. The system obeys for t ≤ 0, when no pertur-
bation is present

ih̄
∂

∂t
Ψ0(t) = Ĥ0Ψ0(t). (2.73)

For larger times, due to the perturbation, this changes to

ih̄
∂

∂t
Ψ(t) =

{
Ĥ0 + Ŵ (t)

}
Ψ(t). (2.74)

It is convenient for such problems to change to the interaction representation (index
I) [40], where

Ψ(t) = e−
i
h̄

Ĥ0tΨI(t) (2.75)

and

ŴI(t) = e
i
h̄

Ĥ0t Ŵ (t) e−
i
h̄

Ĥ0t. (2.76)

The Schrödinger equation for the perturbed system now reads

ih̄
∂

∂t
ΨI(t) = ŴI(t)ΨI(t). (2.77)

Time integration leads to (analogue to Eq. (2.39) for the propagator)

ΨI(t) = ΨI(0)− i

h̄

t∫

0

dt′ ŴI(t
′) ΨI(t

′), (2.78)
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where at time t = 0, the wave function ΨI(0) = Ψ(0). An approximate solution
can be obtained by iteration

ΨI(t) = ΨI(0)− i

h̄

t∫

t0

dt′ ŴI(t
′)


ΨI(0)− i

h̄

t′∫

t0

dt′′ŴI(t
′′)


 . . .







= ΨI(0)− i

h̄

t∫

t0

dt′ ŴI(t
′) ΨI(0)

+

(
i

h̄

)2
t∫

t0

dt′
t′∫

t0

dt′′ŴI(t
′)ŴI(t

′′)ΨI(0) + . . .

(2.79)

If the expansion is truncated after the �rst integral, the wave function is termed
Ψ

(1)
I , because a �rst order correction is applied. The notation for higher orders

proceeds analogously.
The �rst-order wave function in the Schrödinger picture can be evaluated by using
Eq. (2.75):

Ψ(1)(t) = e−
i
h̄

Ĥ0t Ψ
(1)
I (t)

= e−
i
h̄

Ĥ0t


ΨI(0)− i

h̄

t∫

0

dt′ ŴI(t
′) Ψ(0)




= e−
i
h̄

Ĥ0t Ψ(0)− i

h̄

t∫

0

dt′ e−
i
h̄

Ĥ0(t−t′) Ŵ (t′) e−
i
h̄

Ĥ0t′ Ψ(0).

(2.80)

Accordingly, higher-order wave functions can be obtained.

2.4.2 Fermi's golden rule
An application of time-dependent perturbation theory is to describe transitions
between two eigenstates of a quantum system. The eigenstates |n〉 build an or-
thonormal basis and obey the time-independent Schrödinger equation

Ĥ0|n〉 = En|n〉 (2.81)

Assume, that the system, described by the total wave function Ψ(t), is in state |1〉
initially, which needs not be the groundstate necessarily. The probability P12 of a
transition to an eigenstate |2〉 (which can be any other eigenstate) at time t is given
by [41]

P12(t) = |〈2|ΨI(t)〉|2 = |〈2|Ψ(t)〉|2 . (2.82)
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To evaluate this equation, the transition amplitude 〈2|Ψ(t)〉 is examined within
�rst-oder perturbation theory (compare Eq. (2.80)):

〈2|Ψ(1)(t)〉 =

=0︷ ︸︸ ︷〈
2
∣∣∣e− i

h̄
Ĥ0t

∣∣∣ 1
〉
− i
h̄

t∫

0

dt′
〈
2
∣∣∣e− i

h̄
Ĥ0(t−t′) Ŵ (t′) e−

i
h̄

Ĥ0t′
∣∣∣ 1

〉

= − i
h̄
e−

i
h̄

E2t

t∫

0

dt′ e
i
h̄
(E2−E1)t′

〈
2
∣∣∣Ŵ (t′)

∣∣∣ 1
〉

(2.83)

Therefore, the transition probability can be written as

P12(t) =

∣∣∣∣∣∣
i

h̄

t∫

0

dt′ e
i
h̄
(E2−E1)t′

〈
2
∣∣∣Ŵ (t′)

∣∣∣ 1
〉
∣∣∣∣∣∣

2

. (2.84)

Now, suppose Ŵ is independent of time, i.e. a small constant term W is added to
the Hamiltonian at t = 0, then

P12(t) =

∣∣∣∣∣
i

h̄

e
i
h̄
(E2−E1)t − 1

i
h̄
(E2 − E1)

〈2 |W | 1〉
∣∣∣∣∣

2

=

∣∣∣∣∣
e−

i
h̄

E1t − e− i
h̄

E2t

(E2 − E1)
〈2 |W | 1〉

∣∣∣∣∣

2

=

∣∣∣∣∣
2 sin(1

2
E2−E1

h̄
t)

(E2 − E1)
〈2 |W | 1〉

∣∣∣∣∣

2

,

(2.85)

where eia−eib = 2 sin 1
2
(a−b) was used and the transition frequency is ω12 = E2−E1

h̄
.

Usually, several states |k〉 are lying energetically around |2〉 and are accessible
through W due to its spectral width. To calculate the total transition probability,
one has to sum over these states. The sum is approximated by an integral over the
energies Ek times the density of states ρ (number of states per unit energy). Thus,
the transition probability is

∑

k

P1k(t) ≈ |〈k |W | 1〉|2
∫
dEk ρ(Ek)

∣∣∣∣∣
2 sin(1

2
Ek−E1

h̄
t)

(Ek − E1)

∣∣∣∣∣

2

. (2.86)

In the limit of long times, the density of states factor goes against the one at E1

(ρ(Ek)→ ρ(E1)) and can be taken outside the integral. The latter can be evaluated
as ∫

dEk

∣∣∣∣∣
2 sin(1

2
Ek−E1

h̄
t)

(Ek − E1)

∣∣∣∣∣

2

=
2π

h̄
t. (2.87)
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This leads to the transition rate Γ = d
dt

∑
k P1k(t), which is now approximately

Γ =
2π

h̄
|〈k |W | 1〉|2 ρ(E1). (2.88)

This equation is known as Fermi's golden rule.

2.4.3 Rotating wave approximation
In the model of a two-level system, the eigenstates |n〉 with n = 1, 2 obey

Ĥ0|n〉 = En|n〉. (2.89)

Their time evolution
|n(t)〉 = e−

i
h̄

En t|n〉. (2.90)

can be obtained from the time-dependent Schrödinger equation. The wave function
of the complete system is then a superposition of these states:

|Ψ(t)〉 = c1(t) e
− i

h̄
E1 t|1〉+ c2(t) e

− i
h̄

E2 t|1〉. (2.91)

The time dependency of the coe�cents cn stems from an external interaction Ŵ (t)

(e.g. a laser �eld), which causes transitions between state |1〉 and |2〉. The time-
dependent Schrödinger equation for the total system now reads

ih̄
d

dt

(
c1(t) e

− i
h̄

E1 t|1〉+ c2(t) e
− i

h̄
E2 t|2〉

)

=
[
Ĥ0 + Ŵ (t)

] (
c1(t) e

− i
h̄

E1 t|1〉+ c2(t) e
− i

h̄
E2 t|2〉

)
, (2.92)

which simpli�es with Eq. (2.89) to

ih̄

(
e−

i
h̄

E1 t|1〉 d c1(t)
dt

+ e−
i
h̄

E2 t|2〉 d c2(t)
dt

)

= Ŵ (t)
(
c1(t) e

− i
h̄

E1 t|1〉+ c2(t) e
− i

h̄
E2 t|2〉

)
. (2.93)

Projection onto 〈1(t)| reduces the Schrödinger equation to

ih̄
d c1(t)

dt
= c1(t) 〈1|Ŵ (t)|1〉+ c2(t) e

− i
h̄
(E2−E1) t 〈1|Ŵ (t)|2〉, (2.94)

while projection onto 〈2(t)| results in

ih̄
d c2(t)

dt
= c1(t) e

i
h̄
(E2−E1) t 〈1|Ŵ (t)|2〉+ c2(t) 〈2|Ŵ (t)|2〉. (2.95)
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Assuming an interaction of the form Ŵ (t) = −µ12E0 cos(ωt), the elements
〈n|Ŵ (t)|n〉 vanish. This is due to the odd parity of the interaction, i.e. the in-
tegrands are odd functions of position.
Despite the simplicity of the resulting equations, they are di�cult to solve in gen-
eral [42]. An approximate solution is obtained by adopting the initial occupation
of the states for cn(t). More explicitly, c1(t) = c1(0) = 1 and c2(t) = c2(0) = 0 and
time integration yields (compare �rst-order perturbation theory)

c1(t) = 1 (2.96)

c2(t) = − i
h̄

t∫

0

dt′ ei ω12 t′ 〈1| − µ12E0 cos(ωt′)|2〉 (2.97)

with the transition frequency ω12 = E2−E1

h̄
. This expression for c2(t) can now be

inserted in Eq. (2.94) and an improved solution for c1(t) is then obtained by time
integration. This iterative procedure can be repeated until the result is precise
enough.
Usually, Eq. (2.97) meets this requirement and can be rewritten as

c2(t) = − i
h̄

t∫

0

dt′ eiω12t′E0

2

(
e−iωt′ + eiωt′

)
〈2 |−µ12| 1〉

= − i
h̄

t∫

0

dt′
E0

2

(
ei(ω12−ω)t′ + ei(ω12+ω)t′

)
〈2 |−µ12| 1〉 .

(2.98)

For ω12 > 0 (absorption), the second exponential term is usually much smaller
than the �rst one and therefore it is neglected. The reverse holds for ω12 < 0

(stimulated emission), i.e. the �rst exponential term is dropped. The neglection is
called rotating wave approximation (RWA).

2.4.4 Rabi oscillations
The interaction of light with a two-level system (e.g. an atom or ion with a ground
state and an excited state) can lead to a periodic exchange of energy between the
electro-magnetic �eld and the two-level system. This exhange can be interpreted
as alternating absorption and stimulated emission of photons. Such oscillations are
called Rabi oscillations (in reference to the Nobel laureate Isidor Isaac Rabi). They
are associated with oscillations of the level populations and quantum-mechanical
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probability amplitudes.
A mathematical description is obtained, if eqns. (2.94) and (2.95) are written down
for an interaction of the form Ŵ (t) = −µ12E0 cos(ωt)

ih̄
d c1(t)

dt
= c2(t)

E0

2

(
e−i(ω12−ω)t + e−i(ω12+ω)t

) 〈1 |−µ12| 2〉 (2.99)

ih̄
d c2(t)

dt
= c1(t)

E0

2

(
ei(ω12−ω)t + ei(ω12+ω)t

) 〈2 |−µ12| 1〉 , (2.100)

where 〈2 |−µ12| 1〉 = 〈1 |−µ12| 2〉 are taken to be real [43]. Within the RWA, this
results in

d c1(t)

dt
= − i

h̄

E0

2
e−i(ω12−ω)t 〈2 |−µ12| 1〉 c2(t) (2.101)

d c2(t)

dt
= − i

h̄

E0

2
ei(ω12−ω)t 〈2 |−µ12| 1〉 c1(t). (2.102)

In this set of coupled equations, c1(t) can be eliminated. Therefore, the time
derivative of Eq. (2.102) is built

d

dt
c1(t) =

d

dt
ih̄

2

E0 〈2 |−µ12| 1〉e
−i(ω12−ω)td c2(t)

dt

= ih̄
2

E0 〈2 |−µ12| 1〉 e
−i(ω12−ω)t

(
−i(ω12 − ω)

d c2(t)

dt
+

d2 c2(t)

dt2

)

(2.103)

and employed in Eq. (2.101), which then gives

d2 c2(t)

dt2
− i(ω12 − ω)

d c2(t)

dt
+
E2

0

4h̄2 〈2 |−µ12| 1〉2 c2(t) = 0. (2.104)

A trial solution to this di�erential equation is

c2(t) = eiλt, (2.105)

which leads to

λ1,2 = −1

2

(
∆ω ±

√
∆ω2 +

E2
0

h̄2 〈2 |−µ12| 1〉2
)
, (2.106)

where ∆ω = ω12 − ω is the detuning of the transition frequency and the �eld
frequency. Furthermore, the Rabi frequency ΩR is de�ned as [34]

ΩR =
E0

h̄
〈2 |−µ12| 1〉 (2.107)
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and
Ω =

√
∆ω2 + Ω2

R. (2.108)

Hence, the general solution is

c2(t) = A1 e
iλ1t + A2 e

iλ2t, (2.109)

where A1,2 can be determined from the initial conditions

A1,2 = ±1

2

ΩR

Ω
. (2.110)

The coe�cients then are

c2(t) = i
ΩR

Ω
e−

i
2
∆ωt sin

(
Ω

2
t

)
(2.111)

and analogous

c1(t) = e−
i
2
∆ωt

[
cos

(
Ω

2
t

)
+ i

∆ω

Ω
sin

(
Ω

2
t

)]
. (2.112)

The probability to �nd the system in state |2〉 is now

P2(t) = |c2(t)|2

=
Ω2

R

Ω2
sin2

(
Ω

2
t

)
,

(2.113)

which in the case of resonance (∆ω = 0) simpli�es to

P2(t) = sin2

(
ΩR

2
t

)
. (2.114)

The population oscillates between the two states of the system. This process is
called Rabi oscillation. At time t = π 1

ΩR
, all population has been transferred to

state |2〉. Thus, a pulse which achieves population inversion is referred to as π-pulse.

2.5 Adiabatic vs. diabatic potentials and
Born-Oppenheimer approximation

The total Hamiltonian of a molecule consists of parts, which depend on electron
coordinates r and nuclear coordinates R. It reads

Ĥ(R, r) = T̂ (R) + T̂ (r) + V̂ (R, r), (2.115)
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where T̂ (R) is the kinetic energy operator of the nuclei, T̂ (r) is the kinetic energy
operator of the electrons and V̂ (R, r) is the (coulombic) potential. Consequently,
the system's wave function also depends onR and r. The corresponding Schrödinger
equation is

Ĥ(R, r)Ψ(R, r) = EΨ(R, r). (2.116)

Usually, one tries to separate nuclear dynamics from the electron motion, which
yields the electronic Schrödinger equation at �xed nuclear coordinates:

[
T̂ (r) + V̂ (r,R)

]

︸ ︷︷ ︸
Ĥel

φn(r, R) = Vn(R)φn(r, R). (2.117)

Here, φn(r,R) are the eletronic eigenfunctions, which form a complete orthonormal
system. Hence, the total wave function can be expanded in this basis:

Ψ(R, r) =
∑

n

χn(R)φn(r, R). (2.118)

2.5.1 Adiabatic expansion
The normal case is to solve the electronic Schrödinger equation at di�erent �xed
nuclear coordinates, yielding the so-called adiabatic potentials Vn(R) of electronic
state n. The latter are coupled kinetically. To get the type of the coupling elements,
the basis-set expansion is inserted into the complete Schrödinger equation, which
is then projected onto an electronic eigenfunction φm(r, R):

〈
φm(r, R)

∣∣∣Ĥ(R, r)
∣∣∣ ∑

n χn(R)φn(r,R)
〉

r
= E

〈
φm(r,R)

∣∣∣ ∑
n χn(R)φn(r, R)

〉
r
,

(2.119)
where the index r denotes integration over electron coordinates only. The kinetic
energy operator of the nuclei is of the form T̂ (R) = − h̄2

2M
∂

∂R
with the masses of the

nuclei M . Hence, the above equation can be evaluated as

∑
n

〈
φm(r,R)

∣∣∣T̂ (R)
∣∣∣χn(R)φn(r, R)

〉
r
+

∑
n

〈
φm(r, R)

∣∣∣Ĥel

∣∣∣χn(R)φn(r, R)
〉

r

︸ ︷︷ ︸
Vm(R) χm(R)

= E
〈
φm(r,R)

∣∣∣
∑

n

χn(R)φn(r, R)
〉

r

︸ ︷︷ ︸
E χm(R)

(2.120)
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⇒
∑

n

− h̄2

2M

[
2
〈
φm(r,R)

∣∣∣∂φn(r, R)

∂R

〉
r

∂χn(R)

∂R
+

〈
φm(r, R)

∣∣∣∂
2φn(r,R)

∂R2

〉
r
χn(R)

]

+
[
T̂ (R) + Vm(R)

]
χm(R) = E χm(R), (2.121)

where often the following abbreviations are used

T (1)
mn(R) := − h̄

2

M

〈
φm(r, R)

∣∣∣∂φn(r,R)

∂R

〉
r

∂

∂R
(2.122)

T (2)
mn(R) := − h̄2

2M

〈
φm(r, R)

∣∣∣∂
2φn(r, R)

∂R2

〉
r

(2.123)

As stated above, the Vm(R) are the adiabatic potentials. The kinetic couplings
Tmn(R) are neglected within the Born-Oppenheimer approximation (T (1)

mn(R) =

T
(2)
mn(R) = 0) and the resulting nuclear Schrödinger equation for a �xed electronic

state m reads: [
T̂ (R) + Vm(R)

]
χm(R) = E χm(R). (2.124)

2.5.2 Diabatic expansion
Another description of the system stems from an expansion, where only one �xed
nuclear geometry R0 is adopted for the electronic wave functions.

Ψ(R, r) =
∑

n

χn(R)φn(r, R0). (2.125)

The corresponding electronic Schrödinger equation reads

Ĥel(r, R0)φn(r, R0) = Vn(R0)φn(r,R0). (2.126)

Now, the basis functions φn not even parametrically depend on the nuclear coor-
dinate and the convergence for this expansion is questionable. Nevertheless, the
total system can be described within this picture and projection onto φm(r,R0) of
the complete Schrödinger equation yields

〈
φm(r,R0)

∣∣∣T̂ (R)
∣∣∣
∑

n

χn(R)φn(r, R0)
〉

r

︸ ︷︷ ︸
T̂ (R) χm(R)

+
〈
φm(r, R0)

∣∣∣ T̂ (r) + V̂ (r, R0)︸ ︷︷ ︸
Ĥel(r,R0)

−V̂ (r, R0) + V̂ (r, R)
∣∣∣
∑

n

χn(R)φn(r, R0)
〉

r

= E
〈
φm(r,R0)

∣∣∣
∑

n

χn(R)φn(r,R0)
〉

r
. (2.127)
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With the de�nition

Umn(R) :=
〈
φm(r,R0)

∣∣∣V̂ (r,R)− V̂ (r,R0)
∣∣∣φn(r, R0)

〉
r
, (2.128)

the above equation is simpli�ed to
∑

n

Umn(R)χn(R) +
[
T̂ (R) + Vm(R0)

]
χm(R) = E χm(R). (2.129)

Here, it can be readily seen, that the electronic states are connected by a potential
coupling.

2.5.3 Example
The above is now illustrated with an example. In Fig. 2.4 the groundstate and �rst-
excited-state potentials of sodium iodide (NaI) are shown in both the adiabatic and
the diabatic picture. In the adiabatic picture, the point, where the curves come
close to each other, is referred to as avoided crossing. Because the two states are
coupled, which is not included in the adiabatic potentials, one also speaks of a
non-adiabatic coupling. This interaction is only possible for states of the same
symmetry.
The Hamiltonian can be written in matrix representation, which is two-dimensional
for this model system. The adiabatic form (index a) shows kinetic coupling and

2 4 6 8 10 12
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d(R) 

V12

d(R) 

2 4 6 8 10
R [Å]
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E
 [e

V
]

V1

a
(R) 

V2

a
(R) 

adiabatic diabatic

Figure 2.4: Adiabatic (left panel) and diabatic (right panel) potentials of sodium
iodide.
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thus, o�-diagonal elements in the kinetic operator matrix

Ĥ =

(
T (R) + T

(1)
11 + T

(2)
11 T

(1)
12 + T

(2)
12

T
(1)
21 + T

(2)
21 T (R) + T

(1)
22 + T

(2)
22

)
+

(
V1(R) 0

0 V2(R)

)

=

(
T a

1 (R) T a
12(R)

T a
12(R) T a

2 (R)

)
+

(
V a

1 (R) 0

0 V a
2 (R)

)
.

(2.130)

In contrast, the diabatic form (index d) exposes potential couplings

Ĥ =

(
T (R) 0

0 T (R)

)
+

(
V1(R0) + U11(R) U12(R)

U21(R) V2(R) + U22(R)

)

=

(
T d

1 (R) 0

0 T d
2 (R)

)
+

(
V d

1 (R) V d
12(R)

V d
21(R) V d

2 (R)

)
,

(2.131)

where U12(R) = U21(R) and V d
12(R) = V d

21(R), respectively. Changing from the
adiabatic to the diabatic picture is called �diabatisation�. Several procedures have
been proposed (see Ref. [44] and references therein). An example for a 2×2-matrix
is given in the appendix A.1.

2.6 Landau-Zener theory
In 1932, both L. D. Landau and C. Zener published their work on curve crossings
[45�47]. They described the probability of a transition from one adiabatic state to
another via a non-adiabatic crossing. Within this so-called Landau-Zener theory,
the probability PLZ that such a transition occurs is [48]

PLZ = e−π2 ∆E2
c

vh∆Fc , (2.132)

where ∆Ec is the potential energy di�erence at the crossing point Rc. The expres-
sion furthermore contains the relative velocity v of the system along the nuclear
coordinate R when passing the crossing point, and the force term:

∆Fc =

∣∣∣∣
d∆Ec

dR

∣∣∣∣
Rc

. (2.133)

From the LZ-expression, Eq. (2.132), the following conclusions can be taken. On the
one hand, with increasing velocity v, the probability for a non-adiabatic transition
gets higher. On the other hand, with a smaller energy gap between the potentials,
the same e�ect is associated.
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3 Numerical Methods

3.1 Runge-Kutta algorithm for classical
trajectories

A particle's position q(t) at a certain time t can be calculated numerically, employ-
ing the classical equations of motion subject to given starting conditions at time
t0. Therefore, the time interval [t0, t] is divided into N small time steps dt and

t = t0 +N dt. (3.1)

Runge-Kutta methods, in general, employ a Taylor expansion as

q(t+ dt) = q(t) + q̇(t)dt+
1

2
q̈(t)dt2 + . . . =

∞∑
n=0

1

n!

∂nq

∂tn
(t) dtn. (3.2)

Keeping only the linear term in the expansion leads to the Euler method, as already
stated in section 2.1:

q(t+ dt) = q(t) + q̇(t)dt (3.3)

q̇(t+ dt) = q̇(t) + q̈(t)dt = q̇(t) +
F

m
dt = q̇(t)−

∂V
∂q

m
dt. (3.4)

If intermediate points at t + 1
2
dt are employed, the accuracy can be improved by

one order. This method is called second-order Runge-Kutta algorithm or leap-frog
scheme [49] and the positions of the particle can be calculated iteratively

q(t+
1

2
dt) = q(t) +

1

2
q̇(t)dt (3.5)

q̇(t+
1

2
dt) = q̇(t) +

1

2

−∂V (q(t))
∂q

m
dt (3.6)

q(t+ dt) = q(t) + q̇(t+
1

2
dt)dt (3.7)

q̇(t+ dt) = q̇(t) +
−∂V (q(t+ 1

2
dt))

∂q

m
dt, (3.8)
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where the classical equations of motion are employed for a particle of mass m,
moving in an external potential V .

3.2 Short-time propagator
The time evolution operator Û(t, t0) maps the state vector at time t0 to a new
vector at time t. It is analytically exact to split the operator into a product of
propagators for small time intervals

Û(t, t0) = ΠnÛ(tn + dt, tn). (3.9)

In section 2.2, it was shown that

Û(t, t0) = T e
− i

h̄

tR
t0

Ĥ(t′)dt′

. (3.10)

Within one time interval, the integral expression can be approximated by

Û(tn + dt, tn) = e
− i

h̄

tn+dtR
tn

Ĥ(t′)dt′

≈ e−
i
h̄

Ĥ(t)dt, (3.11)

if the time step dt is small enough. To reach the desired time t, the short-time
propagator e− i

h̄
Ĥ(t)dt has to be applied iteratively. This implies an inherent time

ordering and the corresponding operator T is not necessary.
Although numerical methods exist, which do not rely on short-time propagator
schemes (see the reviews by Leforestier et al. [50] and Koslo� [51, 52]), here, this
idea is employed within the so-called split-operator technique as is explained in the
next section.

3.3 Split-operator technique
The short-time propagator e− i

h̄
Ĥdt depends on the system's Hamiltonian, which

consists of the kinetic energy operator T̂ and the potential energy operator V̂ . Be-
cause T̂ contains derivatives with respect to the spatial coordinates, and V̂ directly
depends on the coordinates, a separate treatment of the kinetic part and the po-
tential part of the propagator is advantageous. As T̂ and V̂ do not commute, a
splitting contains an second-order error

e−
i
h̄
(T̂+V̂ )dt = e−

i
h̄

T̂ dte−
i
h̄

V̂ dt +O(dt2). (3.12)
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This can easily be veri�ed by a comparison of Taylor expansions of the left-hand
side

e−
i
h̄

Ĥdt =
∞∑

n=0

(− i
h̄
dt

)n

n!
Ĥn (3.13)

and the right-hand side.

In the split-operator technique [53, 54] used in this work, the accuracy is improved
by a symmetric splitting of the form

e−
i
h̄
(T̂+V̂ )dt = e−

1
2

i
h̄

T̂ dte−
i
h̄

V̂ dte−
1
2

i
h̄

T̂ dt +O(dt3), (3.14)

which contains only a third-order error [55]. The latter can be neglected for a short
time step dt.

The derivatives of the kinetic energy operator are evaluated in momentum space,
employing the Fourier decomposition of the wave function

Ψ(P ) =
1√
2π

∞∫

−∞

dR Ψ(R) e−i P R, (3.15)

so that

e−
i
h̄

T̂ dt Ψ(P ) = e−
i
h̄

p̂2

2m
dt 1√

2π

∞∫

−∞

dR Ψ(R) e−i P R

=
1√
2π

∞∫

−∞

dR Ψ(R) e−
i
h̄

p̂2

2m
dt e−i P R

=
1√
2π

∞∫

−∞

dR Ψ(R) e−
i
h̄

P2

2m
dt e−i P R

= e−
i
h̄

P2

2m
dt Ψ(P ).

(3.16)

In the penultimate step, it was used that e−i P R is an eigenfunction to the momen-
tum operator p̂ and thus,

p̂e−i P R = Pe−i P R. (3.17)
The result for eλp̂2

e−i P R can then be derived from a Taylor expansion

eλp̂2

e−i P R = 1e−i P R + λ p̂2e−i P R +
1

2

(
λ p̂2

)2
e−i P R + . . .

= 1e−i P R + λ P 2e−i P R +
1

2

(
λ P 2

)2
e−i P R + . . .

= eλP 2

e−i P R

(3.18)
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The change of the wavefunction representation from coordinate to momentum space
and vice versa is performed numerically with fast Fourier transform (FFT) algo-
rithms. The wave function is described here on a discretized grid. A FFT then
needs K log(K) operations for the transform, where K is the number of points on
the grid, in contrast to a scaling of K2 for a naive implementation of the transform.
Here, the freely available FFTW package [56] was used.

3.4 Relaxation method
An advantage of the split-operator technique is, that with slight modi�cations the
propagation algorithm can be used to calculate eigenstates. The procedure is then
called relaxation method [57]. Here, the time step dt is replaced by −i dt, i.e.
it is propagated with imaginary time. The starting point is an almost arbitrary
function ψ (it may not be orthogonal to the eigenfunctions). Because the yet
unknown eigenstates φn with eigenenergies En form an orthonormal basis, ψ can
be expanded as

ψ =
∞∑

n=0

cnφn, (3.19)

where
cn = 〈φn|ψ〉. (3.20)

Application of the propagator now yields

ψ(t+ dt) =
∑

n

e−
1
h̄

Endt〈φn|ψ〉φn. (3.21)

In other words, each eigenstate φn is damped via e−
1
h̄

Endt at a rate correspond-
ing to its own eigenenergy En (For negative En it is not damped but enhanced).
Therefore, the wave function has to be re-normalized after every propagation step
in order not to become zero (or in�nity, if negative eigenenergies are included).
Then, in the limit of in�nite times, the amplitude c0 of the eigenstate with lowest
eigenenergy E0 approaches the value of 1 and hence, the ground state has been
obtained. This is illustrated in Fig. 3.1 for the vibrational ground state of a Morse
oscillator.

Since in�nite times are not accessible in reality, the imaginary propagation has
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Figure 3.1: On the left-hand side, a Morse potential VMorse, the initial arbitrary
wave function ψ(0) (chosen as a rectangular function) and the con-
verged ground state φ0 are shown. On the right-hand side, the damp-
ing process from the rectangular function towards the ground state is
depicted.

to be stopped, when the wave function is accurate enough. As convergence crite-
rion, the change of the energy expectation value in time is adopted. It can be easily
obtained from

〈ψ(t+ dt)|ψ(t+ dt)〉 = 〈e− 1
h̄

Ĥdtψ(t)|e− 1
h̄

Ĥdtψ(t)〉 (3.22)
⇒ 〈ψ(t+ dt)|ψ(t+ dt)〉 = lim

t→∞
〈e− 1

h̄
Edtψ(t)|e− 1

h̄
Edtψ(t)〉 (3.23)

⇒ e−
2
h̄

Edt =
〈ψ(t+ dt)|ψ(t+ dt)〉

〈ψ(t)|ψ(t)〉 (3.24)

⇒ E = − h̄

2dt
ln
〈ψ(t+ dt)|ψ(t+ dt)〉

〈ψ(t)|ψ(t)〉 , (3.25)

The di�erence of the energy E and the stored E of the time step before is com-
pared to a threshold. If the di�erence is smaller than the threshold, the calculation
is converged according to the criterion.

Afterwards, higher eigenstates can be evaluated by projecting out the m already
found eigenstates in every time step

ψ′ = ψ −
m∑

n=0

〈φn|ψ〉φn. (3.26)

Sometimes, it is reported, that the relaxation method only works for a positive
spectrum of eigenenergies. It is stressed here, that this statement is wrong.



36 3 Numerical Methods

3.5 The rotational degree of freedom
The above can be directly implemented for �xed orientation of a molecule in the
laboratory frame. If the rotational degree of freedom is taken into account, usu-
ally Euler angles are employed to describe the interaction of a �eld with a molecule.

In the case of a linear molecule (symmetric top) interacting with a linearly po-
larized �eld, the interaction term depends only on one angle, the polar Euler angle
θ between the �eld polarization vector and the dipole moment vector [58]. Here,
the �eld is taken to be polarized along the z-axis of the laboratory frame. To de�ne
the direction of the dipole moment completely respective to the �eld, additionally
the angle ϕ, which speci�es a rotation in the xy-plane, would be necessary. But
due to the cylindrical symmetry of the �eld, the angle ϕ can be neglected. Only
when calculating spatial integrals (e.g. expectation values), the factor of 2π remains
according to

2π∫

0

dϕ = 2π. (3.27)

To keep track of the population of rotational levels, the wavefunction is expanded
into spherical harmonics Yj,mj

. Due to the polarization of the �eld along the z-axis,
the selection rule ∆mj = 0 is obtained [59]. Thus, all mj can be treated separately
and for simplicity,mj is set to zero. Under these conditions, the spherical harmonics
only depend on j and θ. The basis set expansion of the wavefunction then reads

Ψ(R, θ, t) =
∑

j

χj(R, t)Yj,0(θ, 0). (3.28)

Here, Ψ(R, θ, t) is the reduced wavefunction. The total wavefunction Φ(R, θ, t) is
obtained via the relation

Ψ(R, θ, t) = R · Φ(R, θ, t) (3.29)

This representation simpli�es the application of the Hamiltonian in spherical coor-
dinates. The Hamiltonian is then of the form

Ĥ = T̂ (R) + T̂ (J) + V̂ (R) + Ŵ (t), (3.30)

where the interaction with the external �eld is

Ŵ (t) = −µ(R)E(t) cos θ (3.31)
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and the angular kinetic energy operator is de�ned as

T̂ (J) =
Ĵ2

2mR2
. (3.32)

Here, the angular momentum operator has the form

Ĵ2 = −h̄2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
, (3.33)

which reduces to Ĵ2 = h̄2j(j + 1) in the case of acting on its eigenfunctions, i.e.
spherical harmonics.

Employing the split-operator method (see section 3.3), the propagators for a short
time interval ∆t are split, in a �rst step, as

U(t) = e−iT̂ (R)∆t
2 e−i[V̂ (R)+T̂ (J)+Ŵ (t)]∆t e−iT̂ (R)∆t

2 . (3.34)

The action of the operators containing T̂ (R) are evaluated in momentum space.
Additionally, the following splitting is performed

e−i[V̂ (R)+T̂ (J)+Ŵ (t)]∆t = e−i[V̂ (R)+T̂ (J)]∆t
2 e−iŴ (t)∆te−i[V̂ (R)+T̂ (J)]∆t

2 . (3.35)

In applying the operator containing the sum [V̂ (R) + T̂ (J)] to the wave function

(Eq. 3.28), the j-th expansion term is multiplied by e−i

»
V̂ (R)− h̄2j(j+1)

2mR2

–
∆t
2 . The matrix

representation (with respect to the angular basis functions) of the dipole interaction
exponential is of tri-diagonal form and an additional splitting is introduced as

e−iW(t)∆t = ei µ(R) E(t)W1
∆t
2 ei µ(R) E(t)W2 ∆t ei µ(R) E(t)W1

∆t
2 . (3.36)

The matrices Wn are de�ned as

W1 =




0 c+1 0 0 0 · · ·
c−2 0 0 0 0 · · ·
0 0 0 c+3 0 · · ·
0 0 c−4 0 0 · · ·
0 0 0 0 0 · · ·
... ... ... ... ... . . .




, W2 =




0 0 0 0 0 · · ·
0 0 c+2 0 0 · · ·
0 c−3 0 0 0 · · ·
0 0 0 0 c+4 · · ·
0 0 0 c−5 0 · · ·
... ... ... ... ... . . .




.

(3.37)
Here, the following properties of the spherical harmonics are used:

cos θYj,0(θ, 0) = c+j Y(j+1),0(θ, 0) + c−j Y(j−1),0(θ, 0), (3.38)
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with the coe�cients

c+j =
(j + 1)√

(2j + 1)(2j + 3)
, c−j =

j√
(2j + 1)(2j − 1)

. (3.39)

The splitting algorithm of Eqs. (3.36, 3.37) allows for an analytical evaluation of
the exponential propagators using the formula [60]

exp

[
−iλ

(
0 c

c 0

)]
=

(
cos (λc) −i sin (λc)

−i sin (λc) cos (λc)

)
, (3.40)

where additionally, the property c+j = c−j+1 is used. Thus, two adjacent expansion
terms are mixed within each propagation step by a matrix multiplication.

3.6 Simpson integral
If an integral is evaluated numerically, the area under a curve interval is divided
into n subintervals of width h. The easiest method is to build the Riemann sum,
where the exact form of the subdivisions is approximated by rectangles. Here, a
large number of subintervals is needed to obtain converged results.

Various techniques exist to improve accuracy with less subdivisions. One of these
is the so-called Simpson method, where two subdivisions are considered together.
Two subintervals de�ne three points with the respective values y0, y1 and y2 on
the exact curve. The latter is now approximated by a parabola through the three
points. The area under the parabola is evaluated with Stirling's formula and yields
the integral value S for the two subintervals [61]

S = h

(
1

3
y0 +

4

3
y1 +

1

3
y2

)
. (3.41)

If this procedure is repeated for the remaining subdivisions, the result is the Simp-
son rule [62]

S =
h

3

n
2
−1∑

i=0

(y2i + 4y2i+1 + y2i+2) +O(h4). (3.42)

To build subinterval pairs, an even number of subintervals is necessary. For an odd
number, the last subinterval can be added according to

Sn =
h

12
(−yn−2 + 8yn−1 + 5yn). (3.43)

The Simpson rule was needed especially for the calculation of integrals with spher-
ical harmonics of high quantum number in this work.



4 Control theories - A short
overview

The control of chemical reactions and molecular dynamics with laser light is in
the focus of interest since the 1980s. An existence proof was given, that provides
su�cient (but not necessary) conditions for complete control [63]. Various tech-
niques and theories were proposed, but we are still at the very beginning of what
is dreamed of or what has not even been thought about, yet. Here, the prevailing
control methods are summarized.

4.1 Brumer-Shapiro quantum interference
One of the �rst control theories was proposed by Brumer and Shapiro [4, 64]. They
suggested the coupling of degenerate �nal states by two laser pulses of di�erent
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Figure 4.1: In the original Brumer-Shapiro control scheme (left-hand side) a preliminary
pulse (not shown) excites two vibrational states. From there, the transfer to
V1 or V2 is steered by the relative phase of the two control lasers with ω1 and
ω2. On the right-hand side, the simpli�ed control scheme with one-photon
(frequency of 3ω) and three-photon absorption (frequency of ω) is shown.
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frequency. The resulting phase of the laser �eld then should interfere constructively
with the phase of the wave packet in one of the �nal states and destructively with
the one in the other.
An example is depicted in Fig. 4.1. In the original scheme, a preliminary (infra-red)
pulse generates population in both the vibrational groundstate and a vibrationally
excited state. From these two levels, the control pulses create population in the two
exit channels. By variing the relative phase of the two pulses, an excess of either
product P1 or P2 is induced.
The scheme was simpli�ed later on, in a way that no preliminary pulse is needed
anymore [65]. The interaction of the intial state with a �nal state stems from one-
photon and three-photon processes (see Fig. 4.1).
The Brumer-Shapiro control theory has also been veri�ed experimentally [66, 67].

4.2 STIRAP
The �stimulated Raman adiabatic passage� (STIRAP) was proposed and exper-
imentally implemented by Bergmann and coworkers [68, 69]. Here, a complete
population transfer from an intial state |1〉 to a �nal state |3〉 is achieved by two
overlapping nanosecond pulses. The population transfer is achieved via an inter-
mediate state |2〉 by a counter-intuitive pulse sequence. The Stokes pulse, which

time

Stokes
pump

|2〉

|1〉

|3〉

pump
Stokes

Figure 4.2: With the STIRAP method, complete population transfer from initial state
|1〉 to �nal state |3〉 is possible. The states are coupled by two overlapping
nanosecond pulses (pump pulse and Stokes pulse), which are applied in a
counter-intuitive way. The transient population of the intermediate state |2〉
remains zero.
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exhibits approximately the resonance frequency between |2〉 and |3〉, preceeds the
pump pulse (see Fig. 4.2). As a consequence, the intermediate state |2〉 is never
populated.

4.3 Tannor-Koslo�-Rice pump-dump
Within the Tannor-Koslo�-Rice scheme, di�erent chemical products are generated
by controlling the delay between two ultrashort laser pulses [70, 71]. The �rst
(pump) pulse creates a wavepacket in an excited state. The wavepacket can then
be dumped after di�erent propagation times back to the groundstate. Depending
on the location of the excited-state wavepacket at the pump-dump delay-time,
di�erent exit channels are reached.
This pump-dump scheme is illustrated in Fig. 4.3. Here, the dissociation of a

ABC

ABC*

A + BCAB + C

t0
t1 t2

Figure 4.3: The Tannor-Koslo�-Rice scheme is shown for a molecule ABC. At time t0 a
pump pulse creates a wavepacket in the excited state. A dump pulse at either
time t1 or time t2 then leads to the population of di�erent exit channels in the
groundstate. Thus, a product of either AB+C or A+BC can be controlled
by the delay time between the pump- and the dump-pulse.
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molecule ABC into either AB + C at time t1, or A+BC at time t2, is triggered.
With the availability of femtosecond laser pulses, experiments realizing the Tannor-
Koslo�-Rice scheme were carried out [72, 73].

4.4 Chirping
Further development of the control techniques mentioned above resulted in not only
controlling the delay time or relative phase of laser pulses, but also their momen-
tary frequency. With these chirped pulses, electronic excitations were investigated
both theoretically and experimentally, see e.g. Ref. [74, 75]. Another interesting
application is the control of vibrational excitations via ladder-climbing processes.
Both theoretical [76] and experimental [77] research was carried out with these
frequency-swept infrared pulses.

In the schemes mentioned in the paragraphs above, a single parameter has to be
adjusted. With the use of chirped pulses, several parameters can be varied inde-
pendently (see section 2.3.1) and have to be optimized at the same time. Therefore,
more complex theories were developed.

4.5 Genetic algorithms and feedback control
Genetic algorithms systematically use random numbers to �nd an optimal set of
parameters for a given problem. They were not developed especially for laser con-
trol, but for various optimization procedures as soon as computers were available
(a well-known example is the travelling salesman problem, where a salesman must
visit every city in his territory exactly once and then return to the starting point
at minimum total travelling expenses) [78].
The general structure of such a program is as follows:

• start with several sets of random parameters, which de�ne a solution to the
given problem

• evaluate the (presumably not optimal) result for each set and store the best
set

• initialize a new generation of sets from random numbers, changing single
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parameters within a copy of the stored best set of the generation before (mu-
tation), exchanging parameters against each other within another copy (cross-
over), . . .

• evaluate the result for each new set, compare it to the stored result of the
momentary best set and eventually store a better one

• repeat the last two points until a prede�ned target is reached.

These evolution programs are not only employed for theoretical investigations, but
they are also the prevailing method for experimental laser control [79�81]. The lat-
ter is also termed adaptive quantum control or feedback control and was introduced
by Judson and Rabitz [82].
An example is shown in Fig. 4.4. Here, the evaluation of the result takes place with
a detector, e.g. a time-of-�ight (TOF) mass spectrometer. The detector then passes
a signal (feedback) to a computer, which adjusts di�erent pixels of a liquid-crystal
display (LCD) according to a genetic algorithm. By applying di�erent voltages, dif-

Figure 4.4: An example of an experimental setup for feedback control is shown
(compare Ref. [80]). A computer adjusts a pulse shaper (i.e. the LCD).
In this way, a tailored pulse is created, which dissociates a molecule.
The fragments are measured by a detector, which then passes a feed-
back to the computer.



44 4 Control theories - A short overview

ferent refractive indices are achieved in the LCD pixels, and thus, di�erent phases
are applied to di�erent colors of the spatially dispersed laser pulse. If the laser
beam is recollimated afterwards, a shaped pulse is obtained. The tailored pulse
then interacts with a molecular sample and e.g. induces fragmentation. The result
is recorded by the detector, which closes the loop. Therefore, closed-loop learning
algorithm is also employed as keyword.

4.6 Optimal control theory
Optimal control theory (OCT) was developed by Tannor, Koslo�, Rice et al.
[70, 83], by Rabitz et al. [84�86] and by Manz et al. [87]. For a review see
e.g. Ref. [2]. OCT should not be confused with the term �optimal control� in ex-
perimental papers, which is often used as synonym for feedback control.

Optimal control theory relies on a purely mathematical ansatz to �nd a �eld, which
yields a prede�ned target state |Φ〉 at a speci�ed �nal time tf . Starting from an
initial state |Ψ(t0)〉 of the system at time t0, the objective is to maximize the overlap

j = |〈Φ|Ψ(tf )〉|2 . (4.1)

To give a physical meaning, some conditions have to be included in the mathemat-
ical optimization process. The two elementary constraints are the obedience of |Ψ〉
to the time-dependent Schrödinger equation (assume a time-dependent interaction
of −µE(t)) (

ih̄ ∂
∂t
− Ĥ(t)

)
|Ψ〉 = 0 (4.2)

and a �xed total energy I of the laser �eld E(t)

tf∫

t0

dt |E(t)|2 − I = 0. (4.3)

The maximization of j with the above constraints can be transformed to an uncon-
strained problem using Lagrange multipliers χ and λ. The resulting objective

J = |〈Φ|Ψ(tf )〉|2 + λ




tf∫

t0

dt |E(t)|2 − I



+
i

h̄

tf∫

t0

dt
[〈
χ

∣∣∣
(
ih̄ ∂

∂t
− Ĥ(t)

)∣∣∣ Ψ
〉
−

〈
Ψ

∣∣∣
(
ih̄ ∂

∂t
− Ĥ(t)

)∣∣∣χ
〉]

(4.4)
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is maximized by the variational approach δJ = 0 [83].

Firstly, this leads to (
ih̄ ∂

∂t
− Ĥ(t)

)
|χ〉 = 0 (4.5)

with the �nal condition
|χ(tf )〉 = 〈Φ | Ψ(tf )〉 |Φ〉 . (4.6)

As a consequence, |χ(t)〉 can be obtained by a propagation backwards in time, as
soon as |χ(tf )〉 is evaluated via Eq. (4.6) from the forward propagation of |Ψ(t)〉
until time tf .

The second equation following from δJ = 0 is

E(t) =
i

λ
[〈χ |µ|Ψ〉+ 〈Ψ |µ|χ〉]

=
O(t)

λ
.

(4.7)

Once, O(t) has been found, the yet unknown real Lagrange multiplier λ can be
evaluated from Eq. (4.3) as

λ = ±

√√√√√1

I

tf∫

t0

dt |O(t)|2. (4.8)

Hence, OCT can be implemented numerically as follows:

• guess an initial laser �eld E(t)

• propagate |Ψ〉 to time tf using the given E(t)

• project |Φ〉 onto Ψ(tf ) to get |χ(tf )〉

• propagate χ backwards to time t0 (propagate |Ψ〉 backwards as well, to avoid
storing or memorizing the complete |Ψ(t)〉 from forward propagation)

• during this propagation evaluate O(t) and store it

• after backwards propagation, calculate λ and renormalize O(t) with it, to
yield a new E(t)

• repeat the last �ve steps until convergence is achieved.
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Although OCT is often referred to as global optimization procedure, it is only global
in time [7]. Other control methods may still yield a �more optimal� �eld, because
OCT may be trapped in a local maximum (depending on the initially guessed �eld).

4.7 Local control theory (LCT)
Local control theory was invented by Tannor, Koslo� and coworkers [88] and a little
later, independently by Rabitz and coworkers, where it is called tracking [89�91].
Here, the control �eld is determined from the system's dynamics at every instant in
time and immediately fed back into the dynamics. Therefore, it can be implemented
in the laboratory through automated experiments, in principle [7]. The laser �eld
is derived from the rate d〈Â〉

dt
of a target expectation value 〈Â〉 (see next chapter for

details), where the central equation is

d〈Â〉
dt

=
i

h̄
〈Ψ(t)|[Ĥ(t), Â]|Ψ(t)〉, (4.9)

or variants thereof.
The �eld is local in time, since it is determined to achieve a monotonic increase
(decrease, constant) in the desired objective. As the �eld directly stems from the
dynamics, it is very close to intuition and in most cases easily understandable. For
example, the STIRAP scheme automatically emerged from the local optimization
and was extended to an N-level system [92]. Local control was also formulated
within the density matrix approach [93, 94]. An extension for controlling not only
the �eld's amplitude but also the phase was implemented for quantum computing
[95, 96]. Various other applications can be found in the literature (see e.g. refer-
ences [97�107]).

Since local control theory is the method used in this work, it is discussed in more
detail in the next chapter.
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In local control theory (LCT), the shape of a laser �eld is determined by the sys-
tem's dynamics. The analytical expression is derived from the rate d〈Â〉

dt
of a target

expectation value 〈Â〉. In case of a time-independent operator Â, this time deriva-
tive can be evaluated according to:

d〈Â〉
dt

=
d

dt

〈
Ψ(t)

∣∣∣Â
∣∣∣ Ψ(t)

〉

=

〈
d

dt
Ψ(t)

∣∣∣Â
∣∣∣ Ψ(t)

〉
+

〈
Ψ(t)

∣∣∣Â
∣∣∣ d
dt

Ψ(t)

〉

=
i

h̄

〈
Ψ(t)

∣∣∣Ĥ(t)Â
∣∣∣ Ψ(t)

〉
− i

h̄

〈
Ψ(t)

∣∣∣ÂĤ(t)
∣∣∣ Ψ(t)

〉

=
i

h̄

〈
Ψ(t)

∣∣∣[Ĥ(t), Â]
∣∣∣ Ψ(t)

〉
,

(5.1)

where the product rule was used in a �rst step and the time-dependent Schrödinger
equation d

dt
Ψ(t) = − i

h̄
Ĥ(t)Ψ(t) was inserted in a second step. The time-dependent

Hamiltonian is taken to consist of the time-dependent interaction Ŵ (t) = −µE(t)

and the Hamiltonian of the unperturbed system Ĥ0. As a consequence, the expec-
tation value of the commutator can be split up into two parts

i

h̄

〈
Ψ(t)

∣∣∣[Ĥ(t), Â]
∣∣∣ Ψ(t)

〉
=
i

h̄

〈
Ψ(t)

∣∣∣[Ĥ0, Â]
∣∣∣ Ψ(t)

〉

+
i

h̄

〈
Ψ(t)

∣∣∣[Ŵ (t), Â]
∣∣∣ Ψ(t)

〉
.

(5.2)

In several cases, the commutator [Ĥ0, Â] vanishes or can be neglected. The remain-
ing term then yields

d〈Â〉
dt

= E(t)
i

h̄

〈
Ψ(t)

∣∣∣[−µ, Â]
∣∣∣ Ψ(t)

〉
. (5.3)

If the objective is either a positive or negative rate, the �eld can be chosen as

E(t) =





+λ i
h̄

〈
Ψ(t)

∣∣∣[−µ, Â]
∣∣∣ Ψ(t)

〉
for a monotonic increase of 〈Â〉

−λ i
h̄

〈
Ψ(t)

∣∣∣[−µ, Â]
∣∣∣ Ψ(t)

〉
for a monotonic decrease of 〈Â〉

(5.4)
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where λ can be e.g. a positive scaling factor or an envelope function. The reason
for this choice of the �eld becomes clear, if Eq. (5.4) is inserted into Eq. (5.3), which
yields

d〈Â〉
dt

=





+λ
(

i
h̄

〈
Ψ(t)

∣∣∣[−µ, Â]
∣∣∣ Ψ(t)

〉)2

≥ 0

−λ
(

i
h̄

〈
Ψ(t)

∣∣∣[−µ, Â]
∣∣∣ Ψ(t)

〉)2

≤ 0.
(5.5)

It follows, that the rate then is represented by the square of the expectation value of
the commutator, which is always larger than or equal to zero for +λ (smaller than
zero for −λ). The latter conclusion is valid, due to the lemma, that the expectation
value of a Hermitian operator is purely real [108] (and thus, d〈Â〉

dt
is real-valued).

Another way of putting this, uses that a commutator is anti-Hermitian. With
the lemma, that the expectation value of an anti-Hermitian operator, de�ned by
C = −C, is purely imaginary [108], the same result is obtained.

If the commutator [Ĥ0, Â] does not vanish, the �eld can be determined as

E(t) = λ

i
h̄

〈
Ψ(t)

∣∣∣[Ĥ0, Â]
∣∣∣ Ψ(t)

〉

i
h̄

〈
Ψ(t)

∣∣∣[−µ, Â]
∣∣∣ Ψ(t)

〉 (5.6)

where

• for a monotonic increase of 〈Â〉,




λ > −1 if i
h̄

〈
Ψ(t)

∣∣∣[Ĥ0, Â]
∣∣∣ Ψ(t)

〉
> 0

λ < −1 if i
h̄

〈
Ψ(t)

∣∣∣[Ĥ0, Â]
∣∣∣ Ψ(t)

〉
< 0

• for a constant 〈Â〉, λ = −1

• for a monotonic decrease of 〈Â〉,




λ < −1 if i
h̄

〈
Ψ(t)

∣∣∣[Ĥ0, Â]
∣∣∣ Ψ(t)

〉
> 0

λ > −1 if i
h̄

〈
Ψ(t)

∣∣∣[Ĥ0, Â]
∣∣∣ Ψ(t)

〉
< 0.

From the latter inequalities, it can be seen, that the to some extent general proce-
dure has to be adjusted according to the respective target. The following examples
illustrate the proceeding necessary for the treated problems in this work.

5.1 Energy objective
If energy is to be pumped into the system (heating) or taken away (cooling), the
expectation value of the unperturbed system's Hamiltonian Ĥ0 is regarded. Its
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time derivative

d〈Ĥ0〉
dt

=
i

h̄

〈
Ψ(t)

∣∣∣[Ĥ(t), Ĥ0]
∣∣∣ Ψ(t)

〉

= E(t)
i

h̄

〈
Ψ(t)

∣∣∣[−µ, T̂ ]
∣∣∣ Ψ(t)

〉

= E(t)
h̄

i2m

〈
Ψ(t)

∣∣∣∣
(
d2µ

dR2
+ 2

dµ

dR

d

dR

)∣∣∣∣ Ψ(t)

〉
(5.7)

then should be positive for a heating (negative for a cooling) at all times. Therefore,
the �eld is chosen as

E(t) = λ
ih̄

2m

〈
Ψ(t)

∣∣∣∣
(
d2µ

dR2
+
dµ

dR

d

dR

)∣∣∣∣ Ψ(t)

〉
, (5.8)

where λ is a positive constant for the heating case (negative for cooling).

In the special case of a linear dipole moment, i.e. µ = q R, equation (5.7) is
simpli�ed to

d〈Ĥ0〉
dt

= E(t)
h̄

i2m

〈
Ψ(t)

∣∣∣∣2q
d

dR

∣∣∣∣ Ψ(t)

〉

= E(t)
q

m
〈Ψ(t) |p̂|Ψ(t)〉

(5.9)

and consequently, the �eld is chosen as

E(t) =





+λ 〈p̂〉 (heating)
−λ 〈p̂〉 (cooling).

(5.10)

5.2 Vibrational eigenstate objective
If the target is a single vibrational state |φt〉, the projector |φt〉〈φt| onto this eigen-
state is the operator of interest. The rate is then

d〈|φt〉〈φt|〉
dt

=
i

h̄

〈
Ψ(t)

∣∣∣[Ĥ(t), |φt〉〈φt| ]
∣∣∣ Ψ(t)

〉

= E(t)
i

h̄
〈Ψ(t) |[−µ, |φt〉〈φt| ]|Ψ(t)〉

= E(t)
2

h̄
=〈Ψ(t) |µ|φt〉 〈φt| Ψ(t)〉

(5.11)

and the �eld becomes

E(t) = +λ =〈Ψ(t) |µ|φt〉 〈φt| Ψ(t)〉 . (5.12)
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From this analytical form it becomes obvious, that some overlap between the
wavepacket Ψ(t) and the target state |φt〉 must exist at the beginning. Otherwise
the �eld remains zero. This problem is overcome e.g. by a so-called seed pulse,
which transfers a negligible amount of population to the desired state. However, it
is important to note, that in an experiment the seed pulse would not be necessary,
if the calculated control �eld was applied.

5.3 Electronic state objective
If population is to be transferred from an electronic state |1〉 to another electronic
state |2〉, the procedure is similar as with the vibrational eigenstate objective. The
expectation value of the projector |2〉〈2| onto the chosen �nal state is di�erentiated
by time. In this case, the wavefunction consists of two parts belonging to the
respective electronic state

|Ψ(t)〉 = ψ1|1〉+ ψ2|2〉. (5.13)

The Hamiltonian now reads

Ĥ(t) = |1〉(T̂+V1)〈1|+|1〉(−µ12 E(t))〈2|+|2〉(−µ12 E(t))〈1|+|2〉(T̂+V2)〈2| (5.14)

with the potential energy Vn in state |n〉 (n = 1, 2) and the transition dipole moment
µ12. The time derivative of the target is then evaluated according to

d〈|2〉〈2|〉
dt

=
i

h̄

(
〈1| ψ∗1 + 〈2| ψ∗2

)
[Ĥ(t), |2〉〈2| ]

(
ψ1 |1〉+ ψ2 |2〉

)

=
2

h̄
E(t) =〈ψ1|µ12|ψ2〉

(5.15)

where 〈n|m〉 = δnm was used. As a consequence, the control �eld takes the form

E(t) = λ =〈ψ1|µ12|ψ2〉. (5.16)

5.4 Energy objective including rotation
The above objectives are discussed for �xed orientation of the molecule with respect
to the laser polarization. If the rotational degree of freedom is taken into account,
slight variations are encountered.
As stated above (section 3.5), the interaction takes the form W (t) = −µ E(t) cos θ.
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The rate expression for a diatomic molecule's vibrational energy Ĥvib now results
in (assuming a linear dipole moment)

d〈Ĥvib〉
dt

= E(t)
h̄

i2m

〈
Ψ(t)

∣∣∣∣2q
∂

∂R

∣∣∣∣ Ψ(t)

〉

= E(t)
q

m
〈Ψ(t) |p̂ cos θ|Ψ(t)〉

(5.17)

and consequently, the �eld is chosen as

E(t) =





+λ 〈p̂ cos θ〉 (heating)
−λ 〈p̂ cos θ〉 (cooling).

(5.18)

Due to the cos θ-term, this �eld usually is zero, when starting from the groundstate.
In this case, a seed pulse is needed in order to achieve active control.

5.5 Orientation objective
If an orientation of the molecule with respect to the laser polarisation should be
achieved, the target is chosen as 〈Ĵ2〉. The reason for this choice is, that a super-
position of a large number of rotational eigenstates j results in an orientation. The
latter can be veri�ed by the means of a Fourier series, where a localized function can
be approximated by the superposition of e.g. trigonometric functions [109]. Here,
the superposition of more and more angular free-rotor states leads to an object
localized in the angular degree of freedom. Thus, the increase of the expectation
value of the angular momentum operator 〈Ĵ2〉 is a su�cient condition for an orien-
tation.
The time derivative of the target is then evaluated for a diatomic molecule according
to

d〈Ĵ2〉
dt

= E(t) ih̄

〈
Ψ(t)

∣∣∣∣µ
[
cos θ,

(
∂2

∂θ2
+ cot θ

∂

∂θ

)]∣∣∣∣ Ψ(t)

〉

= E(t)
2 h̄

i

〈
Ψ(t)

∣∣∣∣µ
(

cos θ + sin θ
∂

∂θ

)∣∣∣∣ Ψ(t)

〉
.

(5.19)

As a consequence, the control �eld is chosen as

E(t) = λ =
〈

Ψ(t)

∣∣∣∣µ
(

cos θ + sin θ
∂

∂θ

)∣∣∣∣ Ψ(t)

〉
(5.20)

to ensure a rate, which is larger than zero.
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6 Laser control of the NaI
molecule

One of the �rst molecules studied with femtosecond time resolution was sodium
iodide (see e.g. the seminal work by Zewail et al. [110, 111]). A lot of data is avail-
able for this molecule, which builds an excellent basis for further studies. Here,
sodium iodide is chosen as model system for laser control. For related work on NaI
control, see Refs. [112�117].

As mentioned in section 2.5, the potentials of NaI can be described in the adi-
abatic (index a) or the diabatic (index d) picture. In the literature, the analytic
form of the curves in the diabatic representation can be found [118]. Here, the
potential V d

1 of the ionic groundstate |1〉 is given as

V d
1 =

[
A1 +

(
B1

R

)8
]
· e−R

ρ − e2

R
− e2(λ+ + λ−)

2R4
− C1

R6
− 2e2 λ+λ−

R7
+ ∆E1 (6.1)

The values of the parameters as well as the constants from the following equations
can be found in Tab. 6.1. The character of the �rst excited state |2〉 is neutral and
its potential

V d
2 = A2 e

−β2(R−R0) + ∆E2 (6.2)

is dissociative. It shows a non-adiabatic coupling to the groundstate, which can be
modeled by the coupling function

V d
12 = A12 e

−β12(R−Rc)2 , (6.3)

which is chosen as a gaussian to �t the energy gap of 0.11 eV of the avoided crossing
at ≈ 7 Å in the adiabatic representation [118]. A second excited state is involved
in some of the following setups. Because it shows no coupling to one of the other
states, its form is identical in the diabatic as well as in the adiabatic picture [119]:

V3 = A3

[
1− e−β3(R−Re3)

]2 − A3 + ∆E3 (6.4)
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Table 6.1: Parameters for the NaI potentials.

V d
1 V d

2 V12 V3

A1 [eV] 2760 A2 [eV] 0.813 A12 [eV] 0.055 A3 [eV] 0.06572

B1 [eV 1
8 Å] 2.398 β2 [Å−1] 4.08 β12 [Å−2] 0.6931 β3 [Å−1] 1.8

C1 [eV Å6] 11.3 R0 [Å] 2.67 Rc [Å] 6.93 Re3 [Å] 3.4

λ+ [Å3] 0.408 ∆E2 [eV] 4.086 ∆E3 [eV] 6.191

λ− [Å3] 6.431

ρ [Å] 0.3489

∆E1 [eV] 4.086

The potential curves are depicted in Fig. 6.1.

The permanent dipole moment of the �rst excited state in the adiabatic represen-
tation was taken from a �gure in Ref. [120]. It can be approximated by the analytic
form

R < RI µa
2 = 0.0D

RI ≤ R ≤ RII µa
2 = AI · e−βI ·(R−RIII)2 −BI

RII < R µa
2 = AII ·R

2 4 6 8 10 12
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d
(R)
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d
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V
12

d
(R)

V
3

(R)

diabatic

2 4 6 8 10
R [Å]

0

2

4

6

E 
[e

V
]

V1 (R)

V2 (R)

V
3

(R)

adiabatic
a

a

Figure 6.1: Potentials of sodium iodide. Left: Adiabatic curves. Right: Diabatic
curves.
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Figure 6.2: Permanent dipole moments. Left: Adiabatic dipole moments for the
groundstate and the �rst excited state. Right: Diabatic curves, where
the ionic nature of the diabatic groundstate and the neutral character
of the excited state gets clear.

The adiabatic dipole moment µa
1 of the groundstate is then calculcated by subtract-

ing this µa
2 from the diabatic dipole moment µd

1 of the groundstate

µa
1 = µd

1 − µa
2, (6.5)

where
µd

1 = AII ·R. (6.6)

Table 6.2: Parameters for the dipole mo-
ments.

µa
2 and µd

1

RI [Å] 5.000

RII [Å] 7.939

RIII [Å] 8.000

AI [D] 38.262

βI [Å−1] 0.567

BI [D] 2.485 · 10−3

AII [D Å−1] 4.803a

aNote, that this value equals 1 a.u.
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The diabatic dipole moment of the excited state is small and consequently set to
zero. The di�erent dipole moments are displayed in Fig. 6.2.

6.1 Heating and cooling within an electronic state
In the �rst numerical example, the NaI molecule is excited from the groundstate
by a femtosecond pulse into V a

2 . Within a simpli�ed model, the predissociation
channel, being e�ective through the non-adiabatic coupling at a distance of 7 Å, is
ignored. In the excited state, either a heating or a cooling process is triggered by a
control �eld, which is determined according to local control theory. Such processes
occurring in molecules have been discussed in connection with, e.g., IR multiphoton
dissociation [76, 121], and cooling of the internal degrees of freedom [93, 122].

The excited-state wave packet is prepared by a 50 fs pulse (full width at half
maximum of the Gaussian �eld envelope) with a wavelength of 310 nm from the
electronic ground state. This excitation is calculated within perturbation theory.
The potential curve V a

2 (R) of the excited adiabatic state, where the dynamics takes
place, is displayed in Fig. 6.3. The heating process, �nally leading to dissociation,
and the cooling process are illustrated schematically.
On account of the covalent character of the excited electronic state at small dis-

cooling

V2

a

4

5

6

E 
[e

V
]

heating

V2

a

2 4 6 8 10
R [Å]

1

1.5
V1

a

2 4 6 8 10 12

V1

a

ω
12

ω
12

Figure 6.3: Scheme of a heating (left panel) and a cooling (right panel) process in
the �rst excited state of sodium iodide.
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tances, µa
2(R) is negligibly small for R smaller than 6 Å and increases linearly for

larger R (see Fig. 6.2). This behavior stems from the fact that at larger bond dis-
tances the character of the electronic state changes from covalent to ionic due to
the avoided crossing. Thus, the model system is characterized by the Hamiltonian

Ĥ = − h̄2

2m

d2

dR2
+ V a

2 (R)− µa
2(R)E(t)

= Ĥ0 − µa
2(R)E(t),

(6.7)

where the reduced mass m of NaI is 19.464 u (relative atomic mass units) and Ĥ0

is the Hamiltonian of the unperturbed system.

The control target is either excited-state dissociation or a vibrational cooling.
Therefore, the �eld E(t) is determined according to the energy objective (see section
5.1). Because of the shape of the dipole moment µa

2(R), the simpli�ed approach,
where the �eld is determined from the momentum expectation value 〈p̂〉, can be
applied. As a consequence, the control �eld is calculated at each time-step as

E(t) = λ 〈p̂〉 , (6.8)

where the scaling parameter λ is chosen negatively for a cooling and positively for
a heating processs.

6.1.1 Heating
The heating process is illustrated in Figs. 6.4 and 6.5 for di�erent scaling parame-
ters λ. They are chosen as λ = 1 · 10−6 a.u., 4 · 10−6 a.u. and 10 · 10−6 a.u. The
case without control �eld (λ = 0 a.u.) is shown on the left-hand side in Fig. 6.4 for
comparison.

In the upper panels, the control �elds are depicted, respectively. Note that, because
the �eld E(t) is scaled with the mean momentum, the amplitude E0 is actually much
stronger than λ. For the highest value of λ = 10 · 10−6 a.u., the maximum �eld
strength is about 5 · 10−4 a.u., which corresponds to ∼ 2.6 · 108 V

m
or an intensity

of ∼ 8.8 · 109 W
cm2 . The �elds are set to zero as soon as dissociation (lowest panels)

sets in.

Dissociation is assumed to take place as soon as a bond length of Rdiss = 37.5 Å
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Figure 6.4: Heating of the NaI molecule. The upper panels contain the �elds as
constructed from the momentum changes in the system (see Eq. (6.8))
calculated for di�erent coupling parameters (compare also Fig. 6.5).
Here, λ = 1 · 10−6 a.u. (right-hand side) and λ = 0 a.u. (left-hand
side), for comparison, are displayed. Also shown are the expectation
values of the system's energy 〈H0〉 and of the bond-length 〈R〉 in the
di�erent cases. The lower panels display the dissociation yield.

is reached. Parts of the wavepacket exceeding this value are smoothly removed by
an optical potential [123�127]. In other words, the wavefunction is multiplied with
a cut-o� function, which decays in a half-gaussian shape from 1 to 0 over a spa-
tial interval of 2 Å starting at Rdiss = 37.5 Å. The dissociation yield is calculated
in every time step by spatial integration over the removed wave-packet parts. The
overall yield is then computed as the sum of those integrals. The dissociation yields
for the di�erent λ are shown in the lowest panels of �gures 6.4 and 6.5.
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Figure 6.5: Field induced dissociation of NaI. The same values as in Fig. 6.4 are
shown for λ = 4 · 10−6 a.u. (left-hand side) and λ = 10 · 10−6 a.u.
(right-hand side). The left-hand side also contains the chirped �eld as
given in Eq. 6.9 ,which is adapted to resemble the local control �eld.
The corresponding expectation values are displayed in dotted lines.

Additionally, the energy expectation values 〈H0〉 of the unperturbed system and
the bond-length expectation values 〈R〉 are depicted in the middle panels, as indi-
cated. They are shown until dissociation sets in.

From the �gures and from the de�nition of the control �eld, it emerges, that the
heating process can be imagined as an in-phase-driven oscillator. With increasing
energy, the vibrational amplitude increases and consequently, the frequency of the
�eld becomes smaller. Thus, a down-chirp is expected and readily found. The
quantum-mechanical analogon to the classical phenomenon of an in-phase-driven
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oscillator is also well-known as ladder-climbing [76, 77, 121]. Here, the vibrational
levels are seen as rungs of a ladder, which are climbed by the system via consecutive
transitions induced by the �eld.

In what follows, the in�uence of the di�erent intensities is discussed in detail. The
case with the smallest scaling factor of λ = 1 · 10−6 a.u. is regarded �rst (Fig. 6.4,
right-hand side). A deposit of energy is clearly visible from the rise of the energy
expectation value 〈H0〉. The bond-length expectation value re�ects a vibrational
motion with increasing amplitude and decreasing frequency, as expected from the
classical arguments given above. Nevertheless, the control �eld is too weak to in-
duce dissociation. At later times (not shown), the wave packet is de-localized over
the potential well. This is accompanied by a mean momentum of zero. Thus, the
spreading prevents that any more energy can be pumped into the system by a �eld
de�ned according to Eq. (6.8).
Choosing only a slightly more intense �eld with λ = 4 ·10−6 a.u. (Fig. 6.5, left-hand
side), has the e�ect, that three vibrational periods are performed until fragmen-
tation starts being e�ective. The increasing amplitude of the vibrational motion
gets even more distinct. But due to wave-packet dispersion, only about 40% of the
molecules undergo dissociation.

The limiting case, where the dissociation yield is 100 %, is obtained, choosing
the parameter λ = 10 ·10−6 a.u. (Fig. 6.5, right-hand side). Here, the absorption of
energy is so e�ective that the initial wave packet reaches the dissociation channel
only after one vibrational period.

The �elds, as derived from the dynamics, have a somewhat complicated appear-
ance. They should be regarded as theoretically derived �elds to be approximated
by simpler �elds, which can be produced in the laboratory. As an example, the case
of λ = 4 · 10−6 a.u. (Fig. 6.5, left-hand side) is chosen. To a good approximation
the �eld can be represented as

E(t) = E0 cos(ωt+ αt2 + βt3 + δ) (6.9)

with ω = 1.06 · 10−4 a.u. and δ = 3
2
π. The chirp parameters were chosen as

α = −1.4 · 10−10 a.u. and β = −1 · 10−17 a.u. The such parameterized �eld is
included in the �gure (dotted/red line). Employing this negatively chirped �eld, a
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dissociation yield of roughly 45% is found, which even exceeds the results from the
LCT �eld. This proves that indeed a reasonably smooth �eld may be derived from
the quantum dynamics being as e�ective as the momentum scaled �eld of Eq. (6.8).
The slightly better results of the smooth �eld show, that LCT may not provide the
optimal �eld, as already stated by Tannor and coworkers [7]. Nevertheless, very
e�cient �elds evolve, that can be clearly interpreted on a physical basis, where the
latter is often not the case for other control algorithms.

6.1.2 Cooling

Due to the form of the control �eld equation, an out-of-phase-driven oscillator is ex-
pected for the cooling case. Here, the �eld should exhibit an up-chirp, as is clearly
the case for λ = −1 · 10−6 a.u. Regarding 〈H0〉, it can be seen, that a cooling is
achieved. Also, the amplitude of the vibrational motion decreases and its frequency
increases as can be anticipated from the classical argumentation.

For higher intensities of the �eld (λ = −4 · 10−6 a.u., −10 · 10−6 a.u.), the up-
chirp is visible at early times, but becomes less pronounced later on. This is due to
the additional wave-packet dispersion introduced by the control �eld. Nevertheless,
the cooling is very e�ective as can be seen from the energy expectation values 〈H0〉.

The rather irregular �elds derived from LCT once again can be replaced by simpler
�elds to be produced in the laboratory. As an example, the case of λ = −4 · 10−6

a.u. (Fig. 6.6, lower left-hand side) is chosen. The local control �eld can be �tted
according to

E(t) = E0 cos(ωt+ αt2 + βt3 + δ) e−ξ(t−t0)2 (6.10)

with ω = 9.5 · 10−5 a.u. and δ = −0.3 π. The chirp parameters were chosen as
α = 5 · 10−10 a.u. and β = −7.8 · 10−16 a.u., while t0 = 0 and ξ = 1.17 · 10−11 a.u.
for the gaussian envelope. The such parameterized �eld is included in the �gure
(dotted/red line). In comparing the bond length with the energy expectation value,
the conclusion can be drawn, that the chirped cosine �eld is equally e�ective as the
momentum scaled one. This again proves, that practicable control �elds can be
derived from the system's dynamics.
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Figure 6.6: Cooling of the NaI molecule. The control �elds (upper panels) are constructed
from the momentum expectation value for di�erent scaling parameters as indicated.
Also, the expectation values of the system's energy 〈H0〉 (middle panels) and of the
bond-length 〈R〉 (lower panels) are displayed for the respective cases. Additionally,
a smooth �eld derived from a chirped cosine (Eq. (6.10)) and the corresponding
expectation values are shown on the lower left-hand side (dotted/red lines). The
former is adapted to resemble the local control �eld for λ = −4 · 10−6 a.u.
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6.2 Dissociation and Predissociation
In the previous section, the non-adiabatic coupling to the groundstate was ignored.
Proceeding to a more realistic description, the resulting predissociation channel is
now included. Once again, the heating case is regarded. However, not only excited-
state dissociation, but the ratio of excited-state dissociation versus predissociation
is of interest, here. A di�erent target is pursued with the cooling �elds. A decline of
the predissociation is expected in this case. The results are compared to predictions
from the Landau-Zener theory (see section 2.6). There exist several studies of the
control of predissociation dynamics in the NaI molecule [59, 112, 113, 115, 116].
The present study di�ers from the above mentioned work in the way, the control
�elds are constructed.

The initial wave packet is prepared as described previously within perturbation
theory. This packet performs a vibrational motion in the upper potential well but,
due to the existence of the non-adiabatic coupling, curve crossing processes become
e�ective each time the packet approaches the coupling region, �nally leading to a
complete predissociation. According to the Landau-Zener formula

PLZ = e−π2 ∆E2
c

vh∆Fc , (6.11)

the probability for a transition from one adiabatic state to another, or in this case,
the predissociation yield depends on the energy gap ∆Ec between the adiabatic
curves at the crossing point Rc and the velocity v of the wave packet in this region.
These parameters are in�uenced by the control �eld. At the �rst glance, a higher
predissociation yield is expected from a heating �eld due to an acceleration of the
wave packet. In contrast, with decreasing velocity v induced by a cooling �eld,
the predissociation yield should approach zero. These processes are sketched in
Fig. 6.7.

The adiabatic potential curves V a
n (n = 1, 2) are constructed from the diabatic

potentials introducing a potential coupling V12. The Hamiltonian of the unper-
turbed system, within the diabatic representation, reads:

Hd =

(
T̂ 0

0 T̂

)
+

(
V d

1 (R) V12

V12 V d
2 (R)

)
(6.12)
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Figure 6.7: Scheme of a heating (left panel) and a cooling (right panel) process.
In the heating case, predissociation is enhanced until excited-state dis-
sociation sets in. In this way, the ratio between neutral (Na + I) and
ionic (Na+ + I−) products can be in�uenced. Regarding the cooling,
predissociation is suppressed.

where T̂ is the kinetic energy operator.

The interaction with the external heating/cooling �eld is given by the dipole coupling-
term of the form

W a
n = −µa

n(R) E(t). (6.13)

To arrive at a description in adiabatic states and to apply the adiabatic dipole
moments µa

n, the short-time propagator, acting at time t on the two-component
nuclear wave function is approximated as

U12 = e−iT∆t
2 AT e−iVa

W ∆t A e−iT∆t
2 . (6.14)

The matrix A(R) (where AT is its transposed) diagonalizes the diabatic potential
matrix appearing in Eq. (6.12). The resulting matrix Va

W contains the sum of the
adiabatic potentials V a

n (R) and the interaction term W a
n (R, t) as diagonal matrix

elements
Va

W =

(
V a

1 +W a
1 0

0 V a
2 +W a

2

)
. (6.15)
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The expression for the propagator is valid in the limit that the electric �eld can be
regarded as constant within the small time interval ∆t [128]. This is the case, as
E(t) is again derived in every time step from the momentum in the upper adiabatic
state

E(t) = λ 〈p̂a
2〉 . (6.16)

The dissociation yield in the excited adiabatic state is calculated as described in the
previous section. Additionally, the predissociation yield is computed in a similar
way. Here, the optical potential, which cuts parts of the two-component wave
function in the adiabatic groundstate, starts to act at a distance Rprediss = 9.5 Å.

6.2.1 Na + I vs. Na+ + I−

First, the case of a heating �eld is treated. The control �elds for di�erent parame-
ters λ are shown in Fig. 6.8a. The numbers (s) in the �gure correspond to values of
λ = s · 10−6 a.u. From the �gure, it can be taken, that the frequency of the �elds
decreases in time. This again hints at an enlarged amplitude of the vibrational
motion, as shown in the previous section for the simpli�ed model.

The panels (b) display the time-dependent energy expectation values

〈H0〉 =
〈Ψ(t)|Hd|Ψ(t)〉
〈Ψ(t)|Ψ(t)〉 . (6.17)

Here, Ψ(t) denotes the part of the two-component wave function which has not dis-
appeared into the reaction channels. From the energy expectation values, it is seen
that with increasing �eld strength the energy deposition is e�ectively enhanced.
The heating of the system has the consequence that the average velocity of the rel-
ative motion is increased. As stated above, this increases the transition probability,
so that predissociation is enhanced. The percentage of molecules, which undergo
predissociation and turn to the neutral fragments Na + I, is displayed in panels (c).
Nevertheless, as more and more energy is absorbed from the control �eld, the total
energy is approaching the dissociation limit in the excited electronic state occur-
ring at a value of about 5.7 eV. Molecules exceeding this energy fragment into the
ionic products Na+ + I−. The respective dissociation yields are shown in panels (d).

Regarding the cases of di�erent �eld strengths, the following e�ects are found.
For the weakest �eld (s = 1, straight/dark red line) no dissociation is found in the
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Figure 6.8: Heating. Panels (a) show the control �elds for various scaling factors
λ = s · 10−6 a.u., where s = 1, 4, 7 or 10. Below, the respective
energy expectation values 〈H0〉 are displayed (panels (b)). In the lowest
panels (d), the excited-state dissociation yields are depicted, where the
resulting fragments are Na+ + I−. In panels (c), the yield for the
fragments Na + I according to a predissociation mechanism can be
found. Here, the predissociation yield in the �eldless case is additionally
shown for comparison.

displayed time interval. Regarding the predissociation process, it is seen that the
predissociation yield at t = 10 ps is enhanced as compared to the zero-�eld case
(dot-dashed/black line).
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Increasing the �eld strength by a factor of 4 (dotted/red line) results in an even
larger yield at shorter times. However, this value becomes smaller than the one
obtained at zero �eld at later times (not shown). The reason is that, if no �eld is
present, all laser excited molecules undergo predissociation in the limit of in�nite
times, which is not the case if excited-state fragmentation occurs. The latter is
taking place for s = 4 shortly before 10 ps, as can be seen from the panels (d),
left-hand side.

A higher �eld strength (s = 7, dashed/violet line) results in a higher ratio of
dissociation/predissociation, i.e. more fragments are produced via excited-state
dissociation. Here, the dissociation process of nearly all still-bound molecules sets
in already at about 3.5 ps, which is shown in panels (d) on the right. Consequently,
also the respective predissociation yield does not increase visibly afterwards.

For an even higher �eld strength of s = 10 (long-dashed/orange line), the ratio
of dissociation/predissociation gets lower again. Although the dissociation limit is
reached somewhat earlier (shortly after 3 ps) than in the case with s = 7, more
molecules have undergone predissociation until that time.
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Figure 6.9: The ratio of dissociation/predissociation is plotted against s, where
λ = s · 10−6 a.u.
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This trend of the dissociation/predissociation ratio is visualized in Fig. 6.9, where
also intermediate values s have been considered additionally to the ones discussed
above. The picture implies, that an optimal value of the �eld strength exists for
the given problem. Here, the best scaling factor is λ = 7 · 10−6 a.u. To �nd out the
reasons for this behaviour, the Landau-Zener theory is helpful.

The predissociation yield P after passing the crossing point Rc for the �rst time
(around 250 fs) is compared to results PLZ obtained within the Landau-Zener the-
ory, see Tab. 6.3. In calculating PLZ , the values ∆Ec, ∆Fc and the velocity v are
evaluated from the expectation values of the bond length 〈R〉 and the momentum
〈p〉 in the excited adiabatic state. Here, ∆Ec and ∆Fc are modi�ed by the external
�eld, see below. All quantities are determined at the time tc when the population
in the adiabatic groundstate, being zero initially, assumes half of the value which
is reached after the �rst crossing process.

Table 6.3: Transition probabilities PLZ derived from Landau-Zener theory are compared to those ob-
tained from the numerical calculations (P ) for a heating �eld.

λ PLZ P ∆Fc [a.u.] ∆Ec [a.u.] v [a.u.]
0. 0.041 0.023 5.914 · 10−3 4.002 · 10−3 1.334 · 10−3

1. 0.034 0.021 5.860 · 10−3 4.111 · 10−3 1.339 · 10−3

4. 0.019 0.019 5.683 · 10−3 4.415 · 10−3 1.357 · 10−3

7. 0.011 0.032 5.494 · 10−3 4.659 · 10−3 1.375 · 10−3

10. 0.004 0.102 5.356 · 10−3 5.177 · 10−3 1.394 · 10−3

Regarding Tab. 6.3, it is obvious, that considering only the velocity, as presumed
in the simple sketch in Fig. 6.7, is not su�cient. The results crucially depend on
the modi�cation of the energy gap

∆Ec = [(V a
2 +W a

2 )− (V a
1 +W a

1 )]Rc (6.18)

by the external �eld (and consequently also its derivative ∆Fc). The heating �eld
induces a larger gap and a smaller force term ∆Fc, yielding a smaller transition
probability PLZ than in the �eld free case. This is the opposite of the behaviour
according to the velocity argumentation.
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From Tab. 6.3, it can be taken that the Landau-Zener theory produces the ten-
dency of a decreasing transition probability for increasing �eld strength. This is
also found numerically for the smaller scaling parameters λ. However, for larger
scaling parameters, no agreement is found. In that case, the intense �eld modi�es
the potential curves strongly so that only minor modi�cations in the bond length
taken to determine the gap ∆Ec and the force term ∆Fc result in quite di�erent
numbers for PLZ .

6.2.2 Suppressing predissociation
In order to suppress the predissociation process, the �eld is determined from Eq. (6.16),
employing a negative λ to induce a cooling within the excited state. The control
�elds for di�erent parameters λ = s · 10−6 a.u. are shown in Fig. 6.10. The �elds
shows regular oscillations which re�ect the vibrational period of the quasi-bound
motion in the excited state. It is seen that the amplitude decreases as a function
of time. This is much more pronounced in the case of the stronger �elds. At about
10 ps, the �elds exhibit only minor deviation from a value of zero. Because the �eld
is directly proportional to the expectation value of the momentum, the decrease
of amplitude hints at a decrease in momentum, in the average. Thus, classically
speaking, the motion loses kinetic energy and becomes more and more constrained
to take place close to the bottom of the potential well. That this is indeed the
case can be taken from Fig. 6.10, middle panels, which displays the time-dependent
energy expectation values 〈H0〉, computed according to Eq. (6.17).

For the weakest �eld, the energy diminishes steadily in the time interval displayed
(and also at longer times, which are not shown). Increasing the �eld strength re-
sults in a large loss of energy within the �rst 5 ps, and afterwards the energy stays
nearly constant. Note, that the energy of the predissociation channel (leading to
fragmentation into Na and I) corresponds to a value of ∼ 4.1 eV.

The e�ective cooling indeed leads to a stabilization of the laser-excited molecules.
This is illustrated in the lower panel of Fig. 6.10, which contains the predissocia-
tion yields. It is seen that, at longer times, the yields are lower as compared to the
case of the unperturbed molecule which is also shown, for comparison. However, it
is not found that the number of stabilized molecules scales directly with the �eld
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Figure 6.10: Cooling. The control �elds for various scaling factors λ = s · 10−6

a.u. are displayed in the upper panel. The parameter s is chosen
as -1, -4, -7 or -10. Below, the respective energy expectation values
〈H0〉 are shown. In the lower panels, the predissociation yields for the
di�erent cases can be found. Here, the curve for the �eld free case is
additionally shown for comparison.

strength, as could be expected from the Landau-Zener formula taking only the di-
minished velocity into account. From the cases presented in the �gure, the weakest
�eld of λ = −1 ·10−6 a.u. (straight/blue line) results in slightly less predissociation
than the �eld free case (dot-dashed/black line). The choice of λ = −4 · 10−6 a.u.
represents a �eld for which only 15% of the molecules decay via predissociation.
This yield is even less for λ = −7 · 10−6 a.u., while choosing the most intense �eld
(λ = −10 · 10−6 a.u.) leads to a higher decay of 20%.

To explain this trend, the modi�cations of the potential gap ∆Ec and the force
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term ∆Fc (see Eqs. (6.11) and (6.18)) through the external �eld have to be con-
sidered. A closer inspection of the s = −10 predissociation yield in Fig. 6.10 shows
that at a time of 250 fs, when the excited-state wave packet reaches the crossing
region for the �rst time, almost all of the fragments are built so that afterwards, the
respective yield is nearly constant. At early times cooling is not yet very e�ective
and thus the main deviation from the �eld free case is to be expected to originate
from the �eld induced changes of the potential energy curves. However, at later
times the �eld intensity approaches zero and the potential gap is only slightly in-
�uenced, while the cooling has then taken e�ect.

Table 6.4: Transition probabilities PLZ derived from Landau-Zener theory are compared to those ob-
tained from the numerical calculations (P ) for a cooling �eld.

λ PLZ P ∆Fc [a.u.] ∆Ec [a.u.] v [a.u.]
0 0.041 0.023 5.914 · 10−3 4.002 · 10−3 1.334 · 10−3

-1. 0.050 0.026 5.972 · 10−3 3.894 · 10−3 1.328 · 10−3

-4. 0.085 0.043 6.138 · 10−3 3.558 · 10−3 1.311 · 10−3

-7. 0.134 0.080 6.294 · 10−3 3.230 · 10−3 1.297 · 10−3

-10. 0.181 0.159 6.428 · 10−3 2.997 · 10−3 1.285 · 10−3

The conclusions derived for early times can be veri�ed in comparing the numerically
calculated transition probabilities P to the ones obtained from the Landau-Zener
formula PLZ , which are collected in Tab. 6.4. As can be taken from the table, the
Landau-Zener theory describes the numerically found trends very well, namely that
with increasing �eld strength the transition probability increases. Regarding the
numbers which enter into the expression for PLZ , it is seen that the main e�ect here
stems from the modi�cation of the potential gap, whereas the changes in velocity
due to the cooling are, at this early time, of minor importance. Regarding the
whole process, the control �elds are able to suppress the decay via predissociation.

To summarize, the decay rates for the predissociation process are modi�ed to a
great extent. In discussing the decay mechanisms of NaI interacting with control
�elds, one has to take the internal energy as well as the Stark shifts of the coupled
potentials into account. On one hand, the energy transfer in�uences the average
relative velocity, and on the other hand, the external �eld modi�es the potential
curves in the crossing region. The interplay of both e�ects determine the time-
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dependence of the product yields.

6.3 Complete control of NaI

In the �rst two sections of this chapter, local control of NaI was achieved, where
�rst an adiabatic approach neglecting predissociation was employed. Then, an
extended study incorporated the bound-to-continuum coupling. In both investiga-
tions, a pump laser initiates a population transfer from the electronic ground state
to an excited state. The control scheme then is applied only to the (eventually
small) fraction of molecules excited in the pump transition. This control scheme
is incomplete in the sense that the remaining ground-state population is not prop-
erly taken into account. Instead, the objective should be to dissociate as many
molecules as possible. Therefore, it is necessary to both depopulate the ground
state and induce the excited-state dissociation.

A possible excitation scheme is presented in Fig. 6.11. There, the �eld E1(t) depletes
the ground state |1〉, and absorption of photons from the second �eld E2(t) leads
to excited-state dissociation (in state |2〉). However, the fragmentation within the
electronic ground state is a competing process. Because the amount of fragments
entering the predissociation channel might be substantial, it is properly taken into
account.

As in the previous section 6.2, the Hamiltonian of the unperturbed system is given
by Eq. (6.12) within the diabatic representation. In contrast, the interaction with
the external �eld

W a
nm = −µa

nm(R) E(t). (6.19)

is applied in the adiabatic representation. Here, the transition dipole moments µa
12

and µa
21 are set to a constant value of 1 a.u. The permanent dipole moments µa

11

and µa
22 are taken from from Ref. [120], as shown in Fig. 6.2 (p. 55). Like stated in

the previous section, the matrix A(R) diagonalizes the diabatic potential matrix
from Eq. (6.12). Afterwards, the interaction with the external �eld is applied in
the adiabatic representation. Due to the non-zero transition dipole moment, the
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Figure 6.11: Excitation scheme for the control of excited-state dissociation in the
NaI molecule. An electric �eld E1(t) depletes the electronic ground
state |1〉, and another �eld E2(t) serves the purpose to deposit energy
in molecules being prepared in the excited state |2〉. The ground-state
dissociation is a competing process which is triggered by non-adiabatic
potential- and also �eld-coupling.

resulting interaction matrix Va
W is not diagonal, anymore. It reads

Va
W =

(
V a

1 +W a
11 W a

12

W a
21 V a

2 +W a
22

)
. (6.20)

Therefore, the part of the propagator containing this matrix has to be applied as
follows. Due to W a

12 = W a
21, the equality

e

−i

0
B@
V a

1 +W a
11 W a

12

W a
21 V a

2 +W a
22

1
CA∆t

=

(
cos([V a

1 +W a
11]∆t) −i sin(W a

12∆t)

−i sin(W a
12∆t) cos([V a

2 +W a
22]∆t)

)

(6.21)
holds true. The right-hand side can now easily be multiplied with the two-component
wave function in order to propagate with the potential and the interaction part.
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This somewhat complicated procedure is necessary to get a description in adiabatic
states.

The electric �eld E(t) is determined from local control theory. A depopulation
of the ground state |1〉 is e�ective if a control �eld E1(t) is determined such, that
the rate of population transfer to the excited state is positive at all times. For this
purpose, the projector A2 = |2〉〈2| is de�ned, acting on the two-component wave
function

|ψ(t)〉 = ψ1(R, t) |1〉+ ψ2(R, t) |2〉, (6.22)

where ψn(R, t) is the vibrational wave function in state |n〉. One then calculates
the excited-state population as

P tot
2 (t) = 〈ψ(t)|A2|ψ(t)〉 = 〈ψ2(t)|ψ2(t)〉, (6.23)

where the brackets denote integration over the nuclear coordinate R. The rate
Eq. (5.1), p. 47, now takes the form (compare also section 5.3, p. 50)

dP tot
2 (t)

dt
= −2

h̄
=〈ψ1(t)|Vc − E1(t)µ12|ψ2(t)〉

≈ 2

h̄
E1(t) =〈ψ1(t)|µ12|ψ2(t)〉,

(6.24)

where = denotes the imaginary part. Here, the contribution containing the matrix
element of the potential coupling Vc(R) is neglected. This is a good approximation
(a fact which was checked upon numerically), because the ground-state wave packet
hardly has any overlap with the coupling element, the latter being localized around
7 Å.

In what follows, the �eld E1(t) is chosen as

E1(t) = λ1 =〈ψ1(t)|µ12|ψ2(t)〉. (6.25)

For a positive scaling factor λ, the �eld then ensures a positive rate of population
transfer. It is to be noted that Eq. (6.25) only delivers a non-zero �eld if a small
amount of population is launched into the excited state initially. Therefore one
usually employs an arbitrary 'seed pulse' preceding the control �eld [129].

The excited-state dissociation proceeds only if the energy in the excited state is
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larger than the dissociation energy. Therefore, a second control �eld E2(t) is con-
structed in the same manner as in the previous two sections and is taken as (λ2 > 0):

E2(t) = λ2 =〈ψ2(t)|[µ22(R), T (R)]|ψ2(t)〉, (6.26)

which ensures that the energy rate in the excited state is positive at all times (note,
that the expectation value of the commutator is a purely imaginary number).

There are two strategies which emerge for the purpose to induce the excited-state
dissociation. One could �rst apply the �eld E1(t) and transfer as much population
to the excited state as possible. Subsequently, the �eld E2(t) is used to fragment
the molecule.
Alternatively, the two �eld components could be constructed and applied simulta-
neously which, in general, should give a di�erent yield of excited-state fragments.

First, the two-step process is discussed, where, starting from the vibrational ground
state in |1〉, a population transfer to the excited state |2〉 is triggered by the �eld
E1(t), determined from Eq. (6.25). In order to start the algorithm, a low intensity
Gaussian seed pulse is applied which puts a negligible amount of population in
the excited state. The prepared wave packet moves outward and returns to the
Franck-Condon region at about 1 ps. It is only then, that there is an overlap with
the ground-state wave packet and, according to Eq. (6.25), the �eld E1(t) starts
deviating from zero. This can be seen in Fig. 6.12, lower panel, which displays the
control �eld. In the calculation, a scaling factor of λ1 = 5 · 10−3 a.u. is employed.
At times smaller than 5 ps, one observes a train of pulses with increasing overall
intensity. The temporal separation of the peaks re�ects the periodicity of the vibra-
tional wave-packet motion in the excited state. The fast oscillations, on the other
hand, are determined from phase factors containing the energy di�erence between
excited and ground-state levels [101]. It is thus clearly seen that the dynamics �
at each time-step � determines the �eld, which in turn in�uences the system to
achieve a prede�ned objective.

The middle panel of Fig. 6.12 shows the ground- and excited-state population,
as indicated. They are calculated as

Pn(t) =

∞∫

0

dR |ψn(R, t) fw(R)|2. (6.27)
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Figure 6.12: Control of excited-state fragmentation by successive application of
two �elds. The �elds are displayed in the lower panel, where E1(t) is
switched o� at 5 ps and E2(t) interacts only afterwards. The bound-
state population Pn(t) in the state |n〉 (n=0,1) are shown (middle
panel) as well as the respective fragmentation yields P f

n (t) (upper
panel).

Here, a window function fw(R) is employed which assumes a value of fw(R)=1 for
bond-lengths smaller than Rw= 22.5 Å, and then decreases to zero in an interval
of 2 Å. This corresponds to absorbing boundary conditions [123�127]. The ground-
and excited-state fragmentation yields are obtained as

P f
n (t) =

∞∫

0

dR |ψn(R, t) (1− fw(R))|2. (6.28)

As can be taken from Fig. 6.12, the ground-state population P1(t) decreases in
steps, which is accompanied by the increase of P2(t). This takes place until a time
of ∼ 5 ps when the excited state is populated to 89 %. Afterwards, the �eld E1(t)
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is arti�cially switched o� and the second �eld E2(t) is turned on. The latter is
determined from Eq. (6.26) with a scaling factor of λ2 = 2 · 10−5 a.u. Around
6 ps, the excited-state population drops which, however, is not due to excited-state
fragmentation. Instead transitions to the ground state are induced by both, the
potential- and the �eld coupling, where the latter induces most of the transfer.
As a consequence, the ground-state population �rst increases and then decreases,
when predissociation becomes e�ective. This can be taken from the ground-state
fragmentation yield P f

1 (t) shown in the upper panel of Fig. 6.12. Shortly after
6 ps, the heating �eld E2(t) which follows the vibrational wave packet motion in
the excited state, has pumped enough energy into the system, that excited-state
fragmentation can � partly � take place. The yield P f

2 (t) increases and settles to
about 30 % asymptotically. The remaining population is trapped in the ground
state or, in the long-time limit, undergoes ground-state dissociation.

Now, the case where the total control �eld E(t) is composed of both components
is discussed, i.e. E(t) = E1(t) + E2(t). In Fig. 6.13, results are presented where
the same scaling factors as in the calculation leading to the results displayed in
Fig. 6.12 are employed. Naturally, now the �eld is of a more complicated structure
than before. Therefore, the two components of the total �eld are displayed sepa-
rately in the lower panels of the �gure. Note, that the �eld E1(t) is constructed to
increase the excited-state population and also, the second �eld E2(t) is determined
to increase the average energy in the excited state. However, because the sum of
both �elds interacts with ground- and excited-state molecules, this total �eld not
necessarily is able to accomplish both tasks simultaneously. Thus, the population
P2(t) does not increase monotonically as can be taken from the �gure. At the end
of the displayed time interval (15 ps), the ground-state (bound) population P1(t) is
close to zero, whereas still about 50 % is bound in the excited state. On the other
hand, the ground- and excited-state fragmentation yields are equal, see the upper
panel of the �gure. At longer times (not shown), the yield P f

2 (t) does not change
anymore settling to a yield of 30 %, which means that the e�ect of the perturbation
by the external �eld is negligible. On the other hand, due to the non-adiabatic cou-
pling, the still bound parts of the wave packet ψ1(t) end up in the predissociation
channel, so that P f

1 (t) keeps growing. As compared to the case treated before, the
simultaneous action of the control �elds results in roughly the same target-state
population.
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Figure 6.13: Control of excited-state fragmentation by simultaneous application of
�elds. Shown are the time-dependent dissociation yields in the two
electronic states (upper panel), the bound state fractions Pn(t), and
the two electric �eld components (lower panels).

The branching ratio can be modi�ed by changing the intensity of the two �eld
components En(t). In fact, the values of the strength parameters λ1 and λ2 are
the only free parameters in the algorithm of local control. In what follows, we only
discuss the case where the scaling factor λ1 is increased by a factor of two (λ1= 1 ·
10−2 a.u.). The results of the respective calculation are collected in Fig. 6.14. Here,
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Figure 6.14: Same as Fig. 6.13 but for a larger scaling factor λ1.

already at early times, a large population transfer between the two electronic states
takes place. Also, fragmentation sets in shortly after 1 ps. The target channel then
is populated to about 50 % asymptotically. Additional calculations show, that also
in the case of the sequential application of the two control �elds, the chosen value
of λ1 results in the production of half of the molecules in the excited-state fragmen-
tation channel. Various calculations were performed with di�erent values of both
parameters λn and found that, within the parameter range investigated, the yield
was never substantially larger than 50 %. Although an exploration of parameter
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space or the use of other control schemes might lead to higher yields, this number
is to be considered as excellent.



7 Vectorial properties:
ro-vibrational dynamics in
external �elds

The role of the rotational degree of freedom is pursued in the following. The re-
garded systems now include explicitly vectorial properties like e.g. the orientation
of a molecule in the laboratory. First in this chapter, the ro-vibrational dynamics
of sodium iodide is investigated in static electric �elds. The second part deals with
the interplay of rotations and local control theory.
In general, one distinguishes molecular orientation and alignment. Formally, orien-
tation can be described by an arrow pointing in a certain direction, while alignment
refers to a situation, where a double-headed arrow re�ects the circumstances. In
the latter case, a distinction between head and tail is impossible. Orientation is
achieved e.g. by static electric �elds, whereas laser �elds usually only create align-
ment due to their oscillatory nature.

7.1 Predissociation in a static electric �eld
In this section, the rotational-vibrational dynamics of sodium iodide in a static elec-
tric �eld is investigated. Therefore, the same potential curves and dipole moments
as in the previous chapter 6 are used. There, it was shown, that the electronic
ground state of NaI is of ionic character and, accordingly, has a large permanent
dipole moment. As a consequence, when an electric �eld is applied, a large torque
is experienced by those molecules which are not oriented along the �eld direction.
This makes the molecule an ideal candidate to study orientation e�ects induced by
external �elds [59, 130�132]; for an overview on recent e�orts to align molecules,
see the article by Stapelfeldt and Seideman [58].
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In a former study, the rotational-vibrational dynamics of NaI in a static electric
�eld after femtosecond excitation was investigated [133]. Whereas the preliminary
study ignored the predissociation channel, the present work aims at a complete
description of the dynamics including the coupling to the dissociation continuum.

7.1.1 The model system
The pump excitation prepares a wave packet in the covalent branch of the excited-
state potential. Because of the vanishing dipole moment, it performs an unper-
turbed motion until the crossing region is reached. Then, moving to larger distances
in the ionic branch, a strong perturbation by the external �eld is switched on. This
modulation of the interaction energy with the vibrational period resembles a train
of `half cycle pulses' [133]. Note, that despite this resemblance, the Hamiltonian
is time-independent after the pump laser is switched o�. The calculations are per-
formed to simulate polarization sensitive real-time measurements, which are able
to detect the orientational dynamics.

The present model consists of three electronic states |n〉 (n=1,2,3). The respec-
tive adiabatic potential energy curves V a

n (R) are displayed in Fig. 6.1, left-hand
side (p. 54). In the numerical treatment, intersecting (diabatic) potential curves
V d

n (R) are used (see Fig. 7.1). Additionally, an o�-diagonal potential matrix ele-
ment V12(R) is introduced to account for the coupling between the ground state
and the �rst excited state.

The potentials and the corresponding wave functions are related by unitary trans-
formations with the matrix A diagonalizing the diabatic potential matrix:

A =

(
cos γ(R) − sin γ(R)

sin γ(R) cos γ(R)

)
, (7.1)

where the function γ(R) is given as

γ(R) =
1

2
arctan

(
2V12(R)

V d
1 (R)− V d

2 (R)

)
. (7.2)

The Hamiltonian describing the nuclear motion in the diabatic electronic states |1〉
and |2〉 reads (atomic units are employed in what follows):

Hd =

(
T (R) + Ĵ2

2mR2 0

0 T (R) + J2

2mR2

)
+

(
V d

0 (R) Vc(R)

Vc(R) V d
1 (R)

)
. (7.3)



83

Here, T (R) is the nuclear vibrational kinetic energy operator, J is the angular mo-
mentum operator and m is the reduced mass.

In a static electric �eld with �eld strength Es and a polarization vector ~εs pointing
along the z−axis, the Hamiltonian includes the interaction energy in the adiabatic
state |n〉 as:

W a
ns(R, θ) = −Es µ

a
n(R) cos θ, (7.4)

where µa
n(R) cos θ is the projection of the permanent (adiabatic) dipole moment on

the �eld polarization. The dipole moments µa
n(R) are displayed in Fig. 6.2, left-

hand side (p. 55).

The time-dependent Schrödinger equation is solved for the motion of NaI in the
coupled states |1〉 and |2〉, interacting with the static electric �eld. Therefore, the
reduced wave function ψ(R, θ, t) = RΦ(R, θ, t), where Φ(R, θ, t) is the complete
wave function, is represented on a spatial grid in the coordinates R and θ. The
short-time propagator is written as

Ud
12(λ) = eλT(R)/4 eλT(J)/2 eλT(R)/4 (AteλVa

s (R,θ)A) eλT(R)/4 eλT(J)/2 eλT(R)/4, (7.5)

where λ = −i∆t and ∆t is a short time step. The matrices appearing in the
exponentials have the following elements:

(T(R))nm = − 1

2m

∂2

∂R2
δnm, (7.6)

(T(J))nm =
Ĵ2

2mR2
δnm, (7.7)

(Va
s(R, θ))nm = {V a

n (R)− Esµ
a
n(R) cos θ} δnm. (7.8)

This splitting of the propagator is exact to the order of (∆t)3 [55].

In applying the propagator to the diabatic wave functions, the action of the oper-
ators containing T(R) is evaluated in momentum space [53]. In order to apply the
exponential kinetic angular operator eλT(J)/2, the coordinate space wave function,
at each time step, is expanded into spherical harmonics YJ,0(θ, 0) as

ψd
n(R, θ) =

∑
J

ad
nJ(R) YJ,0(θ, 0), (7.9)

so that each expansion coe�cient is multiplied by eλJ(J+1)/(2mR2). Afterwards, a re-
summation is performed. The action of the exponentials containing the potential-
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and interaction energy amounts to a multiplication of the spatial wave function
by phase factors at each grid point. To avoid re�ections at the grid boundary, an
optical potential is introduced in the dissociation channel [123�127].

The propagation scheme yields time-dependent wave functions ψk
n(R, θ, t) (k =

a, d;n = 1, 2) in the two adiabatic/diabatic states of the molecule. Below, radial
densities are regarded which are de�ned as

ρk
n(R) = 2π

∫
dθ sin θ |ψk

n(R, θ, t)|2. (7.10)

Likewise, angular densities are de�ned as

ρk
n(θ) =

∫
dR sin θ |ψk

n(R, θ, t)|2. (7.11)

Instead of inspecting the coordinate- and time-dependent wave functions, the dy-
namics of the system is much simpler illustrated in terms of the above de�ned
densities.

The quantum dynamics of NaI is followed in real time using a pump-probe scheme
as sketched in Fig. 7.1. In a �rst step, a vibrational wave packet is prepared upon

2 4 6 8 10 12

R [Å]
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6

E
 [e

V
]

ω1 (||)

ω2 (|| or    )

|1〉

T|2〉

|3〉

Figure 7.1: Pump-probe scheme of NaI. Transitions are induced by pulses with
frequencies ω1 and ω2, where the latter pulse can be polarized either
parallel (‖) or perpendicular (⊥) to the molecular axis.
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one-photon absorption described within �rst-order perturbation theory:
(
ψd

1(R, θ, t)

ψd
2(R, θ, t)

)t

=
E0

1

2i
U12(t)

∞∫

−∞

dτ g1(τ)e
−iω1τ U12(−τ) ~ε1 ~µ12

(
e−iE10τψ10(R, θ)

0

)
.

(7.12)

The pump pulse is characterized by its �eld strength E0
1 , polarization vector ~ε1, fre-

quency ω1 and the pulse shape g1(τ). The initial wave function ψ10(R, θ) of energy
E10 is an eigenstate of the ground-state Hamiltonian including the interaction with
the external �eld (see Sec. 7.1.2), and ~µ12 denotes the transition dipole-moment for
the |2〉 ← |1〉 electronic transition.

At time T , the probe pulse induces a transition to the electronic state |3〉, see
Fig. 7.1. The wave function in the latter state is as well determined within �rst-
order perturbation theory. This is appropriate because weak �elds and non-overlapping
pulses are regarded. In calculating the transient signals only probe transitions orig-
inating in state |2〉 are included so that one �nds

ψd
3(R, θ, t) =

E0
2

2i
U3(t− T )

∞∫

−∞

dτ g2(τ)e
−iω2τU3(−τ)

(
0

~ε2~µ23

)
U12(τ)

(
ψd

1(R, θ, T )

ψd
2(R, θ, T )

)
,
(7.13)

where the probe-pulse parameters are labeled with index 2. The pump-probe signal,
consisting of the total �uorescence from state |3〉, is assumed to be proportional to
the population in that state yielding the signal

S(T ) = 〈ψd
3(R, θ, T )|ψd

3(R, θ, T )〉, (7.14)

where the bra-kets denote integration over the coordinates R and θ. In calculating
the signals S(T ), all transition dipole moments are set to a constant (Condon ap-
proximation).

For the polarizations of pump- and probe lasers, two con�gurations are consid-
ered. In the �rst one (‖), the polarization vectors of both pulses are parallel to εs.



86 7 Vectorial properties: ro-vibrational dynamics in external �elds

Alternatively, the second con�guration (⊥) corresponds to a pump laser polarized
along the z-axis and a probe laser polarized perpendicular to this direction. Thus,
for the pump-transitions one has ~ε1~µ12 = µ12 cos θ, which enters into Eq. (7.12).
Because the |3〉 ← |2〉 transition is a parallel transition, Eq. (7.13) contains the
scalar products

~ε2~µ23 = µ23 cos θ (‖), (7.15)
~ε2~µ23 = µ23 sin θ cosϕ (⊥), (7.16)

for parallel and perpendicular pump-probe arrangements, respectively. Thus, de-
pendent on the relative choice of the laser polarization vectors, two di�erent pump-
probe signals Spp (pp =‖,⊥) are obtained.

The above is directly valid, when the parallel arrangement is encountered. For
the perpendicular case, actually it would be necessary to consider the Euler angle
ϕ and the quantum number ml, but this can be circumvented by a neglect of the
kinetic energy during the probe pulse. Within this approximation, it is assumed,
that the orientation of the molecule is �xed during the short probe interaction. The
term, where the kinetic energy is ignored, is de�ned as approximation function I.
Thus, Eq. (7.13) can be rewritten as

ψd
3(R, θ, t) = ψa

3(R, θ, t) ≈ ~ε2~µ23ψ
a
2(R, θ, T )

∞∫

−∞

dτ g2(τ)e
i(V3(R)−(V a

2 (R)−W a
2s(R,θ))−ω2)τ

= ~ε2~µ23ψ
a
2(R, θ, T ) I(R, θ, T ),

(7.17)

where the solution to the approximated integral is

I(R, θ, T ) =

√
π

α2

e
− (V3(R)−(V a

2 (R)−Wa
2s(R,θ))−ω2)T

4α2 (7.18)

with α2 being the exponential factor from the gaussian envelope function g2.

Now, the signal from the parallel pump-probe arrangement is easily obtained as

S‖(T ) = 2π

π∫

0

sin θ dθ

∞∫

0

dR cos2 θ |I(R, θ, T ) ψa
2(R, θ, T )|2 , (7.19)

which yields exactly the same curve as calculated within pure perturbation theory,
apart from a proportionality factor (di�erences to S⊥(T ) have been emphasized



87

with boxes).

Thus, also the signal from the perpendicular case can be evaluated using I(R, θ, T ).
Here, neither ψa

2 nor I depend on the Euler angle ϕ. The only remaining term is
cosϕ from the projection of the dipole moment on the polarization vector (see
Eq. (7.16)). According to

2π∫

0

dϕ cos2 ϕ =

[
1

2
ϕ+

1

4
sin(2ϕ)

]2π

0

= π (7.20)

integration over the whole space yields a factor π instead of 2π, as before. For the
signal of the perpendicular arrangement, this leads to

S⊥(T ) = π

π∫

0

sin θ dθ

∞∫

0

dR sin2 θ |I(R, θ, T ) ψa
2(R, θ, T )|2 . (7.21)

In order to experimentally detect the degree of molecular orientation, a polarization
sensitive experiment is suggested. If, for a �xed pump-pulse polarization and time-
delay, a probe excitation within the parallel and also perpendicular con�guration
is performed, the ratio of the two signals is determined as

A(T ) =
S‖(T )− 3S⊥(T )

S‖(T ) + 3S⊥(T )
. (7.22)

The de�nition of the signal ratio A(T ) accounts for the following situation: in
the �eld-free case and starting from the rotational ground state before the pump-
excitation, the signal S‖ is a factor of 3 larger than the signal S⊥, so that A(T )

vanishes identically. The reason for the factor of 3 is easily found, when the distri-
bution of the wave function ψa

2 in θ is considered. Due to starting in J = 0 in the
groundstate, the selection rule ∆J = ±1 leads to ψa

2 being localized completely in
J = 1, which is proportional to cos θ. With Eqs. (7.19) and (7.21), the following
proportionalities emerge for the �eldfree case:

S‖ ∼ 2π

π∫

0

dθ sin θ cos2 θ |cos θ|2 =
12

15
π (7.23)

S⊥ ∼ π

π∫

0

dθ sin3 θ |cos θ|2 =
4

15
π, (7.24)
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where the factor of 3 is obvious. This is, however, di�erent in the case where the
molecule is pre-oriented in the static �eld, see the discussion in the next section.
For a perfect orientation the signal S⊥(T ) is identically zero and A(T ) assumes a
value of one.

7.1.2 Pendular states
The large dipole moment of NaI in its electronic ground state leads to a strong
orientation, if an external electric �eld is applied. The molecular eigenfunctions
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Figure 7.2: Angular densities in the electronic ground state, calculated for di�er-
ent �eld strengths, as indicated. With increasing �eld strength, the
degree of orientation in the direction of the applied static �eld (θ = 0)
increases.
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Figure 7.3: Decomposition of the ground-state wave function in the static �eld in
terms of free rotor states with quantum number J . With increasing
�eld strength, the number of populated rotor states increases.

in the �eld, concerning the angular degree of freedom, are linear superpositions of
free-rotor states, i.e. pendular states [134].

To demonstrate the in�uence of the static �eld on the eigenfunctions of NaI, the
stationary Schrödinger equation

{T (R) + T (J) + V a
1 (R) +W a

s (R, θ)} ψa
1(R, θ) = E ψa

1(R, θ), (7.25)

is solved for various values of the �eld strength Es yielding di�erent ground-state
wave functions ψa

10(R, θ) with energies E0. The orientational e�ect caused by the
external �eld is illustrated in Fig. 7.2 containing ground-state angular densities as
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de�ned in Eq. (7.11). Because, for zero �eld strength, the ground state is spherically
symmetric, the density exhibits a sin θ-distribution. Already for a moderate �eld
of 1 · 106 V/m, the maximum of the density shifts to values below 45◦ and with
increasing �eld strength the distribution is con�ned to smaller angles. Employing
the decomposition of Eq. (7.9) for the adiabatic ground-state wave function, the
populations in di�erent angular momentum states YJ,0 is calculated as

P a
0J =

∫
dR |aa

0J(R)|2. (7.26)

The populations P a
0J are calculated for the set of �eld strengths indicated in Fig. 7.3.

It is found that, in going from the unperturbed case (Es = 0), where only the J=0
state is populated, to high �eld strength, the J-distribution becomes broader. For a
�eld strength of Es = 10 · 106 V/m, seven angular momentum states are populated
having a distribution with a maximum at J= 2. Thus, the superposition of more
and more angular free-rotor states goes along with the preparation of a rotational
wave packet, i.e. an object localized in the angular degree of freedom.

7.1.3 Quantum dynamics
The coupled rotational, vibrational and predissociation dynamics of NaI in static
electric �elds is discussed in the following. First, a �eld strength of 10 · 106 V/m
is considered. Femtosecond excitation with a 50 fs Gaussian pulse at 310 nm pro-
duces a ro-vibrational wave packet performing a quasi-bound motion in the coupled
electronic states |1〉 and |2〉. The respective (diabatic) radial densities are depicted
in Fig. 7.4.
They do not deviate much from those calculated in the �eld-free case discussed
in former work [118], indicating that the vibrational dynamics is not in�uenced
strongly by the external �eld. At early times, one observes a vibrational motion
which is accompanied by a loss of probability density into the dissociation channel.
Due to the o�-diagonal potential coupling a population transfer between the two
electronic states occurs twice every vibrational period. After several picoseconds,
the wave packet has spread and �lls the entire upper adiabatic potential.

The angular density dynamics is illustrated in Fig. 7.5. Initially, the dis- and
re-appearance of density in the respective states re�ects the curve-crossing vibra-
tional dynamics. It is seen that at a time of ∼ 5.5 ps, the orientation is strongest
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Figure 7.4: Dynamics of radial densities in the diabatic ground state |1〉 and excited
state |2〉, calculated for a static �eld strength of 10 · 106 V/m. The
vibrational motion is accompanied by a predissociation process.

but then, the angular distribution broadens again. A second focusing at small
angles can be observed shortly after 16 ps. Thus, the angular densities exhibit
a rotational motion with a period of about 11 ps (for a �eld strength of 10 · 106

V/m). For a weaker external �eld the time-scale for the rotational motion changes.
At a value of Es = 4 · 106 V/m, the rotational period increases to about 18 ps,
and the density is broader as compared to the situation where the stronger �eld
is present. With increasing �eld strength, the Stark e�ect shifts the energy levels
more apart from each other [134] so that the rotational period becomes smaller. In
both cases regarded above, the static �eld potential con�nes the angular motion
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Figure 7.5: Dynamics of the angular densities in the diabatic ground and excited
state for a static �eld strength of 10 · 106 V/m. A rotational motion
takes place with an overall period of ∼11 ps.

drastically so that the strong �eld limit, where the Stark energies become those of
a two-dimensional oscillator, is reached [134].

It is instructive to make contact to the concept of a mean rotational period in
terms of free rotor states. Therefore, at any time t, the state Jmax with the maxi-
mal population P a

1J(t) (see Eq. (7.26)) and period

Tfree =
2π

E(Jmax)− E(Jmax − 1)
=

2πm 〈R(t)〉21
Jmax

, (7.27)
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is calculated, where E(J) is the rotational energy for the quantum number J and
〈R(t)〉1 is the expectation value of the vibrational coordinate in state |1〉.
In Fig. 7.6, several quantities are displayed which together give a complete picture
of the quantum dynamics of the system (for a �eld strength of 10 ·106 V/m). Panel
(a) of Fig. 7.6 contains the expectation value of cos θ, which serves as a measure
for orientation. This curve exhibits the periodicity (11 ps) of the pendular motion,
as is seen in the angular densities and also in Jmax. Thus, around t= 5.5 ps and
16.5 ps maximal orientation is assumed.
As was already shown (see Sec. 7.1.2), maximal orientation corresponds to maxi-
mal population of J-states. Consequently, in panel (d), the time-dependence of the
rotational quantum number Jmax is depicted. Here, the population of free rotor
states varies from Jmax = 2 to 8, exhibiting the characteristic period of ∼ 11 ps.
The average rotational period Tfree is shown in panel (c) of Fig. 7.6. It assumes
values in the range between 20 ps and 700 ps. The function is modulated with a
higher frequency corresponding to the oscillations as seen in the angular densities
(Fig. 7.5). The faster oscillations stem from the vibrational motion which enter
into Tfree(t) via the bond length expectation value 〈R(t)〉1. To document this re-
lationship the latter is shown in panel (b) of the �gure. As is expected classically,
at times when the wave packet is located at small bond lengths, a faster rotation
occurs which becomes slower with increasing bond length. At times around 20 ps,
where a large dispersion of the vibrational wave packet is present, the bond length
expectation-value settles to a constant and the vibrational dynamics is no longer
re�ected in the rotational period.
This classical argumentation is supported in Fig. 7.7, where the expectation values
〈cos θ〉 and 〈R〉1 are compared to R and cos θ from a classical trajectory. The �eld
strength is set to Es = 10 · 106 V/m, leading to a libration with a period of ∼
11 ps, as stated above. This pendular motion (Fig. 7.7, upper panel) is modulated
with the vibrational period (compare lower panel). While in the classical case the
modulation is pertained at all times, it vanishes for the quantum system due to
wave packet dispersion.

To summarize the conclusions, which can be taken from Fig. 7.6, the population of
di�erent free rotor states YJ,0 varies periodically with time. Accordingly, the rota-
tional period, de�ned in terms of free rotor states, changes. Also, the vibrational
wave-packet motion, modulating the average bond length periodically, in�uences
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Figure 7.6: Ro-vibrational dynamics in a static �eld of strength 10 · 106 V/m: the
di�erent panels exhibit various characteristics of the wave-packet mo-
tion. Panel (a) shows the expectation value of cos θ which measures the
degree of orientation. For a value of 〈cos θ〉 = 1, perfect orientation
along the axis of the applied static �eld is assumed. The expecta-
tion value of cos θ is modulated with the frequency of the vibrational
motion, as can be taken from panel (b), containing the bond length
expectation-value. The latter also enters directly into the rotational
period Tfree, assuming values up to 700 ps, is displayed in panel (c).
Panel (d) contains the quantum number Jmax of the free rotor state
with the largest population.
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Figure 7.7: Comparison of quantum and classical calculation. The upper panel
shows the expectation value of cos θ (dotted/red line) and cos θ from a
classical trajectory (solid/black line). Both exhibit a pendular motion,
which is modulated with the vibrational period. The latter can be
taken from the bond lenght expectation value (dotted/red line) or the
trajectory's R (solid/black line) displayed in the lower panel.

the free rotor distribution essentially. If many angular momenta are excited, the
degree of orientation of the molecule is large, whereas a distribution of only a few
rotational states leads to a loss of orientation.

To investigate the in�uence of the static �eld on the predissociation yield, the
latter is calculated as a function of time and for various �eld strengths ranging
from zero to 10 · 106 V/m. Higher �elds were not regarded because, due to electric
charge e�ects, they cannot be realized for NaI under normal gas-phase experimental
conditions [135]. The yield is obtained from the norm of the fraction of ψd

1 moving
into the dissociation channel. It is found that the predissociation yield is nearly
independent of the applied �eld, for the �eld strengths regarded. It has to be kept
in mind that the employed model assumes that the electronic structure, i.e. the
potential curves and non-adiabatic coupling, are independent of the strength of the
applied �eld [136], the latter appearing only in the additional interaction term in
the nuclear Hamiltonian.
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7.1.4 Pump-probe spectroscopy

Pump-probe spectra for the parallel and perpendicular con�guration are calculated
for a 50 fs pump- and a 10 fs probe pulse at wavelengths of 310 nm and 612 nm,
respectively. The spectra are presented in Figs. 7.8-7.9 for three di�erent �eld
strengths and also the �eld free case. The �gures document that the interaction
with the �eld changes the intensity but not the overall appearance of the transient
features. Because the probe-pulse wavelength is chosen such that the bound-state
motion of the wave packet is detected, one observes a progression of peaks separated
by the mean vibrational period in the upper adiabatic potential well [110, 111]. The
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Figure 7.8: Pump-probe spectra calculated for parallel (dashed/black line) and per-
pendicular (solid/red line) detection geometry are shown in the upper
panels for the �eld free case (left-hand side) and Es = 1 · 106 V/m
(right-hand side). In the middle panels, the ratio of the signals A(T ) is
displayed and compared to the expectation value of cos θ (lower panels).
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peak height decreases due to dispersion of the packet on one hand, and to the loss
of probability into the dissociation channel, on the other.

For all �eld strengths, the signal S⊥(T ) is much smaller than the one obtained
in the (‖) con�guration but the shapes of the curves are very similar. With increas-
ing �eld strength the ratio of the signals becomes larger, which is revealed more
clearly in the respective middle panels, containing the signal ratio A(T ) de�ned in
Eq. (7.22). Because the signals are zero for many delay times, the ratio is calculated
at the peaks of the transient signals only. It is seen that A(T ) varies as a function of
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Figure 7.9: The same as Fig. 7.8, but for Es = 4 · 106 V/m (left-hand side) and
Es = 10 · 106 V/m (right-hand side). The ratio A(T ) (middle panels)
is calculated at the maxima of the transient signals. An excellent agree-
ment with the expectation value of cos θ (lower panels) is found. This
proves that the rotational motion can be observed with the suggested
polarization sensitive pump-probe setup.
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time and maps the pendular motion of the molecule. The time-dependence of the
signal ratio directly re�ects the degree of orientation, ranging from a perfect orien-
tation (A(T )=1) to some �eld-dependent minimum value. The latter increases with
increasing strength of the perturbation due to the pre-orientation of the molecule
before the pulse interaction starts. This is also re�ected in the expectation value
〈cos θ〉, which is displayed in the lower panels for comparison.

Altogether, polarization sensitive pump-probe experiments are simulated, where
a time-delayed probe pulse initiates a transition to a higher electronic state and
a �uorescence yield is detected as a function of the time delay. Performing such
an experiment with probe-pulse polarization vectors chosen to be either parallel of
perpendicular to the static �eld direction leads to di�erent signals. The ratio of the
latter directly monitors the rotational motion of the molecule which thus allows for
a real-time observation of �eld induced orientational dynamics.

7.2 LCT - the rotational degree of freedom
In chapter 6, it was shown, that active control of elementary processes taking place
in molecules can be realized with coherent radiation. There, all studies were per-
formed for a �xed molecular orientation. It could be shown that the obtained �elds
are very e�ective in inducing the fragmentation of sodium iodide. Treating the
same model system, here the question is asked, in how far this still holds if the
rotational degree of freedom is included.

Although several papers discussed the e�ect of an orientation on the controllability
of internal dynamics [103, 137�139], the entanglement of vibrational-rotational mo-
tion and control �eld has not been investigated in much detail. An exception is the
work of Hornung and de Vivie-Riedle [140] who studied this interplay in connection
with optimal control theory (OCT, see Sec. 4.6).

In this case, local control theory (LCT, see chapter 5) is incorporated in the context
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of molecular rotation. As model system, sodium iodide is chosen once more, as the
comparison to the previous results is facilitated in this way. The same excitation
scheme as on the left-hand side of Fig. 6.3 (p. 56) is applied, where a femtosecond
laser pulse (E12(t)) prepares an excited-state wave packet in state |2〉. The non-
adiabatic coupling which �nally leads to the decay of the excited-state complex, is
switched o�, so that the rotational-vibrational motion only in the adiabatic �rst
excited state is treated. The objective of the control process is to construct a �eld
E(t), which pumps energy into the system until dissociation in ionic fragments Na+

and I− occurs. Thus, the situation where an infrared (IR) control �eld interacts
with the permanent dipole moment of the molecule in the excited state is investi-
gated.

The Hamiltonians of the unperturbed molecule are of the form (atomic units are
employed in what follows)

Hn = − 1

2m

∂2

∂R2
+

Ĵ2

2mR2
+ Vn(R) = T (R) + T (J) + Vn(R), (7.28)

where Vn(R) is the potential energy curve in state |n〉 (n = 1, 2) (compare also
Eq. (3.30), p. 36). As mentioned above, the non-adiabatic coupling present in the
molecule around a distance of 7 Å is ignored.

The femtosecond excitation from the initial state ψi in the electronic ground state
is treated within �rst order perturbation theory. For times t after the pump in-
teraction, the prepared rotational-vibrational wave packet ψ2 in the excited state
reads

ψ2(t) = U2(t)ψ2(0) = U2(t)





1

i

+∞∫

−∞

dt′ U2(−t′) W12(t
′) U1(t

′) ψi



 , (7.29)

where Un(t) is the propagator for the nuclear motion in state |n〉. The pump-pulse
interaction is of the dipole form

W12(t) = −1

2
µ12 cos θ g12(t)e

−iω12t, (7.30)

with the frequency ω12, the pulse envelope g12(t), and the transition dipole moment
µ12. The latter is set to a constant in the numerical calculation. The angle θ de-
scribes the orientation of the dipole moment with respect to the laser �eld, which
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is polarized along the z-axis.

De�ning the objective to induce an e�ective excited-state fragmentation, a con-
trol �eld is to be determined. The corresponding interaction energy W (t) is taken
as

W (t) = −µ2(R) cos θE(t), (7.31)

where µ2(R) is the modulus of the dipole moment in state |2〉, and E(t) describes
the time dependence of the control �eld which is polarized along the z-direction.
The dipole moment is parameterized as described in Chap. 6.

For the propagation, the scheme discussed in Sec. 3.5 is used, where the excited-
state wave function is expanded in terms of spherical harmonics.

7.2.1 Fixed orientation
In order to understand the role of orientation for the purpose of local control, the
rotationless case is recalled �rst. It is formally obtained by �xing the angle θ to a
constant value θ0. Within this `sudden approximation' [141], the angular momen-
tum term vanishes from Hn in Eq. (7.28).

As was shown in Sec. 6.1.1, �elds constructed from the dynamical response of the
system e�ectively induce an excited-state dissociation, however, under the assump-
tion of a perfect molecular orientation. There, the angle was �xed as θ0 = 0 so that
the dipole moment was assumed to point along the z-axis. Molecules, oriented at
di�erent angles experience a weaker �eld. This is the reason why for a randomly
oriented sample of molecules the dissociation yield should be drastically decreased,
when applying the same �elds. In order to seek for new solutions to the extended
problem, the coupled rotational-vibrational dynamics is explored in what follows.

7.2.2 Rotational-vibrational dynamics
The rotational degree of freedom is now taken into consideration. At �rst, the
e�ciency of the control �elds obtained for �xed orientation is tested within the
extended model. Thus, the �elds obtained for λ = 10 · 10−6 a.u. (compare Fig. 6.5,
p. 59) and the chirped cosine, adapted to �t λ = 4 · 10−6 a.u., were employed as



101

control �elds E(t). These �elds and the corresponding results for the rotational-
vibrational dynamics are depicted in Fig. 7.10.
As expected, the dissociation yield decreases, if compared to the cases of �xed
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Figure 7.10: Rotational-vibrational dynamics of NaI for control �elds obtained from
�xed orientation. The upper panels contain the �elds as calculated
without the rotational degree of freedom (compare Fig. 6.5, p. 59).
Here, the cases with λ = 10 · 10−6 a.u. (right-hand side) and the
chirped cosine �tted to λ = 4·10−6 a.u. (left-hand side) are displayed.
Also shown are the expectation values of the system's energy 〈H0〉,
of the bond-length 〈R〉 and 〈cos θ〉 in the di�erent cases as indicated.
The lower panels display the dissociation yield.
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orientation. Especially for λ = 10 · 10−6 a.u. (right-hand side, Figs. 6.5 and 7.10),
where the fragmentation yield was almost 100 %, now only 24 % of the molecules
undergo dissociation. Here, the fragmentation yield is de�ned as

Ffrag(t) =

∞∫

0

dR |ψ1(R, t) w(R)|2, (7.32)

where w(R) is a window function assuming a value of zero for R ≤ Rd = 22.5 Å and
increasing within 2 Å to a constant value of one for larger distances. In passing,
note that a cut-o� function (wc(R) = 1−w(R)) is applied at each time step of the
numerical propagation, thus removing the outgoing probability density �ux (ab-
sorbing boundary conditions [124�126]). The expectation values displayed in the
various �gures are then only calculated with wave functions located at distances
below Rd. This is the reason why e.g. the expectation value of the system's energy
drastically decreases, when dissociation sets in, see 〈H0〉 on the right-hand side of
Fig. 7.10 around 2.7 ps.

Until the beginning of fragmentation, the energy expectation value increases for the
regarded �elds, also with molecular rotation included in the calculations. Neverthe-
less, it is already obvious, that the heating is not as e�ective as in the rotationless
cases, because now the increase is not monotonic anymore. Additionally, the ex-
pectation value of the bond-length shows a rather complicated structure compared
to the clearly increasing amplitude for �xed orientation.
As already mentioned in the last section, the expectation value of cos θ is taken as
measure of orientation. This value has of course no counter part in the rotationless
calculations. Nevertheless, it is interesting to see, that an orientation is transiently
achieved to some extent by the control �elds. The reason is, that not only vibra-
tionally excitation is performed, but also higher free-rotor states are excited. Note,
that rotational states up to J = 290 are signi�cantly populated for the �eld with
λ = 10 · 10−6 a.u. Due to the longer interaction time, states even up to J = 360

are excited by the weaker �eld �tted to λ = 4 · 10−6 a.u.

In order to obtain a higher dissociation yield, the expression leading to the �eld
de�nition within local control theory has to be adapted to include rotations. It is
reasonable, because an energy absorption in the vibrational degree of freedom is
responsible for the bond rupture, to use the operator Hvib = H1− T (J) in the rate
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equation (Eq. (5.1), p. 47) to obtain
d〈Hvib〉t
dt

=i〈ψ(t)|[T (J), T (R)]|ψ(t)〉
− iE(t)〈ψ(t)|[µ1(R) cos θ, T (R)]|ψ(t)〉.

(7.33)

The �rst term in the latter equation can be estimated to be negligible (a fact
which was checked upon numerically), because it scales with 1/m2 and also, the
commutator involves terms scaling with R−3 and R−4. As a consequence, it is
dropped in the construction of the control �eld. Employing the (linear) properties
of the dipole moment (see Chap. 6), one then arrives at the following equation:

d〈Hvib〉t
dt

=
E(t)

m
〈ψ(t)|P cos θ|ψ(t)〉. (7.34)

Starting in an initial rotational eigenstate YJ,0, the one-photon (weak �eld) fem-
tosecond excitation from the electronic ground state prepares a linear combination
of rotational states with quantum numbers J ± 1. It is interesting to note that,
as a consequence of this property (see Eq. (3.38)), the energy rate (Eq. (7.34)) is
zero initially. The same actually applies as well, if a strong pump pulse is em-
ployed. Because only the combined absorption and emission of an odd number of
photons leads to a change in the excited-state population, the excited rotational
states always belong to quantum numbers which are odd for an initial state with
even J and belong to even values of J for an odd initial quantum number. The
presence of the cos θ then, taking Eq. (3.38) into account, makes the expectation
value identical to zero. It is only after the angular dependent interaction due to
the (IR) control �eld has acted for a time, long enough to prepare an excited-state
wave packet containing angular momenta with even and odd quantum numbers,
the rate starts to deviate from zero. For the construction of the control �eld it is
then not possible to choose the control �eld according to

E(t) = λ〈ψ(t)|P cos θ|ψ(t)〉 (7.35)

initially, because then the �eld remains identically zero. Note that this holds also,
if one starts from a thermal distribution of initial rotational states.

As a control �eld de�ned according to Eq. (7.35) cannot be applied directly with-
out any auxiliary means, di�erent strategies are discussed. In a straightforward
approach, the �eld is chosen in analogy to the case of �xed orientation as

E(t) = λ〈P 〉t = λ
∑

J

〈ψJ(R, t)|P |ψ(R, t)〉. (7.36)
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Adopting this construction scheme yields the results presented in Fig. 7.11, where
a strength parameter of λ = 10·10−6 a.u. is employed. At shorter times, the control
�eld (panel (a)) resembles the one found for �xed orientation (see Fig. 7.10). The
expectation value of cos θ though demonstrates, that the molecular sample is not
oriented (panel (d)). After 2000 fs, oscillations are seen in the �eld, which hint at a
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Figure 7.11: Local control including rotational motion. Here the control �eld (panel
(a)) is constructed from the expectation value of the radial momentum
operator P . Panels (b), (c), (d) and (e) show the expectation value
of the vibrational Hamiltonian, the bond-length expectation value, the
expectation value of cos θ and the fragmentation yield, respectively.
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more or less regular variation of the radial momentum. The coordinate expectation
value (panel (c)), however, does not support the picture of a vibrational motion
performed by a localized wave packet. Also, because its value does not exceed a
distance of 15 Å, fragmentation seems not to take place (note, that the cut-o� func-
tion removes only parts of the wave packet which are localized at distances larger
than Rd = 22.5 Å). This is not correct as can be taken from the fragmentation
yield displayed in panel (e) of the �gure which shows that at 6000 fs 15 % of the
molecules have undergone dissociation.

It is noteworthy that, in the average, the energy in the system is decreasing rather
than increasing (see panel (b)). A conclusion evolving from Fig. 7.11 is, that the
control �eld constructed via Eq. (7.36) is not e�cient in obtaining a good frag-
mentation yield. Rather, the average e�ect is, that the �eld acts as a cooling �eld,
which takes away energy from the system.

In order to illustrate the quantum dynamics in the present case, Fig. 7.12 displays
the bound state part of the radial density

ρ(R, t) = 2π

∫
dθ sin θ|ψ(R, θ, t)|2. (7.37)

Note, that the �gure exhibits the density also during the time the pump-process
takes place. After the process is terminated it is a rather localized function (∼ 2 Å).
It can be taken from the �gure that after 1700 fs, the density splits into two parts,
one part moving out into the dissociation channel and another part performing a
bound state motion. The observed splitting explains the partly induced fragmen-
tation. Also, the amplitude of the bound state motion decreases which hints at a
loss of vibrational energy. To rationalize the splitting of the wave packet we regard
the angular density

ρ(θ, t) =

∫
dR sin θ |ψ(R, θ, t)|2, (7.38)

which is shown in Fig. 7.12, lower panel. Because the femtosecond excitation from
the ground state starts from the Y0,0 rotational eigenstate, the initial excited-state
rotational functions is Y1,0, i.e. proportional to the cos θ function. As an overall
trend, one sees that the angular density is depleted for angles lower than π/2

and an orientation around π takes place as a function of time. That the angular
distribution is directly connected to the splitting of the radial wave packet can be
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Figure 7.12: Local control including rotational motion. The radial (upper panel)
and angular densities (lower panel) are displayed for times up to
3000 fs.

rationalized employing classical arguments. The classical force associated with the
external �eld and acting along the bond coordinate R is

FR(t) = −∂W (t)

∂R
= cos (θ(t)) P (t), (7.39)

where we used dµ1(R)/dR = 1 (in atomic units), and P (t) is the canonical mo-
mentum associated with R. The initial classical distribution in the angular degree
of freedom involves angles larger than and smaller than π/2. As a consequence,
trajectories starting at angles smaller than π/2 (where cos (θ(t)) is positive), and
moving towards larger distances, experience an additional positive force by the
�eld which, at least partly, induces dissociation. On the other hand, the orbits
starting with angles between π/2 and π, where cos (θ(t)) is negative, experience an
attractive force which reduces the radial energy. Thus, in the present example, it is
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found that the inclusion of the angular degree of freedom results in a complicated
�eld-molecule energy transfer and the e�ciency of the local control algorithm is
diminished.

7.2.3 Rotational-vibrational dynamics in a static �eld
Next, the case is discussed, where the control �eld is constructed from the formula

E(t) = E0〈ψ(t)|P cos θ|ψ(t)〉, (7.40)

so that, under the assumptions leading to Eq. (7.34), the energy rate is positive. As
is noted above, in order that the expectation value in Eq. (7.40) deviates from zero,
it is necessary that rotational eigenstates YJ,0 with even and odd quantum numbers
are populated. This can be achieved by applying an additional static electric �eld
to the system resulting in the interaction energy

Wns = −µn(R)Es cos θ, (7.41)

where Es is the �eld strength and the static �eld points along the z-axis. Because
of the large dipole moment of the NaI molecule, the interaction leads to a preorien-
tation in the electronic ground state before the femtosecond excitation takes place,
i.e. a `pendular state' [134]. This orientation goes in hand with the population of
angular momentum states and with increasing �eld strength Es, higher angular mo-
mentum states are excited. This, of course, has consequences for the fragmentation
dynamics in the control �eld. Figure 7.13 collects the numerical results obtained
for di�erent values of Es. Note that the irregularities in the various expectation
values stem from the removal of the outgoing �ux which leaves only the bound-state
fraction of the wave functions for their calculation.

From the energy expectation values, it is seen that with increasing �eld strength
the energy deposition becomes more e�ective (panel (b)). This is as well re�ected
in the fragmentation yields displayed in panel (c). In the case of the strongest
static �eld, complete fragmentation is obtained after about 5000 fs, whereas for
the weakest �eld only about 10 % of the molecules dissociate. A comparison with
the bond-length expectation values contained in panel (b) shows, that in this case,
it needs two and a half vibrational periods until parts of the wave packet have
acquired enough energy to escape into the exit channel. The �gure demonstrates
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Figure 7.13: Local control including rotational motion and an additional static elec-
tric �eld Es. The control �eld is constructed from the expectation
value of P cos θ. Curves for �eld strengths of Es = 105 V/m (short
dashed line), 106 V/m (long dashed line), and 107 V/m (solid line)
are shown. The same quantities as in Figs. 7.10, 7.11 are contained
in the di�erent panels.

that the application of a reasonable strong static electric �eld results in an excellent
control yield. In particular, with increasing �eld strength, where the orientation of
the molecules along the direction of the applied �eld is enforced, one recovers the
rotationless case discussed above. This can be illustrated with the help of the wave
functions obtained for the di�erent values of the static �eld strength. Figure 7.14
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Figure 7.14: Modulus of the rotational-vibrational wave functions at a time of
2000 fs. The functions are shown for various static �eld strengths,
as indicated. The �eld-free case is included for comparison.
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collects the modulus squared of functions at a �xed time of 2000 fs. This is shortly
before the �rst fragmentation products are built in the case of Es = 106 V/m and
Es = 107 V/m (see Fig. 7.13). As can be taken from the �gure, with increasing
�eld strength, the density is localized at larger distances. This re�ects the fact that
a strong static �eld excites more free rotor states leading to a larger magnitude of
the expectation value appearing in Eq. (7.40), i.e. to a stronger control �eld accel-
erating outgoing wave packets. Furthermore, the static �eld induces a localization
around a value of θ=0 so that an increase of �eld strength results in an e�ective
orientation of excited-state NaI molecules. This also means that fragments are built
almost exclusively along the direction of the applied static �eld.

It is noted that it is possible to switch o� the static �eld after the pump-pulse
excitation. Concerning the control yield, one obtains the same numerical results as
for a permanently present static �eld. This is due to the time-scale of rotation for
free NaI, which is much longer than the times the control �elds regarded here are
active so that the pre-orientation still persists.

The algorithm of local control is applied to the excited-state photo-fragmentation
of the NaI molecule. If the molecular axis is �xed in space, control �elds can be
constructed which are determined by the dynamical properties of the system and,
in more detail, oscillate in phase with the mean momentum of the vibrational mo-
tion. In this way, it can be achieved that a 100 % dissociation takes place of the
molecules excited by the pump pulse. Employing the same �eld construction in the
case of a molecule which is not restricted to a �xed orientation is not successful
without further modi�cations of the construction scheme. If the �eld is taken to
be proportional to the radial momentum, molecules can, dependent on their ori-
entation, absorb energy from the �eld but also can lose internal energy resulting
in a decreased fragmentation yield. It is shown that, because the energy rate for
the radial degree of freedom contains an expectation value of the product of the
radial momentum times a cos θ function, a necessary condition to deposit energy
in the system is to prepare a rotational wave packet consisting of several free rotor
states. This can e�ectively be achieved by applying a static electric �eld. The
huge dipole moment of NaI results in a large interaction energy, which is able to
orient the molecule along the �eld direction. The application of an additional con-
trol �eld then results in highly e�cient fragmentation, which is comparable to the
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rotationless case, where the molecular axis is �xed to point along the direction of
the control �eld polarization vector.

7.3 Molecular polarizability and orientation
In the last section, it was shown, that an orientation of a molecular sample is de-
sirable to exert e�ective control with coherent laser light. Therefore, the control of
orientation is now chosen as target. Moreover, the molecular polarizability is con-
sidered, because there, the electric �eld enters quadratically into the interaction,
see below.

Once again, sodium iodide is chosen as the model system. The rotational degree of
freedom is of main interest, so that the Hamiltionian reads

Hn = − 1

2m

∂2

∂R2
+

Ĵ2

2mR2
+ Vn(R) +W (t). (7.42)

Here, the laser interaction W (t) is regarded more precisely as in the previous sec-
tions and is taken as

W (t) = −~µtotal
~E(t) (7.43)

The total molecular dipole moment µtotal can be expanded as

~µtotal = µ+
1

2!
α~E +

1

3!
β ~E2 + ..., (7.44)

where µ is the permanent dipole moment, α is the polarizability tensor and β

is the �rst hyperpolarizability tensor. This series is truncated after the second
term. From the latter only the components parallel (αzz = α‖) and perpendicular
(αxx = α⊥) to the molecular axis are considered (a similarity transformation to
obtain a diagonal matrix from its coordinate representation in x, y, z is not carried
out, as the elements αxz, . . . are negligibly small). As a consequence, the interaction
can be rewritten as [142]

W (t) = −µE(t) cos θ − 1

2
E2(t)[α‖ cos2 θ + α⊥ sin2 θ]. (7.45)

As the electric �eld enters quadratically in the second term, di�erent behavior is
expected for weak (predominance of the �rst term) and strong (predominance of
the second term) �eld strengths.
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axis of the adiabatic ground state |1〉 and the �rst excited state |2〉
of NaI. In the lower panels, values from ab initio calculations are
depicted. These results are �tted according to Eq. 7.46 to yield the
curves in the upper panels.

The polarizabilities parallel (α‖) and perpendicular (α⊥) to the molecular axis for
the adiabatic ground state and the �rst excited state were obtained from ab initio
calculations with the RASSCF method [143]. The resulting curves in dependance

Table 7.1: Parameters for the adapted polarizability curves of NaI.

α‖ in |1〉 α‖ in |2〉 α⊥ in |1〉 α⊥ in |2〉
R1 [Å] 6.0 6.0 7.0 7.0

β1 [Å−2] 0.4 0.3 0.3 0.2

c1 [a.u.] 185.0 −185.0 190.0 −250.0

c2 [a.u.] 50.0 235.0 35.0 300.0

c3 [a.u.] 235.0 50.0 225.0 50.0
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of the interatomic distance R are depicted in Fig. 7.15. They were adapted to
analytic forms according to

α(R) =




c1 · e−β1(R−R1)2 + c2 0 ≤ R ≤ R1,

c3 R1 < R <∞.
(7.46)

The parameters are summarized in Tab. 7.1.

To prove that these curves are realistic, the polarizability in the limit of in�nite
R is compared to the experimental values for Na + I or Na+ + I−, respectively.
For the polarizabilities of the separate atoms or ions, the di�erence between par-
allel and perpendicular orientation can be neglected (in fact, for the ions, there
is none as they exhibit closed shells; the di�erence for e.g. I, which stems from
the orientation of di�erently populated p-orbitals in the external �eld, is extremely
small). The experimental values of the polarizability are 24.11 Å3 for Na [144],
4 Å3 for I [145], 0.16 Å3 for Na+ and 7.81 Å3 for I− [146]. This corresponds to
∼ 190 a.u. for Na + I, which is matched by α‖ = 235 a.u. or α⊥ = 225 a.u. in the
adiabatic ground state |1〉, respectively. For Na+ + I−, the polarizabilities sum up
to ∼ 54 a.u., which is matched by α‖,⊥ = 50 a.u. in adiabatic state |2〉, see Fig. 7.15.

The target is to achieve orientation. Therefore, the control �eld is chosen as

E(t) = λ =
〈

Ψ(t)

∣∣∣∣µ
(

cos θ + sin θ
∂

∂θ

)∣∣∣∣ Ψ(t)

〉
, (7.47)

compare Sec. 5.5. As a sin θ enters in the calculation, the propagation as described
in Sec. 3.5 is not applicable. Here, only the part with T (J) is evaluated in terms
of spherical harmonics. The other steps of the propagation are conducted with the
reduced wave function Ψ(R, θ, t) (compare Sec. 3.5) or its Fourier transform, where
the angle θ is explicitly treated. As in every time step now a projection of the
wave function on the spherical harmonics is necessary and the wave function has to
be reassembled afterwards, this propagation scheme is very slow compared to the
representation in spherical harmonics only.

In addition to orientation, it is intended to examine the in�uence of the polar-
izability. Consequently, calculations with and without the interaction due to the
polarizability are performed. The dynamics in the �rst excited adiabatic state is
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investigated, where the non-adiabatic coupling around 7 Å is neglected. The exci-
tation is performed as described before within perturbation theory with a pulse of
310 nm and a full width at half maximum of 50 fs.

In Fig. 7.16, the results for the case without polarizability is shown, i.e. an in-
teraction term of W (t) = −µE(t) cos θ is used. As can be seen from the �gure, the
�eld stays extremely small until 〈cos θ〉 starts to deviate from zero. Only then, the
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Figure 7.16: Interaction of the laser with the permanent dipole moment only (no
polarizability). The di�erent panels show the control �eld and the ex-
pectation values of the bondlength 〈R〉, of the measure for orientation
〈cos θ〉 and of the system's energy 〈H〉, as indicated.
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�eld starts to rise and in turn, 〈cos θ〉 increases. This process goes in hand with a
rapid population of ever higher J , which is depicted in Fig. 7.17. Almost instantly,
as many J states as taken into account (here: 400) are occupied. Then, obviously,
the expansion in J does not converge anymore giving rise to numerical errors. That
the values afterwards are meaningless, becomes visible in the curves of 〈R〉 and 〈H〉
from Fig. 7.16: After t = 2.2 ps, erratic oscillations can be observed.
As a conclusion, the local control algorithm �nds the trivial solution to the problem
of orientation, namely, a static �eld as strong as possible. When the interaction is
chosen to include the polarizability, the same results are obtained, see Fig. 7.18.
Once again, the �eld is almost zero until it increases strongly having the e�ect, that
no converged results can be obtained.

If a higher �eld strength is selected, only a shift in time of the �eld's steep rise
occurs. The stronger the �eld strength parameter λ is chosen, the earlier the �eld
starts to deviate from zero signi�cantly and hence, the calculation's breakdown
happens earlier. No di�erence is found between the computations with or without
polarizability.

To summarize, the local control algorithm is able to achieve the prede�ned tar-
get, but in this case, only the trivial solution emerges. The answer is a static

Figure 7.17: Population of the calculated J states in time. As soon as the control
�eld becomes large (compare Fig. 7.16), all 400 considered J are
almost instantly occupied.
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Figure 7.18: Same as Fig. 7.16, but now the interaction includes the polarizability.

electric �eld as strong as possible. In the simulation, the �eld increases steadily
until all considered states with the rotational quantum number J are populated.
Even 400 J-states were not enough to succeed in a convergence of the calculation.
The same results are obtained for computations, which either include or exclude an
interaction with the laser due to the molecular polarizability. One can conclude,
that the common ansatz to neglect the polarizability and higher terms of the dipole
expansion is justi�ed in this case.



8 Laser control of a molecular
motor

The concept of a molecular motor has been discussed vividly in connection with the
construction of nanoscale devices [147]. Recently, Tour and coworkers synthesized a
model nanocar [148] and extended it to a motorized version [149]. Another example
was studied theoretically by Fujimura and coworkers, who investigated the triggered
molecular rotor motion in (R)-2-chloro-5-methylcyclopenta-2,4-dienecarbaldehyde
[150�153]. They could show that it is possible, by shaping the perturbing electric
�eld properly, to initiate a unidirectional angular motion of a CHO group. Below,
the focus concentrates on the aspect that this can as well be achieved by locally
adapted �elds, which are interpretable on classical grounds. This then allows for
an intuitive understanding of the control process and its outcome.

Figure 8.1: (R)-2-chloro-5-methylcyclopenta-2,4-dienecarbaldehyde serves as
molecular motor, where the angular motion of the carboxy group is
triggered with laser light.
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8.1 Model and control scheme
Here, (R)-2-chloro-5-methylcyclopenta-2,4-dienecarbaldehyde is used as model sys-
tem. The molecule is �xed in space and only the rotation around the C1-C6 bond
is treated (see Fig. 8.1). The one-dimensional motion is thus taking place along
an angular variable q with the potential curve V (q). The latter is adopted from
Ref. [150] as

V (q) =
4∑

n=1

cne
−βn(q−qn)2 (8.1)

where the function is only de�ned from −π to π. The numerical values of the
corresponding parameters are listed in Tab. 8.1. The potential curve is depicted
in Fig. 8.2, upper panel. Its form is rather complicated, exhibiting several local
extrema.

Figure 8.2: The potential energy curve V (q) for the rotation of the motor's CHO-
group is displayed in the upper panel. Additionally, the initiation of a
clockwise (+) or a counter-clockwise (−) motion via a heating �eld is
sketched. In the lower panel, the dipole moment µ(q) is shown.
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Table 8.1: Parameters for the potential of the molecular motor.

n = 1 n = 2 n = 3 n = 4

cn [eV] 0.1822 0.0930 0.1934 0.1822

βn [rad−2] 15 π 20 π 19 π 7 π

qn [rad] −π −0.45 π 0.4 π π

The dipole moment components depicted in Ref. [150] are approximated as

µx(q) =cx cos (q + qx) + bx (8.2)
µy(q) =cy sin (q + qy) + by (8.3)
µz(q) =cz cos (2q + qz) + bz, (8.4)

where the respective parameters are collected in Tab. 8.2. The x- and y-components
then yield the dipole moment µ(q), which enters in the interaction term with the
external �eld (see below)

µ(q) = − cos (q) µx(q) + sin (q) µy(q). (8.5)

The resulting curve is shown in Fig. 8.2, lower panel.

Table 8.2: Parameters for the dipole moment components of the molecular motor.

x y z

cx [D] −2.3 cy [D] −2.0 cz [D] 0.1

qx [rad] 0 qy [rad] 0 qz [rad] π

bx [D] −0.5 by [D] −2.0 bz [D] −2.1

The Hamiltonian of the system consists of the potential energy V (q), the interaction
with the control �eld W (t) = −µE(t) and the rotational kinetic energy T (p). The
latter depends on the angular momentum p. The Hamiltonian reads (in atomic
units):

Ĥ = − 1

2I

d2

dq2
+ V (q)− µE(t), (8.6)

where the moment of inertia I of 17.6 u is taken from Ref. [150].

Although only the rotation around a single bond is considered, this circular motion
even at room temperature (T = 300 K) is hindered (compare potential barriers of
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> 0.2 eV and mean thermal energy at room temperature of kT ≈ 0.026 eV). The
objective is now to deposit as much energy in the system as is necessary to initiate
either a clockwise or a counter-clockwise rotation. Following classical considera-
tions, the objective can be achieved as sketched in Fig. 8.2. Two trajectories (+)
and (−) indicate two excitation pathways, which di�er in their outcome. In one
case (+), a heating occurs in such a way that the angular motion is positive, as
soon as the continuum is reached. In contrast, for the second case (−), the motion
has the opposite direction. Thinking in a classical way, both pathways are equally
probable, if the phase of the trajectory relative to its energy is timed correctly.

It is noted, that another version of local control theory was used in Ref. [153]
in connection with the driven motor motion, for a detailed analysis of this method
see Ref. [154]. Here, we employ the simpler method as outlined in Sec. 5.1. Be-
cause the dipole moment µ(q) is not a linear function of q, the commutator with
the kinetic energy operator is evaluated in constructing the electric �eld, which is
taken of the form (in atomic units)

E(t) = −λ =〈ψ(t)|[µ(q), T (p)]|ψ(t)〉. (8.7)

Here, λ is a strength factor and = denotes the imaginary part. Because the ex-
pectation value appearing in the latter equation is purely imaginary, this choice
ensures that the energy rate is positive at all times.

8.2 Ground state as initial state
In what follows, calculations are discussed which employ the ground-state wave
function as initial state. In order to start the heating process, a short seed pulse
is applied to the system, a procedure which is usually employed in local control
theory [92].

Figure 8.3, upper panel, shows the quantum mechanical probability density for
a �eld parameter of λ = 1.24 · 10−5 a.u. It is seen, that it takes about 2 ps until a
motion is induced. Then, the density exhibits regular oscillations visible in a mod-
ulation of its width. Shortly before 4 ps, the continuum is reached and parts of the
wave function move towards smaller and also larger angles. In order to circumvent
a further heating of the system, the control �eld is switched o� after 4 ps. For
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Figure 8.3: Heating of a rotor, where the initial state is the ground state of the un-
perturbed system. The quantum mechanical probability density (upper
panel) is compared to an ensemble of trajectories (lower panel).

comparison, the lower panel of Fig. 8.3 contains the dynamics of an ensemble of
23 trajectories, where the classical dynamics is subject to the identical control �eld
as constructed in the quantum mechanical calculation (upper panel of the �gure).
The initial positions and momenta are sampled from the quantum mechanical prob-
ability distributions after the seed pulse. It is obvious that quantum and classical
densities exhibit the same basic features. This strengthens the point that local
control is as close to intuition as possible. In particular, it is obvious that there
are trajectories moving out of phase, i.e. against each other which leads to the
bifurcation of the trajectory ensemble (and likewise, of the quantum wave packet).



122 8 Laser control of a molecular motor

From the densities alone, however, it is not possible to decide if the control �eld
induces a net clockwise ((+) direction) or counter-clockwise ((−)-direction) motion.
An analysis of the time-dependent wave function yields a ratio P−/P+ ≈ 2.2 for
the integrated probability density moving in (−)- versus (+)-direction. This is not
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Figure 8.4: Heating of a rotor, where the initial state is the ground state of the
unperturbed system. The control �eld is displayed in panel (a). A sign
change in the dipole moment results in additional oscillations compared
to the angular momentum expectation value (panel (b), contains also
classical angular momentum). The latter would be proportional to the
control �eld in case of a linear dipole moment. Panel (c) contains the
energy expectation value calculated quantum mechanically and classi-
cally, as indicated. The time- and space integrated �ux is shown in
panel (d).
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ideal and below the question is addressed how to improve the control yield. For
now, it is demonstrated that indeed a net rotor motion in a preferential direction
is triggered. Therefore, we calculate the time- and space integrated �ux

F (t) =
1

2Ii

∫
dq

∫ t

0

dt′
{
ψ∗(q, t′)

d

dq
ψ(q, t′)−

(
d

dq
ψ∗(q, t′)

)
ψ(q, t′)

}
. (8.8)

This �ux is shown in Fig. 8.4d. Its time behavior documents what has been stated
above: as soon as the system is excited into the continuum, a negative integrated
�ux is obtained corresponding to the counter-clockwise rotor motion. The energy
expectation value (solid/red line) of the system is displayed in panel (c) of Fig. 8.4.
When its value exceeds the height of the left barrier (∼ 0.2 eV), the �ux starts to
deviate from zero. The time dependence of the average energy documents the e�ec-
tive heating of the system. The same is obtained classically, which is documented
in the �gure by the dashed line curve. This line shows the average energy of the
classical trajectories, which are promoted into the continuum.

The oscillatory behavior of the electric �eld (panel (a)) is directly connected to
the wave packet motion, where the increasing period re�ects the smaller energy
separation of higher lying eigenstates of the system. It has to be kept in mind,
that a sign change in the dipole moment (which occurs in the present case [150])
as well introduces a phase into the time-dependence of the �eld as can be readily
taken from Eq. (8.7). These additional oscillations can be seen, when the �eld
is compared to the angular momentum expectation value (panel (b) of Fig. 8.4),
because 〈p〉 would be directly proportional to the control �eld in case of a linear
dipole moment, as was shown in Sec. 5.1. Panel (b) also contains the mean angular
momentum from the classical trajectories. Here once again, the agreement between
quantum mechanical and classical calculation is pronounced.

8.3 Arbitrary initial state
To increase the yield for an unidirectional motion, it seems reasonable to eliminate
the bifurcation of the wave packet visible in Fig. 8.3. This can be realized, if the
initial function is a localized wave packet being displaced from the global minimum
of the potential. Here, a Gaussian of the form Ψi = N e−100 (q−0.26)2 was chosen,
where N is a normalization constant. As a result, nearly 100% of the propability
density move in the (+)-direction for λ = 4.2 · 10−5 a.u. The same is achieved for



124 8 Laser control of a molecular motor

Figure 8.5: Controlled unidirectional motion for an arbitrarily chosen initial state.
Almost 100% e�ciency for either a clockwise (+) rotation (upper
panel) or a counter-clockwise (−) motion (lower panel) is achieved.

the (−)-direction in case of λ = 3.5 · 10−5 a.u., as can be taken from Fig. 8.5.

In Fig. 8.6, the corresponding �elds (panel (a)), expectation values of the angu-
lar momentum (panel (b)) and the energy (panel (c)) and the time-integrated �ux
(panel (d)) are shown. The same conclusions as for Fig. 8.4 can be drawn. Here,
the time-integrated �ux takes higher values, also indicating a higher yield for the
motion in the respective direction.
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Figure 8.6: Controlled unidirectional rotation for an arbitrarily chosen initial state.
The same quantum mechanical quantities as in Fig. 8.4 are shown for
λ = 3.5 · 10−5 a.u. and 3.5 · 10−5 a.u.

8.4 Dressed initial state in a static �eld
Of course, a displaced initial wave function can easily be achieved in a calculation.
In order to mimic an experimental realization, where a displaced initial state is
prepared, the following procedure is chosen. Suppose, the molecule is �xed in space
and a static electric �eld (�eld-vector ~Es) is applied anti-parallel to the direction
of the dipole moment ~µ(q). This then adds the term

Hs = −~µ(q) ~Es = −µ(q)Es, (8.9)

to the Hamiltonian of Eq. (8.6). Here, Es is the �eld strength. As a consequence,
the potential curve is tilted and the ground-state wave function in the �eld is dis-
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Figure 8.7: Controlled unidirectional motion in the counter-clockwise direction.
The initial state is the ground state of the system in a static elec-
tric �eld. The quantum mechanical probability density (upper panel) is
compared to an ensemble of trajectories (lower panel).

placed on the q-axis. This pendular state [134] is calculated for a �eld strength of
Es = 109 V/m yielding a ground state of approximately Gaussian form with its
maximum at q = 0.07 rad. If the static �eld is turned o�, the pendular motion
starts and the control �eld can be determined without adding an additional seed
pulse.

In Fig. 8.7 quantum mechanical (upper panel) and classical (lower panel) densi-
ties are compared for a �eld strength parameter of λ = 6.0 · 10−5 a.u. Here, the
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Figure 8.8: Controlled unidirectional motion in the clockwise direction. The initial
state is the ground state of the system in a static electric �eld. The
quantum mechanical probability density (upper panel) is compared to
an ensemble of trajectories (lower panel).

density already reveals that a unidirectional motion in the (−)-direction is induced.
This is due to the fact that the density now remains rather localized and does not
exhibit a clear bifurcation. As a result, one �nds that the ratio of molecules ro-
tating in the counter-clockwise versus clockwise direction is ∼ 83 %. Again, the
classical density dynamics resembles very much the quantum motion. This even
applies to those parts, which still move in the bound state part of the potential after
the control �eld is turned o� (after ∼ 1.6 ps), a fact which has been investigated
theoretically in the connection with femtosecond pump-probe experiments [155].
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Figure 8.9: Control of directional motion for an initial state created by a static
�eld. The control �elds for the �eld strength parameters λ = 6.0 ·10−5

a.u. and 10.5 · 10−5 a.u. are shown in panel (a). Panels (b) and (c)
display the expectation values of the angular momentum and the energy,
respectively. The time-integrated �ux proves that an unidirectional
motion is achieved (panel (d)).

Figure 8.8 illustrates the case, where the �eld is stronger (λ = 10.5 · 10−5 a.u.).
Because now the energy dissipation into the system is larger, the trajectories (and
likewise, the quantum wave packet) move out into the continuum earlier. Here, the
timing is such that the motion is triggered in the positive direction (with a yield of
86 %).
The control �elds for the cases with the pendular state as initial function are dis-
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played in Fig. 8.9 (a). The �elds are switched o� shortly after the energy expecta-
tion value (panel (c)) has become larger than the maximal potential barrier. Until
then, a further heating is performed. The either clockwise (λ = 10.5 · 10−5 a.u.)
or counter-clockwise (λ = 6.0 · 10−5 a.u.) rotation can already be extracted from
the angular momentum expectation value in panel (b). The respective unidirec-
tional motion can even better be inferred from the time-integrated �ux in panel (d).

Figure 8.10: Driving a nanocar with an inte-
grated molecular motor by shaped
laser pulses.

Starting from the ground state of the sys-
tem, it is shown that an e�ective heating
can be obtained which induces a free ro-
tor motion. Although a net unidirectional
motion is prepared, the yield is rather low.
This is due to the presence of a bifurcation
of the wave packet. The latter can be sup-
pressed by starting from a localized initial
state in the �eld-dressed potential, which
is displaced from the equilibrium position
of the unperturbed system. This situa-
tion can be achieved, if a static �eld is
applied to the system prior to the control
�eld. Thus, the control �eld acts on a non-
bifurcating wave packet, which follows a
mean classical path. Depending on the
�eld strength of the driving �eld, the os-
cillation takes place such that either a mo-
tion into the counter-clockwise or clock-
wise direction is triggered upon reaching
the continuum. Here, typical yields of
more than 80 % are found. The latter re-
sult hints at the possibility to drive nanocars according to the sketch in Fig. 8.10.
Here, the control �eld induces a rotation of the motor group, which then pushes
the whole nanocar in the desired direction on a surface. It may not be possible to
propel the wheels directly, because they should be designed most symmetrically.
On the other hand, the induction of a unidirectional motion by linearly polarized
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light requires chiral molecules [150, 156, 157], because only the latter exhibit non-
symmetrical potentials.

A comparison between classical and quantum densities shows that they exhibit the
same characteristics. Because, within local control theory, the �eld is constructed
from the dynamics (being either quantum mechanical or classical), properties of the
�elds directly relate to the underlying physics. There are two aspects which emerge
from this fact. First, the particular form of a control �eld can be understood in
terms of dynamics, and second, if the quantum motion can be represented reason-
ably well by an ensemble of trajectories, the control �elds obtained from a classical
calculation are very similar to the ones derived within a quantum approach. The
latter fact should be very important concerning the simulation of control processes
in complex systems.



9 Photoassociation

In photoassociation reactions, a molecule is formed from two colliding atoms, rad-
icals or more generally, two particles, by the interaction with an electro-magnetic
�eld. By this means, a transition from a free continuum state to a bound state is in-
duced (free-bound transition) [158]. A large number of theoretical papers has been
published regarding this issue, see e.g. Refs. [159�163]. In comparison to the re-
versed process of photodissociation (compare chapters 6, 7), photoassociation still
imposes larger experimental problems. In order to form ground-state molecules,
continuous-wave (cw) lasers are used (see e.g. Ref. [164]) to associate ultra-cold
atoms in a magneto-optical trap (MOT) or a far o�-resonance trap (FORT). With
femto- or picosecond pulses, photoassociation has only been achieved in excited
states [165, 166]. However, regarding the molecular groundstate, short pulses only
seem to dissociate molecules already present in a MOT [167, 168].

Most of the above-mentioned work pursues the scheme to pump population from
a continuum state into a bound level of an electronically excited state and after-
wards dump it to a lower vibrational state in the electronic ground state (which
is related to the fact that homonuclear molecules were considered, where no per-
manent dipole moment exists). Within this scheme, global control algorithms were
employed to achieve the formation of ultracold molecules [169�171]. Here, another
approach to ground-state photoassociation is investigated, where the molecule is
formed directly via the interaction with a �eld in the electronic ground state and
not involving further excited states [161, 172].

9.1 Model and control schemes
As in the previous chapters, local control theory is applied to determine the control
�elds. The questions to be asked are, how e�ective photoassociation is realized
with �elds derived from local control theory; which objectives can be formulated
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to achieve an e�ective association yield, and how the control �eld can be interpreted.

In the e�ort to answer these questions, the starting point is a restricted model,
where the rotational degree of freedom does not participate. The such derived con-
trol �elds are then applied to the situation, where di�erent rotational states are
regarded as initial states, and rotational excitation is included.

Two atoms are regarded having the distance R. At �rst, the rotational degree
of freedom is neglected, i.e. s-wave scattering is studied.

The association reactions of H + F → HF and H + I → HI are regarded. The
potential curve V (R) and the dipole moment µ(R) for HF are given as [173]

V (R) = D0

(
1− e−β(R−Re)

)2 (9.1)
µ(R) = aRe−bR4

, (9.2)

where D0 is the dissociation energy, Re the equilibrium distance and β = ωe√
2D0/m

is the Morse parameter with the harmonic frequency ωe and the reduced mass m.
These and the other constants can be found in Tab. 9.1.

For HI, the ground-state potential is also represented by a Morse function [172]
The dipole moment function is taken from [174]

µ(R) =





∑8
n=3 anR

n 0 ≤ R ≤ R1,
∑5

n=0 bnR
n R1 < R ≤ R2,

c1R
δe−(γH+γI)R + c2

R4 R2 < R <∞,
(9.3)

where δ = 2
γH

+ 2
γI
− 2

γH+γI
+ 1 and γ2

H

2
and γ2

I

2
are the ionization potentials of the

corresponding atoms H and I. The parameters are listed in Tab. 9.1. Note, that in
this work the values of R1 and R2 are adjusted to obtain functions as smooth as
possible.
The dipole moment functions and the potential curves are depicted in Fig. 9.1,
where also the eigenenergies of di�erent vibrational states with quantum number v
are indicated.
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Table 9.1: Parameters for the HF and HI potentials and the respective dipole moments.

HF HI
m [u.] 1.0447 m [u.] 1.0079 b0 [D] 2.26353
Re [Å] 0.9260 Re [Å] 1.60916 b1 [DÅ−1] -4.55458
D0 [a.u.] 0.2101 D0 [eV] 3.054 b2 [DÅ−2] 4.26612
β [a.u.] 1.22 ωe [cm−1] 2309.01 b3 [DÅ−3] -1.85122
a [a.u.] 0.4541 a3 [DÅ−3] 13.98892 b4 [DÅ−4] 0.36865
b [a.u.] 0.0064 a4 [DÅ−4] -35.77172 b5 [DÅ−5] -0.02750

a5 [DÅ−5] 37.84713 c1 [DÅ−δ] 41.91837
a6 [DÅ−6] -20.46105 c2 [DÅ4] 7.749
a7 [DÅ−7] 5.62142 R1 [Å] 1.71241
a8 [DÅ−8] -0.62615 R2 [Å] 3.17551
γH [a.u.] 0.99970
γI [a.u.] 0.87640

The maximum quantum number vmax is given from the nearest integer below [175]
√

2D0m

h̄β
− 0.5 (9.4)

and the total number of bound states is consequently vmax + 1. In the case of HF
and HI, it is found that vmax = 22 and vmax = 20, respectively.

The initial wave function, in each case, was implemented as a Gaussian of the
form

Ψi =
4

√
2β

π
e−βi(R−Ri)

2−ip̄R, (9.5)

centered at Ri = 15 Å with a full width at half maximum (FWHM) of 5 Å
(βi = 4ln(2)

FWHM2 ). Here, p̄ is the mean momentum of the colliding particles so that the
impact energy is Ep = p̄2

2m
. Treating the initial wave packet as a Gaussian is justi-

�ed for higher temperatures [163]. Note however, that a stationary continuum state
has to be used for the association of ultra-cold atoms in the near-threshold regime,
because the de Broglie wavelength becomes large compared to the interatomic sep-
aration and indeed, experiments with continuous-wave lasers identify several nodes
of the stationary wave function as minima in the photoassociation signal [162].
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Figure 9.1: Potential energy curves V (R) and dipole moments µ(R) for HF (left
panels) and HI (right panels).

The model systems employed in this chapter are constrained to the limitation,
that no other electronic states than the electronic groundstate are considered. For
a complete simulation, additional states, like they can be found e.g. in [176] (HF)
or [177] (HI), will have to be implemented.

To achieve photoassociation, two approaches are pursued. First, it is required
that the system's energy decreases as a function of time, and second, it is required
that the population in a de�ned target eigenstate increases monotonically.

A su�cient condition to reduce the energy of the system upon the interaction
with an external �eld is, that the expectation value of H0 decreases as a function
of time or equivalently, that its time-derivative (the energy rate) is less than zero.
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Consequently, the �eld is chosen as

E(t) = λ
i

2m

〈
d2µ

dR2
+ 2

dµ

dR

d

dR

〉
, (9.6)

with λ being a negative number (compare Sec. 5.1, p. 48). This type of �eld is
used, when the realistic dipole moments of the molecules to build enter into the
calculation. But also the special case of a linear dipole moment is treated, where
the simpli�ed form of the �eld according to

E(t) = λ 〈p〉 . (9.7)

can be applied (compare Eq. (5.10), p. 49).

Another expression for the �eld is obtained, if the objective is to increase the
population in a target eigenstate |φT 〉 of H0. Here, the control �eld, which steadily
increases the target state population is

E(t) = λ ={〈Ψ(t)|µ|φT 〉〈φT |Ψ(t)〉}, (9.8)

with λ chosen to be positive (compare Sec. 5.2, p. 49). From this expression it is
obvious, that some overlap between the wave packet |Ψ(t)〉 and the target state
|φT 〉 must exist at some point, because otherwise the �eld remains zero at all times.
This problem is overcome by arti�cially populating the target state with some small
fraction of the total population, see below. It is, however, important to note that
this is only necessary to start the numerical algorithm and is not needed in an
experimental realization, working with the pre-calculated control �eld.

9.2 Fixed orientation: s-wave scattering
First, the photoassociation of H + F is discussed, where the mean momentum p̄

of the initial wave packet is chosen to yield an average energy of 0.1 eV above the
dissociation limit. To have a system which is easily understandable, the dipole
moment is set linearly, such that the �eld is determined according to Eq. (9.7). In
this way, the system can be seen as an out-of-phase-driven oscillator. The linear
dipole function is derived from the increasing part of the dipole moment depicted
in Fig. 9.1, upper left panel. To avoid numerical problems, the �eld is smoothly
switched on by multiplying it with a Gaussian envelope function, rising until its
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Figure 9.2: Photossociation of HF assuming a linear dipole moment. The control
�eld is shown in the upper panel. The time-dependent population in
various eigenstates is shown as a contour plot in the lower panel.

maximum at 250 fs (FWHM of 177 fs) and then remaining at a value of one, see
Fig. 9.2, upper panel. Here, a scaling parameter of λ = −1.2·10−3 a.u. is employed.
The lower panel displays the population Pv(t) in the various vibrational levels (v).
The contour plot documents that the association takes place via the highest vi-
brational levels. As times goes along, the population is consecutively transferred
to ever lower-lying states. This mechanism is the opposite of the so-called 'ladder
climbing' where, starting from the ground state, higher and higher states are ex-
cited [76, 121]. Here, the 'ladder descending' can be achieved, if the �eld carries an



137

up-chirp, corresponding to the increasing energy di�erence between the vibrational
eigenstates for decreasing quantum number v. This up-chirp can be seen in the
�eld (upper panel of Fig. 9.2) con�rming that LCT delivers a �eld which can be
interpreted in terms of properties of the perturbed system. For a discussion of the
e�ects of a chirped �eld in ultracold collisions, see also Refs. [178, 179]. The yield
of associated particles settles to about 60 % at a time of ∼ 2.5 ps, when the part
of the wave packet built by continuum states has moved out of the potential well.
Afterwards, the control �eld just 'cools' the system. In fact, at about 10 ps, the
entire population is accumulated in the vibrational ground state (not shown).

Of course, the found association yield depends on the properties of the initial wave
packet and in particular on the impact energy. It is found, that, if this energy is
chosen too large, the e�ciency of the process is low because the scattering proceeds
to fast. On the other hand, for a much smaller energy, the wave packet moves slow
and spreads, an e�ect being already present in the �eld-free case. Additionally, the
interaction with the �eld enhances the spreading, and it is well known, that local
control schemes works only for fairly localized wave packets [180�183].

It was shown, that the �eld obtained from LCT gives an excellent association
yield if a linear dipole moment is assumed. Within a more realistic description,
the dipole moment of HF is used in another calculation, so that the control �eld
has to be determined according to Eq. (9.6). Also, a mean momentum p̄ corre-
sponding to an impact energy of 0.01 eV above the dissociation limit is now chosen.
This corresponds approximately to a relative velocity of 1400 m/s and a velocity
distribution of 500 m/s, i.e. numbers which can be realized in molecular beam ex-
periments [184]. It is noted that for an the impact energy used before (0.1 eV) the
same trends as described below are found but the dynamics proceeds on a di�erent
timescale.
The �eld (λ = −1.4 · 10−1 a.u.) and the populations of the vibrational eigenstates
are shown in Fig. 9.3. As compared to the case discussed above (Fig. 9.2), the
lower mean momentum has the e�ect that the region, where the vibrational eigen-
functions show a signi�cant amplitude and association becomes possible, is reached
at later times. Therefore, the populations of the eigenstates start to rise later.
Moreover, the dipole moment now assumes only relatively small numbers at larger
distances. As a consequence, the �eld strength has to be signi�cantly higher to
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Figure 9.3: Same as in 9.2, but for a calculation incorporating the correct dipole
moment of the HF molecule.

achieve association. It is seen, that cooling is now so e�ective that the vibrational
ground state is reached at about 1.5 ps. However, the overall association yield of
approximately 25 % is not as good as in the simpli�ed system.

From the discussion above, it is clear that for the H + F scattering the devia-
tion of the dipole moment from a linear form strongly in�uences the association
yield. This e�ect is even more dramatic in the case of a H + I collision which pos-
sesses a smaller dipole moment. As before, the control �eld shows an up-chirp and
the di�erent vibrational states are populated consecutively, which underlines the
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ladder-descending mechanism. Nevertheless, the total yield of associated particles
settles at about 10 %, which is not satisfying.

Therefore, the strategy is adopted to increase the population in a de�ned vibra-
tional eigenstate. Hence, the �eld is constructed according to Eq. (9.8). To start
the algorithm, the target state is populated initially by choosing the initial wave
function as a sum of the Gaussian (Eq. (9.5)) and the target eigenfunction with
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Figure 9.4: Association of HI, where the target is the vibrational eigenstate with
quantum number v=19. The upper panel contains the �eld. The
total population P (t) and the populations Pv(t) in various vibrational
states (v) are shown in the middle panel. The quantum mechanical
coordinate expectation value 〈R〉t is compared to a selected classical
trajectory R(t) in the lower panel.
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relative weights of 0.998 and 0.002, respectively. Again, it should be stressed, that
this procedure is not necessary, when applying the control �eld in an experiment
or another calculation.

First, the second-highest vibrational state v= 19 of HI is chosen as target, em-
ploying a value of λ = 9.0 a.u. The results are depicted in Fig. 9.4. It is seen that
population is selectively transferred into the target state. From the �eld oscillations
(upper panel of Fig. 9.4), a mean frequency can be extracted. The latter matches
the energy di�erence between the impact energy and the eigenenergy of the state
with v= 19. Thus, a clearly interpretable control �eld evolves from local control
theory.

To document, that the results can also be understood in an even more intuitive
way, classical calculations are performed. Here, a classical particle is subject to
the control �eld from the quantum-mechanical simulation. The particle's position
follows the trajectory R(t) depicted in the lower panel of Fig. 9.4 (dashed line).
The expectation value of the inter-atomic distance 〈R〉t obtained from the quan-
tum calculation is plotted, for comparison. The deviation of the two curves stems
from the fact, that the quantum mechanical wave packet is broadly distributed in
R, while in the classical case, only a single trajectory is present. From the latter,
it can be readily seen, that the control �eld is able to achieve association also in
the classical regime. The �eld exerts a force on the particles, which compels them
to perform a vibrational motion and takes energy away. The energy of the trapped
trajectory is 0.102 eV and deviates not too much from the v = 19 eigenvalue of
0.111 eV. This is remarkable and underlines the close relation between wave-packet
and classical dynamics [90, 183].
Although similar �eld strengths as in the previous case are applied here, the overall
association yield is now much higher (almost 50 %). This proves, that di�erent
approaches are di�erently suited to achieve photoassociation in the case of local
control.

Next, it was chosen to increase the occupation in the lower lying state with v= 17.
As can be seen from Fig. 9.5, the population in v= 17 steadily becomes larger, but
the overall yield is not as good as in the v= 19 case. The �eld shows a higher
frequency as in the latter case, corresponding to a higher energy di�erence between
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Figure 9.5: The control target is now to increase the population in v=17.

the continuum states and the bound state.

The trend of a decreasing overall association yield proceeds, if states with even
lower quantum numbers are chosen. De�ning the vibrational ground state as the
target, association does not take place at all. This is documented in Fig. 9.6,
which contains the same quantities as Fig. 9.4. Despite the more intense �eld
(λ = 1.0 · 106 a.u.), only a negligible amount of population is transfered to the
vibrational ground state. Nevertheless, a frequency analysis of the �eld shows,
that the energy di�erence between the states and the ground state is matched. In
an attempt to improve the association yield, the projector PT = |ϕ0〉 〈ϕ0|, where
|ϕ0〉 is the vibrational ground state of the unperturbed system, was replaced by
the (time-dependent) projector containing the eigenstate in the external �eld, i.e.
taking the Stark shift into account. This procedure, however, does not improve the
results.

In the lower panel of Fig. 9.6, the quantum mechanical coordinate expectation
value is compared to a classical trajectory which is run in the presence of the �eld
(shown in the upper panel). It can be infered from the �gure, that the control �eld
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does not promote association in the classical regime. Here, the classical oscillator is
driven far o�-resonant, so that its motion does not couple to the driving �eld. The
respective quantum mechanical view is, that the Franck-Condon factors for a direct
transition from the continuum states to the ground state are too small to achieve
an association. Therefore, within a single electronic state, vibrational eigenstates
of low quantum number v can only be reached by successive de-excitation via a
ladder-descending mechanism.
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Figure 9.6: Photoassociation of HI. The same quantities as in Fig. 9.4 are shown
for the case that the target is the vibrational ground state (v=0).
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9.3 The role of orientation
In an extended model, the rotational degree of freedom is included. The Hamil-
tonian and the employed propagation scheme are found in Sec. 3.5 (p. 36). It has
been shown before, that a straightforward application of LCT to problems includ-
ing rotation is di�cult (see Sec. 7.2, p. 98). Therefore, all control �elds discussed
in the following part are constructed from the rotationless case, where the angular
momentum operator is neglected (i.e. ~J = 0).

If the rotational degree of freedom is included, two questions have to be considered.
The �rst is, how does the association yield change, if one starts from thermally pop-
ulated di�erent initial rotational states; and second, how does a possible rotational
excitation from the control �eld in�uence the yield. Both questions are addressed
in what follows.

The association of H + F is examined in the extended model system including ro-
tations. Here, the �eld depicted in Fig. 9.3 is chosen to enter into the computations.

The association yield is computed as follows. The population PvJ in an eigen-
state φvJ with vibrational quantum number v and rotational quantum number J
is evaluated according to

PvJ = 〈φvJ(R)|χJ(R)〉, (9.9)

where χJ(R) is the expansion coe�cient of the reduced wavefunction, see Eq. (3.28).
The total association yield P is then obtained by summation:

P =
∑
v

∑
J

PvJ . (9.10)

In the numerical example, the initial J values are chosen as JStart = {0, . . . , 8}.
The laser �eld then couples the states with di�erent quantum number J , so that
rotational excitation becomes possible. However, in the present case, JStart stays
more or less solely occupied, as can be taken from Fig. 9.7. There, the population
PJ = 〈χJ(R)|χJ(R)〉 of the di�erent rotational states is plotted at time t = 3.0 ps for
the initial wave packet starting in J = 0 (black �lled bars) and J = 6 (dashed/red
transparent bars). About 80 % of the molecules are still in the same rotational state
as they started from. This statement holds at least for JStart values< 8 (not shown).
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Here, the �eld from Fig. 9.3 is taken as control �eld in a slightly varied form.
It is arti�cially set to zero after t = 2.5 ps, when no signi�cant e�ect is visible
anymore for �xed orientation. This is also the case of rotations are included. After
the interaction is set to zero, the di�erent populations stay strictly constant, which
is taken as a proof for numerical correctness (not shown). The latter may not be
given, if the parts of the wave packet, which move out of the computed grid, are
not removed smoothly enough. Then, re�ections at the grid border would lead to
interferences with the bound parts, giving rise to oscillations of the populations
despite a zero �eld. Here, the cut-o� function is de�ned in a half-gaussian shape,
which decays from 1 to 0 over an spatial interval of 24 Å starting at 21 Å.

The association yield P at t = 3.0 ps is displayed in Fig. 9.8 for di�erent val-
ues of JStart. As expected, the yield is less, if compared to the rotationless case
(Fig. 9.3) and settles now at ∼ 6 %. The energy expectation values for the di�erent
cases reveals, that here a cooling of the system is realized (not shown).

It is interesting, that in the present case, P is more or less the same for the dif-
ferent initial quantum numbers JStart. Thus, an explicit thermal averaging is not
necessary. As a conclusion, the �elds derived for �xed orientation are still able to
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Figure 9.7: Distribution of the populations PJ in di�erent rotational states at time
t = 3.0 ps for the initial wave packet starting in J = 0 (black �lled
bars) and J = 6 (dashed/red transparent bars).
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Figure 9.8: Association yield P for di�erent JStart at t = 3.0 ps.

achieve photoassociation, even if the rotational degree is included. This proves,
that the simpli�ed analysis at �xed orientation is justi�ed to gain insight into the
mechanism of control �elds.

To summarize this chapter, local control theory is applied to photoassociation re-
actions. The control �elds are derived from two objectives. The requirement of
a steadily decreasing system energy leads to an e�ective population of lower vi-
brational levels. The association yield strongly depends on the form of the dipole
moment function which, for the numerical examples investigated, is rather localized
and of small magnitude in the case of the HI molecule. During the interaction time,
the population is transferred successively from higher to lower vibrational states.
This 'ladder-descending' is re�ected in the control �eld, which shows an up-chirp
matching the increasing level spacing with decreasing vibrational quantum number.

If the objective is chosen to maximize the population in a selected vibrational level,
it is found that high lying vibrational states can be accessed with an excellent yield
whereas it is not possible to build photoassociated molecules in states with low
vibrational quantum numbers. Here, the control �elds carry the frequency corre-
sponding to the energy di�erence between the impact energy and the eigenenergy
of the target state.
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Photoassociation is also achieved, if the rotational degree of freedom is included.
Despite the decreased total yield, still a cooling is realized in the treated case. This
justi�es the simpli�ed approach of �xed orientation, where the control mechanism
is easily understood. It is even more intriguing that representative classical tra-
jectories subject to the perturbation caused by the control �eld derived quantum
mechanically, re�ect the quantum results in a very clear way.



10 Molecular dump processes
induced by chirped laser pulses

A vast amount of experiments and calculations have been carried out using tai-
lored laser pulses. Mostly, a �rst pulse, inducing an electronic excitation, is shaped,
while a second pulse, e.g. a dump pulse, which triggers a de-exciation, remains un-
changed. Here, the reversed case is considered, where a pump pulse is followed by a
shaped dump pulse. For an experimental realization, a probe pulse may be neces-
sary to measure the outcome of the preceeding processes such that a pump/shaped-
dump/probe scheme evolves.

The study discloses information on potential energy surfaces and the wave-packet
evolution in the excited-state of molecular systems. Several concepts have been de-
veloped to invert spectroscopic data to underlying potentials with unshaped pulses,
e.g. high resolution pump-probe [185] or wave-packet interferometry [186�188].
Also schemes with a chirped excitation pulse have been analyzed regarding poten-
tial energy surfaces [189, 190].

In the common approach, a tailored electric �eld is applied to a quantum sys-
tem in equilibrium to selectively excite it and steer it to a desired target state.
However, the involved processes often crucially depend on properties of the po-
tentials far away from the Franck-Condon region of the initial excitation. Hence,
an analysis of selective de-excitation (dumping) with a shaped dump pulse, that
can have a spectrum di�erent from the pump pulse, is a promising approach, both
to gain control over chemical reactions and to study the involved potentials. One
of the main di�erences is, that the laser pulse now interacts with a moving wave
packet instead of a stationary state. This is the reason, why the shape of the pulse
may provide additional information not only on the underlying potentials, but also
on the wave-packet evolution in the excited state. Unshaped dump pulses are fre-
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quently applied [191�194], while a pump/shaped-dump/probe scheme has only been
reported recently [17], demonstrating the versatility of shaped dump pulses.

Here, a theoretical analysis is performed, showing which shaped dump pulse ef-
�ciently transfers population back to the ground state after electronic excitation.
Therefore, two general pulse forms are considered. First, the in�uence of a linear
chirp is investigated. Second, a triangular phase is applied in frequency domain,
yielding colored double pulses. Moreover, the concept of shaped-dump �tness land-
scapes is presented as a powerful tool to extract not only the shape of the under-
lying potentials, but also the velocity, dispersion and shape of the wave packet in
the dumping region.
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Figure 10.1: On the left-hand side, a ribbon model of bacteriorhodopsin is shown.
On the right-hand side, the photoisomerization reaction of the retinal
chromophore is depicted.

The starting point for a model system is the retinal photoisomerization reaction
in bacteriorhodopsin. Bacteriorhodopsin is a protein of 26 kDa (1 Dalton = 1 u),
which can be found in the purple membrane of the archaebacterium Halobacterium
halobium. Stimulated by visible light, the protein drives the synthesis of ATP
(adenosine triphosphate) by translocating a proton from the cytoplasmic side of
the membrane to the extracellular side. The light-absorbing chromophore is the
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Figure 10.2: Simpli�ed potential curves for the photoisomerization of retinal. Ad-
ditionally, the transitions induced by a pump/shaped-dump/probe
scheme are indicated by arrows. The calculations focus on the shaped
dump pulse.

retinal molecule, which is covalently bound to the amino acid Lys-216 of the pro-
tein (see Fig. 10.1). By photon absorption, the all-trans retinal is transformed to
its 13-cis form. Afterwards, it spontaneously reverts to the all-trans isomer, and
the photocycle is repeated [195].

As the retinal molecule, leave alone the bacteriorhodopsin complex, exhibits a very
high number of degrees of freedom, an active mode analysis provides a simpli�ed
description of the favored reaction in one dimension [196]. A model scheme for the
resulting potential curves of the rotation around the C13-C14 bond are depicted in
Fig. 10.2. Details of the model used here are given in what follows.

10.1 Model
Only two electronic states (|0〉, |1〉) are considered. The parts of the potential
curves, where resonant transitions can take place, are approximated by the lin-
earized potentials V0 and V1 (gray box in Fig. 10.2). In this way, a system is
introduced as simple as possible, which nevertheless includes all necessary features.
The two states are then coupled by the interaction Wnm (nm = 01, 10), where the
transition dipole moment elements µnm are set to 1 a.u., induced by (shaped) laser
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pulses centered around 800 nm. Thus, the model Hamiltonian reads

H = |0〉(T + V0)〈0|+ |1〉(T + V1)〈1| (10.1)
+|0〉W01(t)〈1|+ |1〉W10(t)〈0|.

The pump process is simulated only indirectly by placing a Gaussian-shaped wave
packet at time zero in the excited state, while the dump-pulse interaction is de-
scribed exactly. The probe pulse is not necessary in the simulation, because the
result of the dump process is already available. It is accessible by calculating the
norm of the wave packet in the respective electronic state.

10.2 Linear chirp
At �rst, the in�uence of a linear chirp on the dump puls is investigated. Here, the
momentary frequency is varied linearly in time (see Sec. 2.3.1) and could be tuned
to e.g. follow the diminishing potential energy gap indicated in Fig. 10.2. Nev-
ertheless, the maximum intensity becomes smaller by introducing a chirp. Thus,
the transform-limited pulse could be more e�cient, although being resonant for a
shorter time than the chirped pulse. These questions are addressed in the following.

Table 10.1: Parameters for the model potentials and the initial wave function (ev-
erything in a.u.).

Ψ(t = 0) V0 V1

βi 0.02 m0 1 · 10−3 m1 −1 · 10−3

xi 66.14 n0 5.7 · 10−3 n1 213.8 · 10−3

Here, the potentials are set to (in a.u.) V0 = m0x + n0 and V1 = m1x + n1.
The system is assigned arbitrarily a reduced mass of 35500 a.u. and the initial
wave packet is chosen as a Gaussian in the excited state of the form Ψ(x, t = 0) =
4

√
2βi

π
e−βi(x−xi)

2 . The corresponding parameters can be found in Tab. 10.1. At
the initial position xi, the potential energy di�erence amounts to 600 nm. After
626.3 fs, the position of the wave packet (monitored by the expectation value of
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the reaction coordinate) equals the value of xd = 75.59 a.u., where the potential
energy di�erence (1.55 eV) is matched by the central frequency (800 nm) of the
transform-limited dump pulse.The latter is constructed with a Gaussian envelope,
where the full width at half maximum (FWHM) of the electric �eld is 10 fs (cor-
responding to an intensity FWHM of 7 fs). To compare the chirped pulses to the
transform-limited one with the same pulse energy, the primary pulse is multiplied
with e−i

b2
2

(ω−ω0)2 in frequency domain (compare Eqns. (2.60) and (2.61), p. 15).
Here, b2 is varied from −5000 fs2 to 5000 fs2.

The dump process is sketched in Fig. 10.3. At time t = 0, the wave packet
starts to evolve down the gradient of the excited-state potential. After gaining
some speed, it is dumped to the ground state, while the kinetic energy persists.
For this reason, the wave packet moves a little bit uphill, before turning around
and advancing down the slope of the ground-state potential. All these processes
may in�uence the shape of the optimal dump pulse.

To investigate the e�ect of a linear change in the momentary laser frequency, chirp
scans were computed at pulse energies corresponding to intensities of 5 ·109 W/cm2

to 5 · 1012 W/cm2 for the transform-limited pulse. The population, remaining in
the excited state after the dump process is �nished, is plotted in Fig. 10.4.
For the smallest pulse energy, the curve exhibits a minimum at b2 ≈ −400 fs2, i.e. a
tailored �eld with this chirp parameter is the most e�cient one. With higher pulse
energy, a peak is arising around this value. For the highest energy, corresponding
to an intensity of 5 · 1012 W/cm2 for the transform-limited pulse, a second peak is
visible around b2 = 0 fs2. From these curves, it is obvious, that shaped pulses are

Figure 10.3: Scheme of the dump process. Kinetic energy gained in the excited
state (left panel) is preserved during the dumping (middle panel).
Therefore, the wave packet moves a little uphill in the groundstate,
before turning around (right panel).
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Figure 10.4: Linear chirp scan for di�erent pulse energies. The di�erent panels
show the population, which remains in the excited state after the dump
process, for various chirp parameters. The pulse energy corresponds
to an intensity of 5 · 109 W/cm2 to 5 · 1012 W/cm2 for the transform-
limited pulse, as indicated.

superior to transform-limited ones.

To investigate the origin of the peaks at higher intensities, the evolution of the
population in time are regarded at distinct parameters b2. The case, where the
transform-limited pulse holds an intensity of 5 · 1012 W/cm2, is examined in Fig.
10.5. Here, the parameters belonging to the three minima and the two maxima
from Fig. 10.4 (lowest panel) are chosen. In the upper panel of Fig. 10.5, the
corresponding �elds are plotted to visualize the variation of the pulse shape with
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Figure 10.5: Temporal evolution of the population in the upper state for di�erent
chirp parameters (lower panel) and corresponding laser �elds (upper
panel). Here, the unchirped pulse exhibits a maximum intensity of 5 ·
1012 W/cm2. The chirp parameters are chosen to show characteristic
points from the chirp scan in Fig. 10.4.

changing chirp parameter. The lower panel contains the time-dependent popula-
tion of the excited state for the above-mentioned chirp parameters. From the curve
with b2 = 0 fs2, it becomes clear, that Rabi oscillations take place. This explains
the second peak in the chirp scan (Fig. 10.4). Also for b2 = −400 fs2, Rabi-like
oscillations are found. This parameter corresponds to the �rst peak, which is ob-
served in the chirp scans of higher intensity. In contrast, no such oscillations are
seen for b2 = 400 fs2.

For a further analysis of the system's interplay with the laser �eld, the in�uence of
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Figure 10.6: Comparison of calculations with and without including the kinetic
propagation. The chirp scan is implemented for laser pulses of the
same energy. The transform-limited pulse features an intensity of
5 · 1012 W/cm2.

the dynamics is explored. Here, a calculation including the full dynamics is com-
pared to one, where the wave packet is centered in the dump region and the kinetic
propagation is suppressed. The shape of the wave packet for the non-dynamical
computation was taken from a calculation including the kinetic propagation but
without a laser �eld at time t = 626.3 fs, when the wave packet is centered in the
dumping region. As can be seen from Fig. 10.6, the computation without dynamics
yields a totally symmetric curve (dashed/red) in respect to the parameter b2. The
peak at b2 = 0 fs2, which stems from Rabi oscillations due to the high intensity of
the �eld, is still visible. On the other hand, the peak around b2 = −400 fs2 has
vanished. Thus it can be concluded, that the occurence of this maximum is a due
to the molecular dynamics.

The peak around −400 fs2 can be explained with the diminishing energy gap passed
by the wave packet. Here, the momentary frequency exactly equals the potential
di�erence over a large period of time. To prove this statement, it is proceeded as
follows.
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The chirp parameter, which should match the slope of the potential energy dif-
ference, is derived from a calculation, where no �eld is present. There, two points
of the expectation value of the reaction coordinate are taken corresponding to dif-
ferent times:

1. x1 = 〈x〉(t1) = 75.423116 a.u. with t1 = 620.8 fs

2. x2 = 〈x〉(t2) = 75.779264 a.u. with t2 = 633.6 fs

The potential energy di�erence at these points is:

1. ∆V (x1) = 0.057276 a.u.

2. ∆V (x2) = 0.056564 a.u.

Thus, the momentary frequency ω(t) has to change in time according to

dω

dt
=

∆V (x2)−∆V (x1)

t2 − t1 . (10.2)

As can be easily deduced from Eqns. (2.60), p. 15 (see expression for a2), and (2.65),
p. 15, the time derivative of the frequency is connected to the chirp parameter b2
by [197]

dω

dt
=

b2
(4ln2)2

$4
I

+ b22
, (10.3)

where $I = 4ln2
τI

is the spectral width with τI being the FWHM of the temporal
intensity. From the above equation (10.3), it can be directly deduced that

b2 =
1

2dω
dt

±
√

1

4(dω
dt

)2
− (4ln2)2

∆ω4
. (10.4)

By this formula, the chirp parameter, which is necessary to match the present
energy gap at every moment in time, is calculated. Here, dω

dt
= −1.345 ·10−6 a.u. is

given by Eq. (10.2), ∆τ = 10 fs√
2

= 292.328 a.u. and consequently, ∆ω = 0.0094845

a.u. As a result, two values for b2 emerge:

b2 =




−434.27 fs2

−0.75 fs2
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The one around −400 fs2 perfectly matches the peak already found in the above
�gures. The other value of −0.75 fs2 seems not to cause a peak in the chirp scan.
To understand this, the pulse duration has to be considered. The latter is evaluated
according to [197]

∆t =
√

∆τ 2 + b22 ∆ω2. (10.5)

The corresponding curve for the used pulse is depicted in Fig. 10.7 (upper panel).
Additionally, the slope of the momentary frequency as a function of the chirp pa-
rameter b2 is displayed. As already shown, a slope value can be produced by two
di�erent b2 values. Although the change of the momentary frequency in time is the
same for the resulting pulses, they di�er in their duration. Regarding the above
found values of −434 fs2 and −0.75 fs2, the di�erence in duration is substantial.
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Figure 10.7: Upper panel: Pulse length ∆t of a linearly chirped pulse in dependence
on the second order spectral phase b2. The horizontal dashed line
indicates the shortest possible pulse duration ∆τ . Lower panel: Slope
dω
dt of the momentary frequency ω as a function of b2.
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The parameter of −0.75 fs2 leads to a pulse, which is only slightly longer than and
exhibits almost the same intensity as the transform-limited one. Here, the in�uence
of the chirp can be neglected. In contrast, the pulse at b2 = −434 fs2 possesses
much lower intensity and the time of interaction is substantially elongated. Thus,
a tuning to match the diminishing energy gap, which is passed by the wave packet,
is very important in this case.

Another e�ect, which also originates from the wave-packet motion, is the tilt of the
residual curve in Fig. 10.6, if the peaks are disregarded. While the non-dynamical
computation yields a symmetric curve, the full calculation shows, that a negative
chirp parameter is superior to the positive one with the same absolute value.
This result is also found experimentally, as was shown by Vogt et al. [17]. There, the
isomerization of retinal in bacteriorhodopsin is investigated. The all-trans isomer
is excited with a 400 nm pump pulse. After propagation on the S1 potential energy
surface, the created wave packet returns to the S0 state via a non-radiative tran-
sition. Without a dump pulse, the 13-cis isomer is produced with 65% e�ciency.

Figure 10.8: Right: Experimental absorption di�erence ∆A as a function of the
second-order spectral phase (i.e., linear chirp), with an additional lin-
ear phase o�set (pump-probe delay) of 200 fs. The transient absorp-
tion signal (400 nm pump, 800 nm dump, 660 nm probe, 150 ps
pump-probe delay) is proportional to the amount of produced 13-cis
isomers of retinal in bacteriorhodopsin. Left: The calculated curve for
low intensities (compare Fig. 10.4) shows the same qualities as the
experimental one. Note the di�erent scales.
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This product is probed with a 660 nm pulse applied 150 ps after the pump pulse. If
a (shaped) dump pulse is employed at a delay of 200 fs after the pump pulse (delay
time of most e�cient dumping), the absorption di�erence depicted in Fig. 10.8
is measured. As the dump pulse reduces the amount of produced 13-cis isomers,
the minimum in the curve corresponds to the most e�cient dump parameter. As
the experimental study is conducted in solution, eventual peaks originating from
processes like Rabi oscillations average out. Nevertheless, the better performance
of negatively chirped pulses is clearly visible from the tilt in the curve. For compar-
ison, the calculated curve for a pulse energy corresponding to an intensity of 5 · 109

W/cm2 for the transform-limited pulse is depicted on the left-hand side of Fig. 10.8.

To conclude, it was shown, that not the transform-limited pulse is best at trans-
ferring population back to the ground state after an excitation. Regarding linearly
chirped pulses, the wave-packet dynamics is crucial to understand the shape of the
optimal pulse. It was found, that the momentary frequency of the most e�ective
pulse is tuned to match the diminishing energy gap, which is passed by the wave
packet. Here, Rabi-like oscillations occur already at rather low intensities. In gen-
eral, a negatively chirped �eld (down-chirp) is superior to a positively chirped one
with the same absolute value of b2 for the regarded system. The latter �nding was
also veri�ed experimentally [17].

10.3 Triangular phase
In this section, the pulse parameterization is restricted to triangular spectral phase
patterns (Sec. 2.3.1). Starting from a transform-limited pulse, a linear spectral
phase is applied to one part of the pulse spectrum. As a linear spectral phase
shifts a pulse temporally, this spectral region is shifted e.g. forward in time. The
same phase, but with opposite sign, is applied to the other part of the spectrum.
Consequently, this spectral region is then shifted backward in time. The result is
a double pulse, where one subpulse comprises only lower frequencies and the other
subpulse consists of only higher frequencies. The resulting electric �eld is termed
a �colored� double pulse.

In the example shown in Fig. 10.9, the application of a triangular phase to a
transform-limited pulse is illustrated. If the slope of the triangular phase is small,
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Figure 10.9: Creation of a double pulse by applying a triangular phase. Upper pan-
els: To a transform-limited puls (light gray), a triangular phase with
di�erent slopes is applied in frequency domain (left panel). Vertically
indicated are the carrier frequencies of the di�erent pulses (compare
right panel, same color code). The subpulses of the resulting double
pulse are more or less divided in time domain (right panel). Lower pan-
els: Changing the break point (left panel) leads to di�erent subpulse
intensities in time domain (right panel).

the two subpulses are not yet divided. The pulse still has only one distinct max-
imum (see example II in Fig. 10.9), but is (approximately linearly) chirped. A
steeper phase results in clearly divided subpulses with red-shifted or blue-shifted
carrier frequency, respectively (example III). The latter is only a mean value, be-
cause a subpulse actually exhibits an intricate chirp, see below.

The frequency, where the sign of the linear spectral phase is �ipped, is called the
�spectral break point�. If it is centered at the carrier frequency of the transform
limited pulse ω0, then two subpulses of equal intensity emerge. Otherwise, the
relative peak heights vary as well as the spectral composition of the two subpulses
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Figure 10.10: Momentary frequency ω(t) (straight lines) of di�erent colored dou-
ble pulses. The corresponding �eld envelope (dashed/red lines) is
overlayed to ease the interpretation. The phase slope is chosen as
b1 = 500 fs (left panel) and b1 = 100 fs (right panel). This results in
a subpulse separation of ∆t = 1000 fs and ∆t = 200 fs, respectively,
which is indicated by vertical lines.

[198, 199]. Here, pulses with a smooth shoulder (see example IV in Fig. 10.9) or
two subpulses of di�erent intensity can be obtained (example V).

To illustrate the behaviour of the chirp for colored double pulses, the momentary
frequency ω(t) is plotted in Fig. 10.10 for two examples. The momentary frequency
can be calculated according to

ω(t) =
d

dt
arccos

(<[E(t)]

|E(t)|
)
, (10.6)

where <[E(t)] denotes the real part of the complex-de�ned �eld. In Fig. 10.10, the
phase slope b1 is chosen as 100 fs or 500 fs, respectively, and the corresponding �eld
envelope is overlayed (dashed/red line).

To investigate the e�ect of di�erent pulse parameters and to visualize the outcome
simultaneously in a clear way, so-called �tness landscapes [200, 201] are employed.
In this way, only a small set of variables is used, compared to e.g. feedback algo-
rithms (see Sec. 4.5). Nevertheless, it is expected to gain additional insight into
the complex control mechanism of large systems by scanning only a small number
of parameters, but now thoroughly and extensively.

The potentials of the model system are de�ned as before, but with slightly changed
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parameters (see Tab. 10.2). In this way, longer pulses can be treated, which resem-
ble the ones used in the corresponding experiment (performed by P. Nuernberger,
G. Vogt, T. Brixner), see below. Here, not only a single wave packet is exam-
ined but also a double wave packet. The latter is created either by placing the
Gaussian (parameters like before, but renormalized to 0.5) into the excited state
at t = 0 fs and add another such function at t = 1000 fs, or as the sum of two
such functions but now centered at di�erent positions x = 62.36 and x = 69.92.
The di�erence between the two kinds of double wave packet is, that for the �rst
one, the velocity of the two peaks di�er at a given time but is equal when pass-
ing the same region of the potential, while for the second kind, the case is inversed.

Table 10.2: Parameters for the model potentials and the initial wave function (ev-
erything in a.u.).

Ψ(t = 0) V0 V1

βi 0.02 m0 1 · 10−4 m1 −1 · 10−4

xi 66.14 n0 737 · 10−4 n1 1458 · 10−4

After the initial excitation step at time t = 0, the wave packet will accelerate
and evolve down the the potential V1. At a later time, the energy gap between
the potentials at the position of the wave packet will match the frequencies of the
dump pulse. If this time coincides with the arrival time of the dump pulse, ef-
�cient transfer back to the lower potential V0 is possible. Here, the duration of
the transform-limited pulse is chosen to be shorter than the time interval during
which dumping is possible at all. The FWHM of the electric �eld is set to 150 fs
(corresponding to an intensity FWHM of 106 fs).

For a single wave packet, either the transform-limited pulse or more likely, a pulse
with a slight, negative triangular phase should be most e�cient (the latter com-
pares to a linearly chirped pulse, see Sec. 10.2). In the �rst case, the intensity is
maximal, while in the second case, the frequency follows the diminishing energy
gap between the two potential curves, which is passed by the wave packet.

To �nd out, which of the mentioned pulse forms is better and whether the intuitive,
simpli�ed picture is correct at all, numerically exact calculations (no pertubation
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theory) were performed. For the �rst �tness landscapes, both the phase slope b1
of the triangular spectral phase, and the delay time tPD between the pump pulse
(not simulated) and the temporal center of the double pulse is varied. The phase
slope b1 takes e�ect on the respective carrier frequencies of the subpulses and on
the subpulse separation ∆τ . Thus, for a given tPD, the two subpulses are symmet-
rically shifted apart in time with increasing b1.

The amount of remaining excited-state population after interaction of a single wave
packet with the dump pulse is determined for each pulse shape, resulting in the
�tness landscape shown in Fig. 10.11. On the right, di�erent sketches illustrate
�ve relevant points of the landscape. It is clearly visible, that the �tness landscape
is not symmetric around b1 = 0, but the minimum is shifted to values b1 < 0.
For large subpulse separations, the single wave packet is only in�uenced by either
of the two subpulses, leading to less e�cient dumping (expressed in the X-shaped
structure of Fig. 10.11a), or by neither of them, thus no dumping occurs (light

Figure 10.11: (a) Fitness landscape for a single wave packet. The excited-state
population after the interaction with the dump pulse is shown. The
two varied parameters are the delay time tPD (abscissa) and the
spectral phase slope b1 (ordinate). (b) The sketches indicate the
connection between wave packet position and di�erent double pulses
(corresponding numbers at the sketches and in the landscape).
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regions in Fig. 10.11a). The position of the minimum con�rms that a dump pulse
with a triangular spectral phase is superior to a transform-limited dump pulse. One
can conclude that conventional pump�dump experiments could be performed more
e�ciently, if an appropriately shaped dump pulse was employed.

Instead of a single wave packet, a double wave packet can be formed, if di�er-
ent reaction paths towards the dumping region are present (e.g. if the wave packet
has been split after the excitation by passing a barrier). The same mechanism as
for a single wave packet accounts for dumping each part of the double wave packet,
separately. Additionally, if the temporal separation of the two subpulses is high
enough, for a single wave packet, only one of the pulses will have any e�ect. But in
the case of a double wave packet, there is also in this case the possibility, that both
subpulses are dumping parts of the wave packet. Here, the �rst subpulse might
dump from the �rst part of the wave packet, and the second subpulse from the
second part of the wave packet, respectively. Because the subpulses di�er in their
spectral composition, it then also makes a di�erence whether the high or the low
frequency subpulse comes �rst.

The �tness landscape shown in Fig. 10.12 is obtained, if a double wave packet
is employed, where the two parts have the same velocity in the dumping region.
The landscape now exhibits four distinct minima. Thus, at �rst sight, it is pos-
sible to deduce whether the wave packet is split into several parts or not. One
can conclude, that shaped-dump �tness landscapes allow an identi�cation of the
wave-packet shape.

The four minima of Fig. 10.12a are discussed in more detail in the following. Min-
ima 1hand h2 relate to a situation where dumping occurs either from the �rst part
or the second part of the wave packet by a shaped pulse of higher intensity. This
situation is illustrated in Fig. 10.12b. There, the double wave packet together with
the potentials (left side) and the electric �elds performing the dumping process
(right side) are shown. Either solely the �rst or the second part of the WP is
dumped, and analogously to a single wave packet, a pulse with a slight triangular
phase dumps more e�ciently than a transform-limited pulse.

In contrast, minima h3 and h4 are due to dumping with the red-shifted subpulse
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from the �rst part of the wave packet and with the blue-shifted subpulse from the
second part of the wave packet (minimum h3 ) or vice versa (minimum h4 ). From
the corresponding sketches, it also becomes clear, why the whole double X-shaped
structure of the landscape is shifted to values of b1 < 0. The reason is, that the
red-shifted subpulse is in resonance at a later time (here: t3 or t6) than the blue-
shifted subpulse (at t1 or t4) regarding one wave-packet part. As a consequence, the
subpulse separation is smaller (∆τ = t4 − t3) for the pulse belonging to minimum
h3 (positive spectral phase) than for the one (∆τ = t6 − t1) belonging to minimum
h4 (negative spectral phase). Nevertheless, the corresponding delay times are the
same. In other words, the subpulses will e�ciently dump from di�erent points on
the potentials. Thus, the di�erences in the b1 values for optimal dumping re�ect
the shrinking energy gap between the potentials. To conclude, shaped-dump �tness
landscapes allow a deduction of the shape of the potential in a region far away from
the Franck-Condon region of the initial excitation.

Figure 10.12: (a) Fitness landscape for a double wave packet, whose parts exhibit
the same velocity in the dumping region. The excited-state popula-
tion after the interaction with the dump pulse is depicted for di�erent
delay times tPD and the spectral phase slopes b1. The four emerg-
ing minima can be explained according to the sketches in (b). Left:
position of the WP at times t1 to t6 when e�cient dumping occurs.
Right: Pulse shapes for e�cient dumping from either one part of the
wave packet only or from both parts.
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Figure 10.13: (a) Fitness landscape for a double wave packet of the type, where
the second part exibits a higher velocity in the dumping region than
the �rst one. (b) Illustration of the di�erent e�ects of the two types
of double wave packet (compare Fig. 10.12). When the parts of the
double wave packet are of the same velocity (upper panel) the tem-
poral centers (indicated by arrows) of the two double pulses coincide,
while they di�er if the velocities are di�erent (lower panel).

Minima 1hand h2 are more pronounced than minimum h3 and h4 . The conclu-
sion is drawn, that a single shaped pulse dumping only from one part of the wave
packet is more e�ective than a double pulse dumping from both parts, which is not
clear in advance.

Next, the second type of double wave packet is employed, where the velocity of
the parts di�ers in the dumping region. Such a double wave packet could be cre-
ated e.g. by exciting with two pump pulses of di�erent colors at the same time.
Here, the �tness landscape depicted in Fig. 10.13 evolves. Compared to the land-
scape of Fig. 10.12, a similar double-X structure is found, but the symmetry of the
latter is lost. Now, minimum 1hcan be clearly identi�ed as global. The reason for
minimum h2 (where only from the second part of the double wave packet is dumped)
being less pronounced than minimum 1his wave-packet spreading. As the second
part of the double wave packet starts at the same time than the �rst one but enters
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the dumping region at a later time, it is more dispersed, which results in a de-
creased dumping e�ciency. Once again, the phase slopes b 1h1 and b h2

1 corresponding
to minima 1hand h2 have small negative values (i.e. the associated electric �elds
can be regarded as single pulses with a chirped character), which are not identical,
but |b 1h1 | < |b

h2
1 |.

Minima h3 and h4 now occur at di�erent delay times, in contrast to Fig. 10.12,
where the delay times were the same. To illustrate the cause of this di�erence,
the corresponding intensity pro�les are sketched in Fig. 10.13b. For equal veloc-
ity of the wave-packet parts (upper panel), the temporal centers of the two dump
�elds coincide as indicated by arrows, i.e. t

h3
PD = t

h4
PD. If the second part of the

wave packet is faster than the �rst part in the dumping region (lower panel), then
the associated time interval between dumping with di�erent frequencies is actually
shorter for the second subpulse (t4 to t6) than for the �rst one (with t1 to t3). As
a consequence, the temporal centers t h3

PD and t
h4

PD do not coincide anymore (the
observation that |b 1h1 | < |b

h2
1 | can be explained accordingly). This observation leads

Figure 10.14: Fitness landscapes for higher pulse energies, corresponding to an
intensity of 5 · 1010 W/cm2 for the transform-limited pulse. Similar
results as before emerge as well for a single wave packet (a) as for a
double wave packet (b). E�ects from Rabi oscillations at low phase
slope values are the only visible di�erence.
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Figure 10.15: Fitness landscape, where the two varied parameters are the spectral
breakpoint (ordinate) and the spectral phase slope (abscissa). Here,
a double wave packet is investigated. Its parts hold the same velocity
in the dumping region. The sketches in the right display exemplary
intensity pro�les for di�erent regions of the �tness landscape (corre-
sponding numbers). Blue-dotted/red-dashed lines indicate the sub-
pulse comprising higher/lower frequency components, respectively.
A change of ωB leads to a variation of the relative peak heights and
the spectral composition of the subpulses.

to the inference, that shaped-dump �tness landscapes allow qualitative deductions
of the wave-packet velocity (positive/negative) and its dispersion (large/none).

Additional calculations with higher �eld strengths show similar results, qualita-
tively, except for visible e�ects from Rabi oscillations at low phase slope values,
where high intensities are present. The shaped-dump landscapes for a single wave
packet and a double wave packet are displayed in Fig. 10.14. Here, the transform-
limited pulse exhibits a maximum intensity of 5 · 1010 W/cm2.

As the next step, the parametrization of the shaped-dump �tness landscapes is
changed. Combining the conclusions from �tness landscapes under di�erent para-
metrizations can provide additional insight into the characteristics of the system.
To demonstrate this, we vary the phase slope b1 again, but additionally the spectral
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Figure 10.16: Comparison of �tness landscapes under di�erent parameterization for
a double wave packet with parts of di�erent velocity in the dumping
region. The dashed, yellow lines indicate a set of parameters leading
to the same pulses in both landscapes. (a) Delay time vs. phase slope
is plotted. (b) The varied parameters are phase slope and spectral
break point.

break point ωB (or the corresponding wave length λB). Results from the landscapes
discussed so far enter as follows: The time tPD for most e�cient dumping is taken
from the corresponding landscapes. This time now determines a new delay time
t′, where the �rst of the two subpulses is �xed. As a result, the old delay time
(between the pump and the double pulse center) tPD is changed with varying b1
according to tPD = t′ + |b1|.

In Fig. 10.15, the �tness landscape under the new parameterization is plotted for
the double wave packet with parts of equal velocity. On the right-hand side of the
�gure, a sketch illustrates which dump pulses are employed and how they corre-
spond to the data points in the �tness landscape. Also in this parameterization, it
can be directly deduced whether a double wave packet is present or not, because
for the double wave packet, two furrows appear (at nos. h5 and 11h), which are not
present in the single wave-packet landscape (compare Fig. 10.17).
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The double wave packet, where the two parts exhibit di�erent velocities in the
dumping region, leads to the �tness landscapes displayed in Fig. 10.16. Here, both
parameterizations are shown for comparison. The dashed, yellow line indicates,
where the same parameters occur in both landscapes. This helps to visualize the
connection between both parameterizations. Moreover, it is shown, that the global
minimum from the landscape on the left (delay time vs. phase slope) is included in
the landscape on the right (phase slope vs. break point). In the latter landscape,
a dark region of most e�cient dumping appears around this point. A thorough
analysis of this region shows, that the best spectral break point is found around
800 nm. A shift occurs if t′ is not exactly centered at the optimal delay time. Note,
that the optimal value for t′ is only matched by substracting the value of b1 from the
delay time, where the minimum appears. Only in this way, the point on the yellow
line of Fig. 10.16a is retrieved, where the break occurs. This point is neccessary to
include the global minimum from Fig. 10.16a in the landscape of Fig. 10.16b. Nev-
ertheless, even more e�cient dump pulses could be found in general, by changing

Figure 10.17: Fitness landscapes derived from a simulation (a) and recorded ex-
perimentally (b). A single wave packet is treated in the calcula-
tion. The experiment investigates the retinal photoisomerization in
bacteriorhodopsin. For further experimental details and additional
information see Ref. [17].
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the parameterization.

The same conclusions can be drawn from the landscape obtained for a single wave
packet (see Fig. 10.17a). Once again, the optimal pulse features a phase slope of
b1 < 0. As already mentioned, the furrows, which appear in the double wave-packet
landscapes, have vanished, because they correspond to e�ective dumping with both
subpulses of the double pulse at a large subpulse separation.

A �rst experimental �tness landscape under the same parameterization is shown
in Fig. 10.17b for the retinal photoisomerization in bacteriorhodopsin. Although
the noise level is too high to draw the conclusions derivable from the simulations
in Figs. 10.15, 10.16 or 10.17a, the resemblance con�rms that shaped-dump �tness
landscapes can be recorded, even of complex biomolecular systems. Thus, the mea-
surement encourages, that the method will prove to be a powerful tool in future
experiments.

The simulations clearly indicate, that shaped-dump �tness landscapes give a good
understanding of the excited-state evolution. Again, one could choose another pa-
rameterization in which the newly found most e�cient dump pulse is included and
record a �tness landscape in order to see, if even a more e�cient pulse is found.
This procedure can also be regarded as a systematic approach to iteratively im-
prove the pulse shape, thus one mimicks the way of a learning algorithm towards
the optimal solution, but with a lot of additional information facilitating an inter-
pretation. Furthermore, with �tness landscapes employing colored double pulses
information about the wave-packet evolution can be deduced. Not only a direct
observation whether the wave packet is subdivided or not is possible, but also the
shrinking energy gap and the speed and dispersion of the wave packet in the dump-
ing region can be determined by analysis of the �tness landscape. Moreover, it was
proven, that appropriately shaped pulses are able to dump more e�ciently than
transform-limited pulses. The possibility to systematically adapt the dump pulse
to optimally dump the wave packet allows to explore dynamics not accessible in a
similar way with other spectroscopic methods.
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In this work, the laser control of molecules was investigated theoretically. In doing
so, emphasis was layed on entering vectorial properties and in particular the orien-
tation in the laboratory frame. Therefore, the rotational degree of freedom had to
be included in the quantum mechanical description. The coupled vibrational and
rotational dynamics was examined, which is usually not done in coherent control
theory. Local control theory was applied, where the �eld is determined from the
dynamics of a system, which reacts with an instantaneous response to the pertur-
bation and, in turn, determines the �eld again. Thus, the �eld is entangled with
the quantum mechanical motion and the presented examples document, that this
leads to an intuitive interpretation of the �elds in terms of the underlying molecular
dynamics. The limiting case of a classical treatment was shown to give similar re-
sults and hence, eases to understand the complicated structure of the control �elds.
In a di�erent approach, the phase- and amplitude shaping of laser �elds was sys-
tematically studied in the context of controlling population transfer in molecules.

In a �rst example, electric �elds were derived, which e�ciently serve the objec-
tive to pump energy into a system (heating) or take energy away (cooling). It was
demonstrated, that the determined �elds are able to induce an e�ective control
and for the heating case, are able to fragment sodium iodide in the excited elec-
tronic state. Regarding the cooling �elds, a relaxation of the vibrational motion
is achieved. The resulting IR pulses can be interpreted to be consistent with a
ladder-climbing mechanism, where the vibrational levels with di�erent energetic
separation represent the rungs of a ladder. In the classical view, this mechanism
corresponds to an in-phase-driven oscillator for the heating process and an out-of-
phase-driven oscillator for the cooling case.

If a predissociation channel is included in the model system, the decay rates for
the predissociation process are modi�ed to a great extent by the constructed IR
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pulses. In discussing the decay mechanisms of NaI interacting with control �elds,
the internal energy as well as the Stark shifts of the coupled potentials had to be
taken into account. On one hand, the energy transfer in�uences the average rela-
tive velocity of the nuclei, and on the other hand, the external �eld modi�es the
potential curves in the crossing region. The interplay of both e�ects determines the
time-dependence of the product yields. In the cooling case, the predissociative ex-
cited state can be stabilized, whereas in the heating case, excited-state dissociation
can be triggered. Thus, it follows that the ratio between excited-state dissociation
and predissociation � and hence, the ratio of di�erent reaction products � can be
controlled.

The model for investigating excited-state fragmentation was further extended. Con-
trary to the former studies, the treatment included the complete �eld-coupling and
also non-adiabatic coupling between the two electronic states. Two �eld compo-
nents were constructed within local control theory. Whereas the �rst component
was used to transfer population to the excited state, the second �eld was chosen
to induce energy deposition in the excited state, what �nally should lead to dis-
sociation. The sequential and the simultaneous application of such �elds produces
similar product yields. This is due to the frequency mismatch of the two compo-
nents: the �rst �eld consists of a pulse train, where the sub-pulses are characterized
by the electronic transition frequency. On the other hand, the second �eld oscillates
with the mean excited-state vibrational frequency which is much smaller.

A further extension of the NaI model system included the rotational degree of
freedom. Here, the wave-packet dynamics not in a control �eld but in static elec-
tric �elds was investigated at �rst. Due to the strong permanent dipole moment
of the molecule in its electronic ground state, an orientation is induced. Upon
femtosecond excitation, a wave-packet motion is initiated in the predissociative ex-
cited electronic state. The bonding character in the latter changes from covalent to
ionic, if the wave packet reaches larger (<7 Å) interatomic distances. The change
between these two bonding situations induced by the quasi-bound vibrational mo-
tion is important for the interaction with the static external �eld. If the wave
packet is localized in the covalent region of the potential, where the dipole moment
is negligible, the external �eld is not experienced, whereas in the ionic branch the
interaction is large. This leads to an enhanced orientation of the molecule along
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the axis of the applied �eld, which is in�uenced by the vibrational motion. A rota-
tional dynamics can be observed with a period, which becomes shorter as the �eld
strength increases.
Polarization sensitive pump-probe experiments were simulated, where a time-delayed
probe pulse initiates a transition to a higher electronic state. The �uorescence yield
from the latter is then detected as a function of the time delay. With probe-pulse
polarization vectors chosen to be either parallel or perpendicular to the static �eld
direction, di�erent signals are obtained. The ratio of the latter directly monitors
the rotational motion of the molecule, which thus allows for an experimental real-
time observation of �eld induced orientational dynamics.

In the same way as the static �elds, also �elds from local control theory were applied
to the extended model including rotations. Once again, excited-state photofrag-
mentation of the NaI molecule was chosen as target. As shown before, a 100 %
dissociation of the excited molecules can be achieved for �xed orientation, where
the �eld oscillates in phase with the mean momentum of the vibrational motion.
Employing the same �eld construction in the case of a molecule, which is not re-
stricted to a �xed orientation, is not successful without further modi�cations of the
construction scheme. If the �eld is taken to be proportional to the radial momen-
tum, molecules can, depending on their orientation, absorb energy from the �eld
but can also lose internal energy, resulting in a decreased fragmentation yield. It
was shown that, because the energy rate for the radial degree of freedom contains
an expectation value of the product of the radial momentum and a cos θ function, a
necessary condition to deposit energy in the system is to prepare a rotational wave
packet consisting of several free rotor states. This can e�ectively be achieved by
applying a static electric �eld. The huge dipole moment of NaI results in a large
interaction energy, which is able to orient the molecule along the �eld direction.
The application of an additional control �eld then results in highly e�cient frag-
mentation, which is comparable to the rotationless case, where the molecular axis
is �xed to point along the direction of the control-�eld polarization vector.

E�orts were made to create orientation by a control �eld. In this case, the control
algorithm yields a �eld, which becomes stronger until the numerical breakdown
of the simulation. The algorithm thus �nds the trivial solution to the problem,
a static �eld with the highest possible strength. Also, e�ects on the matter-�eld
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interaction, which stem from the molecular polarizability, were investigated in this
connection. For the regarded �eld strengths, no di�erence was seen for the case
with dipole moment and polarizability (second order coupling) compared to the
interaction including a linear coupling to the �eld.

Another application of local control theory to rotational motion involved a simpli-
�ed model of a molecular motor. There, the target was to induce either a clockwise
or a counter-clockwise rotation of a functional group around a bond axis. Starting
from the ground state of the system, it was shown that an e�ective heating, which
induces a free rotor motion, can be obtained. Although a net unidirectional motion
is then prepared, the yield is rather low. This is due to the presence of a bifurcation
of the wave packet. The latter can be suppressed, if a static �eld is applied to the
system prior to the control �eld. As a result, the initial state in the �eld-dressed
potential is displaced from the equilibrium position of the unperturbed system.
The control �eld then acts on a non-bifurcating wave packet, which follows a mean
classical path. Depending on the �eld strength of the driving �eld, the oscillation
takes place such that a motion into the desired direction is triggered upon reaching
the continuum, where a free rotation takes place.

Within this work, photoassociation was treated for the �rst time employing lo-
cal control theory. Two objectives were de�ned to derive suitable control �elds.
First, a continuous decrease in energy was aimed at and second, a selective popu-
lation of a single vibrational eigenstate. For the energy decrease, up-chirped �elds
were found. Such a laser interaction transfers population successively from higher
to lower vibrational states, where the up-chirp matches the increasing level spacing
with decreasing vibrational quantum number. This 'ladder-descending' mechanism
constitutes the counterpart to 'ladder climbing', which was found for the fragmen-
tation process. Although an e�ective cooling is achieved in this way, the total
association yields are improved, if the population in a selected vibrational state
of high quantum number is maximized. The respective control �elds carry the
frequency corresponding to the energy di�erence between the impact energy and
the eigenenergy of the target state. For low lying vibrational states, however, an
access by a direct transition is not possible. This e�ect can be explained within
the frame of classical calculations and also with vanishing Franck-Condon factors
for the free-to-bound transitions in the quantum-mechanical regime. When the
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rotational degree of freedom is included, photoassociation is still achieved with
the cooling �eld derived from the rotationless case. Thus, the simpli�ed approach
of �xed orientation is justi�ed, where the control mechanisms are easily understood.

For a systematic analysis of control �eld properties, an approach di�erent from
local control was chosen. Usually a �rst pulse is shaped in coherent control setups,
while following pulses are not adapted. Here, the reversed case was examined. Af-
ter an electronic excitation (pumping) with an unshaped pulse, the e�ectivity of
a selective de-excitation (dumping) was investigated with tailored pulses. Within
the applied method, only one or two chirp parameters are scanned systematically,
while the other pulse parameters remain unchanged. Two pulse forms were em-
ployed, where one showed a linear chirp and the other was a colored double pulse.
These tailored dump pulses were adopted to contain the same pulse energy for a
straightforward comparison. It was found, that the dynamical features and the
system's properties are re�ected in the most e�ective pulse shape. For the treated
example, it was shown, that the transform-limited pulse is not the most e�ective
one.
In case of the linear chirp, a down-chirp is most e�cient for population transfer.
Already at rather low intensity, Rabi-like oscillations of the population in the in-
volved states can be observed, if the momentary frequency of the pulse matches the
potential energy di�erence passed by a moving wave packet. This e�ect vanishes,
if the dynamics of the system is suppressed by keeping the wave packet �xed in the
dumping region. As a conclusion, the best dump pulse is a shaped one due to the
dynamical features of the system.
For the analysis of the colored double pulses, shaped-dump �tness landscapes were
employed. The latter allow for an identi�cation of the wave-packet shape and also
a deduction of the shape of the potentials in a region far away from the Franck-
Condon region of the initial excitation. Moreover, the wave packet velocity and
its dispersion can be deduced qualitatively. By combining �tness landscapes under
di�erent parameterizations, a systematic scheme was presented to steadily improve
the shape of a pulse and in this way, explore the dynamics not accessible in a similar
way with other spectroscopic methods.

Altogether, it was shown, that coherent control is a most promising and fasci-
nating technique, which already helps to unravel the yet unknown properties of the
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most di�erent systems and achieve most di�cult objectives. Nevertheless, only a
tiny part of what can be imagined is realized today. In this sense, the task remains:

�To boldly go, where no one has gone before.�



12 Zusammenfassung

Das Ziel dieser Arbeit war die theoretische Analyse der Laserkontrolle von Molekü-
len. Ein Schwerpunkt lag dabei auf vektoriellen Eigenschaften und im Besonderen
auf der Orientierung eines Moleküls im Laboratorium. Hierfür wurde der Rotati-
onsfreiheitsgrad in die quantenmechanische Beschreibung einbezogen. Die Kopplung
zwischen Vibrations- und Rotationsdynamik wurde explizit berücksichtigt, während
dieser Vorgang normalerweise bei theoretischen Untersuchungen zur kohärenten
Kontrolle vernachlässigt wird. Als Kontrollschema wurde die lokale Kontrolltheorie
(LCT) verwendet, in der das Feld aus der Dynamik eines Systems bestimmt wird,
welche sofort auf diese äuÿere Störung antwortet und damit wiederum das Feld
bestimmt. Somit ist das Feld mit der quantenmechanischen Bewegung verknüpft.
Die vorgestellten Beispiele dokumentieren, dass dies zu einer intuitiven Interpre-
tation der Felder bzgl. der zu Grunde liegenden molekularen Dynamik führt. In
der vereinfachten, klassischen Darstellung der Probleme �ndet man vergleichbare
Resultate. Die klassische Sichtweise ermöglicht ein anschauliches Verständnis der
komplizierten Strukturen der Kontrollfelder.
Zusätzlich wurde mit einem anderen Ansatz die Phasen- und Amplitudenformung
von Laserfeldern systematisch untersucht, wobei der Populationstransfer in Mole-
külen kontrolliert werden sollte.

In einem ersten Beispiel wurden elektrische Felder mit Hilfe von LCT bestimmt,
welche entweder die e�ziente Zufuhr von Energie in ein System (Erhitzen) oder
Entnahme von Energie aus einem System (Abkühlen) zum Ziel hatten. Es wur-
de gezeigt, dass diese Felder sehr e�ektiv Kontrolle ausüben können und im Falle
des Erhitzens in der Lage sind, Natriumiodid im elektronisch angeregten Zustand
zu fragmentieren. Für den Fall des Abkühlens wird hingegen Schwingungsrelaxati-
on erreicht. Die resultierenden IR-Pulse können durch den sog. �ladder-climbing�-
Mechanismus (Leiter-Klettern) erklärt werden, in dem die Vibrationsniveaus mit
unterschiedlichem Energieabstand die Leitersprossen darstellen. In der klassischen
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Sichtweise entspricht dieser Mechanismus einem in Phase getriebenen Oszillator im
Falle des Erhitzens und eines gegenphasig getriebenen Oszillators im Falle des Ab-
kühlens.

Wenn ein Prädissoziationskanal in das Modellsystem einbezogen wird, wirken sich
die IR-Pulse in groÿem Maÿ auf die Zerfallsraten des Prädissoziationsprozesses aus.
Für die Diskussion des Zerfallsmechanismus müssen dann sowohl die innere Ener-
gie als auch der Stark-E�ekt für die gekoppelten Potenziale berücksichtigt werden.
Einerseits beein�usst der Energietransfer die mittlere Relativgeschwindigkeit der
Kerne, andererseits verändert das externe Feld die Potentialkurven in der Kreu-
zungsregion. Das Zusammenspiel beider E�ekte bestimmt das zeitliche Verhalten
der Produktausbeuten. Im Fall des Abkühlens kann der prädissoziative Zustand sta-
bilisiert werden, während im Fall des Erhitzens Dissoziation im angeregten Zustand
erzielt wird. Daraus folgt, dass das Verhältnis von Prädissoziation und Dissoziation
im angeregten Zustand � und somit das Verhältnis unterschiedlicher Reaktionspro-
dukte � kontrolliert werden kann.

Das zuvor beschriebene Modell zur Untersuchung von Fragmentation im angeregten
Zustand wurde weiter ausgebaut. Im Gegensatz zu vorherigen Studien schloss die
Betrachtung nun sowohl die komplette Feldkopplung als auch die nicht-adiabatische
Kopplung zwischen den beiden elektronischen Zuständen ein. Zwei Feldkomponen-
ten wurden mit lokaler Kontrolltheorie konstruiert. Während die erste Komponente
benutzt wurde, um Population in den angeregten Zustand zu transferieren, induzier-
te das zweite Feld eine Energieaufnahme im angeregten Zustand, was schlieÿlich zur
Dissoziation führte. Die aufeinanderfolgende und die simultane Anwendung solcher
Felder erzielt ähnliche Produktausbeuten. Dies kann mit dem Frequenzunterschied
der beiden Felder erklärt werden: Die eine Komponente beinhaltet einen Pulszug,
in welchem die Subpulse durch die elektronische Übergangsfrequenz charakterisiert
werden, während die andere Komponente mit der mittleren Vibrationsfrequenz des
angeregten Zustandes oszilliert, welche bedeutend kleiner ist.

Eine zusätzliche Erweiterung des NaI-Modells stellt die Berücksichtigung des Rota-
tionsfreiheitsgrades dar. Hier wurde zuerst die Wellenpaket-Dynamik in statischen
Feldern untersucht. Aufgrund des starken Dipolmoments des Moleküls im Grund-
zustand induziert die entsprechende Wechselwirkung eine Orientierung im Raum.
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Durch eine Anregung mit einem ultrakurzen Puls wird eine Wellenpaketbewegung
im prädissoziativen elektronisch angeregten Zustand initiiert. Der Bindungscharak-
ter im letzteren ändert sich von kovalent zu ionisch, wenn das Wellenpaket gröÿere
(<7 Å) interatomare Abstände erreicht. Der Wechsel zwischen diesen beiden Bin-
dungssituationen, induziert durch quasi-gebundene Vibrationsbewegung, ist wichtig
für die Wechselwirkung mit dem statischen externen Feld. Wenn das Wellenpaket in
der kovalenten Region, wo das Dipolmoment vernachlässigt werden kann, lokalisiert
ist, hat das Feld keine Auswirkungen, während die Wechselwirkung im ionischen
Bereich groÿ ist. Dies führt zu einer verbesserten Orientierung des Moleküls ent-
lang der Achse des äuÿeren Feldes. Die resultierende Rotationsdynamik weist eine
Periode auf, welche mit stärkerem Feld immer kürzer wird.
Polarisations-sensitive Pump-Probe-Experimente wurden simuliert, in denen ein
zeitverzögerter Probe-Pulse einen Übergang in einen höher angeregten elektroni-
schen Zustand initiiert. Die nachfolgende Fluoreszenz wird dann als Funktion der
Verzögerungszeit gemessen. Wählt man den Polarisationsvektor des Probe-Pulses
einmal parallel zu Richtung des statischen Feldes und einmal senkrecht dazu, so
führt dies zu unterschiedlichen Signalen. Das Verhältnis der letzteren zeigt direkt
die Rotationsbewegung des Moleküls, so dass auf diese Weise die feld-induzierte
Orientierungsdynamik experimentell in Echtzeit beobachtet werden kann.

Ebenso wie die statischen Felder wurden auch Felder aus der lokalen Kontrolltheo-
rie auf das um die Rotation erweiterte Modellsystem angewendet. Wiederum wurde
Photofragmentation im angeregten Zustand des NaI-Moleküls als Ziel gewählt. Wie
schon zuvor gezeigt, kann eine 100 %ige Dissoziation der angeregten Moleküle für
unveränderliche Orientierung erreicht werden, wobei das Feld in Phase mit dem
mittleren Impuls der Vibrationsbewegung oszilliert. Die Anwendung desselben Al-
gorithmus zur Feldbestimmung für ein Molekül, dessen Rotation nicht festgesetzt
wird, ist ohne zusätzliche Modi�kationen am Konstruktionsschema nicht erfolgreich.
Wenn das Feld proportional zum (radialen) Impuls gewählt wird, können Moleküle,
abhängig von ihrer Orientierung, Energie aus dem Feld absorbieren aber auch inter-
ne Energie an selbiges verlieren, was in einer verminderten Fragmentationsausbeute
resultiert. Es wurde gezeigt, dass die Energierate des radialen Freiheitsgrades einen
Erwartungswert des Produkts von Impuls und einer cos θ-Funktion enthält. Daher
ist die Erzeugung eines Rotations-Wellenpakets aus mehreren freien Rotorzustän-
den notwendige Vorraussetzung, um Energie in das System zu transferieren. Solch
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ein Rotations-Wellenpaket kann, wie aus den vorherigen Untersuchungen bekannt,
durch das Anlegen eines statischen elektrischen Feldes erhalten werden. Die zusätz-
liche Anwendung eines Kontrollfeldes hat dann eine hoche�ziente Fragmentation
zur Folge, mit vergleichbaren Ausbeuten wie beim rotationsfreien Fall, in welchem
die Molekülachse unveränderlich in Richtung des Kontrollfeld-Polarisationsvektors
zeigt.

Des Weiteren wurde versucht, Orientierung durch ein Kontrollfeld zu erzielen. In
diesem Fall �ndet der Kontrollalgorithmus ein Feld, das immer stärker wird, bis die
Simulation schlieÿlich numerisch zusammenbricht. Der Algorithmus �ndet somit
die triviale Lösung des Problems in Form eines statischen elektrischen Feldes maxi-
maler Stärke. Im Zusammenhang mit dieser Problemstellung wurden auch E�ekte
der Feld-Materie-Wechselwirkung, die sich aus der molekuaren Polarisierbarkeit er-
geben, untersucht. Für die betrachteten Feldstärken konnte kein Unterschied für
den Fall mit Dipolmoment und Polarisierbarkeit (Kopplung zweiter Ordnung) ver-
glichen zu dem Fall, in welchem nur eine lineare Kopplung in die Wechselwirkung
einging.

Eine andere Anwendung der lokalen Kontrolltheorie auf Rotationsbewegungen be-
handelte das vereinfachte Model eines molekularen Motors. Dort war das Ziel, die
Rotation einer funktionellen Gruppe um eine Bindungsachse entweder im Uhrzeiger-
sinn oder entgegen dem Uhrzeigersinn zu induzieren. Ausgehend vom Grundzustand
des Systems wurde gezeigt, dass durch e�ektives Erhitzen eine freie Rotorbewegung
erreicht wird. Obwohl netto eine Rotation in eine Vorzugsrichtung erzeugt wird, ist
die Aubeute relativ niedrig. Dies kann mit einer Zweiteilung des Wellenpaketes
erklärt werden. Die Bifurkation kann durch die Anwendung eines statischen Fel-
des, welche dem Kontrollfeld vorrausgeht, unterdrückt werden. Infolgedessen wird
der Anfangszustand im feldverschobenen Potenzial gegenüber der Gleichgewichts-
position des ungestörten Systems verlagert. Das Kontrollfeld wirkt dann auf ein
nicht-zweigeteiltes Wellenpaket, das einem klassischen Pfad folgt. Abhängig von
der Feldstärke des treibenden Feldes wird dann die Oszillation so angeregt, dass
die Rotation in die gewünschte Richtung beim Erreichen des Kontinuums, wo eine
freie Drehung möglich ist, statt�ndet.

In dieser Arbeit wurde Photoassoziation das erste Mal im Rahmen der lokalen
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Kontrolltheorie untersucht. Zwei Ziele wurden de�niert, um passende Kontrollfel-
der herzuleiten. Im ersten Fall sollte eine kontinuierliche Abnahme der inneren
Energie erzielt werden und im zweiten Fall eine selektive Bevölkerung eines einzel-
nen Schwingungseigenzustandes. Für die Energieabnahme wurden Felder mit einem
Up-Chirp gefunden. Durch die Wechselwirkung mit solch einem Laserfeld wird Be-
setzung sukzessiv von höheren zu niedrigeren Schwingungszuständen transferiert,
wobei der Up-Chirp die Momentanfrequenz an die gröÿerwerdenden Abstände zwi-
schen den Energieniveaus mit kleinerwerdender Schwingungsquantenzahl anpasst.
Dieses �Leiter-Hinabsteigen� stellt das Gegenstück zum �Leiter-Hinaufklettern� dar,
welches für den Fragmentationsprozess beobachtet wurde. Obwohl auf diese Weise
ein e�ektives Abkühlen möglich ist, wird die totale Assoziationsausbeute verbessert,
wenn die Population in einem ausgewählten Vibrationsniveau hoher Quantenzahl
maximiert wird. Die zugehörigen Kontrollfelder weisen die Frequenz auf, die der
Energiedi�erenz zwischen der Einschussenergie und der Eigenenergie des Zielzu-
stands entspricht. Ein direkter Übergang in Vibrationszustände mit kleiner Quan-
tenzahl ist jedoch nicht möglich. Dieses Ergebnis kann mit klassischen Rechnun-
gen und im quantenmechanischen Regime mit verschwindenden Franck-Condon-
Faktoren für die Übergänge von Kontinuumszuständen in die gebundenen Zustände
erklärt werden. Wenn der Rotationsfreiheitsgrad berücksichtigt wird, �ndet unter
Verwendung des Feldes aus dem rotationsfreien Fall immer noch Photoassoziation
statt. Daher ist der vereinfachte Ansatz fester Orientierung gerechtfertigt, in dem
die Kontrollmechanismen einfach zu verstehen sind.

Zur systematischen Analyse von Kontrollfeldeigenschaften wurde ein anderer An-
satz als die lokale Kontrolltheorie verwendet. In üblichen Kontrollexperimenten wird
ein erster Puls geformt, während nachfolgende Pulse nicht verändert werden. Hier
wurde der umgekehrte Fall betrachtet. Nach einer elektronischen Anregung (pum-
ping) mit einem ungeformten Puls wurde die E�ektivität einer selektiven Abregung
(dumping) mit modellierten Pulsen untersucht. In der verwendeten Methode wer-
den nur ein bzw. zwei Chirpparameter systematisch verändert, während die anderen
Pulsparameter konstant gehalten werden. Zwei Pulsformen wurden benutzt, zum
einen ein Feld mit einem linearen Chirp und zum anderen ein farbiger Doppelpuls.
Man konnte feststellen, dass sich die dynamischen Merkmale und die Eigenschaf-
ten des Systems in der Form des e�ektivsten Pulses widerspiegeln. Als wichtiges
Resultat ergab sich, dass für das verwendete Beispiel nicht der transform-limitierte



182 12 Zusammenfassung

Puls am e�ektivsten ist.
Im Fall des linearen Chirps bietet ein Down-Chirp die gröÿte E�zienz für einen
Populationstransfer. Schon bei verhältnismäÿig kleinen Intensitäten können Rabi-
ähnliche Oszillationen der Populationen in den beteiligten Zuständen beobach-
tet werden, wenn die Momentanfrequenz des Pulses der Potentialenergiedi�erenz
gleicht, welche vom sich bewegenden Wellenpaket passiert wird. Dieser E�ekt ver-
schwindet, wenn die Dynamik des Systems unterdrückt wird, indem man das Wel-
lenpaket in der Dumping-Region festhält. Als Schlussfolgerung lässt sich festhalten,
dass der beste Dump-Puls ein geformter Puls ist, wobei der Grund hierfür die aus
der Dynamik stammenden Merkmale des Systems sind.
Um die farbigen Doppelpulse zu analysieren, wurden Fitness-Landschaften ver-
wendet. Letztere erlauben die Identi�kation von Wellenpaketsformen, sowie Rück-
schlüsse auf die Gestalt der Potentialkurven in einer Region, die weit entfernt von
der Franck-Condon-Region der ursprünglichen Anregung liegen lann. Auÿerdem
können die Geschwindigkeit des Wellenpakets und dessen räumliche Aufweitung
qualitativ abgeleitet werden. Mit der Kombination von Fitness-Landschaften unter
verschiedenen Parametrisierungen wurde ein systematisches Schema vorgestellt, um
die Form eines Pulses stetig zu verbessern und währenddessen die Dynamik auf eine
Weise zu erkunden, die mit anderen spektroskopischen Methoden nicht zugänglich
ist.

Abschlieÿend lässt sich sagen, dass kohärente Kontrolle eine vielversprechende und
faszinierende Methode ist, die jetzt schon hilft die bislang unbekannten Eigenschaf-
ten der verschiedensten Systeme o�enzulegen und die schwierigsten Ziele zu errei-
chen. Dennoch ist heute erst ein winziger Teil dessen, was in unserer Vorstellungs-
kraft liegt, realisiert. In diesem Sinne bleibt als Aufgabe:

In Bereiche vorzudringen, �die nie ein Mensch zuvor gesehen hat.�
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A.1 Change between adiabatic and diabatic
picture

Every real symmetric matrix A can be diagonalized to D via a similarity transfor-
mation with the orthogonal matrix C [202]:

D = CTAC. (A.1)

Here, the diagonal elements of D are the eigenvalues of A and the columns in C

are the corresponding eigenvectors. For a two-dimensional matrix, C is a rotation
matrix:

C =

(
cos γ − sin γ

sin γ cos γ

)
. (A.2)

Application to the NaI potentials (see section 2.5) yields
(

cos γ sin γ

− sin γ cos γ

)(
V d

1 V d
12

V d
12 V d

2

) (
cos γ − sin γ

sin γ cos γ

)
=

(
V a

1 0

0 V a
2

)
. (A.3)

In this case γ can be evaluated by multiplying with C from the left (CCT = 1)
(
V d

1 V d
12

V d
12 V d

2

)(
cos γ − sin γ

sin γ cos γ

)
=

(
cos γ − sin γ

sin γ cos γ

)(
V a

1 0

0 V a
2

)
. (A.4)

This results in linear equations, which can be solved to yield the rotation angle
γ. By eliminating the unknown V a

1 and V a
2 , using sin 2γ = 2 sin γ cos γ, cos 2γ =

cos2 γ − sin2 γ and cot γ = 1
tan γ

, �nally the following expression is obtained:

γ =
1

2
arctan

(
2V12

V d
1 − V d

2

)
. (A.5)
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Since V a
1 and V a

2 are the eigenvalues of the matrix A, they can also be evaluated
analytically [202] ∣∣∣∣∣

V d
1 − λ V12

V12 V d
2 − λ

∣∣∣∣∣ = 0, (A.6)

where λ1 = V a
2 and λ2 = V a

1 .

⇒ λ1,2 =
V d

1 + V d
2

2
±

√
(V d

1 − V d
2 )2

4
+ V d2

12 . (A.7)

Consequently, the following expressions are derived

V a
2 =

V d
1 + V d

2

2
+

√
(V d

1 − V d
2 )2

4
+ V d2

12 (A.8)

V a
1 =

V d
1 + V d

2

2
−

√
(V d

1 − V d
2 )2

4
+ V d2

12 . (A.9)

To change from the adiabatic to the diabatic picture, a rather crude way is taken.
Here, the adiabatic potentials are transformed manually via �tted straight lines to
the diagonal elements in the diabatic representation. The coupling element V d

12 is
then evaluated as

V d
12 =

√(
V a

1 −
V d

1 + V d
2

2

)2

− (V d
1 − V d

2 )2

4
. (A.10)
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