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CHAPTER 1

Introduction

Extreme value theory is an active research area, mainly due to its applications in

various fields like the investigation of water levels of rivers (Michel (2006, [26])),

corrosion of materials (Rivas et. al. (2008, [34])), wind speeds (de Haan and

Ronde (1998, [9])) or insurance data (Reiss and Thomas (2007, [33])), only to

name a few.

In the last years multivariate extreme value theory became particularly more in-

teresting since there is the demand of practitioners for statistical tools not only

to analyze data from independent rare events, but also from rare events that are

not independent from each other. This occurs for instance when rare events are

analyzed at several sites that are far away from each other so that they are not

completely dependent but still not far away enough to be completely independent.

The main part of this thesis deals with a representation of multivariate extreme

value distributions in arbitrary dimension. It is well-known known that a d-

dimensional extreme value distribution (EVD) G with negative exponential mar-

gins can be represented as G (x) = exp (−‖x‖D), x ≤ 0, where ‖·‖D is the

so called D-norm. This D-norm can be expressed in terms of the Pickands

dependence function D via

‖x‖D = ‖x‖1D (|x1| / ‖x‖1 , . . . , |xd−1| / ‖x‖1) ,

where ‖x‖1 =
∑

j≤d |xj| denotes the usual L1-norm of x ∈ Rd. We refer to Section

4.3 in Falk et al. (2004, [13]) for more details.

As shown in Falk (2006, Remark 1), there are norms ‖·‖ on Rd that are not

D-norms, i.e. there are norms ‖·‖ such that exp(−‖x‖), x ≤ 0, does not define a

distribution function (df). For the bivariate case d = 2, Falk (2006, [12]) states

a necessary and sufficient condition for a norm to obtain a distribution function.

But this condition is not sufficient in the case of dimension d ≥ 3, see Section 6.2

in Hofmann (2006, [22]) and Lemma 5.3.1 below.
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Therefore a characterization of the D-Norm and hence also for the Pickands de-

pendence function is still an open issue which this thesis aims to settle.

Chapter 2 gives an introduction to the theory of multivariate extreme value dis-

tributions and multivariate generalized Pareto distributions. In Theorem 2.2.2

we answer the open question whether there are 1 ≤ λ < ∞ for which Wλ(x) :=

1−‖x‖λ, ‖x‖λ ≤ 1 defines a distribution function over its entire support in dimen-

sion 3 and higher, which turns out to be not the case. By ‖x‖λ = (
∑

j≤d |xj|
λ)1/λ

for λ ∈ [0,∞) and ‖x‖λ = maxi∈{1,...,d} |xi| for λ =∞ we denote the usual λ-norm

on Rd.

In Chapter 3 we will state a necessary and sufficient condition for a norm in Rd,

such that G(x) := exp(−‖x‖), x ≤ 0, defines a distribution function. In this

case, G is obviously an EVD with negative exponential margins Gi(xi) = exp(xi),

xi ≤ 0, i ≤ d. This is the Main Theorem of this thesis. Thus the Main Theorem

provides a characterization of the D-Norm. There are already other one-to-one

representations of multivariate extreme value distributions as the exponent mea-

sure (see Balkema and Resnick (1977, [2])) and the angular measure (see de Haan

and Resnick (1977, [11])). More details about the exponent measure and the an-

gular measure are provided in Section 2.1.

Molchanov (2008, [29]) developed a completely different approach to this prob-

lem in terms of convex geometry and the theory of random sets. His access to this

topic will be presented in Chapter 4. In fact using his results it is possible to give

an alternative proof of the Main Theorem. Since our proof of the Main Theorem

uses only results from measure theory we think that it is easier accessible.

Applications of the Main Theorem are given in Chapter 5. The bivariate case

is examined in Section 5.1. In Section 5.2 the Main Theorem is carried over to

the Pickands dependence function and a necessary and sufficient condition for a

function to be a Pickands dependence function is given.

Section 5.3 uses the Main Theorem to show that a condition for the nested logis-

tic model, which is known to be sufficient, is also necessary.

The last two sections 5.4 and 5.5 in this chapter introduce ways to construct new
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CHAPTER 1. INTRODUCTION

norms that define an EVD using the Main Theorem.

Chapter 6 is based on a theorem from a yet unpublished paper by Aulbach, Bayer

and Falk ([1]), that goes back to Buishand et al. (2008, [7]). As a first conse-

quence we can use this theorem to specify the left neighborhood in the definition

of a GPD. Theorem 6.2.1 shows that this left neighborhood can be chosen to be[
−1
d
, 0
]d

.

Furthermore we introduce the GPD-Flow. The theorem from Aulbach, Bayer

and Falk can be used to obtain a GPD as a function of a copula. Since the GPD

has again an underlying copula, this step can be iterated over and over again,

which will be called the GPD-Flow. Simulations indicate, that the GPD-Flow

converges against the copula of complete dependence. Nevertheless the conver-

gence of the GPD-Flow is not yet proven, but in Theorem 6.5.4 we see that if it

converges it must be the copula of complete dependence.

Chapter 7 deals with the simulation of random vectors following a GPD. The

Shi-Transformation for generating random vectors that follow a GPD from the

logistic type introduced by Michel (2006, [26]) is generalized in dimension 3 to

generate random vectors from a GPD of the nested logistic model.

The restriction of an EVD to have negative exponential margins is not a real con-

straint since a transformation of the one dimensional margins to these margins

can always be achieved. Further information will be provided in Section 2.1.

Throughout this thesis all vectors are denoted in bold letters and, if not explicitly

stated otherwise, the components of a vector x are given by x1, . . . , xd. Further-

more, all operations on vectors such as x + y, max (x,y) and x ≤ y etc. are

meant component wise. We define 00 := 1 and ∞0 := 1. By the symbol ( we

denote a real subset, i.e. A ( B means that a ∈ A⇒ a ∈ B but A 6= B.

By { we denote the complement of a set, i.e. for a universe U and a subset A ⊂ U

the complement of A in U is denoted by A{ and given by A{ = U\A.

Furthermore we set R+ := {x ∈ R : x > 0} and R+
0 := R+ ∪ {0}.

We denote the i-th value of the data x1, . . . , xn (in non-decreasing order) by xi:n.

Finally I (x ≤ y) denotes the indicator function with I (x ≤ y) = 1 of y ≤ x and

0, otherwise.
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CHAPTER 2

Multivariate Extreme Value and Generalized Pareto

Distributions

In this chapter an introduction to multivariate extreme value and generalized

Pareto distributions is given. We assume that basic concepts of the univariate

theory are known. Reiss and Thomas (2007, [33]) give in Section 1.3 and 1.4 an

overview of these distributions.

2.1. Multivariate Extreme Value Distributions

We start this section with the definition of a multivariate extreme value distri-

bution as given in Section 12.1 in Reiss and Thomas (2007, [33]).

Definition 2.1.1. We call a d-variate distribution function G an extreme value

distribution (EVD) if and only if G is max-stable that is for certain vectors bn

and an > 0 it is

Gn (bn + anx) = G (x) .

Since the univariate marginal distributions of an EVD are univariate EVD the

Theorem of Fisher-Tippett (see Fisher and Tippet (1928, [15])) implies that the

univariate margins is either a Gumbel, Fréchet or Weibull distribution.

A multivariate distribution function consists of univariate marginal distributions

and the dependence among them. In general multivariate distribution theory a

common approach to model the dependence is the concept of a copula. We refer

to Nelsen (2006, [31]) for an introduction to copulas and the 9th issue of the

journal Extremes in 2006 for a controversial discussion about the usefulness of

copulas.

However in extreme value theory other concepts of modeling dependence are

common. Next we will give the definition of the Pickands dependence function

for which we will establish new results in Section 5.2.
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2.1. MULTIVARIATE EXTREME VALUE DISTRIBUTIONS

Theorem 2.1.2. A d-variate extreme value distribution G with negative expo-

nential univariate margins can be written as

G (x) = exp

(∫
Sd

min
j≤d

(ujxj) dµ (u)

)
,x < 0,

where µ is a finite measure on the d-variate unit simplex

Sd =

{
u :
∑
j≤d

uj = 1, uj ≥ 0

}
with ∫

S

uj dµ (u) = 1, j ≤ d,

see Theorem 4.3.1 Falk et al. (2004, [13]).

Corollary 2.1.3. The Pickands dependence function D, D : Rd−1 → [0,∞) is

defined by

D (t1, . . . , td−1) :=

∫
Sd

max

(
u1t1, . . . , ud−1td−1, ud

(
1−

∑
i≤d−1

ti

))
dµ (u) ,

where

Rd :=

{
(t1, . . . , td) ∈ [0, 1]d :

∑
i≤d

ti ≤ 1

}
.

Therefore G can be written as

G (x) = exp

(
(x1 + · · ·+ xd)D

(
x1

x1 + · · ·+ xd
, . . . ,

xd
x1 + · · ·+ xd

))
.

We now list some properties of the Pickands dependence function D taken from

Section 4.3 in Falk et al. (2004, [13]).

(i) D is continuous.

(ii) We have

D (0) = D (ei) = 1, 1 ≤ i ≤ d− 1,

where ei denotes the i-th unit vector in Rd−1.

(iii) It is D (t) ≤ 1 for all t ∈ Rd−1.

(iv) D is a convex function, i.e. for s, t ∈ Rd−1 and λ ∈ [0, 1] we have

D (λs + (1− λ) t) ≤ λD (s) + (1− λ)D (t) .
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CHAPTER 2. MULTIVARIATE EVD AND GPD

(v) For any t ∈ Rd−1 we have

D (t) ≥ max

(
t1, . . . , td−1, 1−

d−1∑
j=1

ti

)
≥ 1

d
.

(vi) The convex combination of two Pickands dependence functions D1 and

D2 is again a Pickands dependence function, i.e. for every λ ∈ [0, 1]

D (t) = (1− λ)D1 (t) + λD2 (t) is a Pickands dependence function.

(vii) If we set ‖x‖D := ‖x‖1D
(
|x1|
‖x‖1

, . . . , |xd−1|
‖x‖1

)
for x ∈ Rd\ {0} and ‖0‖D :=

0, then ‖·‖D defines a norm on Rd, the so called D-Norm.

Besides the Pickands dependence function and the norm, we deal with in our

Main Theorem, there are other representations of multivariate extreme value

distributions, all having advantages and disadvantages. A d-variate EVD G with

negative exponential margins can be represented as

G (x1, . . . , xd) = exp
(
−µ
(

(([−∞, x1]× · · · × [−∞, xd]){
))

= exp

(∫
SE

min
i≤d

(aixi) d ν (a)

)
= exp (−l (x1, . . . , xd))

= D (exp(x1), . . . , exp(xd))

= Ω (exp(x1), . . . , exp(xd)) exp (x1 + · · ·+ xd) , x1, . . . , xd < 0,

where SE denotes the unit-sphere pertaining to the norm that underlies ν.

µ is called exponent measure (see Balkema and Resnick (1977, [2])), ν is the

angular measure (see de Haan and Resnick (1977, [11])), l(·) is the stable tail

dependence function (see Huang (1992, [23])), k is the dependence function of

Tiago de Oliveira (see Tiago de Oliveira (1966, [43]), D is the dependence function

of Galambos (see Definition 5.2.1 of Galambos (1978, [19]); note that Galambos

denotes his dependence function byD, but due to the danger of confusion with the

Pickands dependence function, we rename it by D). In fact, the dependence func-

tion of Galambos is actually a copula and those copulas are also called extreme

value copulas (see Nelsen (2006, [31])). Finally Ω is the dependence function of

Sibuya (see Sibuya (1960, [39])). There are several approaches to estimate those

dependency structures, see for instance the book by de Haan and Ferreira (2006,

[10]).
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2.1. MULTIVARIATE EXTREME VALUE DISTRIBUTIONS

All the dependency representations above are given due to negative exponential

margins. With an easy transformation the margins of any EVD can be trans-

formed to be negative exponential (see Lemma 5.4.7 in Falk et. al(2004, [13])).

The nondegenerate univariate EVDs can be parametrized by one parameter α ∈ R
with

Gα (x) :=

exp (− (−x)α) , x ≤ 0

1, x > 0
for α > 0,

G0 (x) := exp (− exp (−x)) , x ∈ R

and

Gα (x) :=

0, x ≤ 0

exp (−xα) , x > 0
for α < 0.

For α > 0 we have the family of Weibull, for α < 0 the family of Fréchet

and for α = 0 the Gumbel distribution. In this terms the negative exponential

distribution is the G1 distribution.

For any αi ∈ R we define the function ψαi : {x ∈ R : 0 < Gαi (x) < 1} 7→ R by

ψαi (x) := log (Gαi (x))

=


− (−x)αi , x < 0, if αi > 0

− exp (−x) , x ∈ R, if αi = 0

−xαi , x > 0, if αi < 0

.

With ψαi it is possible to transform any EVD to negative exponential margins.

LetG(α1,...,αd) be a multivariate EVD whose i-th margin is an EVD with parameter

αi. Then we have

G(α1,...,αd) (x1, . . . , xd) = G(1,...,1) (ψα1(x1), . . . , ψαd(xd)) ,

see Lemma 5.4.7 in Falk et. al (2004, [13]).

Finally we will study in more detail the exponent measure.

Definition 2.1.4. A σ-finit measure µ on [−∞,∞)d is called exponent measure

of the distribution function F (x) := exp
(
−µ
(

[−∞,x]{
))

.
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CHAPTER 2. MULTIVARIATE EVD AND GPD

The concept of a max-stable distribution function will be extended to max-infinite

divisible distribution functions.

Definition 2.1.5. A distribution function F will be called max-infinitely divisible

(max-id) if for every nonnegative integer n there is a distribution function Fn such

that

F n
n = F.

Obviously a max-stable distribution function is also max-infinitely divisible (set

Fn (x) = F (bn + anx)). In the univariate case every distribution function is

max-id since Fn = F
1
n is a distribution function.

The following characterization shows that max-id distribution function are in a

one-to-one relationship with the exponent measure.

Theorem 2.1.6 (Balkema and Resnick). A distribution function F on Rd is

max-id if and only if it has an exponent measure.

Proof. The bivariate case is Theorem 3 in Balkema and Resnick (1977, [2]).

�

2.2. Multivariate Generalized Pareto Distributions

In the univariate extreme value theory the limit distribution of peaks over a

threshold is given by a generalized Pareto distribution W which turns out to be

in a simple relation to the EVD, namely

W (x) = 1 + log(G (x) , if logG (x) > −1.

However there is no natural generalization of limiting distributions for multivari-

ate peaks over threshold. There are three different approaches closely related to

each other. First Kaufmann and Reiss (1995, [25]) introduced a definition for

the bivariate case which is generalized to arbitrary dimension in Section 5.1 of

Falk et al. (2004, [13]). In this manuscript we will stick to this definition. Other

definitions are given by Tajvidi (1996, [41]) and Beirlant et al. (2004, [5], Sec-

tion 8.3) which is more investigated in Rootzén and Tajvidi (2006, [35]). But in

the region of interest, namely {(x, y) : u < x ≤ 0, v < y ≤ 0} with (u, v) < 0 and

close enough to the origin, these definitions are all identical, see Section 13.1 in
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2.2. MULTIVARIATE GENERALIZED PARETO DISTRIBUTIONS

Reiss and Thomas (2007, [33]) and Section 8.3 of Beirlant et al. (2004, [5]).

We start with the definition of a generalized Pareto distribution we use within

this manuscript. As mentioned above this is the one in Section 5.1 of Falk et

al. (2004, [13]).

Definition 2.2.1. A d-variate distribution function W will be called a multi-

variate generalized Pareto distribution function (GPD) if there is some EVD G

that

W (x) = 1 + logG (x) ,

where x ≤ 0 and x is in a left neighborhood of ω (G) = (ω(G1), . . . , ω(Gd)),

ω(Gi) = sup {x ∈ R : Gi(x) < 1}.
Furthermore we call the function

W (x) = 1 + logG (x) , logG (x) ≥ −1,

a generalized Pareto function (GPF).

Obviously we can restrict ourselves to GPDs coming from an EVD with negative

exponential margins since we can apply the transformation ψαi on the coordi-

nates as in the case of the EVD, see page 12. For more details see Corollary 5.4.8

in Falk et. al (2004, [13]).

In the bivariate case the GP function is actually a distribution function, see

Kaufmann and Reiss (1995, [25]) or Lemma 5.1.1 in Falk et al. (2004, [13]), but

in dimension 3 and higher this is no longer valid.

An example is given in Section 5.1 in Falk et al. (2004, [13]). There it is shown

that for W (x1, x2, x3) = max(1 + x1 + x2 + x3, 0) the cube
(
−1

2
, 0
]3

would get

probability −1
2

and therefore W cannot be a distribution function. In Theorem

2.3.12 in Michel (2006, [26]) this example was extended to dimension greater than

3. By using the continuity of the λ-norms Michel also showed that there exists a

λ0 > 1 that for all λ ∈ [1, λ0) the GP function Wλ (x) := max (1− ‖x‖λ , 0) does

not define a distribution function.

We will extend this example one step further by showing that for dimension 3 or

higher and arbitrary and finite λ ≥ 1 the GP functionWλ (x) = max (1− ‖x‖λ , 0)

does not define a distribution function. This will be established by showing that

a certain cube would get a negative probability. Since in the case of λ = ∞ the

GP function W∞ (x) := max (1− ‖x‖∞ , 0) is a distribution function this cube

14



CHAPTER 2. MULTIVARIATE EVD AND GPD

must depend on λ and as λ converges to ∞ this cube must converge to a cube

having probability 0. Otherwise the continuity of the λ-norms implies that also

for λ =∞ the cube would have negative probability which cannot be true.

Theorem 2.2.2. For any λ ∈ [1,∞), the GP function

Wλ (x) = max (1− ‖x‖λ , 0) =: (1− ‖x‖λ)
+ ,x ≤ 0,

does not define a distribution function for d ≥ 3.

Proof. Let d = 3. Assume that Wλ does define a distribution function. We

define the two points

ax,λ :=
(

0, 0,− (1− 2x)
1
λ

)T
and

bx,λ :=
(
−x

1
λ ,−x

1
λ ,− (1− x)

1
λ

)T
for x ∈

[
0, 1

2

]
.

Obviously these two points satisfy bx,λ ≤ ax,λ ≤ 0. Now we calculate the proba-

bility of the set Kx,λ := (bx,λ, ax,λ]:

hλ (x) := P (Kx,λ)

=Wλ

(
(a1, a2, a3)T

)
−Wλ

(
(b1, a2, a3)T

)
−Wλ

(
(a1, b2, a3)T

)
−Wλ

(
(a1, a2, b3)T

)
+Wλ

(
(a1, b2, b3)T

)
+Wλ

(
(b1, a2, b3)T

)
+Wλ

(
(b1, b2, a3)T

)
−Wλ

(
(b1, b2, b3)T

)
=
(

1− (1− 2x)
1
λ

)+

− 3
(

1− (1− x)
1
λ

)+

+ 3 (1− 1)+ −
(

1− (1 + x)
1
λ

)+

=3 (1− x)
1
λ − (1− 2x)

1
λ − 2.

Evaluation of hλ at 0 shows hλ (0) = 0. The function hλ is differentiable in the

interior of its domain and we obtain

h′λ (x) =
1

λ

(
2 (1− 2x)

1−λ
λ − 3 (1− x)

1−λ
λ

)
.
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2.2. MULTIVARIATE GENERALIZED PARETO DISTRIBUTIONS

Thus

lim
x→0

h′λ (x) = −1

λ
.

Hence for ε2 := 1
2λ

there exists a δ2 > 0 such that h′λ (x) ∈
(
− 1
λ
− ε2,− 1

λ
+ ε2

)
=(

− 3
2λ
,− 1

2λ

)
for x ∈ (0, δ2].

The continuity of hλ implies, that for ε1 := δ2
1

16λ
there exists a δ1 > 0 such that

hλ (x) ∈ (−ε1, ε1) for x ∈ [0, δ1].

With δ := min
(
δ1,

3
4
δ2

)
and ξ ∈ [δ, δ2] we use Taylor’s Theorem and obtain

hλ (δ2) = hλ (δ) + (δ2 − δ)h′λ (ξ)

< ε1 +
δ2

4

(
−1

λ
+ ε2

)
= δ2

1

16λ
− δ2

8λ

= − δ2

16λ

< 0.

Since Kx,λ would have a negative probability this is a contradiction to the as-

sumption of a distribution function and hence for d = 3 the GP function is not a

distribution function.

Now suppose that the GP function Wλ is a distribution function for d > 3. Then

the marginal distribution of the first three components is the GP function Wλ of

dimension 3. But this is not a distribution function and we have to reject the

assumption that the d-dimensional GP function is a distribution function.

�

A useful approach in dealing with GPD is the decomposition of the coordinates

in an angular and a radial component using the so called Pickands coordinates.

Definition 2.2.3.

For d ∈ N, d ≥ 2, define the transformation TP : (−∞, 0]d \ {0}d → R̄d−1 ×
(−∞, 0] by

TP (x) :=

(
x1

x1 + · · ·+ xd
, . . . ,

xd−1

x1 + · · ·+ xd
, x1 + · · ·+ xd

)
=: (z1, . . . , zd−1, c)

16



CHAPTER 2. MULTIVARIATE EVD AND GPD

with

Rd :=

{
x ∈ (−∞, 0]d :

d∑
i=1

xi ≤ 1

}
.

TP is called transformation to (standard) Pickands coordinates z := (z1, . . . , zd−1),

c. At this z is called angular component and c is called radial component.

The Pickands coordinates are similar to the polar coordinates which consists also

of an angular and a radial component but the polar coordinates use the euclidean

norm ‖·‖2 for the components contrary to the sum norm ‖·‖1 used by the Pickands

coordinates. For more information on TP we refer to Falk and Reiss (2005, [14])

and Section 5.4 of Falk et al. (2004, [13]).

Next we introduce the so called Pickands density.

Definition 2.2.4. For a GPD W that has, in a left neighborhood of 0, continuous

partial derivatives of order d, the function

φ (z) := |c|d−1

(
∂d

∂x1 . . . ∂xd
W

)(
T−1
P (z, c)

)
, z ∈ Rd−1

with

Rd :=

{
x ∈ (0,∞)d :

d∑
i=1

xi < 1

}
is called the Pickands density.

Note that the Pickands density does not depend on c (see Theorem 5.4.2 in Falk et

al. (2004, [13])). Furthermore assume that (X1, . . . , Xd) follows a differentiable

GPD W . Let C := X1 + · · · + Xd and Z :=
(
X1

C
, . . . , Xd−1

C

)
be the standard

random Pickands coordinates. Then conditional on C > c0 for c0 < 0 close to 0

the Pickand coordinate Z has the density

f (z) =
φ (z)∫

Rd−1
φ (v) d v

,

see also Theorem 5.4.2 in Falk et al. (2004, [13]).

For more details see Section 5.4 in Falk et al. (2004, [13]) or Section 2.1 in Michel

(2006, [26]).
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2.2. MULTIVARIATE GENERALIZED PARETO DISTRIBUTIONS

As mentioned in the previous section one of the dependence structures for an

EVD is the angular measure ν (see page 2.1). Therefore a multivariate GPD

can also be written in a left neighborhood of 0 in terms of the angular measure

namely

W (x1, . . . , xd) :=

1−
∫
R̄d−1

min

(
u1x1, . . . , ud−1xd−1,

(
1−

d−1∑
i=1

ui

)
xd

)
ν(du).

If the angular measure ν restricted to Rd−1 possesses a density l we call it the

angular density.
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CHAPTER 3

Main theorem

3.1. The Main Theorem

The following theorem is the main result of this thesis which gives a one-to-

one characterization for multivariate extreme value distribution with negative

exponential margins in terms of a norm.

Theorem 3.1.1 (Main Theorem). For any norm ‖·‖ on Rd the following asser-

tions are equivalent:

(i) the function G (x) := exp (−‖x‖), x ≤ 0, defines a multivariate ex-

treme value distribution function

(ii) there exists a measure µ on [−∞,∞) \ {−∞} with

µ
(

[−∞,x]{
)

=

‖x‖ , for x ≤ 0

0, otherwise
(3.1)

(iii) the norm satisfies∑
m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥ ≥ 0 (3.2)

for every K ( {1, . . . , d} and −∞ < aj ≤ bj ≤ 0, 1 ≤ j ≤ d.

A norm which fulfills one (and therefore all) conditions from above will be called

a D-Norm.

If G is a multivariate distribution function, then we have with the laws for the

exponential function and the homogeneity of the norm

Gn

(
1

n
x

)
= exp

(
−
∥∥∥∥ 1

n
x

∥∥∥∥)n
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= exp

(
−n 1

n
‖x‖

)
= G (x) .

Thus G is max-stable (see Definition 2.1.1) and hence G is an extreme value

distribution.

Because a d-dimensional distribution function G is max-id if and only if it has

an exponent measure (see Theorem 2.1.6), the assertion (i) is equivalent to (ii).

Therefore we only have to proof that (ii) is equivalent to (iii).

Since the proof is rather long it will be splitted into several lemmas and corollaries

given in the next sections.

3.2. Proof of the sufficiency

First we give an outline of the proof of the sufficiency.

We start by showing that condition (3.2) in the Main Theorem is equivalent

to another condition. Then we construct in a similar way to the Lebesgue

measure (see Section 1.4 and 1.6 in Bauer (1972, [3])) several measures on

(−∞, 0] × · · · × {−∞} × · · · ⊂ [−∞, 0]d, i.e. the spaces where in certain com-

ponents we have the nonpositive real numbers (with −∞ excluded) and in the

other components we fix the point {−∞}. There the condition (3.2) from the

Main Theorem 3.1.1 implies that we can really construct these measure since the

condition guarantees that the measures obtain nonnegative values.

Using these measures we construct a new measure µ∗ on [−∞,0] \ {−∞}.
Then we prove that if a certain condition is fulfilled then µ∗ obtains certain values

for certain sets.

Furthermore we show that µ∗ has the desired property that µ∗
(

[−∞,x]{
)

= ‖x‖.
Finally the proof will be finished by showing that the certain condition named

above follows from the condition of the Main Theorem.

Lemma 3.2.1. Condition (3.2) in the Main Theorem is satisfied if and only if

for every K ( {1, . . . , d}, for every L ⊆ K and −∞ < aj ≤ bj ≤ 0, 1 ≤ j ≤ d it

is

lim
t→−∞

∑
m∈{0,1}d
mi=1,i∈K
bi=t,i∈L

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥ ∈ [0,∞) (3.3)
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Proof. Condition (3.3) implies condition (3.2) by just setting L = ∅.
Now we prove the converse implication.

We define the function f : R→ R by

f (x) =
∑

m∈{0,1}d
mi=1,i∈K
bi=x,i∈L

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥
and with this new function condition (3.3) can be reformulated as limx→−∞ f (x) ∈
[0,∞). First we show that the limit exists. We begin this proof by showing that

f is bounded from below. In the sequel we use the inequality
∣∣ ‖x‖ − ‖y‖∣∣ ≤

‖x− y‖ derived from the triangle-inequality for norms.

Choose an index q ∈ {1, . . . , d} \K. We have

f (x) =
∑

m∈{0,1}d
mi=1,i∈K
bi=x,i∈L

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥
=

∑
m∈{0,1}d
mi=1,i∈K
bi=x,i∈L
mq=1

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥

+
∑

m∈{0,1}d
mi=1,i∈K
bi=x,i∈L
mq=0

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥

=
∑

m∈{0,1}d
mi=1,i∈K
bi=x,i∈L
mq=1

(−1)d+1−
∑
j≤dmj

(∥∥(bm1
1 a1−m1

1 , . . . , bq, . . . , b
md
d a1−md

d

)∥∥

−
∥∥(bm1

1 a1−m1
1 , . . . , aq, . . . , b

md
d a1−md

d

)∥∥)
∈
[
2d−|K|−1 (aq − bq) , 2d−|K|−1 (bq − aq)

]
.

Therefore f is bounded from below.

Next we show that f is increasing in x. Without loss of generality it suffices to

prove that f is increasing if L = {1} (if |L| = 1 it can be proved in a completely

analogous way and the case that |L| > 1 follows from the fact that f is increasing

in every argument).
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Let c1 ∈ R with a1 < c1 < b1.

We have

f (b1) =
∑

m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥
=

∑
m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥(cm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥
+

∑
m∈{0,1}d

mi=1,i∈K\{1}

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 c1−m1

1 , . . . , bmdd a1−md
d

)∥∥
︸ ︷︷ ︸

≥0

≥
∑

m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥(cm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥
= f (c1) .

Thus we have shown that f is increasing and together with the boundness from

below we obtain the convergence of f .

Finally we need to prove that f is nonnegative. Condition (3.2) implies that for

all x ∈ (−∞, 0] we have f (x) ≥ 0.

Now assume that limx→−∞ f (x) = y < 0. Because of the definition of the limit,

there exists an S ∈ R such that |f (x)− y| < y for all x < S. As a consequence

f (x) < 2y < 0 for all x < S. But this is a contradiction to condition (3.2) and

we have limx→−∞ f (x) ≥ 0. Hence everything is proved.

�

Let K := {K : K ( {1, . . . , d}}. We define for every K ∈ K

IK :=
{
×dk=1Ik : Ik = {−∞} for k ∈ K, Ik = [ak, bk)

with −∞ < ak ≤ bk ≤ 0 for k 6∈ K} .

Then IK is a semiring (see Definition A.1 in the appendix) in [−∞, 0)d and the

sets IK , K ∈ K are pairwise disjoint.

In the following we assume that condition (3.2) always holds and because of

Lemma 3.2.1 also condition (3.3).
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Define furthermore µK on Ik by

µK (I) := lim
t→−∞

∑
m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥∥(bm1

(1)a
1−m1

(1) , . . . , bmd(d)a
1−md
(d)

)∥∥∥ (3.4)

with b(i) = t, if i ∈ K, b(i) = bi, a(i) = ai otherwise. Condition (3.3) implies that

µK (I) ≥ 0 for I ∈ I.

Similar to the Lebesgue measure (see Section 1.4 and 1.6 in Bauer (1972, [3]))

we will show that µK defines a measure. For this purpose we proof that µK is

additiv (Lemma 3.2.2) and then that it is even σ-finite (Corollary 3.2.7). With

the µK we define a new measure µ on a ring F which will then be extended to a

measure µ∗ on the σ-algebra generated by F (Theorem 3.2.10). Finally we proof

that µ∗ is an exponent measure with the desired property µ∗
(

[−∞,x]{
)

= ‖x‖
(see Lemma 3.2.13).

Lemma 3.2.2. µK is additiv, i.e. for n ∈ N and pairwise disjoint Ik ∈ IK with

∪ni=1Ii = I ∈ IK we have µK (∪ni=1Ii) =
∑n

i=1 µK (Ii).

Proof. For I ∈ IK choose an index k ∈ {1, . . . , d} \K and c ∈ (ak, bk). The

hyperplane H = {z ≤ 0 : zk = c} separates the set I into two disjoint sets I1, I2 ∈
IK . We have (using that the limit of a sum is the sum of the limits if those exists)

µK (I1) + µK (I2)

= lim
t→−∞

∑
m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥∥(ym1

(1)x
1−m1

(1) , . . . , ymkk c1−mk , . . . , ymd(d)x
1−md
(d)

)∥∥∥
+ lim

t→−∞

∑
m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥∥(ym1

(1)x
1−m1

(1) , . . . , cmkx1−mk
k , . . . , ymd(d)x

1−md
(d)

)∥∥∥

= lim
t→−∞

 ∑
m∈{0,1}d

mi=1,i∈K∪{k}

(−1)d+1−
∑
j≤dmj

∥∥∥(ym1

(1)x
1−m1

(1) , . . . , yk, . . . , y
md
(d)x

1−md
(d)

)∥∥∥
−

∑
m∈{0,1}d

mi=1,i∈K∪{k}

(−1)d+1−
∑
j≤dmj

∥∥∥(ym1

(1)x
1−m1

(1) , . . . , c, . . . , ymd(d)x
1−md
(d)

)∥∥∥
+

∑
m∈{0,1}d

mi=1,i∈K∪{k}

(−1)d+1−
∑
j≤dmj

∥∥∥(ym1

(1)x
1−m1

(1) , . . . , c, . . . , ymd(d)x
1−md
(d)

)∥∥∥
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−
∑

m∈{0,1}d
mi=1,i∈K∪{k}

(−1)d+1−
∑
j≤dmj

∥∥∥(ym1

(1)x
1−m1

(1) , . . . , xk, . . . , y
md
(d)x

1−md
(d)

)∥∥∥


= lim
t→−∞

∑
m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥∥(ym1

(1)x
1−m1

(1) , . . . , ymkk x1−mk
k , . . . , ymd(d)x

1−md
(d)

)∥∥∥
= µK (I) .

Decomposing an I ∈ IK by a finite number of hyperplanes, in the same way as

above, results in that for pairwise disjoint I1, . . . , In ∈ IK we get

µK (I) =
n∑
i=1

µK (Ii) .

Finally we show that for pairwise disjoint I1, . . . , In ∈ IK with I = ∪ni=1Ii ∈ IK
it is µK (I) =

∑n
i=1 µK (Ii). Without loss of generality we can assume that every

Ii is nonempty. So there exists −∞ < ai,j < bi,j ≤ 0, j ∈ {1, . . . , d} \K, with

Ii = ×dj=1Xi,j where Xi,j = {−∞} for j ∈ K and otherwise Xi,j = [ai,j, bi,j). If

we split I0 by hyperplanes of the form ξi = ai,j or ξi = bi,j the set I0 decomposes

in pairwise disjoint sets I ′1, . . . , I
′
m. Each of the I1, . . . , In decomposes into certain

I ′k, k ∈ {1, . . . ,m}. Applying (n + 1) times the case from above we obtain the

equality.

�

Lemma 3.2.3. For pairwise disjoint I1, . . . , In ∈ IK with ∪ni=1Ii ⊆ I ∈ IK it is

n∑
i=1

µK (Ii) ≤ µK (I) .

Proof. There exists pairwise disjoint intervals J1, . . . , Jm that are all also dis-

joint with ∪ni=1Ii so that we have I =
⋃n
i=1 Ii ∪

⋃m
j=1 Jj. From the additivity of

µk proven in Lemma 3.2.2 it follows that µK (I) =
∑n

i=1 µK (Ii) +
∑m

j=1 µK (Jj).

Since µK ≥ 0 the proposition is proved.

�
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Lemma 3.2.4. If ∪ni=1Ii = ∪mj=1Jj, Ii, Jj ∈ IK with Ii pairwise disjoint then we

have
n∑
i=1

µK (Ii) ≤
m∑
j=1

µK (Jj) .

Proof. We get

m∑
j=1

µK (Jj) =
m∑
j=1

µK (∪ni=1 (Jj ∩ Ii))

=
m∑
j=1

n∑
i=1

µK

Jj ∩ Ii︸ ︷︷ ︸
∈IK

 .

The sets Ii ∩Jj ∈ IK , i ≤ m, j ≤ d can only be constructed by disjoint Bk ∈ IK ,

k = 1, . . . , N , i.e. Ii ∩ Jj = B
(i,j)
1 ∪ · · · ∪ B(i,j)

k(i,j), i ≤ m, j ≤ d and B
(i,j)
r ∈

{B1, . . . , BN}. Then we can conclude from the additivity of µK∑
i≤m

∑
j≤n

µK (Ii ∩ Jj) =
∑
i≤m

∑
j≤n

∑
r≤k(i,j)

µK
(
B(i,j)
r

)
≥ µK (B1) + · · ·+ µK (BN) ,

because every Bk appears at least one time in the sum or otherwise it can be

omitted. Since every Ii can be represented as a union of certain Bi and the Ii are

pairwise disjoint we must have µK (B1) + · · ·+ µK (BN) =
∑

i≤n µK (Ii) and the

assertion is proved.

�

Lemma 3.2.5. For I ⊆ ∪ni=1Ii with I, Ii ∈ IK, i ∈ {1, . . . , n} we have

µK (I) ≤
n∑
i=1

µK (Ii) .

Proof. There exists pairwise disjoint B1, . . . , BN that

I1 ∪ · · · ∪ In = B1 ∪ · · · ∪BN .

Since I = ∪j≤n (I ∩ Ij) = ∪k≤N (I ∩Bk) it follows from Lemma 3.2.4 and the

additivity of µK (Lemma 3.2.2)

µK (I) = µK (∪k≤N (I ∩Bk))
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=
∑
k≤N

µK (I ∩Bk)

≤
∑
j≤n

µK (I ∩ Ij)

≤
∑
j≤n

µK (Ij) .

The last inequality follows from the monotony of µK which is included in Lemma

3.2.3.

�

Lemma 3.2.6. For I ⊆ ∪i∈NIi with I, Ii ∈ IK, i ∈ N we have

µK (I) ≤
∑
i∈N

µK (Ii) .

Proof. Without loss of generality let K = {1, . . . , k}.
Set L = {1, . . . , d} \K and let I = ×i∈K {−∞} × ×i∈L [xi, yi) and

In =×i∈K {−∞} ××i∈L [xn,i, yn,i).

For ε > 0 it is

×i∈K {−∞} ××i∈L [xi, yi − ε] ⊆ ∪n∈N×i∈K {−∞} ××i∈L

(
xn,i −

ε

2n
, yn,i

)
.

We can conclude from the Theorem of Heine–Borel (see Theorem 15 in Cairns

(1961, [8])) that there exists an no ∈ N with

×i∈K {−∞} ××i∈L [xi, yi − ε) ⊆×i∈K {−∞} ××i∈L [xi, yi − ε]

⊆ ∪n≤n0×i∈K {−∞} ××i∈L

(
xn,i −

ε

2n
, yn,i

)
.

From Lemma 3.2.5 we conclude

µK
(×i∈K {−∞} ××i∈L [xi, yi − ε)

)
≤∑

n≤n0

µK

(
×i∈K {−∞} ××i∈L

(
xn,i −

ε

2n
, yn,i

))
,

whereas by (3.4) and the continuity of a norm

µK
(×i∈K {−∞} ××i∈L

(
xn,i − ε

2n
, yn,i

))
=
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lim
t→−∞

∑
m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤mmj

∥∥∥∥t, . . . , t, ymk+1

n,k+1

(
xn,k+1 −

ε

2n

)1−mk+1

, . . . , ymdn,d

(
xn,d −

ε

2n

)1−md
∥∥∥∥ .

From the triangle inequality of a norm we obtain
∣∣ ‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖ and

therefore∣∣∣µK (×i∈K {−∞} ××i∈L

(
xn,i −

ε

2n
, yn,i

))
− µK (In)

∣∣∣
≤ lim

t→−∞

∑
m∈{0,1}d
mi=1,i∈K

∣∣∣∣∥∥∥∥t, . . . , t, ymk+1

n,k+1

(
xn,k+1 −

ε

2n

)1−mk+1

, . . . , ymdn,d

(
xn,d −

ε

2d

)1−md
∥∥∥∥

−
∥∥∥t, . . . , t, ymk+1

n,k+1x
1−mk+1

n,k+1 , . . . , ymdn,dx
1−md
n,d

∥∥∥ ∣∣∣∣
≤

∑
m∈{0,1}d
mi=1,i∈K

∥∥∥∥0m1

(
− ε

2n

)1−m1

, . . . , 0md
(
− ε

2n

)1−md
∥∥∥∥

≤ const · ε
2n
, n ∈ N,

whereas const > 0 is independent from ε and n.

It follows

µK
(×i∈K {−∞} ××i∈L [xi, yi − ε)

)
≤
∑
n≤n0

µK

(
×i∈K {−∞} ××i∈L

(
xn,i −

ε

2n
, yn,i

))
≤
∑
n≤no

µK (In) + const · ε

≤
∑
n∈N

µK (In) + const · ε.

Since ε can be arbitrary small the continuity of the norm implies

µK (I) ≤
∑
n∈N

µK (In) .

�
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Corollary 3.2.7. µK is σ-additiv.

Proof. This follows directly from Lemma 3.2.6 and Lemma 3.2.3.

�

Now we extend our definition of µK on

FK := {F : F = ∪ni=1Ii, Ii ∈ IK and pairwise disjoint} by

µ̄K (F ) :=
∑
j≤n

µK (Ij)

with F = ∪ni=1Ii. We will show that this is well-defined.

Suppose that F ∈ FK can be represented as two different unions of pairwise

disjoint elements from IK , i.e. F = ∪ni=1Ii = ∪mj=1Jj. Hence we have Ii =

Ii ∩ F = ∪mj=1 (Ii ∩ Jj) and in the same way Jj = F ∩ Jj = ∪ni=1 (Ii ∩ Jj). The

finite additivity of µK (see Lemma 3.2.2) implies

µK (Ii) =
m∑
j=1

µK (Ii ∩ Jj)

and

µK (Ij) =
n∑
i=1

µK (Ii ∩ Jj)

and therefore

n∑
i=1

µK (Ii) =
m∑
j=1

µK (Jj) .

Thus the definition is independent of the decomposition of F .

Corollary 3.2.8. µ̄K : FK → [0,∞) is σ-additiv.

Proof. Choose pairwise disjoint Fi in FK , i ∈ N with ∪i∈NFi ∈ FK , i.e. ∪i∈NFi =

I∗1 ∪ · · · ∪ I∗m with I∗j ∈ IK , j ≤ m, pairwise disjoint and Fi = I1,i ∪ · · · ∪ Imi,i is

a union of disjoint intervals from IK , i ∈ N.

From the definition of µ̄K follows

µ̄K (∪i∈NFi) = µK (I∗1 ∪ · · · ∪ I∗m) = µK (I∗1 ) + · · ·+ µK (I∗m) .
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Furthermore from the σ-additivity of µK it follows∑
k≤m

µK (I∗k) =
∑
k≤m

µK (∪i∈N (Fi ∩ I∗k))

=
∑
k≤m

µK

∪i∈N ∪j≤mi

 Ij,i ∩ I∗k︸ ︷︷ ︸
pairwise disjoint




=
∑
k≤m

∑
i∈N

∑
j≤mi

µK (Ij,i ∩ I∗k)

=
∑
i∈N

∑
j≤mi


∑
k≤m

µK (Ij,i ∩ I∗k)︸ ︷︷ ︸
µ(Ij,i)



=
∑
i∈N


∑
j≤mi

µK (Ij,i)︸ ︷︷ ︸
=µ̄K(Fi)


=
∑
i∈N

µ̄K (Fi) ,

i.e. we obtain the assertion.

�

Corollary 3.2.9. Since µ̄K is a (σ-finite) measure on the ring FK there exists

an unique measure µ∗K on the σ-ring σ (FK) = {σ-algebra that is generated by

FK} , which coincide with µ̄K on FK.

Proof. See Theorem A, §13 in Halmos (1973).

�
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Theorem 3.2.10. With

F := {∪ni=1Fi : Fi ∈ ∪K∈KIK , Fi are pairwise disjoint} ,

and

R̄K := ×di=1Mi, with Mi = {−∞} for i ∈ K and Mi = (−∞, 0) for i 6∈ K

there exists a measure µ on σ (F) with

µ (I) :=
∑
K∈K

µK
(
I ∩ R̄K

)
for I ∈ ∪K∈KIK .

Proof. Note that I ∩ R̄K = ∅ if I 6∈ IK .

The finite additivity of the µK implies the finite additivity of µ. For I0, I1, . . . , In ∈
I0 with I0 = ∪ni=1Ii we have

µ (I0) =
∑
K∈K

µK
(
I0 ∩ R̄K

)
=
∑
K∈K

µK
(
(∪ni=1Ii) ∩ R̄K

)
=
∑
K∈K

µK
(
∪ni=1

(
Ii ∩ R̄K

))
=
∑
K∈K

n∑
i=1

µK
(
Ii ∩ R̄K

)
=

n∑
i=1

∑
K∈K

µK
(
Ii ∩ R̄K

)
=

n∑
i=1

µ (Ii) .

If F ∈ F can be represented as two different unions of pairwise disjoint elements

from ∪K∈KIK , i.e. F = ∪ni=1Ii = ∪mj=1Jj, then we have Ii = Ii∩F = ∪mj=1 (Ii ∩ Jj)
and in the same way Jj = F∩Jj = ∪ni=1 (Ii ∩ Jj). The finite additivity of µ implies

µ (Ii) =
m∑
j=1

µ (Ii ∩ Jj)
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and

µ (Ij) =
n∑
i=1

µ (Ii ∩ Jj) .

Therefore we get
n∑
i=1

µ (Ii) =
m∑
j=1

µ (Jj) .

So we can define µ̄ on F by

µ̄ (∪mi=1Ii) =
m∑
i=1

µ (Ii) . (3.5)

From the considerations above we see that (3.5) is well defined.

Let Fn, n ∈ N be pairwise disjoint sets from F with ∪n∈NFn ∈ F , i.e. there exists

pairwise disjoint I1, . . . , Im ∈ ∪K∈KIK with ∪n∈NFn = I1 ∪ · · · ∪ Im. This implies

∪n∈NFn = ∪j≤m ∪n∈N (Fn ∩ Ij)︸ ︷︷ ︸
=Ij

and therefore we obtain

µ̄ (∪n∈NFn) =
∑
j≤m

µ (Ij)

=
∑
j≤m

µ

∪n∈N (Fn ∩ Ij)︸ ︷︷ ︸
=Ij


=
∑
j≤m

∑
n∈N

µ (Fn ∩ Ij)

=
∑
n∈N

∑
j≤m

µ (Fn ∩ Ij)

=
∑
n∈N

µ̄

∪j≤m (Fn ∩ Ij)︸ ︷︷ ︸
=Fn


=
∑
n∈N

µ̄ (Fn) .

The third equality sign follows from the fact that µK defines a measure on Ik.
Therefore µ̄ can be extended to a measure µ∗ on σ (F).

�
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Lemma 3.2.11. If for every K,L ( {1, . . . , d} with K ∩ L = ∅ and K ∪ L 6=
{1, . . . , d}

lim
s→−∞

lim
t→−∞

(∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

xiei

∥∥∥∥∥−
∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

yiei

∥∥∥∥∥
)

= lim
t→−∞

(∥∥∥∥∥ ∑
i∈K∪L

tei +
∑
i 6∈K∪L

xiei

∥∥∥∥∥−
∥∥∥∥∥ ∑
i∈K∪L

tei +
∑
i 6∈K∪L

yiei

∥∥∥∥∥
)
∈ R (3.6)

then we have for [a,b) ⊆ [−∞,0]d \
{

(−∞)d
}

µ∗ ([a,b)) =
∑

m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)T∥∥∥ ,
with K = {i : ai = −∞}.

Proof. We set

M (a,b, L,K, i) :=


{−∞} , i ∈ L

(−∞, bi) , i ∈ K\L

[ai, bi) , i /∈ K

and

M̃ (a,b, L,K, i, s) :=


{−∞} , i ∈ L

[s, bi) , i ∈ K\L

[ai, bi) , i /∈ K

.

With this notation we have the disjoint decomposition

[a,b) = ∪L⊆K
(
×di=1M (a,b, L,K, i)

)
and therefore

µ∗ ([a,b))

=
∑
L⊆K

lim
s→−∞

µ∗
(
×di=1M̃ (a,b, L,K, i, s)

)
= lim

s→−∞

∑
L⊆K

µ∗
(
×di=1M̃ (a,b, L,K, i, s)

)
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= lim
s→−∞

∑
L⊆K

lim
t→−∞

∑
m∈{0,1}d
mi=1,i∈L
b(i)=t,i∈L

a(i)=s,i∈K\L

(−1)d+1−
∑
j≤dmj

∥∥∥bm1

(1)a
1−m1

(1) , . . . , bmd(d)a
1−md
(d)

∥∥∥

= lim
s→−∞

lim
t→−∞

∑
L⊆K

∑
m∈{0,1}d
mi=1,i∈L
b(i)=t,i∈L

a(i)=s,i∈K\L

(−1)d+1−
∑
j≤dmj

∥∥∥bm1

(1)a
1−m1

(1) , . . . , bmd(d)a
1−md
(d)

∥∥∥ ,

where a(i) = ai, b(i) = bi for i /∈ K; a(i) need not be defined for i ∈ L and can be

set to 0 for instance.

Choose an index k ∈ K. We split the sum into two parts, whether k ∈ L or not.

With the notation K̃ := K\ {k} we obtain∑
L⊆K

∑
m∈{0,1}d
mi=1,i∈L
b(i)=t,i∈L

a(i)=s,i∈K\L

(−1)d+1−
∑
j≤dmj

∥∥∥bm1

(1)a
1−m1

(1) , . . . , bmd(d)a
1−md
(d)

∥∥∥

=
∑
L⊆K̃

∑
m∈{0,1}d
mi=1,i∈L
b(i)=t,i∈L

a(i)=s,i∈K\L

(−1)d+1−
∑
j≤dmj

∥∥∥bm1

(1)a
1−m1

(1) , . . . , bmd(d)a
1−md
(d)

∥∥∥

+
∑
L⊆K̃

∑
m∈{0,1}d

mi=1,i∈L∪{k}
b(i)=t,i∈L∪{k}

a(i)=s,i∈K̃\L

(−1)d+1−
∑
j≤dmj

∥∥∥bm1

(1)a
1−m1

(1) , . . . , bmd(d)a
1−md
(d)

∥∥∥

=
∑
L⊆K̃


∑

m∈{0,1}d
mi=1,i∈L∪{k}
b(i)=t,i∈L

a(i)=s,i∈K̃\L

(−1)d+1−
∑
j≤dmj

(∥∥∥bm1

(1)a
1−m1

(1) , . . . , b(k) = bk, . . . , b
md
(d)a

1−md
(d)

∥∥∥

−
∥∥∥bm1

(1)a
1−m1

(1) , . . . , a(k) = s, . . . , bmd(d)a
1−md
(d)

∥∥∥)
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+
∑

m∈{0,1}d
mi=1,i∈L∪{k}
b(i)=t,i∈L

a(i)=s,i∈K̃\L

(−1)d+1−
∑
j≤dmj

∥∥∥bm1

(1)a
1−m1

(1) , . . . , b(k) = t, . . . , bmd(d)a
1−md
(d)

∥∥∥


=
∑
L⊆K̃

∑
m∈{0,1}d

mi=1,i∈L∪{k}
b(i)=t,i∈L

a(i)=s,i∈K̃\L

(−1)d+1−
∑
j≤dmj

∥∥∥bm1

(1)a
1−m1

(1) , . . . , bmd(d)a
1−md
(d)

∥∥∥

+
∑
L⊆K̃

∑
m∈{0,1}d

mi=1,i∈L∪{k}
b(i)=t,i∈L

a(i)=s,i∈K̃\L

(−1)d+1−
∑
j≤dmj

(∥∥∥bm1

(1)a
1−m1

(1) , . . . , b(k) = t, . . . , bmd(d)a
1−md
(d)

∥∥∥

−
∥∥∥bm1

(1)a
1−m1

(1) , . . . , a(k) = s, . . . , bmd(d)a
1−md
(d)

∥∥∥)
=: A+B

Choose an index r ∈ {1, . . . , d} \K and decompose the sum B according to mr.

Then we obtain

B =
∑
L⊆K̃

∑
m∈{0,1}d

mi=1,i∈L∪{k,r}
b(i)=t,i∈L

a(i)=s,i∈K\L

(−1)d+1−
∑
j≤dmj

(

∥∥∥bm1

(1)a
1−m1

(1) , . . . , a(k) = s, . . . , a(r) = ar, . . . , b
md
(d)a

1−md
(d)

∥∥∥
−
∥∥∥bm1

(1)a
1−m1

(1) , . . . , a(k) = s, . . . , b(r) = br, . . . , b
md
(d)a

1−md
(d)

∥∥∥
−
∥∥∥bm1

(1)a
1−m1

(1) , . . . , b(k) = t, . . . , a(r) = ar, . . . , b
md
(d)a

1−md
(d)

∥∥∥
+
∥∥∥bm1

(1)a
1−m1

(1) , . . . , b(k) = t, . . . , b(r) = br, . . . , b
md
(d)a

1−md
(d)

∥∥∥) .
From condition (3.6) it follows lims→−∞ limt→−∞B = 0. In the sum A we now

have mk = 1, b(k) = bk and therefore we can iterate those steps above, i.e. chose

k̃ ∈ K̃ and decompose the set L ⊆ K̃ into two disjoint one-to-one subsets.

This iteration can be repeated until we have K̃ = ∅. Thus we have proven the

assertion.

�
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In the following example we will see that condition (3.6) from Lemma 3.2.11 is

not satisfied by all norms.

Example 3.2.12. For d ≥ 3 let

‖x‖ :=


xT


1 δ . . . δ

δ
. . . . . .

...
...

. . . . . . δ

δ . . . δ 1


︸ ︷︷ ︸

=:B

x



1
2

,

with δ ∈ (0, 1).

Since B is a symmetric positive definite matrix it is well known that we really

defined a norm.

If we set K = 1 and L = 2 and choose 0 ≤ x,y with
∑d

i=3 (xi − yi) 6= 0 then we

obtain with a2 − b2 = (a− b) (a+ b):∥∥∥∥∥te1 + se2 +
d∑
i=3

xiei

∥∥∥∥∥−
∥∥∥∥∥te1 + se2 +

d∑
i=3

yiei

∥∥∥∥∥ =:
z(t, s)

n(t, s)
,

where

z(t, s) =2t
d∑
i=3

(xi − yi) eT1 Bei + 2s
d∑
i=3

(xi − yi) eT1 Bei

+

(
d∑
i=3

xiei

)T

B

(
d∑
i=3

xiei

)
−

(
d∑
i=3

yiei

)T

B

(
d∑
i=3

yiei

)

and

n(t, s) =t

(e1 +
s

t
e2 +

1

t

d∑
i=3

xiei

)T

B

(
e1 +

s

t
e2 +

1

t

d∑
i=3

xiei

) 1
2

+ t

(e1 +
s

t
e2 +

1

t

d∑
i=3

yiei

)T

B

(
e1 +

s

t
e2 +

1

t

d∑
i=3

yiei

) 1
2

.
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Therefore we have for s 6= t

lim
t→∞

z(t, s)

n(t, s)
=

∑d
i=3 (yi − xi) eT1 Bei

(eT1 Be1)
1
2

= δ

d∑
i=3

(yi − xi) (3.7)

and s = t

lim
t→∞

z(t, t)

n(t, t)
=

∑d
i=3 (yi − xi) eT1 Bei +

∑d
i=3 (yi − xi) eT2 Bei(

(e1 + e2)T B (e1 + e2)
) 1

2

=

√
2δ√

1 + δ

d∑
i=3

(yi − xi) . (3.8)

Since
∑d

i=3 (xi − yi) 6= 0 the limits (3.7) and (3.8) are different. As a consequence

the condition (3.6) from Lemma 3.2.11 does not hold.

Lemma 3.2.13. We have

µ∗
(

[−∞,x]{
)

= ‖x‖ .

Proof. For x ≤ 0, i ∈ {1, . . . , d} and yi ≤ xi we can deduce from Lemma 3.2.11

and the continuity of a norm

µ∗ ({z : z ≤ x, zi > yi}) =
∥∥∥(x1, . . . , xi−1, yi, xi+1, . . . , xd)

T
∥∥∥− ‖x‖ .

Therefore we obtain

µ∗
(

[−∞,x]{
)

= µ∗ ({z : z ≤ 0, zi > xi for at least one i ∈ {1, . . . , d}})

= µ∗
(
∪di=1 {z : z ≤ 0, zi > xi}

)
= µ∗

(
∪̇di=1 {z : z ≤ 0, zi > xi, zj ≤ xj for j ∈ {1, . . . , i− 1}}

)
=

d∑
i=1

µ ({z : z ≤ 0, zi > xi, zj ≤ xj for j ∈ {1, . . . , i− 1}})

=
d∑
i=1

(∥∥∥(x1, . . . , xi, 0 . . . , 0)T
∥∥∥− ∥∥∥(x1, . . . , xi−1, 0, . . . , 0)T

∥∥∥)
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=
d−1∑
i=1

(∥∥∥(x1, . . . , xi, 0 . . . , 0)T
∥∥∥− ∥∥∥(x1, . . . , xi, 0, . . . , 0)T

∥∥∥)
− ‖0‖+ ‖x‖

= ‖x‖ .

�

Finally we want to show that condition (3.6) in Lemma 3.2.11 already follows

from condition (3.2) in Lemma 3.2.1.

In order to show this we will need the following lemma.

Lemma 3.2.14. Let f : R+ × R+ 7→ R+
0 be an in both arguments monotone

decreasing function, i.e for all ε > 0 it is

f(t, s) ≥ f(t+ ε, s)

and

f(t, s) ≥ f(t, s+ ε),

then we have

lim
s→∞

lim
t→∞

f(t, s) = lim
t→∞

f(t, t).

Proof. Since f is bounded from below by 0 and monotone decreasing in each

argument, both limits exist. Furthermore we have for any s ∈ R+

lim
t→∞

f(t, s) =: c(s)

⇔ for all ε>0 exists an t0(s)>0 that for all t≥t0(s) it is |f(t, s)− c(s)| < ε

⇔ for all ε>0 exists an t0(s)>0 that for all t≥t0(s) it is

c(s)− ε < f(t, s) < c(s) + ε.

In the same way we have

lim
t→∞

f(t, t) =: d

⇔ for all ε>0 exists an t̃0>0 that for all t≥ t̃0 it is |f(t, t)− d| < ε
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⇔ for all ε>0 exists an t̃0>0 that for all t≥ t̃0 it is

d− ε < f(t, t) < d+ ε.

For any s ∈ R+ we therefore have for all ε > 0 and for all t ≥ max
{
t0(s), t̃0, s

}
c(s)− ε < f(t, s) < c(s) + ε

and

d− ε < f(t, t) < d+ ε.

Using the fact that f is decreasing in both arguments we have

c(s) + ε > f(t, s) ≥ f(t, t) > d− ε

⇒c(s) > d− 2ε

⇒c(s) ≥ d

and

f(s, s) ≥ f(t, s) > c(s)− ε

⇒f(s, s) > c(s)− ε

⇒f(s, s) ≥ c(s),

since ε can be arbitrary small.

Using the inequalities from above we get

lim
s→∞

lim
t→∞

f(t, s) = lim
s→∞

c(s) ≤ lim
s→∞

f(s, s) = lim
t→∞

f(t, t)

and

lim
s→∞

lim
t→∞

f(t, s) = lim
s→∞

c(s) ≥ lim
s→∞

d = d = lim
t→∞

f(t, t).

Thus we obtain

lim
s→∞

lim
t→∞

f(t, s) = lim
t→∞

f(t, t).

�
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Lemma 3.2.15. Condition (3.2) from Lemma 3.2.1 implies condition (3.6) from

Lemma 3.2.11.

Proof. First we prove the existence of the limit. We start by assuming that 0 ≤
y ≤ x. Using condition (3.2) we have for any k ∈ {1, . . . , d}, k 6= l ∈ {1, . . . , d}
and t1 ≥ t0 > 0∥∥∥∥∥∥t0ek + xlel +

∑
i∈{1,...,d}\{k,l}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t0ek + ylel +

∑
i∈{1,...,d}\{k,l}

xiei

∥∥∥∥∥∥


−

∥∥∥∥∥∥t1ek + xlel +
∑

i∈{1,...,d}\{k,l}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t1ek + ylel +

∑
i∈{1,...,d}\{k,l}

xiei

∥∥∥∥∥∥
 ≥ 0

⇔

∥∥∥∥∥∥t0ek + xlel +
∑

i∈{1,...,d}\{k,l}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t0ek + ylel +

∑
i∈{1,...,d}\{k,l}

xiei

∥∥∥∥∥∥
 ≥

∥∥∥∥∥∥t1ek + xlel +
∑

i∈{1,...,d}\{k,l}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t1ek + ylel +

∑
i∈{1,...,d}\{k,l}

xiei

∥∥∥∥∥∥
 .

Using the above inequality we obtain furthermore∥∥∥∥∥∥t0ek +
∑

i∈{1,...,d}\{k}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t0ek +

∑
i∈{1,...,d}\{k}

yiei

∥∥∥∥∥∥


=

∥∥∥∥∥∥t0ek +
∑

i∈{1,...,d}\{k}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t0ek +

∑
i∈{1,...,d}\{k}

yiei

∥∥∥∥∥∥


+
d−1∑
j=1

∥∥∥∥∥∥t0ek +
∑

i∈{1,...,j}\{k}

yiei +
∑

i∈{j+1,...,d}\{k}

xiei

∥∥∥∥∥∥
−

d−1∑
j=1

∥∥∥∥∥∥t0ek +
∑

i∈{1,...,j}\{k}

yiei +
∑

i∈{j+1,...,d}\{k}

xiei

∥∥∥∥∥∥
=

∥∥∥∥∥∥t0ek +
∑

i∈{1,...,d}\{k}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t0ek +

∑
i∈{1}\{k}

yiei +
∑

i∈{2,...,d}\{k}

xiei

∥∥∥∥∥∥
+

∥∥∥∥∥∥t0ek +
∑

i∈{1,...,d−1}\{k}

yiei +
∑

i∈{d}\{k}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t0ek +

∑
i∈{1,...,d}\{k}

yiei

∥∥∥∥∥∥
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+
d−2∑
j=1

∥∥∥∥∥∥t0ek +
∑

i∈{1,...,j}\{k}

yiei +
∑

i∈{j+1,...,d}\{k}

xiei

∥∥∥∥∥∥
−

d−1∑
j=2

∥∥∥∥∥∥t0ek +
∑

i∈{1,...,j}\{k}

yiei +
∑

i∈{j+1,...,d}\{k}

xiei

∥∥∥∥∥∥
=

∥∥∥∥∥∥t0ek +
∑

i∈{1,...,d}\{k}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t0ek +

∑
i∈{1}\{k}

yiei +
∑

i∈{2,...,d}\{k}

xiei

∥∥∥∥∥∥
+

∥∥∥∥∥∥t0ek +
∑

i∈{1,...,d−1}\{k}

yiei +
∑

i∈{d}\{k}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t0ek +

∑
i∈{1,...,d}\{k}

yiei

∥∥∥∥∥∥
+

d−2∑
j=1

∥∥∥∥∥∥t0ek +
∑

i∈{1,...,j}\{k}

yiei +
∑

i∈{j+2,...,d}\{k}

xiei +
∑

i∈{j+1}\{k}

xiei

∥∥∥∥∥∥
−

∥∥∥∥∥∥t0ek +
∑

i∈{1,...,j}\{k}

yiei +
∑

i∈{j+2,...,d}\{k}

xiei +
∑

i∈{j+1}\{k}

yiei

∥∥∥∥∥∥


≥

∥∥∥∥∥∥t1ek +
∑

i∈{1,...,d}\{k}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t1ek +

∑
i∈{1}\{k}

yiei +
∑

i∈{2,...,d}\{k}

xiei

∥∥∥∥∥∥
+

∥∥∥∥∥∥t1ek +
∑

i∈{1,...,d−1}\{k}

yiei +
∑

i∈{d}\{k}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t1ek +

∑
i∈{1,...,d}\{k}

yiei

∥∥∥∥∥∥
+

d−2∑
j=1

∥∥∥∥∥∥t1ek +
∑

i∈{1,...,j}\{k}

yiei +
∑

i∈{j+2,...,d}\{k}

xiei +
∑

i∈{j+1}\{k}

xiei

∥∥∥∥∥∥
−

∥∥∥∥∥∥t1ek +
∑

i∈{1,...,j}\{k}

yiei +
∑

i∈{j+2,...,d}\{k}

xiei +
∑

i∈{j+1}\{k}

yiei

∥∥∥∥∥∥


=

∥∥∥∥∥∥t1ek +
∑

i∈{1,...,d}\{k}

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥t1ek +

∑
i∈{1,...,d}\{k}

yiei

∥∥∥∥∥∥
 .
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By applying the above inequality to several choices of k we obtain that for any

arbitrary K ⊆ {1, . . . , d}∥∥∥∥∥∥
∑
k∈K

t0ek +
∑

i∈{1,...,d}\K

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
k∈K

t0ek +
∑

i∈{1,...,d}\K

yiei

∥∥∥∥∥∥


≥

∥∥∥∥∥∥
∑
k∈K

t1ek +
∑

i∈{1,...,d}\K

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
k∈K

t1ek +
∑

i∈{1,...,d}\K

yiei

∥∥∥∥∥∥
 . (3.9)

The differences in (3.9) are descending in t. Applying condition (3.2) from the

Main Theorem d times using all subsets K with |K| = d − 1, yields that those

differences are always nonnegative. Therefore the limit exists, i.e.

lim
t→∞

∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

yiei

∥∥∥∥∥∥
 ∈ R+

0 . (3.10)

Now we drop the assumption that y ≤ x. Then we obtain

lim
t→∞

∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

yiei

∥∥∥∥∥∥


= lim
t→∞

∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

max {xi, yi} ei

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

max {xi, yi} ei

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

yiei

∥∥∥∥∥∥


= lim
t→∞

∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

xiei

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

max {xi, yi} ei

∥∥∥∥∥∥


+ lim
t→∞

∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

max {xi, yi} ei

∥∥∥∥∥∥−
∥∥∥∥∥∥
∑
k∈K

tek +
∑

i∈{1,...,d}\K

yiei

∥∥∥∥∥∥
 ,

where the last equal sign holds since both limits exist by (3.10). Hence the limit

exists for arbitrary x,y ≥ 0.

Next we prove that the limit does not change if we make the two step limit. We

first assume again that 0 ≤ y ≤ x. Above we have shown that the difference

is decreasing in every component that is equal in both norms of the difference.

41



3.2. PROOF OF THE SUFFICIENCY

Therefore we can use Lemma 3.2.14 and obtain

lim
s→∞

lim
t→∞

(∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

xiei

∥∥∥∥∥−
∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

yiei

∥∥∥∥∥
)

= lim
t→∞

(∥∥∥∥∥ ∑
i∈K∪L

tei +
∑
i 6∈K∪L

xiei

∥∥∥∥∥−
∥∥∥∥∥ ∑
i∈K∪L

tei +
∑
i 6∈K∪L

yiei

∥∥∥∥∥
)
.

With a similar argumentation as above we obtain for arbitrary x,y ≥ 0

lim
s→∞

lim
t→∞

(∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

xiei

∥∥∥∥∥−
∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

yiei

∥∥∥∥∥
)

= lim
s→∞

lim
t→∞

(∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

xiei

∥∥∥∥∥
−

∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

max {xi, yi} ei

∥∥∥∥∥
+

∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

max {xi, yi} ei

∥∥∥∥∥
−

∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

yiei

∥∥∥∥∥
)

= lim
s→∞

lim
t→∞

(∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

xiei

∥∥∥∥∥
−

∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

max {xi, yi} ei

∥∥∥∥∥
)

+ lim
s→∞

lim
t→∞

(∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

max {xi, yi} ei

∥∥∥∥∥
−

∥∥∥∥∥∑
i∈K

tei +
∑
i∈L

sei +
∑
i 6∈K∪L

yiei

∥∥∥∥∥
)

= lim
t→∞

(∥∥∥∥∥ ∑
i∈K∪L

tei +
∑
i 6∈K∪L

xiei

∥∥∥∥∥−
∥∥∥∥∥ ∑
i∈K∪L

tei +
∑
i 6∈K∪L

max {xi, yi} ei

∥∥∥∥∥
)

+ lim
t→∞

(∥∥∥∥∥ ∑
i∈K∪L

tei +
∑
i 6∈K∪L

max {xi, yi} ei

∥∥∥∥∥−
∥∥∥∥∥ ∑
i∈K∪L

tei +
∑
i 6∈K∪L

yiei

∥∥∥∥∥
)
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= lim
t→∞

(∥∥∥∥∥ ∑
i∈K∪L

tei +
∑
i 6∈K∪L

xiei

∥∥∥∥∥−
∥∥∥∥∥ ∑
i∈K∪L

tei +
∑
i 6∈K∪L

yiei

∥∥∥∥∥
)
,

where again the limit of the sum is the sum of the limits since these limits exist.

�

All the considerations above can be summarized in the following theorem.

Theorem 3.2.16. Let ‖·‖ be an arbitrary norm on Rd. If∑
m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥ ≥ 0

holds for every K ( {1, . . . , d} and −∞ < aj ≤ bj ≤ 0, 1 ≤ j ≤ d,

then there exists a measure µ on [−∞, 0]d \ {−∞}d with

µ
(

[−∞,x]{
)

= ‖x‖ .

3.3. Proof of the necessity

Lemma 3.3.1. Condition (3.2) is necessary to define an extreme value distribution

with the norm ‖·‖.

Proof. Let ν be the exponent measure belonging to the norm ‖·‖, i.e.

ν
(

[−∞,x]{
)

=

‖x‖ , for x ≤ 0

0, otherwise.

The continuity of a norm implies furthermore

ν
(

[−∞,x){
)

=

‖x‖ , for x ≤ 0

0, otherwise.
(3.11)

For any K ( {1, . . . , d} and −∞ < x ≤ y ≤ 0 we define

AK (x,y) := {z : zi < yi, zj ≥ xj, j ∈ {1, . . . , d} \K} .

For l 6∈ K and j ∈ {1, . . . , d} we have

A{1,...,d} [x,y) = [−∞,y) ,

A{1,...,d}\{j} [x,y) = {z : zi < yi for 1 ≤ i ≤ d, zj ≥ xj}

= {z : zi < yi for 1 ≤ i ≤ d} \ {z : zi < yi for 1 ≤ i ≤ d, zj < xj}
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= A{1,...,d} (x,y) \A{1,...,d} (x, (y1, . . . , yj−1, xj, yj+1, . . . , yd))

= [−∞,y) \ [−∞, (y1, . . . , yj−1, xj, yj+1, . . . , yd))

= [−∞, (y1, . . . , yj−1, xj, yj+1, . . . , yd))
{ \ [−∞,y){ (3.12)

and, more general,

AK [x,y) = {z : zi < yi for 1 ≤ i ≤ d, zj ≥ xj for j 6∈ K}

= {z : zi < yi for 1 ≤ i ≤ d, zj ≥ xj for j 6∈ K\ {l}}∩

{z : zi < yi for 1 ≤ i ≤ d, zl < xl, zj ≥ xj for j 6∈ K\ {l}}{

= AK∪{l} [x,y) \AK∪{l} [x, (y1, . . . , yl−1, xl, yl+1, . . . , yd)) .

(3.13)

We will show by induction over k := d − |K| that for any K ( {1, . . . , d} the

σ-additivity implies that

ν (AK (x,y)) =
∑

m∈{0,1}d
mj=1,j∈K

(−1)(d+1−
∑
j≤dmj)

∥∥(ym1
1 x1−m1

1 , . . . , ymdd x1−md
d

)∥∥ . (3.14)

Set k = 1 and therefore take a subset K = {1, . . . , d} \ {l}, 1 ≤ l ≤ d. Equations

(3.12) and (3.11) imply

ν (AK (x,y)) = ν
(

[−∞, (y1, . . . , yl−1, xl, yl+1, . . . , yd))
{ \ [−∞,y){

)
= ‖(y1, . . . , yl−1, xl, yl+1, . . . , yd)‖ − ‖y‖

= (−1)d+1−(d−1) ‖(y1, . . . , yl−1, xl, yl+1, . . . , yd)‖+ (−1)d+1−d ‖y‖

=
∑

m∈{0,1}d
mj=1,j 6=l

(−1)(d+1−
∑
j≤dmj)

∥∥(ym1
1 x1−m1

1 , . . . , ymdd x1−md
d

)∥∥ .
Assume now that we have established the assertion for any k with k < d. By

using the induction assumption and equations (3.13) and (3.11) we obtain for

any subset K with k = d− |K| and l 6∈ K

ν (AK (x,y)) = µ
(
AK∪{l} (x,y) \AK∪{l} (x, (y1, . . . , yl−1, xl, yl+1, . . . , yd))

)
=

∑
m∈{0,1}d

mj=1,j∈K∪{l}

(−1)(d+1−
∑
j≤dmj)

∥∥(ym1
1 x1−m1

1 , . . . , ymdd x1−md
d

)∥∥
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+
∑

m∈{0,1}d
mj=1,j∈K,ml=0

(−1)(d+1−
∑
j≤dmj)

∥∥(ym1
1 x1−m1

1 , . . . , ymdd x1−md
d

)∥∥
=

∑
m∈{0,1}d
mj=1,j∈K

(−1)(d+1−
∑
j≤dmj)

∥∥(ym1
1 x1−m1

1 , . . . , ymdd x1−md
d

)∥∥ .
So we have established equation (3.14) and together with the nonnegativity of

the measure ν we obtain condition (3.2).

�
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CHAPTER 4

Approach via convex geometry

In this chapter we state another access to the Main Theorem using results from

convex geometry and the theory of random sets based on an article by Molchanov

(2007, [29]). Note that Molchanov uses Fréchet margins and we adapted this to

Weibull margins, since this fits better with the representation of an EVD using

norms. At the end of the chapter we can give another proof of the Main Theorem

based on the work of Molchanov.

For instance this approach is used in Molchanov (2007, [28]) and Molchanov and

Schmutz (2008, [30]) to link economic statements to geometric properties and

conversely.

We assume that the reader is familiar with basic knowledge of convex geome-

try and the theory of random sets. Some important definitions are given in the

Appendix. For an introduction to convex geometry we refer to Schneider (1993,

[36]) and for the theory of random sets the book by Molchanov (2005, [27]).

The notation in this chapter is mostly in accordance with the one used by

Molchanov (2007, [29]).

By E we denote the selection expectation (also called Aumann expectation) (the

definition is given in the Appendix in Definition A.4; for more information see

Section 2.1 in Molchanov (2005, [27])) and for a = (a1, . . . , ad) ∈ Rd we set

∆a := conv ({0, a1e1, . . . , aded}) ,

where conv (·) denotes the convex hull of the corresponding set.

In convex geometry there is an important correspondence between a convex set

and a certain function, the so called support function. We will deal with special

convex sets and therefore we will need support functions later on.

Definition 4.1. The support function h of a set M ⊆ Rd is defined as

h (M,x) = sup {〈z,x〉 : z ∈M}

where 〈z,x〉 is the scalar product in Rd.
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In the definition of the support function a convex set yields a function. The next

lemmas shows that every sublinear function is a support function of a (unique)

convex set. Since support functions are sublinear functions the correspondence

between sublinear functions and convex sets are one-to-one.

Lemma 4.2. If f : [0,∞)d → R is a sublinear function, i.e.

f (λx) = λf (x) for all λ ≥ 0 and all x ∈ [0,∞)d

and

f (x + y) ≤ f (x) + f (y) for all x,y ∈ [0,∞)d ,

then there exists a unique convex body K ∈ Kd with support function f , where Kd

denotes the set of all non empty, compact and convex subset of [0,∞)d.

Proof. This is Theorem 1.7.1 in Schneider (1993, [36]) and we refer to the

proofs (three different are given) stated there.

�

A max-zonoid which is defined next is the crucial concept of this approach.

Definition 4.3. The set K = cE∆η where c > 0 and η is a random vector on

S+ :=
{

x ∈ [0,∞)d : ‖x‖ = 1
}

(with respect to any chosen norm) is said to be

a max-zonoid. If σ̂ is the distribution of η, then σ = cσ̂ is the spectral measure

of K. If cEη = (1, . . . , 1), then the max-zonoid of K is called the dependency set

associated with the spectral measure σ.

The next theorem connects the max-zonoids with EVDs with Weibull margins.

Theorem 4.4. A convex set K is a max-zonoid if and only if there exists a

random vector ξ with cumulative distribution function F (x) = exp (−h (K,x))

for all x ∈ (−∞, 0]d.

Proof. This is a version of Proposition 1 in Molchanov (2007, [29]) using

Weibull margins instead of Fréchet margins.

�
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Next we introduce max-completely alternating functions. Later on we will see

that the condition of being a max-completely alternating function is equivalent

to the condition of the Main Theorem.

Definition 4.5. Consider a function f : [0,∞)d → R. For n ≥ 1 and x,

x1, . . . ,xn ∈ [0,∞)d we define the following successive differences

∆x1f (x) := f (x)− f (max {x,x1}) ,

∆xn . . .∆x1f (x) = ∆xn−1 . . .∆x1f (x)−∆xn−1 . . .∆x1f (max {x,xn}) ,

where the maximum of the vectors is meant component wise as usual.

The function f is said to be max-completely alternating if all successive differences

are non positive.

For more information on max-completely alternating functions, max-completely

monotone functions (functions where all differences are nonnegative), completely

alternating functions and completely monotone functions (these are generaliza-

tions of the max-completely alternating/monotone functions) we refer to Section

6 in Molchanov (2008, [29]), Section I.1.2 in Molchanov (2005, [27]) and Section

4.6 in Berg et. al. (1984, [6]).

We will see that we can restrict to a certain set if we want to check whether a

function is max-completely alternating.

Lemma 4.6. Set G := {λei : 1 ≤ i ≤ d, λ ∈ [0,∞)}. A function f : [0,∞)d → R
is max-completely alternating if and only if

∆xn . . .∆x1f (x) ≤ 0 for x ∈ [0, 1)d and x1, . . . ,xn ∈ G, n ≥ 1.

Proof. G is a generator set of the semigroup
(

[0,∞)d ,∧
)

, where the operation

∧ is the component wise maximum. Therefore this is a special case of Proposition

6.6 in Berg et. al. (1984, [6]).

�
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The next theorem is crucial to link this approach to our Main Theorem. It

connects max-zonoids to max-completely alternating functions.

Theorem 4.7. A convex set K ⊆ [0,∞)d is a max-zonoid if and only if h (K,x)

is a max-completely alternating function of x.

Proof. This is Theorem 7 in Molchanov (2007, [29]) and we refer to this paper

for the proof.

�

As mentioned above we will now prove that the condition of being max-completely

alternating is equivalent to the condition given in the Main Theorem.

Lemma 4.8. An arbitrary norm ‖·‖ restricted to [0,∞)d is a max-completely

alternating function if and only if condition (3.2) from the Main Theorem 3.1.1

is fulfilled.

Proof. Without loss of generalization we can assume that in the condition for

max-completely alternating functions we can restrict ourselves to the case where

x ≤ xi, i = {1, . . . , n}. Otherwise the vector xi can be replaced by max (x,xi).

For a ≤ b ≤ 0 we set ci := (b1, . . . , bi−1ai, bi+1, . . . , bd), 1 ≤ i ≤ d and c0 := b.

Without loss of generalization we assume that K = {k, . . . , d}, 2 ≤ k ≤ d

(otherwise apply an permutation on the elements of K). We prove via induction

over k the equality∑
m∈{0,1}d
mi=1,i≥k

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥ = −∆−ck−1
. . .∆−c1 ‖−c0‖

and thus the terms in the conditions are the same and have opposed signs.

So let K = {2, . . . , d}. Then we have (note that a ≤ b ≤ 0 and thus 0 ≤ −b ≤
−a) ∑

m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥
=

∑
m1∈{0,1}

(−1)2−m1
∥∥(bm1

1 a1−m1
1 , b2, . . . , bd

)∥∥
= (−1)1 ‖c0‖+ (−1)2 ‖c1‖

= (−1) (‖−c0‖ − ‖−c1‖)
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= −∆−c1 ‖−c0‖

and therefore the base case of the induction is valid.

Now assume that we have already proven the assumption for k < d. Then we

obtain for k + 1∑
m∈{0,1}d
mi=1,i≥k+1

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥
=

∑
m∈{0,1}d
mi=1,i≥k+1

mk=0

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥
+

∑
m∈{0,1}d
mi=1,i≥k+1

mk=1

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥
= −

∑
m∈{0,1}d
mi=1,i≥k

(−1)d+1−
∑
j≤dmj

∥∥− (bm1
1 a1−m1

1 , . . . , ak, . . . , b
md
d a1−md

d

)∥∥
+

∑
m∈{0,1}d
mi=1,i≥k

(−1)d+1−
∑
j≤dmj

∥∥− (bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥
= −

(
∆−ck−1

. . .∆−c1 ‖−c0‖ −∆−ck−1
. . .∆−c1 ‖−ck‖

)
= −∆−ck . . .∆−c1 ‖−c0‖ .

Thus the assertion is shown.

Furthermore we have

max {−c0,−ci} = max {−c0,−aiei}

and thus

∆−cif (−c0) = f (c0)− f (max {−c0,−ci})

= f (c0)− f (max {−c0,−aiei})

= ∆−aieif (−x0) .

Iterating the step above we obtain

−∆−ck . . .∆−c1 ‖−c0‖ = −∆−akek . . .∆−a1e1 ‖−c0‖ .
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Altogether we have∑
m∈{0,1}d
mi=1,i≥k

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥
= −∆−akek . . .∆−aie1 ‖−c0‖ .

Therefore if the norm ‖·‖ is max-completely alternating then the condition of the

Main Theorem is fulfilled.

On the other hand if the condition from the Main Theorem is fulfilled and thus

for the vectors from the set G as defined in Lemma 4.6 the successive differences

are non positive. Then Lemma 4.6 implies that the norm ‖·‖ is max-completely

alternating.

�

The previous results from this chapter leads to a new proof of the Main The-

orem. Since the proof does not need the exponent measure we will leave it out

in this formulation of the Main Theorem.

Theorem 4.9. For any norm ‖·‖ on Rd the following assertions are equivalent

(i) the function G (x) := exp (−‖x‖), x ≤ 0, defines a multivariate ex-

treme value distribution function

(ii) the norm satisfies∑
m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥(bm1
1 a1−m1

1 , . . . , bmdd a1−md
d

)∥∥ ≥ 0 (4.1)

for every K ( {1, . . . , d} and −∞ < aj ≤ bj ≤ 0, 1 ≤ j ≤ d.

Proof. First assume that G (x) = exp (−‖x‖), x ≤ 0, defines a distribution

function having Weibull margins.

According to Lemma 4.2 there is a convex body K with support function ‖·‖ and

Theorem 4.4 implies that K is a max-zonoid.

With Theorem 4.7 we conclude that ‖·‖ is a max-completely alternating function

and because of Lemma 4.8 the condition in the Main Theorem is fulfilled.
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Now let the condition from the Main Theorem be fulfilled and because of Lemma

4.8 the norm ‖·‖ is a max-completely alternating function.

According to Lemma 4.2 the norm ‖·‖ is support function of a convex body K.

Therefore Theorem 4.7 implies that K is a max-zonoid. Using Theorem 4.4 we

obtain that G (x) = exp (−‖x‖), x ≤ 0, defines a distribution function.

�
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CHAPTER 5

Applications

5.1. The bivariate case

The bivariate case turns out to be more simple than the case of dimension 3 or

higher. In a way this is due to the fact that the Pickands dependence function

is in the bivariate case a one-dimensional function. Falk (2006, [12]) proved that

with a norm ‖·‖ a bivariate extreme value distribution can be defined if and only

if the norm satisfies ‖x‖∞ ≤ ‖x‖ ≤ ‖x‖1 for x ≥ 0. This section ends with an

alternative proof for this fact using our Main Theorem 3.1.1. But first of all we

start with two definitions of special properties a norm can have, because they

will be useful in the following. Then we will show that these two properties are

related to the corresponding one used by Falk (2006, [12]).

Definition 5.1.1. A norm ‖·‖ on Rd is called monotone if for any vectors a,b ∈
Rd with 0 ≤ a ≤ b the norm of the vectors is ordered in the same way, i.e.

‖a‖ ≤ ‖b‖ .

Definition 5.1.2. A norm ‖·‖ on Rd is called standardized if every standard

basis vector ei has norm 1, i.e. ‖ei‖ = 1, i = 1, . . . , d.

Now we relate these two properties to the one used in Falk (2006, [12]).

Lemma 5.1.3. Let ‖·‖ be a norm on Rd. If ‖·‖ is monotone and standardized

then we have for 0 ≤ x ∈ Rd

‖x‖∞ ≤ ‖x‖ ≤ ‖x‖1 .

For d = 2 the converse statement is also true.

Proof. Let 0 ≤ x = (x1, . . . , xd)
T ∈ Rd. Since the norm is standardized we

have ∥∥∥(x1, . . . , xd)
T
∥∥∥ ≤ ∥∥∥(x1, 0, . . . , 0)T

∥∥∥+ · · ·+
∥∥∥(0, . . . , 0, xd)

T
∥∥∥
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= x1 + · · ·+ xd

=
∥∥∥(x1, . . . , xd)

T
∥∥∥

1
.

Furthermore we obtain for all i ∈ {1, . . . , d}∥∥∥(x1, . . . , xd)
T
∥∥∥ ≥ ∥∥∥(0, . . . , 0, xi, 0 . . . , 0)T

∥∥∥
= xi ‖ei‖

= xi.

Therefore it is
∥∥∥(x1, . . . , xd)

T
∥∥∥ ≥ max {x1, . . . , xd} =

∥∥∥(x1, . . . , xd)
T
∥∥∥
∞

. Alto-

gether we have

‖x‖∞ ≤ ‖x‖ ≤ ‖x‖1 .

Now let d = 2 and the norm satisfies ‖x‖∞ ≤ ‖x‖ ≤ ‖x‖1 for 0 ≤ x. Then we

have for the standard basis vectors

1 = ‖ei‖∞ ≤ ‖ei‖ ≤ ‖ei‖1 = 1

and thus the norm is standardized.

Take a = (a1, a2)T ∈ R2 and b = (b1, b2)T ∈ R2 with 0 ≤ a ≤ b and 0 < b. The

condition ‖x‖∞ ≤ ‖x‖ implies that bi ≤ max {b1, b2} = ‖b‖∞ ≤ ‖b‖ for i = 1, 2.

From the triangle inequality we obtain∥∥∥(a1, b2)T
∥∥∥ =

∥∥∥∥b1 − a1

b1

(0, b2)T +
a1

b1

(b1, b2)T
∥∥∥∥

≤ b1 − a1

b1

∥∥∥(0, b2)T
∥∥∥︸ ︷︷ ︸

=b2≤‖b‖

+
a1

b1

∥∥∥(b1, b2)T
∥∥∥

≤
(
b1 − a1

b1

+
a1

b1

)∥∥∥(b1, b2)T
∥∥∥

= ‖b‖

and

‖a‖ =
∥∥∥(a1, a2)T

∥∥∥
=

∥∥∥∥b2 − a2

b2

(a1, 0)T +
a2

b2

(a1, b2)T
∥∥∥∥
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≤ b2 − a2

b2

∥∥∥(a1, 0)T
∥∥∥︸ ︷︷ ︸

=a1≤b1≤‖b‖

+
a2

b2

∥∥∥(a1, b2)T
∥∥∥︸ ︷︷ ︸

≤‖b‖,see above

≤
(
b2 − a2

b2

+
a2

b2

)
‖b‖

= ‖b‖ .

Therefore the norm is monotone.

�

Remark 5.1.4. In Example 2.19 in Hofmann (2006, [22]) a 3-dimensional norm

is given that is between the maximum norm and the sum norm but which is not

monotone. The unit sphere of this norm is pictured in Figure 5.1. Therefore the

equivalence in Lemma 5.1.3 is only true in dimension 2.

Figure 5.1. The unit sphere of the norm stated in Remark 5.1.4

57



5.1. THE BIVARIATE CASE

In the next lemma we will see that the bivariate case turns out to be in particular

simple. In this case it is necessary and sufficient for the norm to be monotone.

Lemma 5.1.5. Take an arbitrary norm ‖·‖ on R2. Then

G (x) := exp (−‖x‖) , x ≤ 0

defines a bivariate distribution function if and only if the norm is monotone .

Proof. We have to check equation (3.2) for any subset N 6= ∅ of {1, 2}. If

|N | = 1 then (3.2) holds if and only if the norm is monotone.

For N = {1, 2} the equation holds for every norm on R2, because for 0 ≤ a ≤ b,

a 6= b, 0 < b and α := b1a2−a1a2

b1b2−a1a2
, β := b1a2−a1a2

b1b2−a1a2
, γ := b1b2−b1a2

b1b2−a1a2
and δ := b1b2−a1b2

b1b2−a1a2
.

We have

α, β, γ, δ ∈ R+,

α + γ = 1,

β + δ = 1,

a = α (a1, b2)T + β (b1, a2)T

b = γ (a1, b2)T + δ (b1, a2)T

and hence

‖a‖+ ‖b‖ =
∥∥∥α (a1, b2)T + β (b1, a2)T

∥∥∥+
∥∥∥γ (a1, b2)T + δ (b1, a2)T

∥∥∥
≤ α

∥∥∥(a1, b2)T
∥∥∥+ β

∥∥∥(b1, a2)T
∥∥∥+ γ

∥∥∥(a1, b2)T
∥∥∥+ δ

∥∥∥(b1, a2)T
∥∥∥

=
∥∥∥(a1, b2)T

∥∥∥+
∥∥∥(b1, a2)T

∥∥∥ .
�

58



CHAPTER 5. APPLICATIONS

Usually we restrict ourselves to EVD with negative exponential margins. In this

case a necessary and sufficient condition is that the norm is between the sum and

the maximum norm as proved by Falk (2006, [12]). Using the results from above

we can give an alternative proof.

Corollary 5.1.6. Take an arbitrary norm ‖·‖ on R2. Then

G (x) := exp (−‖x‖) , x ≤ 0

defines a bivariate distribution function with negative exponential margins if and

only if the norm satisfies for every 0 ≤ x ∈ Rd

‖x‖∞ ≤ ‖x‖ ≤ ‖x‖1 . (5.1)

Proof. According to Lemma 5.1.5 the norm is monotone if G is a bivariate

distribution function. Since all margins are negative exponential the norm must

be standardized and therefore Lemma 5.1.3 implies the if-part.

On the other hand from condition (5.1) we get by Lemma 5.1.3 that the norm

is monotone and standardized. From the monotonicity we conclude with Lemma

5.1.5 that G is a distribution function. Since the norm is standardized we obtain

with the homogeneity of the norm that G has negative exponential margins.

�

5.2. The Pickands dependence function

Now we investigate the Pickands dependence function. We start with a convex

function and give a necessary and sufficient condition such that we can define

a norm with that function. After that we can use our Main Theorem to estab-

lish a necessary and sufficient condition for a convex function to be a Pickands

dependence function.

Lemma 5.2.1. Let D : Rd−1 → (0,∞) be a convex function, where

Rd :=

{
(t1, . . . , td) ∈ [0, 1]d :

∑
j≤d

tj ≤ 1

}
.

Put for x ∈ Rd, x 6= 0

‖x‖D := ‖x‖1D

(
|x1|∑
j≤d |xj|

, . . . ,
|xd−1|∑
j≤d |xj|

)
(5.2)
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and ‖0‖ = 0, where ‖x‖1 =
∑

j≤d |xj| denotes the usual L1-norm in Rd. Then

‖x‖D defines a norm on Rd iff for 0 ≤ x ≤ y, x 6= 0 we have

D

(
x1∑
j≤d xj

, . . . ,
xd−1∑
j≤d xj

)
≤
∑

j≤d yj∑
j≤d xj

D

(
y1∑
j≤d yj

, . . . ,
yd−1∑
j≤d yj

)
. (5.3)

Proof. First assume that (5.3) holds. We have, obviously, ‖λx‖D = |λ| ‖x‖D,

λ ∈ R, as well as ‖x‖D ≥ 0 and ‖x‖D = 0 ⇐⇒ x = 0. The triangle inequality

follows from the convexity of D, the triangle inequality of the absolute value and

equation (5.3):

‖x + y‖D

= ‖x + y‖1D

(
|x1 + y1|∑

j≤d(|xj + yj|)
, . . . ,

|xd−1 + yd−1|∑
j≤d(|xj + yj|)

)

≤(5.3) (‖x‖1 + ‖y‖1)D

(
|x1|+ |y1|∑

j≤d(|xj|+ |yj|)
, . . . ,

|xd−1|+ |yd−1|∑
j≤d(|xj|+ |yj|)

)

= (‖x‖1 + ‖y‖1)D

( ∑
j≤d |xj|∑

j≤d(|xj|+ |yj|)

(
|x1|∑
j≤d |xj|

, . . . ,
|xd−1|∑
j≤d |xj|

)

+

∑
j≤d |yj|∑

j≤d(|xj|+ |yj|)

(
|y1|∑
j≤d |yj|

, . . . ,
|yd−1|∑
j≤d |yj|

))

≤ (‖x‖1 + ‖y‖1)

( ∑
j≤d |xj|∑

j≤d(|xj|+ |yj|)
D

(
|x1|∑
j≤d |xj|

, . . . ,
|xd−1|∑
j≤d |xj|

)

+

∑
j≤d |yj|∑

j≤d(|xj|+ |yj|)
D

(
|y1|∑
j≤d |yj|

, . . . ,
|yd−1|∑
j≤d |yj|

))
= ‖x‖D + ‖y‖D .

So we have established the if-part.

Now assume that (5.2) defines a norm on Rd. It is sufficient to prove equation

(5.3) for 0 ≤ x ≤ y, where x and y differ only in the k-th component, i.e. xi = yi,

1 ≤ i ≤ d and i 6= k. By iterating this step with every component one gets the

general equation.

Set ỹ := y− 2ykek. The vector ỹ differs from y only in the k-th component and

the absolute value of this component is equal. Therefore ‖y‖D = ‖ỹ‖D and with
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the convexity of the D-norm we obtain

D

(
x1∑
j≤d xj

, . . . ,
xd−1∑
j≤d xj

)
=

1

‖x‖1

‖x‖D

=
1

‖x‖1

∥∥∥∥xk + yk
2yk

y +
yk − xk

2yk
ỹ

∥∥∥∥
D

≤ 1

‖x‖1

(
xk + yk

2yk
‖y‖D +

yk − xk
2yk

‖ỹ‖D
)

=
1

‖x‖1

‖y‖D

=

∑
j≤d yj∑
j≤d xj

D

(
y1∑
j≤d yj

, . . . ,
yd−1∑
j≤d yj

)
.

�

Theorem 5.2.2. Let D be a positive and convex function on Rd−1. Then D is a

Pickands dependence function, i.e.

G(x) := exp

((∑
j≤d

xj

)
D

(
x1∑
j≤d xj

, . . . ,
xd−1∑
j≤d xj

))
, x ≤ 0,

defines a d-dimensional EVD with standard exponential margins,

if and only if

∑
m∈{0,1}d
mj=1,j∈E

[
(−1)d+1−

∑
j≤dmj

(∑
j≤d

(
−ymjj x

1−mj
j

))

D

 ym1
1 x1−m1

1∑
j≤d

(
y
mj
j x

1−mj
j

) , . . . , y
md−1

d−1 x
1−md−1

d−1∑
j≤d

(
y
mj
j x

1−mj
j

)
 ≥ 0 (5.4)

for any x ≤ y ≤ 0 and any subset E ⊂ {1, . . . , d}, E 6= {1, . . . , d} and D satisfies

D(ẽi) = D(0) = 1, i ≤ d, where ẽi denotes the i-th unit vector in Rd−1.

Proof. Condition (5.4) implies condition (5.3) from Lemma 5.2.1 in the follow-

ing way.

For any m ∈ {1, . . . , d} we use condition (5.4) with E = {1, . . . , d} \ {m} on the
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vectors
∑m

i=1 xiei +
∑d

i=m+1 yiei and
∑m−1

i=1 xiei +
∑d

i=m yiei. Thus we obtain

with αm :=
∑m−1

i=1 xi +
∑d

i=m yi

− (−αm)D

(
x1

αm
, . . . ,

xm−1

αm
,
ym
αm

, . . . ,
yd−1

αm

)
+ (−αm+1)D

(
x1

αm+1

, . . . ,
xm
αm+1

,
ym+1

αm+1

, . . . ,
yd−1

αm+1

)
≥ 0.

Furthermore set τm := D
(
x1

αm
, . . . , xm−1

αm
, ym
αm
, . . . , yd

αm

)
. Summation over m from

1 to d yields

0 ≤
d∑

m=1

αmτm − αm+1τm+1︸ ︷︷ ︸
≥0


=

d∑
m=1

αmτm −
d∑

m=1

αm+1τm+1

=
d∑

m=1

αmτm −
d+1∑
m=2

αmτm

= α1τ1 − αd+1τd+1

=

(
d∑
j=1

yj

)
D

(
y1∑d
j=1 yj

, ...,
yd−1∑d
j=1 yj

)
−

(
d∑
j=1

xj

)
D

(
x1∑d
j=1 xj

, ...,
xd−1∑d
j=1 xj

)

⇔D

(
x1∑d
j=1 xj

, . . . ,
xd−1∑d
j=1 xj

)
≤
∑d

j=1 yj∑d
j=1 xj

D

(
y1∑d
j=1 yj

, . . . ,
yd−1∑d
j=1 yj

)
.

Hence we can define with D a norm as described in Lemma 5.2.1. Using the

definition of the D-norm we get

0 ≤
∑

m∈{0,1}d
mj=1,j∈E

[
(−1)d+1−

∑
j≤dmj

(∑
j≤d

(
−ymjj x

1−mj
j

))

D

 ym1
1 x1−m1

1∑
j≤d

(
y
mj
j x

1−mj
j

) , . . . , y
md−1

d−1 x
1−md−1

d−1∑
j≤d

(
y
mj
j x

1−mj
j

)
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=
∑

m∈{0,1}d
mj=1,j∈E

[
(−1)d+1−

∑
j≤dmj

∥∥∥∥(ym1
1 x1−m1

1 , . . . , y
md−1

d−1 x
1−md−1

d−1

)T∥∥∥∥
D

]
.

By applying the Main Theorem 3.1.1 we get the assertion.

�

The considerations from this and the preceding section can be utilized to char-

acterize a Pickands dependence function in the bivariate case.

Theorem 5.2.3. Consider an arbitrary function D : [0, 1] → (0,∞) and put

‖(x, y)‖D := (|x|+ |y|)D (|x| /(|x|+ |y|) for x, y ∈ R with the convention ‖0‖D =

0. Then the following statements are equivalent.

(i) ‖·‖D is a monotone and standardized norm.

(ii) ‖·‖D is a norm that satisfies ‖x‖∞ ≤ ‖x‖D ≤ ‖x‖1, 0 ≤ x.

(iii) G(x, y) := exp ((x+ y)D(x/(x+ y))), x, y ≤ 0, defines a bivariate EVD

with standard reverse exponential margins.

(iv) The function D is convex and satisfies max(t, 1 − t) ≤ D(t) ≤ 1, t ∈
[0, 1].

(v) The function D is convex and satisfies ‖x‖D ≤ ‖y‖D for 0 ≤ x ≤ y as

well as D(0) = D(1) = 1.

Proof. The equivalence of (i), (ii) and (iii) is a consequence of Lemma 5.1.3 and

Lemma 5.1.5. Next we show that (ii) and (iv) are equivalent. Suppose condition

(ii) holds and choose λ, t1, t2 ∈ [0, 1]. The triangle inequality implies

D(λt1 + (1− λ)t2) = ‖λ(t1, 1− t1) + (1− λ)(t2, 1− t2)‖D
≤ λ ‖(t1, 1− t1)‖D + (1− λ) ‖(t2, 1− t2)‖D
= λD(t1) + (1− λ)D(t2),

i.e., D is a convex function. Moreover we have for t ∈ [0, 1]

max(t, 1− t) = ‖(t, 1− t)‖∞ ≤ ‖(t, 1− t)‖D = D(t) ≤ ‖(t, 1− t)‖1 = 1,

which is (iv).

In what follows we show that (iv) implies (ii). The inequalities ‖x‖∞ ≤ ‖x‖D ≤
‖x‖1, 0 ≤ x = (x, y), are obvious by putting t = x/(x + y) in (iv). We also

obtain D(t) ≥ 1/2, t ∈ [0, 1], and, thus, ‖x‖D = 0 if and only if x = 0 as well as
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‖λx‖D = |λ| ‖x‖D, λ ∈ R, x ∈ Rd. The triangular inequality will follow from the

subsequent considerations. The inequality max(t, 1 − t) ≤ D(t) ≤ 1, t ∈ [0, 1],

implies for a, b ≥ 0, a+ b > 0,

D

(
a

a+ b

)
≥ b

a+ b
=

b

a+ b
D(0) =

b

a+ b
D(1)

as well as

D

(
a

a+ b

)
≥ a

a+ b
=

a

a+ b
D(0) =

a

a+ b
D(1).

Hence we obtain for 0 ≤ (x1, x2) ≤ (y1, y2) with x1 + x2 > 0, yi > 0, i = 1, 2,

D

(
x1

x1 + y2

)
= D

((
(y1 − x1)y2

y1(x1 + y2)

)
· 0 +

(
(y1 + y2)x1

y1(x1 + y2)

)
y1

y1 + y2

)
≤ (y1 − x1)y2

y1(x1 + y2)
D(0) +

(y1 + y2)x1

y1(x1 + y2)
D

(
y1

y1 + y2

)
≤ (y1 − x1)(y1 + y2)

y1(x1 + y2)
D

(
y1

y1 + y2

)
+

(y1 + y2)x1

y1(x1 + y2)
D

(
y1

y1 + y2

)
=
y1 + y2

x1 + y2

D

(
y1

y1 + y2

)
.

Summarizing the preceding inequalities we obtain

D

(
x1

x1 + x2

)
= D

((
(y2 − x2)x1

y2(x1 + x2)

)
· 1 +

(
(x1 + y2)x2

y2(x1 + x2)

)
x1

x1 + y2

)
≤ y2 − x2

y2(x1 + x2)
x1D(1) +

x2

y2

x1 + y2

x1 + x2

D

(
x1

x1 + y2

)
≤ y2 − x2

y2(x1 + x2)
y1D(1) +

x2

y2

y1 + y2

x1 + x2

D

(
y1

y1 + y2

)
≤ y2 − x2

y2

y1 + y2

x1 + x2

D

(
y1

y1 + y2

)
+
x2

y2

y1 + y2

x1 + x2

D

(
y1

y1 + y2

)
=
y1 + y2

x1 + x2

D

(
y1

y1 + y2

)
.

The monotonicity ‖x‖D ≤ ‖y‖D, 0 ≤ x ≤ y, established above together with the

convexity of D implies that ‖·‖D satisfies the triangular inequality for arbitrary

x,y ∈ R2:

‖x + y‖D

= (|x1 + y1|+ |x2 + y2|)D
(

|x1 + y1|
|x1 + y1|+ |x2 + y2|

)
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= ‖(|x1 + y1| , |x2 + y2|)‖D
≤ ‖(|x1|+ |y1| , |x2|+ |y2|)‖D
= (|x1|+ |x2|+ |y1|+ |y2|)

×D
(

|x1|+ |x2|
|x1|+ |x2|+ |y1|+ |y2|

|x1|
|x1|+ |x2|

+
|y1|+ |y2|

|x1|+ |x2|+ |y1|+ |y2|
|y1|

|y1|+ |y2|

)
≤ (|x1|+ |x2|)D

(
|x1|

|x1|+ |x2|

)
+ (|y1|+ |y2|)D

(
|y1|

|y1|+ |y2|

)
= ‖x‖D + ‖y‖D .

Next we show that (iv) and (v) are equivalent. Suppose condition (iv) is valid.

Then, obviously, D(0) = D(1) = 1. The monotonicity of ‖·‖D was established in

the proof of the implication (iv) =⇒ (ii). Therefore it remains to show that (v)

implies (iv). The convexity of D implies

D(t) = D((1− t) · 0 + t · 1) ≤ (1− t)D(0) + tD(1) = t, t ∈ [0, 1].

The monotonicity of ‖·‖D implies

(x1 + x2)D

(
x1

x1 + x2

)
≤ (y1 + y2)D

(
y1

y1 + y2

)
, 0 ≤ x ≤ y.

Choosing x1 ∈ [0, 1] and putting x2 = 0, y1 = x1, y2 = 1 − x1, we obtain from

the above inequality

x1D(1) = x1 ≤ D(x1).

Choosing x2 ∈ [0, 1] and putting x1 = 0, y1 = 1− x2, y2 = x2, we obtain

x2D(0) = x2 ≤ D

(
1− y2

y1 + y2

)
= D(1− x2),

i.e. we have established (iv).

�
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5.3. Nested Logistic Model

The nested logistic model is a nonexchangeable model, i.e. for any permutation

(i1, . . . , id) of (1, . . . , d) the distributions of (X1, . . . , Xd) and (Xi1 , . . . , Xid) don’t

coincide. It was first described in Section 3 of Joe (1994, [24]) and is derived from

the logistic model in a recursive way. In each recursion step a lower dimensional

nested logistic model is nested in a bivariate logistic model. Joe gives only a suf-

ficient condition for the logistic models to obtain a distribution function, namely

that the parameter from the bivariate logistic model in the recursion step is not

greater than any parameters used in the preceding recursion steps. In the next

lemma we also give the proof that this condition is necessary by finding vectors

for which the condition of the Main Theorem 3.1.1 is not fulfilled. Regarding

dimension 3 we see that similar to the situation in Theorem 2.2.2 that the sum in

the condition of the Main Theorem must get arbitrary small as one parameters

tends to be equal to the other one since in the case of equality we are in the

logistic model.

Lemma 5.3.1. For λ1, . . . , λd−1 ≥ 1 we define recursive a norm in Rd, d ≥ 3, by∥∥∥(x1, . . . , xd)
T
∥∥∥
λ1,...,λd−1

:=

∥∥∥∥∥
(∥∥∥(x1, . . . , xd−1)T

∥∥∥
λ1,...,λd−2

, |xd|
)T∥∥∥∥∥

λd−1

,

where ‖·‖λ is the usual λ-norm.

Then

F (x) := exp
(
−‖x‖λ1,...,λd−1

)
, x ≤ 0

is a distribution function (and hence an extreme value distribution function) if

and only if it is

λ1 ≥ λ2 ≥ · · · ≥ λd−1 ≥ 1.

Proof. The recursive definition of the norm as stated above yields really a

norm. A prove is given in Lemma 2.22 in Hofmann (2006, [22]). More details

concerning the nesting of norms are given in the remark following this proof.

In Section 5 of Joe (1994, [24]) the sufficiency of the condition is proved by

showing that the density function is nonnegative. But the results in this paper

are not expressed in terms of norms.

We proof now the necessity.

First let d = 3 and λ1 < λ2.
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We consider the two points ax = (0, 0, 1− x)T and bx =
(
x

1
λ2 , x

1
λ2 , 1

)T
, x ∈ [0, 1].

Define for x ∈ [0, 1]

s (x) := −
∥∥∥(0, 0, 1− x)T

∥∥∥
λ1,λ2

+

∥∥∥∥(x 1
λ2 , 0, 1− x

)T∥∥∥∥
λ1,λ2

+

∥∥∥∥(0, x
1
λ2 , 1− x

)T∥∥∥∥
λ1,λ2

+
∥∥∥(0, 0, 1)T

∥∥∥
λ1,λ2

−
∥∥∥∥(0, x

1
λ2 , 1

)T∥∥∥∥
λ1,λ2

−
∥∥∥∥(x 1

λ2 , 0, 1
)T∥∥∥∥

λ1,λ2

−
∥∥∥∥(x 1

λ2 , x
1
λ2 , 1− x

)T∥∥∥∥
λ1,λ2

+

∥∥∥∥(x 1
λ2 , x

1
λ2 , 1

)T∥∥∥∥
λ1,λ2

=
(

1 + 2
λ2
λ1 x
) 1
λ2

+ 2
(
(1− x)λ2 + x

) 1
λ2 + 1

− 2 (1 + x)
1
λ2 −

(
(1− x)λ2 + 2

λ2
λ1 x
) 1
λ2 − (1− x).

The evaluation of the function in zero shows s (0) = 0. On the interval (0, 1) the

function is infinitely often continuous differentiable and we obtain for x ∈ (0, 1)

s′(x) = 1 +
1

λ2

(
−2 (1 + x)

1−λ2
λ2 + 2

λ2
λ1

(
1 + 2

λ2
λ1 x
) 1−λ2

λ2

+2
(

(1− x)λ2 + x
) 1−λ2

λ2

(
1− (1− x)λ2−1 λ2

)
−
(

(1− x)λ2 + 2
λ2
λ1 x
) 1−λ2

λ2
(

2
λ2
λ1 − (1− x)λ2−1 λ2

))
and hence it is limx↓0 s

′ (x) = 0.

Furthermore we obtain for x ∈ (0, 1):

s′′(x) = −(1− x)−2+λ2

(
(1− x)λ2 + 2

λ2
λ1 x
)
−1+ 1

λ2 (−1 + λ2)

−
2(1 + x)

−2+ 1
λ2

(
−1 + 1

λ2

)
λ2

+
2

2λ2
λ1

(
1 + 2

λ2
λ1 x
)
−2+ 1

λ2

(
−1 + 1

λ2

)
λ2

− 1

λ2

(
(1− x)λ2 + 2

λ2
λ1 x
)
−2+ 1

λ2

(
−1 +

1

λ2

)(
2
λ2
λ1 − (1− x)−1+λ2λ2

)
2

+ 2

(
(1− x)−2+λ2

(
(1− x)λ2 + x

) −1+ 1
λ2 (−1 + λ2) +
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1

λ2

(
(1− x)λ2 + x

) −2+ 1
λ2

(
−1 +

1

λ2

)(
1− (1− x)−1+λ2λ2

)
2

)
.

Consequently

lim
x↓0

s′′(x) = 2
λ2 − 1

λ2

(
2− 2

λ2
λ1

)
=: c < 0,

i.e. for ε3 := − c
2

exists a δ3 > 0 that for all x ∈ (0, δ3] it is s′′(x) ∈
[

3c
2
, c

2

]
.

Because s is a continuous function (as a composition of continuous functions),

there exists for ε1 := −c δ
2
3

256
a δ1 > 0 such that for all x ∈ (0, δ1] it is s(x) ∈

[−ε1, ε1].

For the first derivative we showed that limx↓0 s
′(x) = 0, i.e. for ε2 := −c δ3

256
there

exists a δ2 > 0 such that for all x ∈ (0, δ2] it is s′(x) ∈ [−ε2, ε2].

Now we set δ := min
(
δ1, δ2,

3δ3
4

)
. We make a Taylor’s expansion in the point δ3

around the point δ and obtain with ξ ∈ [δ, δ3]

s (δ3) = s (δ) + (δ3 − δ) s′ (δ) +
1

2
(δ3 − δ)2 s′′ (ξ)

≤ ε1 + (δ3 − δ)︸ ︷︷ ︸
≤δ3

ε2 +
1

2
(δ3 − δ)2 c

2

≤ −c δ
2
3

256
− δ3c

δ3

256
+

1

4

(
δ3

4

)2

c

= −cδ2
3

(
1

256
+

1

256
− 1

64

)
= cδ2

3

1

128

< 0.

Hence there exists an x ∈ [0, 1] with s (x) < 0. But according to the Main Theo-

rem 3.1.1 this is a necessary condition to the norm and thus for d = 3 and λ1 < λ2

the recursive defined norm does not yield a distribution function.

Now regard the case of arbitrary dimension d > 3.

Using the case from above we obtain that for the trivariate marginal distribution

of the i, j, k component, 1 ≤ i < j < k ≤ d−1, it is necessary that λi ≥ λj ≥ λk.

Hence we obtain that it is necessary that λ1 ≥ · · · ≥ λd−2 ≥ λd−1 ≥ 1.

�
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Remark 5.3.2. Nesting of norms can be done in more ways than in the nested

logistic model. For a monotone norm ‖·‖o on the Rk and for i ∈ {1, . . . , k} let

‖·‖i be a norm on the Rdi with di ∈ N\ {0} and d =
∑d

i=1 di. Then∥∥∥(x1, . . . , xd)
T
∥∥∥ :=∥∥∥∥∥

(∥∥∥(x1, ..., xd1)
T
∥∥∥
d1
,
∥∥∥(xd1+1, ..., xd1+d2)

T
∥∥∥
d2
, ...,

∥∥∥(xd−dk+1, ..., xd)
T
∥∥∥
dk

)T∥∥∥∥∥
o

is a norm on Rd (see Lemma 2.22 in Hofmann (2006, [22])).

The example of the nested logistic model shows that nesting norms that fulfill

the condition of the Main Theorem 3.1.1 does not necessarily yield a norm that

fulfills also this condition too.

The λ-norms are natural candidates for nesting due to their simplicity and pub-

licity and therefore we restrict ourselves to them. In dimension 3 there is no other

possibility than the usual nested logistic model. In the 4th dimension however

there is a further possibility, namely∥∥∥(x1, x2, x3, x4)T
∥∥∥ :=

∥∥∥∥∥
(∥∥∥(x1, x2)T

∥∥∥
λ1

,
∥∥∥(x3, x4)T

∥∥∥
λ2

)T∥∥∥∥∥
λ3

,

with λ1, λ2, λ3 ≥ 1.

Looking at the 3 dimensional margins we obtain the necessary condition λ1 ≥ λ3

and λ2 ≥ λ3. By regarding the possible density of the possible EVD we see that

λ1 ≥ λ3 and λ2 ≥ λ3 is also a sufficient condition.

We close this section with the calculation of the density of the GPD of nested

logistic type in dimension 3, because this result will be necessary in Chapter 7.

Since there is no general formula for the density in arbitrary dimension we restrict

ourselves to dimension 3.

Lemma 5.3.3. The GPD of the nested logistic model in dimension 3 with param-

eters λ1 ≥ λ2 ≥ 1 has density

wλ1,λ2 (x1, x2, x3) =

(λ2 − 1) (−x1)λ1−1 (−x2)λ1−1 (−x3)λ2−1

(
(−x1)λ1 + (−x2)λ1

)λ2
λ1
−2
((

(−x1)λ1 + (−x2)λ1

)λ2
λ1 +(−x3)λ2

) 1
λ2
−3
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5.4. THE A-NORM(
(−x3)λ2 (λ1 − λ2) +

(
(−x1)λ1 + (−x2)λ1

)λ2
λ1 (λ1 + λ2 − 1)

)

Proof. We have

wλ1,λ2 (x1, x2, x3) =
∂3

∂x1∂x2∂x3

(
1− ‖x1, x2, x3‖λ1,λ2

)
.

Straightforward computation yields the result.

�

5.4. The A-Norm

In this section we will obtain a D-Norm from another D-Norm by multiplying

the vector with a certain Matrix A and taking the norm of that vector. The Main

Theorem 3.1.1 yields an sufficient condition for A.

Definition and Theorem 5.4.1. Let ‖·‖ be a standardized norm on Rd that

fulfills the condition of the Main Theorem (3.1.1) and let A = (ai,j) ∈ Rd×d a

regular matrix with only nonnegative entries.

With

Ã := (ãi,j) :=


a1,1

‖Ae1‖ , . . . ,
a1,d

‖Aed‖
...

. . .
...

ad,1
‖Ae1‖ , . . . ,

ad,d
‖Aed‖


we define a new norm

‖x‖A :=
∥∥∥Ãx

∥∥∥
and for this norm

G (x) := exp (−‖x‖A) , x ≤ 0

defines a multivariate extreme value distribution function with negative exponen-

tial margins.

Proof. It is easy to check that ‖·‖A defines a norm . Of course ‖·‖A is nonnega-

tive and since A is regular Ã is also regular (since det Ã =
∏d

i=1
1

‖Aei‖ det A 6= 0,

see Harville (1997, [21]) Lemma 13.2.2) and therefore ‖x‖A = 0⇔ x = 0.
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Furthermore we have for λ ∈ R

‖λx‖A =
∥∥∥Ã (λx)

∥∥∥
=
∥∥∥λÃx

∥∥∥
= |λ|

∥∥∥Ãx
∥∥∥

= |λ| ‖x‖A

and therefore we obtain the homogeneity.

Finally we show the triangle inequality, i.e. for x,y ∈ Rd we have

‖x + y‖A =
∥∥∥Ã (x + y)

∥∥∥
=
∥∥∥Ãx + Ãy

∥∥∥
≤
∥∥∥Ãx

∥∥∥+
∥∥∥Ãy

∥∥∥
= ‖x‖A + ‖y‖A .

Thus ‖·‖A really defines a norm.

For 0 ≤ x ≤ y ∈ Rd we have

x̃ := Ãx =

(
d∑
i=1

(
d∑
j=1

ãi,jxj

)
ei

)
≤

(
d∑
i=1

(
d∑
j=1

ãi,jyj

)
ei

)
= Ãy =: ỹ.

From the definition of ‖·‖A we see that ‖x‖A = ‖x̃‖ and ‖y‖A = ‖ỹ‖. Since

‖·‖ fulfills condition (3.2) from the Main Theorem 3.1.1 we have for every K (
{1, . . . , d}

0 ≤
∑

m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥(ỹm1
1 x̃1−m1

1 , . . . , ỹmdd x̃1−md
d

)∥∥
=

∑
m∈{0,1}d
mi=1,i∈K

(−1)d+1−
∑
j≤dmj

∥∥(ym1
1 x1−m1

1 , . . . , ymdd x1−md
d

)∥∥
A
.

We can see that the norm ‖·‖A fulfills condition (3.2) from the Main Theorem

3.1.1 and therefore G (x) := exp (−‖x‖A) ,x ≤ 0 defines a distribution function.

The matrix Ã is constructed in a way such that the norm is standardized, because

we have

‖ei‖A =
∥∥∥Ãei

∥∥∥
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=

∥∥∥∥∥
d∑
j=1

ãj,iej

∥∥∥∥∥
=

∥∥∥∥∥ 1

‖Aei‖

d∑
j=1

aj,iej

∥∥∥∥∥
=

1

‖Aei‖
‖Aei‖

= 1

Therefore the margins are negative exponential.

�

Remark 5.4.2. If not all entries of the matrix A are nonnegative no conclusion

can be drawn. For instance, set d = 2, ‖x‖ = ‖x‖5 =
(
|x1|5 + |x2|5

) 1
5 . Then for

A :=

(
1√
2
, − 1√

2
1√
2
, 1√

2

)

we can define an extreme value distribution with the norm ‖·‖A and for

B :=

(√
3

2
, −1

2
1
2
,

√
3

2

)
we can not define an extreme value distribution with the norm ‖·‖B.

Without loss of generalization we assume that x1 ≥ x2 ≥ 0. Then we have

Ã =

(
1
5√2
, − 1

5√2
1
5√2
, 1

5√2

)

and thus for x := (x1, x2)T

‖x‖A =
∥∥∥Ãx

∥∥∥
=

5

√
1

2

(
(x1 − x2)5 + (x1 + x2)5)

=
5

√
1

2
(2x5

1 + 20x3
1x

3
2 + 10x1x4

2)

≥ 5

√
x5

1
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= x1

= max (x1, x2)

= ‖x‖∞ .

Since the norm ‖·‖A is constructed in a way such that it is standardized, the

norm ‖·‖A is embedded between the sum and the maximum norm. By Corollary

5.1.6 we can define an extreme value distribution function with this norm.

We have

B̃ =


√

3

(1+9
√

3)
1/5 − 1

(−1+9
√

3)
1/5

1

(1+9
√

3)
1/5

√
3

(−1+9
√

3)
1/5


and thus

‖e1‖B = 1

>
(( √

3

5(−1+9
√

3)1/5
+ 1

1+9
√

3
1/5

)5

+

( √
3

(1+9
√

3)1/5
− 1

5(−1+9
√

3)1/5

)5
)1/5

= ‖e1 + 0.2e2‖B
≈ 0.95.

Therefore ‖·‖B is not monotone and by Lemma 5.1.5 we can not define a distri-

bution function with the norm ‖·‖B.

Figure 5.2. The unit sphere of the norm ‖·‖3

73



5.4. THE A-NORM

Note that A is a rotation matrix with angle α = 45◦ and B is a rotation matrix

with angle α = 30◦. Figures 5.2, 5.3 and 5.4 show the unit spheres of these norms.

Figure 5.3. The unit sphere of the norm ‖·‖A

Figure 5.4. The unit sphere of the norm ‖·‖B
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5.5. The Generalized Pareto Function of generalized asymmetric type

The family of asymmetric logistic distributions was first introduced in Tawn

(1990, [42]) for the extreme value case and in Michel (2006, [26]) for the general-

ized pareto distributions. We now give a generalization of these models that is a

little bit more readable though the side conditions to obtain the usual asymmetric

logistic distributions are not easy to write down.

Definition and Theorem 5.5.1. For n ∈ N choose n norms on Rd

‖·‖{1} , . . . , ‖·‖{n} that each fulfill condition (3.2) of the Main Theorem 3.1.1.

Let 0 ≤ ψi,j for i = 1, . . . , n and j = 1, . . . , d with
∑n

i=1 ψi,j = 1 for every

j = 1, . . . , d.

Then

‖x1, . . . , xd‖ :=
n∑
i=1

‖ψi,1x1, . . . , ψi,dxd‖{i}

defines a norm that we call generalized asymmetric norm on Rd and

G (x1, . . . , xd) := exp (−‖x1, . . . , xd‖)

defines an EVD that is called the generalized asymmetric distribution. Further-

more

W (x1, . . . , xd) := 1− ‖x1, . . . , xd‖

defines a GPF that is called the generalized Pareto function of generalized

asymmetric type.

Proof. We first verify that we have obtained a norm and thus we check the

norm conditions.

As a sum of norms the new norm is nonnegative. It is zero iff every summand is

zero and because every summand is a norm this is the case iff ψi,jxj = 0. The

side condition
∑n

i=1 ψi,j = 1 then implies that this is the case iff xj = 0.

The homogeneity follows directly from the homogeneity of the original norms.
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We have

‖λx1, . . . , λxd‖ =
n∑
i=1

‖ψi,1λx1, . . . , ψi,dλxd‖{i}

=
n∑
i=1

|λ| ‖ψi,1x1, . . . , ψi,dxd‖{i}

= |λ|
n∑
i=1

‖ψi,1x1, . . . , ψi,dxd‖{i}

= |λ| ‖λx1, . . . , λxd‖ .

Finally we prove the triangle equation.

‖x1 + y1, . . . , xd + yd‖

=
n∑
i=1

‖ψi,1 (x1 + y1) , . . . , ψi,d (xd + yd)‖{i}

≤
n∑
i=1

(
‖ψi,1x1, . . . , ψi,dxd‖{i} + ‖ψi,1y1, . . . , ψi,dyd‖{i}

)
= ‖x1, . . . , xd‖+ ‖y1, . . . , yd‖ .

So we have really defined a new norm.

Now we check the condition of the Main Theorem 3.1.1.

For any two vectors x,y ∈ (−∞, 0]d with x ≤ y and any subset E ( {1, . . . , d}
we have∑
m∈{0,1}d
mj=1,j∈E

(−1)d+1−
∑d
j=1mj

∥∥ym1
1 x1−m1

1 , ..., ymdd x1−md
d

∥∥
=

∑
m∈{0,1}d
mj=1,j∈E

(−1)d+1−
∑d
j=1mj

n∑
i=1

∥∥ψi,1ym1
1 x1−m1

1 , ..., ψi,dy
md
d x1−md

d

∥∥
{i}

=
n∑
i=1

∑
m∈{0,1}d
mj=1,j∈E

(−1)d+1−
∑d
j=1mj

∥∥(ψi,1y1)m1 (ψi,1x1)1−m1, ..., (ψi,dyd)
md (ψi,dxd)

1−md
∥∥
{i}

︸ ︷︷ ︸
≥0, since ‖·‖{i} fulfills the condition of the Main Theorem

≥ 0.
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With our new norm we can define an EVD and therefore also a GPD.

�

Remark 5.5.2. As already indicated by its name the asymmetric logistic distri-

bution is a special case of the generalized asymmetric distribution. Set n = 2d−d
and the first norm as the sum-norm. All other norms are chosen to be λ-norms

and some coefficient has to be zero. For the case of d = 2 no more condition

is needed. We obtain the trivariate asymmetric logistic distribution by putting

ψ2,3 = 0, ψ3,2 = 0, ψ4,1 = 0.

In contrary to the original asymmetric logistic distribution the generalization is

no longer parameterizable due to the nonparametrizability of the n norms. In

the following we will overcome this by restricting ourselves to λ-norms.

Lemma 5.5.3. Let ‖·‖ be a generalized asymmetric norm as defined in Definition

5.5.1 with the n norms chosen to be λ-norms, i.e. for λi ≥ 1, i = 1, . . . , n, it is

‖·‖{i} = ‖·‖λi and let W be the corresponding generalized Pareto function. Then

W has the density w given by

w (x1, . . . , xd)

=
n∑
i=1

d∏
j=1

ψi,j

d−1∏
j=1

(jλi − 1)
d∏
j=1

(−ψi,jxj)λi−1
∥∥∥(ψi,1x1, . . . , ψi,dxd)

T
∥∥∥1−dλi

λi
,

x < 0 and close to the origin.

Proof. We know from Lemma 2.3.6 in Michel (2006, [26]) that the generalized

Pareto distribution of logistic type Wλ has the density

wλ (x1, ..., xd) :=
∂d

∂x1 . . . ∂xd
Wλ (x1, ..., xd)

=
d−1∏
i=1

(iλ− 1)
d∏
i=1

(−xi)λ−1 ‖x‖1−dλ
λ .

So we obtain

w (x1, ..., xd)

:=
∂d

∂x1 . . . ∂xd
W (x1, ..., xd)
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=
∂d

∂x1 . . . ∂xd
(1− ‖x‖)

=
∂d

∂x1 . . . ∂xd

(
1−

n∑
i=1

‖ψi,1x1, ..., ψi,dxd‖λi

)

=
∂d

∂x1 . . . ∂xd

(
(1− n) +

n∑
i=1

(
1− ‖ψi,1x1, ..., ψi,dxd‖λi

))

=
∂d

∂x1 . . . ∂xd

(
(1− n) +

n∑
i=1

Wλi (ψi,1x1, ..., ψi,dxd)

)

=
n∑
i=1

(
d∏
j=1

ψi,j

)
wλi (ψi,1x1, ..., ψi,dxd)

=
n∑
i=1

(
d∏
j=1

ψi,j

d−1∏
j=1

(jλi − 1)
d∏
j=1

(−ψi,jxj)λi−1
∥∥∥(ψi,1x1, ..., ψi,dxd)

T
∥∥∥1−dλi

λi

)
.

�

Lemma 5.5.4. Under the same conditions as in Lemma 5.5.3, the Pickands den-

sity is given by

φ (z1, . . . , zd−1) =
n∑
i=1

(
d∏
j=1

ψi,j

d−1∏
j=1

(jλi − 1)

d−1∏
j=1

(ψi,jzj)
λi−1

(
ψi,d

(
1−

d−1∑
k=1

zk

))λi−1

∥∥∥∥∥ψi,1z1, . . . , ψi,d−1zd−1, ψi,d

(
1−

d−1∑
k=1

zk

)∥∥∥∥∥
−dλi+1

λi

 .

Proof. Remind the definition of the Pickands density φ given in Definition

2.2.4, i.e.

φ (z1, . . . , zd−1) = |c|d−1w
(
T−1
P (z1, . . . , zd−1, c)

)
,

where T−1
P (z1, . . . , dd−1, c) := c

(
z1, . . . , zd−1, 1−

∑d−1
i=1 zi

)T
, 0 ≤ zi,

∑d−1
i=1 zi ≤ 1,

is the inverse of the transformation to standard Pickands coordinates. Then we
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obtain

φ (z1, . . . , zd−1)

= |c|d−1w
(
T−1
P (z1, . . . , zd−1, c)

)
= |c|d−1

n∑
i=1

[
d∏
j=1

ψi,j

d−1∏
j=1

(jλi − 1)

d−1∏
j=1

(−cψi,jzj)λi−1

(
−cψi,d

(
1−

d−1∑
j=1

zj

))λi−1

∥∥∥∥∥∥
(
cψi,1z1, . . . , cψi,d−1zd−1, cψi,d

(
1−

d−1∑
j=1

zj

))T
∥∥∥∥∥∥

1−dλi

λi


= |c|d−1

n∑
i=1

[
d∏
j=1

ψi,j

d−1∏
j=1

(jλi − 1)

(−c)(λi−1)(d−1)
d−1∏
j=1

(ψi,jzj)
λi−1 (−c)(λi−1)

(
ψi,d

(
1−

d−1∑
j=1

zj

))λi−1

|c|1−dλi
∥∥∥∥∥∥
(
ψi,1z1, . . . , ψi,d−1zd−1, ψi,d

(
1−

d−1∑
j=1

zj

))T
∥∥∥∥∥∥

1−dλi

λi


=

n∑
i=1

 d∏
j=1

ψi,j

d−1∏
j=1

(jλi − 1)
d−1∏
j=1

(ψi,jzj)
λi−1

(
ψi,d

(
1−

d−1∑
j=1

zj

))λi−1

∥∥∥∥∥∥
(
ψi,1z1, . . . , ψi,d−1zd−1, ψi,d

(
1−

d−1∑
j=1

zj

))T
∥∥∥∥∥∥

1−dλi

λi

 .

�
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Remark 5.5.5. Looking at Lemma 5.5.4 we see that the i-th summand of the

Pickands density vanishes for every z if and only if λi = 1 or
∏d

j=1 ψi,j = 0,

i.e. there is at least one index j with ψi,j = 0.

So the Pickands density of the asymmetric model reduces to the last summand

and therefore only depends on d+ 1 parameters, namely λd and ψi,1, . . . , ψi,d.

Lemma 5.5.6. Under the conditions of Lemma 5.5.4 the angular density is given

by

l (z1, . . . , zd−1) =
n∑
i=1

(
d∏
j=1

ψi,j

d−1∏
j=1

(jλi − 1)

d−1∏
j=1

(
−ψi,j

1

zj

)λi−1
(
−ψi,d

1

1−
∑d−1

j=1 zj

)λd−1

∥∥∥∥∥∥
(
ψi,1

1

z1

, . . . , ψi,d−1
1

zd−1

, ψi,d
1

1−
∑d−1

j=1 zj

)T
∥∥∥∥∥∥

1−dλi

λi

 .

Proof. According to Theorem 2.2.4 in Michel (2006, [26]) a generalized Pareto

distribution W , that is continuously differentiable of order d, the angular density

l fulfills

l

(
1
x1∑d
i=1

1
xi

, . . . ,

1
xd−1∑d
i=1

1
xi

)
=

x2
1 . . . x

2
d(

−
∑d

i=1
1
xi

)−(d+1)

∂d

∂x1 . . . ∂xd
W (x1, . . . , xd) .

For 0 < zi < 1, 1 ≤ i ≤ d− 1, we set xi := 1
zi

, 1 ≤ i ≤ d− 1, and xd := 1

1−
∑d−1
j=1 zj

.

Then we have zi = 1
xi

, for 1 ≤ i ≤ d−1, 1
xd

= 1−
∑d−1

j=1
1
xj

and hence
∑d

i=1
1
xi

= 1.

Using the representation of w from Lemma 5.5.3 we obtain:

l (z1, . . . , zd−1)

= (−1)d+1
d−1∏
i=1

z−2
i

(
1−

d−1∑
i=1

zi

)−2

w

(
1

z1

, . . . ,
1

zd−1

,
1

1−
∑d−1

i=1 zi

)

= (−1)d+1
d−1∏
i=1

z−2
i

(
1−

d−1∑
i=1

zi

)−2

n∑
i=1

 d∏
j=1

ψi,j

d−1∏
j=1

(jλi − 1)
d−1∏
j=1

(
−ψi,j

1

zj

)λi−1
(
−ψi,d

1

1−
∑d−1

j=1 zj

)λd−1
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(
ψi,1

1

z1

, . . . , ψi,d−1
1

zd−1

, ψi,d
1

1−
∑d−1

j=1 zj

)T
∥∥∥∥∥∥

1−dλi

λi

 .

�

Remark 5.5.7. We have the same situation as in Remark 5.5.5. From Lemma

5.5.4 we obtain that the ith summand of the angular density vanishes for every

z if and only if λi = 1 or
∏d

j=1 ψi,j = 0, i.e. there is at least one index j with

ψi,j = 0.

So the angular density of the asymmetric model reduces to the last summand

and therefore only depends on d+ 1 parameters, namely λd and ψi,1, . . . , ψi,d.
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CHAPTER 6

The GPD-Flow

6.1. Introduction

Aulbach et al. extended in an unpublished paper ([1]) a method for the simula-

tion of random variables of GPDs that was introduced in the bivariate case by

Buishand et al. (2008, [7]). The according theorem is the basis of this chapter

Theorem 6.1.1. (i) Let W be a multivariate GPD with uniform margins

in a left neighborhood of 0 ∈ Rd. Then there exists a random vector

Z = (Z1, . . . , Zd) with Zi ∈ [0, d] and E (Zi) = 1, i ≤ d, and a vector

x0 < 0 such that

W (x) = P

(
−U

(
1

Z1

, . . . ,
1

Zd

)
≤ x

)
, x0 ≤ x ≤ 0,

where the random variable U is uniformly on (0, 1) distributed and in-

dependent of Z.

(ii) The random vector −U (1/Z1, . . . , 1/Zd) follows a GPD with uniform

margins in a left neighborhood of 0 ∈ Rd if U is independent of Z =

(Z1, . . . , Zd) and 0 ≤ Zi ≤ ci a.s. with E (Zi) = 1, i ≤ d, for some

c1, . . . , cd ≥ 1.

In the following we will repeat the proof by Aulbach, Bayer and Falk ([1]).

Proof. First we establish part (i). Recall that a multivariate GPD W with

uniform margins 1 −Wi (x) = const x, i ≤ d, in a left neighborhood of 0 ∈ Rd

can be represented as

W (x) = 1 + const

(∑
j≤d

xj

)∫
Sd

max
i≤d

(
xi∑
j≤d xj

ti

)
µ (d t)

= 1 + const

(∑
j≤d

xj

)
D

(
x1∑
j≤d xj

, . . . ,
xd−1∑
j≤d xj

)
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with const > 0 and some measure µ on Sd such that µ (Sd) = d and
∫
Sd
tiµ (dt) =

1, i ≤ m. For the sake of simplicity we assume in the following that const = 1.

Now µ̃ (·) = µ (·) /d defines a probability measure on Sd. Let T = (T1, . . . , Td) be

a random variable with values in Sd that has a distribution µ̃ and put Z := dT.

Then Z ∈ [0, d]d and E (Zi) =
∫
Sd
tiµ (dt) = 1, i ≤ d. We have, further, for

x ≤ 0 ∈ Rd with xj ≥ −1/d, j ≤ d,

P

(
−U

(
1

Z1

, . . . ,
1

Zd

)
≤ x

)
= P

(
−U

(
1

T1

, . . . ,
1

Td

)
≤ dx

)
=

∫
Sd

P

(
−U

(
1

t1
, . . . ,

1

td

)
≤ dx

∣∣∣∣T = t

)
(P ∗T) (d t)

=

∫
Sd

P

(
−U

(
1

t1
, . . . ,

1

td

)
≤ dx

)
µ̃ (d t)

=
1

d

∫
Sd

P

(
−U

(
1

t1
, . . . ,

1

td

)
≤ dx

)
µ (d t)

=
1

d

∫
Sd

P

(
U ≥ dmax

i≤d
(−xiti)

)
µ (d t)

=
1

d

∫
Sd

P

(
U ≥ −d

(∑
j≤d

xj

)
max
i≤d

(
xi∑
j≤d xj

ti

))
µ (d t)

=
1

d

∫
Sd

1 + d

(∑
j≤d

xj

)
max
i≤d

(
xi∑
j≤d xj

ti

)
µ (d t)

= 1 +

(∑
j≤d

xj

)∫
Sd

max
i≤d

(
xi∑
j≤d xj

ti

)
µ (d t) .

This implies part (i) of the Proposition.

On the other hand we have for x ≤ 0 and large s > 0

P

(
−U

(
1

Z1

, . . . ,
1

Zd

)
≤ 1

s
x

)s
=

(∫
[0,x]

P

(
U ≥ 1

s
max
i≥d

(−xizi)
)

(P ∗ Z) (d z)

)s
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=

(
1− 1

s

∫
[0,x]

max
i≥d

(−xizi) (P ∗ Z) (d z)

)s
→s→∞ exp

(
−
∫

[0,x]

max
i≥d

(−xizi) (P ∗ Z) (d z)

)
=: G (x)

with c := (c1, . . . , cd).

Lemma 7.2.1 in Reiss (1989, [32]) now implies that G is a distribution function

which is obviously max-stable: Gs (s−1x) = G (x), s > 0, i.e., G is a multivariate

EVD and has negative standard exponential margins Gi (x) = exp (xE (Zi)) =

exp (x), x ≤ 0. As a consequence, 1 + log (G (x)) is a GP function with

1 + log (G (x)) = 1−
∫

[0,c]

max
i≤d

(−xizi) (P ∗ Z) (dz)

= P

(
−U

(
1

Z1

, . . . ,
1

Zd

)
≤ x

)
for x0 ≤ x ≤ 0 and some x0 < 0.

�

Let C be a copula and V is a random vector having the distribution function C.

Then Z := 2V is a proper choice in part (ii) of Theorem 6.1.1. As a consequence

we can create random vectors that follow a GPD if we can create random vectors

of the corresponding copula.

First we use the theorem to specify the neighborhood in which a GPD is a dis-

tribution function. Then we want to find a representation for the D-Norm de-

pending on the copula in the bivariate case. Next we generalize this result to

arbitrary dimension. Starting with a copula we get a multivariate distribution

and therefore we get a new copula. With this copula we can again use part (ii)

of Theorem 6.1.1 and this yields a new multivariate GPD. Apparently this step

can be iterated over and over again which we call the “GPD-Flow”. It will be

explored in Section 6.5.
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Figure 6.1. 2000 realizations of the GPD-Flow starting with the

Clayton-Copula with θ = 2

Figure 6.1 shows realizations of iterations of the GPD-Flow starting with the

Clayton-Copula with θ = 2. The first iteration will be analytical regarded in

Example 6.3.1. In this example we can see that the GPD-Flow tends to become

a line and hence the underlying copula tends to become the copula of complete

dependence. Figure 6.2 displays the estimated unit sphere of the underlying

norm in the positive quadrant. The norm is estimated using the estimator given

in Section 10.2 of Reiss and Thomas (2007, [33]) namely

D̂n(z) = 1− 1

nc

n∑
i=1

I (xi > −c(1− z), yi > −cz) , 0 < c ≤ 1,

where (xi, yi) are the underlying data. Furthermore we used the homogeneity

of the norm η̂(z) since we estimate the norm for (z, 1 − z), z ∈ [0, 1], and the

estimated point on the unit sphere is
(

z
η̂(z)

, 1−z
η̂(z)

)
. This figure also hints that the

GPD-Flow converges to complete dependency since the unit spheres approaches

the unit sphere of the maximum norm.
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Figure 6.2. estimated D-Norm of the GPD-Flow started with the

Clayton Copula with θ = 2, n=100000 and c = 0.5

Furthermore we also simulated the GPD-Flow starting with the data that under-

lies the GPD of tail-independence, thus W (x, y) = max (1 + x+ y, 0), x, y ≤ 0.

The copula C that pertains to W is given by C (u, v) = max (u+ v − 1, 0). This

copula is the Fréchet-Hoeffding lower bound (see Section 2.2 in Nelsen (2006,

[31])). Figure 6.3 shows realizations of that GPD-Flow and Figure 6.4 shows

the estimated unit sphere of the D-Norm, where the D-Norm is estimated as

mentioned above.

It seems that the GPD-Flow also converges, as seen in the example of the Clay-

ton Copula, against the GPD of total tail-dependence. In a sense the GPD of

tail-independence is the antipode of the GPD of total tail-dependence. Thus

although if we start “farthest” away from the case of total tail-dependence the

GPD-Flow converges to that case. This also hints that the GPD-Flow converges.
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Figure 6.3. 2000 realizations of the GPD-Flow started with GPD

of tail-independence

Figure 6.4. estimated D-Norm of the GPD-Flow started with

GPD of tail-independence with n=100000 and c = 0.5
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Finally Figure 6.5 shows realizations of the 3 dimensional GPD-Flow started with

the Clayton Copula with parameter θ = 2. In Example 6.4.1 we will explore the

first iteration step. Figure 6.6 shows the estimated unit spheres of the underlying

norms. The estimation procedure is done in a similar way as in the 2 dimensional

case as stated above. Thereby we use

1− F (x) =
∑
j≤d

(−1)j+1
∑
|K|=j

FK (x)

where FK (x) denotes the margins of the survivor function F and is defined by

FK (x) := P (Xk > xk, k ∈ K) .

This is equation (8.3) in Reiss and Thomas (2007, [33]).

Hence we have for a GPD W with uniform margins in a left neighborhood of 0

‖z‖ = 1−W (z)

= W {1} (z) +W {2} (z) +W {3} (z)

−W {1,2} (z)−W {1,3} (z)−W {2,3} (z) +W (z)

= z1 + z2 + z3 −W {1,2} (z)−W {1,3} (z)−W {2,3} (z) +W (z) .

Therefore an estimator η̂ for the D-Norm is given by

η̂ (z) = ‖z‖1 −
1

n

n∑
i=1

I (ui > z1) I (vi > z2)− 1

n

n∑
i=1

I (ui > z1) I (wi > z3)

− 1

n

n∑
i=1

I (vi > z2) I (wi > z3) +
1

n

n∑
i=1

I (ui > z1) I (vi > z2) I (wi > z3)

where (u, v, w)i, 1 ≤ i ≤ n, is governed by a GPD W and z is in left neighborhood

of 0.
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Figure 6.5. 2000 realizations of the GPD-Flow started with the

Clayton Copula with θ = 2

Figure 6.6. estimated D-Norm of the 3 dimensional GPD-Flow

started with the Clayton Copula with θ = 2, n=50000 and c = 1
3
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6.2. The domain of a GPD

This section contains an important application of Theorem 6.1.1. In the definition

of a GPD there is the statement that there exists an x0 < 0 that the GPD is

a distribution function on [x0, 0]d. In the next theorem we see that this can be

concretized namely x0 can be chosen to be x0 = −1
d
.

Theorem 6.2.1. Let ‖.‖D be a d-dimensional D-Norm. Than there exists a d-

variate distribution function W with

W (x) = 1− ‖x‖D , for x ∈
[
−1

d
, 0

]d
.

Proof. Let W̃ be a GPD with associated D-Norm ‖.‖D. According to part (i)

of Theorem 6.1.1 there exists a random vector Z = (Z1, . . . , Zd) with Zi ∈ [0, d]

and an x0 < 0 with

W̃ (x) = 1− ‖x‖D = P

(
−U

(
1

Z1

, . . . ,
1

Zd

)
≤ x

)
, x0 ≤ x ≤ 0.

By F we denote the distribution function of Z and by 1 ≤ γi ≤ d we denote the up-

per bound of Zi, i.e. Zi ∈ [0, γi] with probability 1. We set X := −U
(

1
Z1
, . . . , 1

Zd

)
and let W be the distribution function of X. Now we calculate the probability

P
(
−U

(
1
Z1
, . . . , 1

Zd

)
≤ x

)
for − 1

γi
≤ xi < 0, 1 ≤ i ≤ d.

Without loss of generalization we assume that γdxd ≤ · · · ≤ γ1x1 < γ0x0 := 0.

Then we obtain

P

(
−U

(
1

Z1

, . . . ,
1

Zd

)
≤ x

)
=

∫ 1

0

P

(
−u
(

1

Z1

, . . . ,
1

Zd

)
≤ x

∣∣∣∣U = u

)
du

=

∫ 1

0

F

(
− u

x1

, . . . ,− u

xd

)
du

=

∫ −γ1x1

0

F

(
− u

x1

, . . . ,− u

xd

)
du+

∫ −γ2x2

−γ1x1

F

(
γ1,−

u

x2

, . . . ,− u

xd

)
+ · · ·+∫ −γdxd

−γd−1xd−1

F

(
γ1, . . . , γd−1,−

u

xd

)
+

∫ 1

−γdxd
1 du

= (1 + γdxd) +
d∑
i=1

∫ −γixi
−γi−1xi−1

F

(
i−1∑
j=1

γjej +
d∑
j=i

ej

(
− u

xj

))
du
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= 1−

(
−γdxd −

d∑
i=1

(γi−1xi−1 − γixi)

∫ 1

0

F

(
i−1∑
j=1

γjej +
d∑
j=i

ej

(
−(γi−1xi−1 − γixi)u− γi−1xi−1

xj

))
du

)
.

For x < 0 set

h (x) := − (γx)1:d −
d∑
i=1

(
(γx)d+2−i:d − (γx)d+1−i:d

)
∫ 1

0

F

(
i−1∑
j=1

γ(d+1−j,d)e(d+1−j,d) +
d∑
j=i

e(d+1−j,d)(
−
(
(γx)d+2−i:d − (γx)d+1−i:d

)
u+ (γx)d+2−i:d

x(d+1−j,d)

))
du,

where (γx)i:d denotes the i-th greatest value of the γjxj. Furthermore the ordering

of x(i,d) γ(i,d) and e(i,d) is meant also according to the γjxj.

We see that h is homogeneous, i.e. for all x < 0 and λ > 0 we have h (λx) =

λh (x). Furthermore h coincides with the D-Norm for x ∈ [x0,0) and thus, since

h and the D-Norm are homogeneous both coincides in the negative orthant.

For x ∈ ×di=1

[
− 1
γi
, 0
]

and thus in particular for x ∈
[
−1
d
, 0
)d ⊆ ×di=1

[
− 1
γi
, 0
]

we

have

W (x) = P (X ≤ x)

= P

(
−U

(
1

Z1

, . . . ,
1

Zd

)
≤ x

)
= 1− h (x)

= 1− ‖x‖D

�
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6.3. A bivariate GPD as a function of a copula

Let (Z1, Z2) be distributed according to a copula C, i.e.

P (Z1 ≤ x, Z2 ≤ y) := C(x, y)

and independent of U and U is uniform distributed on (0, 1).

Then we have for x, y < 0

P

( (
− U

2Z1

,− U

2Z2

)
≤ (x, y)

∣∣∣∣U = u

)
= P

((
− u

2x
,− u

2y

)
≥ (Z1, Z2)

)
= C

(
− u

2x
,− u

2y

)
Without loss of generalization let y ≤ x < 0 (⇔ 0 < − u

2y
≤ − u

2x
). We get

P

( (
− U

2Z1

,− U

2Z2

)
≤ (x, y)

)

=

1∫
0

P

( (
− U

2Z1

,− U

2Z2

)
≤ (x, y)

∣∣∣∣U = u

)
du

=

1∫
0

C

(
− u

2x
,− u

2y

)
du. (6.1)

Since the GPD is only defined close to the origin we first regard the case that

y ≥ −1
2

and obtain using the formula deduced in the proof of Theorem 6.2.1

P

( (
− U

2Z1

,− U

2Z2

)
≤ (x, y)

)
= 1−

(
−2y + 2x

∫ 1

0

C

(
1

2

(
−−2xu

x

)
,
1

2

(
−−2xu

y

))
du

− (2x− 2y)

∫ 1

0

C

(
1

2
2,

1

2

(
(2x− 2y)u− 2x

y

))
du

)
= 1−

(
−2y + 2x

∫ 1

0

C

(
u, u

x

y

)
du+ (2y − 2x)

∫ 1

0

(x− y)u− x
y

du

)
= 1−

(
−2y + 2x

∫ 1

0

C

(
u, u

x

y

)
du+ (2y − 2x)

1
2

(x− y)− x
y

du

)
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= 1−
(
−2y + 2x

∫ 1

0

C

(
u, u

x

y

)
du+

y2 − x2

y
du

)

= 1−

2x

1∫
0

C

(
u, u

x

y

)
du− x2 + y2

y


= 1− ‖x, y‖D .

So we have obtained a representation of the GPD in dependence of the copula C.

Next we want to look at the case that y < −1
2
≤ x. We have

P

( (
− U

2Z1

,− U

2Z2

)
≤ (x, y)

)

=

−2x∫
0

C

(
− u

2x
,− u

2y

)
du+

1∫
−2x

− u

2y
du

= −2x

1∫
0

C

(
u, u

x

y

)
du+

x2 − 1
4

y
.

Finally let x < −1
2

and we get

P

( (
− U

2Z1

,− U

2Z2

)
≤ (x, y)

)

=

1∫
0

C

(
− u

2x
,− u

2y

)
du.

Hence certain D-Norms can be written as a function of copula by

‖x, y‖D =


−2 |x|

∫ 1

0
C
(
u, u

∣∣∣xy ∣∣∣) du+ x2+y2

|y| , 0 < |x| ≤ |y|

−2 |y|
∫ 1

0
C
(
u
∣∣∣xy ∣∣∣ , u) du+ x2+y2

|x| , 0 < |y| < |x|

|x|+ |y| , x = 0 oder y = 0

.

We start with an easy example namely the Clayton-Copula with parameter θ = 2.

The Clayton-Copula is a special case of the Archimedean Copula.

Example 6.3.1 (Example of a bivariate Clayton-Copula with parameter θ = 2).

We consider the Clayton-Copula C with parameter 2, i.e. the generator of C is
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ψ2 (x) = (1 + 2x)−
1
2 . It is ψ−1

2 (x) = 1
2

(
1
x2 − 1

)
and therefore the copula

C (u, v) = ψ2

(
ψ−1

2 (u) + ψ−1
2 (v)

)
=

(
1

u2
+

1

v2
− 1

)− 1
2

, u, v ∈ (0, 1] .

We have∫
C

(
− u

2x
,− u

2y

)
du = −

√
4 (x2 + y2)− u2

and hence (note that y < 0)

−2x∫
0

C

(
− u

2x
,− u

2y

)
du = −

√
4 (x2 + y2)− (−2x)2 +

√
4 (x2 + y2)

= 2y + 2
√
x2 + y2.

Altogether we obtain with the formula from above for −1
2
≤ y ≤ x < 0

P

( (
− U

2Z1

,− U

2Z2

)
≤ (x, y)

)
= 1−

(
−x

2 + 3y2

y
− 2
√
x2 + y2

)
.

Hence

‖x, y‖D =


x2+3y2

|y| − 2
√
x2 + y2, for 0 < |x| ≤ |y|

y2+3x2

|x| − 2
√
x2 + y2, for |x| > |y| > 0

|x|+ |y| , for |x| = 0 or |y| = 0

.

6.4. A multivariate GPD as a function of a copula

Analog to the bivariate case let (Z1, . . . , Zd) be distributed according to a copula

C, i.e.

P (Z1 ≤ x1, . . . , Zd ≤ xd) := C(x1, . . . , xd)

and independent of U and U is uniform distributed on (0, 1).

The formula deduced in the proof of Theorem 6.2.1 then implies for −1
2
≤ xd ≤

· · · ≤ x1 < x0 := 0

P

( (
− U

2Z1

, . . . ,− U

2Zd

)
≤ (x1, . . . , xd)

)
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= 1−

(
−2xd −

d∑
i=1

2 (xi−1 − xi)

∫ 1

0

C

(
i−1∑
j=1

ej +
d∑
j=i

ej

(
−(xi−1 − xi)u− xi−1

xj

))
du

)

= 1−
(
−2xd − 2 (xd−1 − xd)

∫ 1

0

−(xd−1 − xd)u− xd−1

xd
du

−
d−1∑
i=1

2 (xi−1 − xi)
∫ 1

0

C

(
i−1∑
j=1

ej +
d∑
j=i

ej

(
−(xi−1 − xi)u− xi−1

xj

))
du

)

= 1−
(
−2xd + 2 (xd−1 − xd)

1
2

(xd−1 − xd)− xd−1

xd

−
d−1∑
i=1

2 (xi−1 − xi)
∫ 1

0

C

(
i−1∑
j=1

ej +
d∑
j=i

ej

(
−(xi−1 − xi)u+ xi−1

xj

))
du

)

= 1−
(
−2xd −

x2
d−1 − x2

d

xd

−
d−1∑
i=1

2 (xi−1 − xi)
∫ 1

0

C

(
i−1∑
j=1

ej +
d∑
j=i

ej

(
−(xi−1 − xi)u+ xi−1

xj

))
du

)

= 1−
(
−
x2
d−1 + x2

d

xd

−
d−1∑
i=1

2 (xi−1 − xi)
∫ 1

0

C

(
i−1∑
j=1

ej +
d∑
j=i

ej

(
−(xi−1 − xi)u+ xi−1

xj

))
du

)
.

We obtain again a representation of a D-Norm that is deduced from a copula.

Set yi := |xi|, 1 ≤ i ≤ d, and δ := max {i : yi:d = 0}. Then we have for δ < d− 1

‖x1, . . . , xd‖D = +
y2
d−1:d + y2

d:d

yd:d

+
δ−1∑
i=1

2 (yi−1:d − yi:d)

∫ 1

0

C

(
i−1∑
j=1

e(j),d +
δ∑
j=i

e(j),d

(
−(yi−1:d − yi:d)u+ yi−1:d

yj:d

)
+

d∑
j=δ+1

e(j),d

)
du
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and for δ ≥ d− 1

‖x1, . . . , xd‖D = yd:d.

Example 6.4.1 (The Clayton-Copula with parameter 2 in arbitrary dimension).

Once again we consider the Clayton-Copula with parameter 2 in dimension d. As

above the generator is ψ2 (x) = (1 + 2x)−
1
2 and hence ψ−1

2 (x) = 1
2

(
1
x2 − 1

)
and

therefore the copula

C (u1, . . . , ud) = ψ2

(
d∑
i=1

ψ−1
2 (ui)

)

=

(
d∑
i=1

1

u2
i

+ 1− d

)− 1
2

, u1, . . . , ud ∈ (0, 1] .

We have ∫ ( α
u2

+ β
)− 1

2
du =

1

β

√
α + βu2.

Using the formula from the preceding section we obtain (with −1
2
≤ xd ≤ · · · ≤

x1 < x0 := 0)

P

( (
− U

2Z1

, . . . ,− U

2Zd

)
≤ (x1, . . . , xd)

)

= 1−

− d−1∑
i=1

−2xi∫
−2xi−1

C

(
i−1∑
j=i

ej +
d∑
j=i

ej

(
− u

2xj

))
du−

x2
d−1 + x2

d

xd


= 1−

− d−1∑
i=1

−2xi∫
−2xi−1

(∑d
j=i 4x

2
j

u2
+ (i− d)

)− 1
2

du−
x2
d−1 + x2

d

xd



= 1−

− d−1∑
i=1

 2

i− d

√√√√ d∑
j=i

x2
j + (i− d)

(u
2

)2

−2xi

−2xi−1

−
x2
d−1 + x2

d

xd


= 1−

− d−1∑
i=1

 2

i− d

√√√√ d∑
j=i

x2
j + (i− d)x2

i

−

√√√√ d∑
j=i

x2
j + (i− d)x2

i−1

− x2
d−1 + x2

d

xd
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= 1−

− d−1∑
i=1

 2

i− d

√√√√ d∑
j=i+1

x2
j + (1 + i− d)x2

i

−

√√√√ d∑
j=i

x2
j + (i− d)x2

i−1

− x2
d−1 + x2

d

xd


= 1−

− d∑
i=2

 2

i− 1− d

√√√√ d∑
j=i

x2
j + (i− d)x2

i−1


+

d−1∑
i=1

 2

i− d

√√√√ d∑
j=i

x2
j + (i− d)x2

i−1

− x2
d−1 + x2

d

xd


= 1−

+2xd −
d−1∑
i=2

2

i− 1− d

√√√√ d∑
j=i

x2
j + (i− d)x2

i−1

+
d−1∑
i=2

2

i− d

√√√√ d∑
j=i

x2
j + (i− d)x2

i−1 −
2

d− 1

√√√√ d∑
i=1

x2
i −

x2
d−1 + x2

d

xd


= 1−

− 2

d− 1

√√√√ d∑
i=1

x2
i − 2xd −

x2
d−1 + x2

d

xd

+
d−1∑
i=2

(
2

i− d
− 2

i− 1− d

)√√√√ d∑
j=i

x2
j + (i− d)x2

i−1


= 1−

x2
d−1 + 3x2

d

−xd
− 2

d− 1

√√√√ d∑
i=1

x2
i

−
d−1∑
i=2

2

(d− i) (d+ 1− i)

√√√√ d∑
j=i

x2
j + (i− d)x2

i−1
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Figure 6.7. The unit sphere coming from the Clayton-Copula

with θ = 2 in dimension 3

Figure 6.7 shows the unit sphere of the norm of the GPD associated with the

Clayton-Copula with θ = 2 in dimension 3.

6.5. The GPD-Flow

In the preceding section we have seen that starting with a copula C we obtain a

multivariate GPD and thus a copula C(1), a so called GPD-Copula. This GPD-

Copula C(1) can then be used to iterate the step and yields another GPD-Copula

C(2). This procedure can be iterated over and over again. This is called a GPD-

Flow.

Though a natural question arises: does the GPD-Flow converges and if it does,

which is the limit copula?

The convergence of the GPD-Flow is still an open problem. But we will show

that if it converges then it has to be to the copula of complete dependence, as

already indicated by the simulations displayed in Figures 6.2 and 6.4.

Let Un, n ∈ N ∪ {0} be independent and uniform distributed random vari-

ables that are independent from the random vector (Z1, . . . , Zd) which is dis-

tributed according a copula C(0). Then we define V0 :=
(
− U

2Z1
, . . . ,− U

2Zd

)
and
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W0 (x1, . . . , xd) := P (V0 ≤ (x1, . . . , xd)).

The j-th marginal distribution of V0 is given by

P
(
VT

0 ej ≤ x
)

=

1 + x, if − 1
2
≤ x ≤ 0,

− 1
4x
, if x < −1

2
,

=: H (x) , x ≤ 0,

see the unpublished paper by Aulbach, Bayer and Falk ([1]) on page 6.

We have

H−1 (x) =

x− 1, if x ∈
[

1
2
, 1
]

− 1
4x
, if x ∈

(
0, 1

2

)
and observe that H−1 is strictly increasing.

Furthermore we get

C(n)(u1, . . . , ud)

:= P
(
H
(
VT
n−1e1

)
≤ u1, . . . , H

(
VT
n−1ed

)
≤ ud

)
= P

(
VT
n−1e1 ≤ H−1 (u) , . . . ,VT

n−1ed ≤ H−1 (ud)
)

= Wn−1

(
H−1 (u1) , . . . , H−1 (ud)

)
and furthermore this simplifies in the bivariate case to

C(n)(u, v)

=


Wn−1 (u− 1, v − 1) , if u, v ∈

[
1
2
, 1
]
,

Wn−1

(
u− 1,− 1

4v

)
, if u ∈

[
1
2
, 1
]
, v ∈

(
0, 1

2

)
,

Wn−1

(
− 1

4u
, v − 1

)
, if u ∈

(
0, 1

2

)
, v ∈

[
1
2
, 1
]
,

Wn−1

(
− 1

4u
,− 1

4v

)
, if u, v ∈

(
0, 1

2

)
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=



1 +
−2u+2∫

0

C(n−1)
(
− w

2u−2
,− w

2v−2

)
dw + (u−1)2+(v−1)2

v−1
, if 1

2
≤ v ≤ u ≤ 1

1 +
−2v+2∫

0

C(n−1)
(
− w

2u−2
,− w

2v−2

)
dw + (u−1)2+(v−1)2

u−1
, if 1

2
≤ u ≤ v ≤ 1

−2u+2∫
0

C(n−1)
(
− w

2u−2
, 2vw

)
dw + v − 4v(u− 1)2, if 0<v< 1

2
≤u≤1

−2v+2∫
0

C(n−1)
(
2uw,− w

2v−2

)
dw + u− 4v(v − 1)2, if 0<u< 1

2
≤v≤1

1∫
0

C(n−1) (2uw, 2vw) dw, if u, v ∈
(
0, 1

2

)
(6.2)

where

Vn :=

(
− Un

2VT
n−1e1

, . . . ,− Un
2VT

n−1ed

)
and

Wn (x1, . . . , xd) := P
(
VT
ne1 ≤ x1, . . . ,V

T
ned ≤ xd

)
.

Since H is the distribution function of the margins, C(n) is a copula.

Finally by ‖x1, . . . , , xd‖n we denote the corresponding norm to the GPD of Vn,

i.e. for small x1, . . . , xd < 0 it is Wn (x1, . . . , xd) =: 1− ‖(x1, . . . , xd)‖n.

Theorem 6.5.1. There exists no bivariate copula different from the complete

dependence copula that remains fixed under the iteration step as stated above.

Or equivalent:

If C is a bivariate copula that remains fixed under the iteration step then C is

the copula of complete dependence.

Proof. Setting u = v in equation (6.2) yields

C(1) (u, u) =


−1 +

−2u+2∫
0

C(0)
(
− v

2u−2
,− v

2u−2

)
d v + 2u, if u ∈

[
1
2
, 1
]
,

1∫
0

C(0) (2uv, 2uv) d v, if u ∈
(
0, 1

2

)
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and then using integration by substitution we get

=


−1 + 2u+ 2(1− u)

1∫
0

C(0) (v, v) d v, if u ∈
[

1
2
, 1
]
,

1
2u

2u∫
0

C(0) (v, v) d v, if u ∈
(
0, 1

2

) . (6.3)

So we have for all u ∈
[

1
2
, 1
]

C(1) (u, u) = 2

1−
1∫

0

C(0) (v, v) d v

u+ 2

1∫
0

C(0) (v, v) dv − 1.

Consider the special case that C(1) = C(0) =: C and set α :=
1∫
0

C(0) (v, v) d v. We

will prove that for u ∈ (0, 1] it is C (u, u) = m · u + t. By induction over n ∈ N0

we will show that C (u, u) = m · u+ t for u ∈ [2−1−n, 2−n]. The initial step of the

induction is already proven above with m := 2 (1− α) and t := 2α− 1.

Now assume that we have already shown that C (u, u) = m · u + t for u ∈
[2−n−1, 2−n].

Take u ∈ [2−n−2, 2−n−1]. From formula (6.3) we obtain

2−nC
(
2−n−1, 2−n−1

)
= 2−n

1

2−n

2·2−n−1∫
0

C (v, v) dv =

2−n∫
0

C (v, v) d v

and therefore

C (u, u) =
1

2u

2u∫
0

C (v, v) d v

=
1

2u

 2−n∫
0

C (v, v) d v −
2−n∫
2u

C (v, v) d v


=

1

2u

(
2−nC

(
2−n−1, 2−n−1

)
−
[

1

2
mv2 + tv

]2−n

2u

)

=
1

2u

2−nC
(
2−n−1, 2−n−1

)
− 2−n

(
m · 2−n−1 + t

)︸ ︷︷ ︸
=C(2−n−1,2−n−1)

+2u (m · u+ t)


=

1

2u

(
2−nC

(
2−n−1, 2−n−1

)
− 2−nC

(
2−n−1, 2−n−1

)
+ 2u (m · u+ t)

)
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= m · u+ t.

Since C (u, u) is continuous from the right we even have C (u, u) = m · u + t for

u ∈ [0, 1]. Furthermore C (0, 0) = 0 implies t = 0 and C (1, 1) = 1 implies m = 1.

So we have C (u, u) = u.

Therefore C is the copula of complete dependence (see Example 3.17 (a) in Nelsen

(2006, [31])).

�

Corollary 6.5.2. In dimension 2 or higher the only copula that remains fix

under the GPD-Flow is the copula of complete dependence.

Proof. If C is a copula that remains fix under the GPD-Flow then according

to Theorem 6.5.1 all bivariate margins are complete dependent and therefore C

is the copula of complete dependence.

�

Next we will see that the GPD-Flow is continuous.

Lemma 6.5.3. Let Mn be the set of all copulas of dimension n. We define a

metric d on Mn by

d (C1, C2) := sup
x∈Rn
|C1 (x)− C2 (x)| , C1, C2 ∈Mn

By f : Mn 7→Mn we denote the function that represents the iteration step of the

GPD-Flow, i.e. C(i) = f
(
C(i−1)

)
where C(i) is the copula from the i-th iteration

of the GPD-Flow.

Then f is continuous.

Proof. We have for C ∈Mn, (x1, . . . , xn) ∈ Rn and H−1 as defined on page 100

f (C (x1, . . . , xn)) =

∫ 1

0

C

(
− u

2H−1 (x1)
, . . . ,− u

2H−1 (xn)

)
du.

For all C ∈ Mn and all ε > 0 and δ := ε we have for all D ∈ Mn that satisfy

d (C,D) < δ

d (f (C) , f (D)) = sup
(x1,...,xn)∈Rn

∣∣∣∣∫ 1

0

C

(
− u

2H−1(x1)
, . . . ,− u

2H−1(xn)

)
du
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−
∫ 1

0

D

(
− u

2H−1(x1)
, . . . ,− u

2H−1(xn)

)
du

∣∣∣∣
≤ sup

(x1,...,xn)∈Rn

∫ 1

0

∣∣∣∣C (− u

2H−1(x1)
, . . . ,− u

2H−1(xn)

)
−D

(
− u

2H−1(x1)
, . . . ,− u

2H−1(xn)

)∣∣∣∣ du
< δ

= ε.

Thus f is continuous.

�

Theorem 6.5.4. If the GPD-Flow converges to a copula then this is the copula

of complete dependence.

Proof. By C(i) ∈ Mn we denote the copula of the i-th iteration of the GPD-

Flow and by f we denote the function of the iteration step of the GPD-Flow.

Then we have

C(i+1) = f
(
C(i)

)
, i ∈ N.

If C(i) converges to a copula C, i.e. C = limi→∞C
(i) then we obtain using the

continuity of f (see Lemma 6.5.3):

f (C) = f
(

lim
i→∞

C(i)
)

= lim
i→∞

f
(
C(i)

)
= lim

i→∞
C(i+1)

= C.

Hence C remains fix under the iteration step of the GPD-Flow and according to

Corollary 6.5.2 C is the copula of complete dependence.

�

104



CHAPTER 6. THE GPD-FLOW

Simulations (see Figure 6.2 and Figure 6.4) indicate that for every n ∈ N0 we

have ‖x‖n ≥ ‖x‖n+1, x ≥ 0, i.e. the unit sphere of the norm of the n-th iteration

is completely contained in the unit sphere of the norm of the (n+ 1)-th iteration.

But this is actually not true as we will see in the example below.

We will construct the copula leading to the corresponding norms using the so

called Diagonal Copula introduced by Fredericks and Nelsen (1997, [17]).

Definition 6.5.5. A function δ : [0, 1] 7→ [0, 1] will be called a diagonal if it

satisfies

(i) δ (1) = 1,

(ii) δ (t) ≤ t for all t ∈ [0, 1] and

(iii) 0 ≤ δ (t2)− δ (t1) ≤ 2 (t2 − t1) for all t1, t2 ∈ [0, 1] with t1 ≤ t2.

Definition and Theorem 6.5.6. Let δ be any diagonal and set

C (u, v) := min

(
u, v,

1

2
(δ (u) + δ (v))

)
.

Then C is a copula whose diagonal section is δ, i.e. C (t, t) = δ (t).

Copulas that can be written in this form are called diagonal copulas.

Proof. For the proof we refer to Fredericks and Nelsen (1997, [17]).

�

Example 6.5.7. Now we are ready to construct the copula as mentioned above.

Define for τ ∈
[
0, 1

2

]
the function δτ : [0, 1]→ [0, 1] by

δτ (t) :=


0, t ∈ [0, τ)

2 (t− τ) , t ∈ [τ, 2τ)

t, t ∈ [2τ, 1]

.
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Figure 6.8. The diagonal function δ 3
20

Obviously δτ is for τ ∈
[
0, 1

2

]
a diagonal and therefore

C(0) (u, v) := min

(
u, v,

1

2

(
δ 3

20
(u) + δ 3

20
(v)
))

is a Diagonal Copula.

We have∫ 1

0

δτ (t) d t

=

∫ τ

0

δτ (t) d t+

∫ 2τ

τ

δτ (t) d t+

∫ 1

2τ

δτ (t) d t

= 0 + τ 2 +
1

2
− 2τ 2

=
1

2
− τ 2

and furthermore∫ 1

0

∫ 1

0

δτ (uv) d v du

=

∫ τ

0

∫ 1

0

δτ (uv)︸ ︷︷ ︸
=0

d v du+

∫ 1

τ

∫ τ
u

0

δτ (uv)︸ ︷︷ ︸
=0

d v du+

∫ 2τ

τ

∫ 1

τ
u

δτ (uv)︸ ︷︷ ︸
=2(uv−τ)

d v du

+

∫ 1

2τ

∫ 2τ
u

τ
u

δτ (uv)︸ ︷︷ ︸
=2(uv−τ)

dvdu+

∫ 1

2τ

∫ 1

2τ
u

δτ (uv)︸ ︷︷ ︸
=uv

d v du

= 0 + 0 +
1

2
τ 2 (2 log 2− 1)− τ 2 log (2τ) +

1

4
− τ 2 + 2τ 2 log (2τ)
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=
1

4
+ τ 2

(
2 log 2− 3

2

)
+ τ 2 log τ.

Using integration by substitution we have for x ∈
[
−1

2
, 0
]

W1 (x, x) = (−2x)

1∫
0

C(1) (u, u) du+ 2x+ 1

= (−2x)


1
2∫

0

C(1) (u, u) du+

1∫
1
2

C(1) (u, u) du

+ 2x+ 1

= (−2x)


1
2∫

0

1∫
0

C(0) (2uv, 2uv) d v du

+

1∫
1
2

 −2u+2∫
0

C(0)

(
− v

2u− 2
,− v

2u− 2

)
dv + 2u− 1

 du

+ 2x+ 1

= (−2x)

1

2

1∫
0

1∫
0

C(0) (uv, uv) d v du

+

1∫
1
2

(−2u+ 2)

1∫
0

C(0) (v, v) d v du+
[
u2 − u

]1
1
2

+ 2x+ 1

= (−2x)

1

2

1∫
0

1∫
0

C(0) (uv, uv) d v du

+

1∫
0

C(0) (v, v) d v

1∫
1
2

(−2u+ 2) du+
1

4

+ 2x+ 1

= 1 + (−2x)

1

2

1∫
0

1∫
0

C(0) (uv, uv) d v du+
1

4

1∫
0

C(0) (u, u) du− 3

4

 .
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Using the formula from the first section and again integration by substitution we

obtain still with x ∈
[
−1

2
, 0
)

‖x, x‖0 = (−2x)

1−
1∫

0

C(0) (u, u) du


and from the considerations above we obtain

‖x, x‖1 = (−2x)

3

4
− 1

2

1∫
0

1∫
0

C(0) (uv, uv) d v du− 1

4

1∫
0

C(0) (u, u) du


= ‖x, x‖0

+ (−2x)

 − 1

4
− 1

2

1∫
0

1∫
0

C(0) (uv, uv) d v du+
3

4

1∫
0

C(0) (u, u) du



Furthermore we have for the Diagonal Copula C(0)

−1− 2

∫ 1

0

∫ 1

0

C(0) (uv, uv) d v du+ 3

∫ 1

0

C(0) (u, u) du

= −1− 2

∫ 1

0

∫ 1

0

δ 3
20

(uv) d v du+ 3

∫ 1

0

δ 3
20

(u) du

= −1− 1

2
− 2τ 2

(
2 log 2− 3

2

)
− 2τ 2 log τ + 3

1

2
− 3τ 2

= −2τ 2 log (4τ)

= −2

(
3

20

)2

log

(
3

5

)
︸ ︷︷ ︸

<0

≈ 0.02299

> 0

and thus

‖x, x‖1 > ‖x, x‖0 .
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CHAPTER 7

Simulation via the Shi Transformation

The need for realizations of random variables of a certain distribution arises in

several fields. Often technical systems are so complex that they couldn’t be de-

scribed in a deterministic way. A common approach to cope with this problem is

to use Monte-Carlo simulations to get a statistical distribution of the behavior of

the system. Input parameters are distributed according to a certain distribution

so there is the need for the realization of random variables from those distribu-

tions.

Another field with the need for realizations of random variables is testing the

behavior of statistics methods. There is practically never exact knowledge of the

underlying distribution function of “real data”. In order to check the behavior

of a method it is therefore useful to test it with data you know exactly, like the

underlying distribution function or whether there is independence.

In his PhD thesis Michel (2006, [26]) established an algorithm that creates

random vectors that follow a GPD of logistic type using the so called

Shi Transformation which was first introduced by Shi (1995, [37]).

In this chapter we generalize this Transformation to the nested logistic model of

arbitrary dimension d ≥ 2. However things get more complicated in this case.

Therefore we are able to deduce an algorithm only in dimension 3, which creates

random vectors from a GPD from the nested logistic model.

Definition 7.1. For λ1, . . . , λd−1 ≥ 1 we call the transformation STλ1,... ,λd−1
:

(0,∞)×
(
0, π

2

)d−1 → (−∞, 0)d , with

(c, ψ1, . . . , ψd−1) 7→

− c

(
d−1∏
i=1

sin
2
λi ψi, cos

2
λ1 ψ1

d−1∏
i=2

sin
2
λi ψi, cos

2
λ2 ψ2

d−1∏
i=3

sin
2
λi ψi, ..., cos

2
λd−1 ψd−1

)
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the Shi transformation for the nested logistic model. This transformation is one-

to-one and infinitely often differentiable.

Let (x1, . . . , xd) ∈ (−∞, 0)d. The components of the vector

(c, ψ1, . . . , ψd−1) := ST−1
λ1,...,λd−1

(x1, . . . , xd)

are the Shi coordinates of (x1, . . . , xd). c is called the radial component and ψ :=

(ψ1, . . . , ψd−1) is called the angular component.

By (C,Ψ1, . . . ,Ψd−1) = ST−1
λ1,...,...,λd−1

(X1, . . . , Xd) we denote the Shi coordinates

of a random vector (X1, . . . , Xd) ∈ (−∞, 0)d.

Remark 7.2. The Shi transformation can also be defined in a recursive way:

STλ1,...,λk (c, ψ1, . . . , ψk)

:= −c
(
− sin

2
λk ψkAkSTλ1,...,λk−1

(1, ψ1, . . . , ψk−1) + ek+1 cos
2
λk ψk

)
and

STλ1 (c, ψ1) := −c
(

sin
2
λ1 ψ1, cos

2
λ1 ψ1

)
where

Ak :=



1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 1

0 . . . . . . 0


∈ Rk+1×k.

To simplify the notation we set

zk := −STλ1,...,λk−1
(1, ψ1, . . . , ψk−1)

and with it we can abbreviate the recursion from above

STλ1,...,λk (c, ψ1, . . . , ψk) := −c
(

sin
2
λk ψkAkzk + ek+1 cos

2
λk ψk

)
.

where Ak is defined as above.
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Lemma 7.3. For (c, ψ1, . . . , ψd−1) ∈ (0,∞)×
(
0, π

2

)d−1 → (−∞, 0)d we have∥∥STλ1,...,λd−1
(c, ψ1, . . . , ψd−1)

∥∥
λ1,...,λd−1

= c.

Proof. The homogeneity of the norm implies∥∥STλ1,... ,λd−1
(c, ψ1, ..., ψd−1)

∥∥
λ1,... ,λd−1

= c
∥∥STλ1,... ,λd−1

(1, ψ1, ..., ψd−1)
∥∥
λ1,... ,λd−1

,

so we only have to proof the assertion for c = 1.

We define zk as in Remark 7.2 and in terms of zk the above statement can be

written as ‖zd‖λ1,...,λd−1
= 1 and we will prove this by induction over k.

For k = 2 we have

‖z2‖λ1
=

((
sin

2
λ1 ψ1

)λ1

+
(

cos
2
λ1 ψ1

)λ1
) 1

λ1

=
(
sin2 ψ1 + cos2 ψ1

) 1
λ1

= 1.

Now assume that we have proven the statement for k − 1 < d, i.e.

‖zk−1‖λ1,...,λk−2
= 1. We have

‖zk‖λ1,...,λk−1
=

∥∥∥∥(∥∥∥− sin
2

λk−1 ψkzk−1

∥∥∥
λ1,...,λk−2

, cos
2

λk−1 ψk−1

)∥∥∥∥
λk−1

=

∥∥∥∥∥∥∥∥
sin

2
λk−1 ψk−1 ‖zk−1‖λ1,...,λk−2︸ ︷︷ ︸

=1
by the induction hypothesis

, cos
2

λk−1 ψk−1


∥∥∥∥∥∥∥∥
λk−1

=
∥∥∥(sin

2
λk−1 ψk−1, cos

2
λk−1 ψk−1

)∥∥∥
λk−1

= 1

and thus the proof is finished.

�

Lemma 7.4. As in Lemma 3.1.7 of Michel (2006, [26]) we put γi := cosφi,

σi := sinφi and αi := 2
λi

for i = 1, . . . , d − 1. Then the Jacobian matrix of the

transformation STλ1,...,λd−1
has the following form

A1,...,d := JSTλ1,...,λd−1
(c, ψ1, . . . , ψd−1) =
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=−c



1
c

d−1∏
k=1

σαkk α1γ1σ
−1
1

d−1∏
k=1

σαkk . . . . . . αd−1γd−1σ
−1
d−1

d−1∏
k=1

σαkk

1
c
γα1

1

d−1∏
k=2

σαkk −α1γ
α1−1
1 σ1

d−1∏
k=2

σαkk
. . . αd−1γ

α1
1 γd−1σ

−1
d−1

d−1∏
k=2

σαkk

... 0
. . .

...
...

...
. . . αd−1γ

αd−2

d−2 γd−1σ
αd−1−1
d−1

1
c
γ
αd−1

d−1 0 . . . 0 −αd−1γ
αd−1−1
d−1 σd−1


.

Proof. We set γ0 := 1, α0 := 1 and with Πi we denote the projection to the

i-th element, i.e. Πi : Rd → R with (x1, . . . , xd) 7→ xi. The first column of the

Jacobian matrix is given by

∂Πi

(
STλ1,...,λd−1

(c, ψ1, . . . , ψd−1)
)

∂c
=

∂

∂c

(
−cγαi−1

i−1

d−1∏
k=i

σαkk

)

= −γαi−1

i−1

d−1∏
k=i

σαkk

for i ∈ {1, . . . , d}.
For the other elements of the Jacobian matrix we differ whether i = j, i < j or

i > j where i denotes the number of the row and j the number of the column of

the element.

In the case of i > j we have

∂Πi

(
STλ1,...,λd−1

(c, ψ1, . . . , ψd−1)
)

∂ψj−1

=
∂

∂ψj−1

(
−cγαi−1

i−1

d−1∏
k=i

σαkk

)
= 0,

if i = j it is

∂Πi

(
STλ1,...,λd−1

(c, ψ1, . . . , ψd−1)
)

∂ψj−1

=
∂

∂ψi−1

(
−cγαi−1

i−1

d−1∏
k=i

σαkk

)

= (−c)

(
−αi−1γ

αi−1−1
i−1 σi−1

d−1∏
k=i

σαkk

)
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and finally for i < j

∂Πi

(
STλ1,...,λd−1

(c, ψ1, . . . , ψd−1)
)

∂ψj−1

=
∂

∂ψj−1

(
−cγαi−1

i−1

d−1∏
k=i

σαkk

)

= −cαj−1γ
αi−1

i−1 γj−1σ
−1
j−1

d−1∏
k=i

σαkk .

So we have calculated all entries of the Jacobian matrix as given in the lemma.

�

Lemma 7.5. With the abbreviation of Lemma 7.4 we have

det (A1,...,d) = (−1) cd−1

d−1∏
i=1

αiσ
iαi−1
i γαi−1

i .

Proof. We will prove this by induction. For d = 2 we have

A1,2 = −c

(
1
c
σα1

1 α1γ1σ
α1−1
1

1
c
γα1

1 −α1γ
α1−1
1 σ1

)

and thus

det (A1,2) = c2

(
−1

c
σα1

1 α1γ
α1−1
1 σ1 −

1

c
γα1

1 α1γ1σ
α1−1
1

)
= −cα1σ

α1−1
1 γα1−1

1

(
σ2

1 + γ2
1

)
= −cα1σ

α1−1
1 γα1−1

1

= (−1) c2−1

2−1∏
i=1

αiσ
iαi−1
i γαi−1

i .

Now assume that the assertion holds for d− 1. We use the rules of determinant

calculations (see for Example Section 4.2. in Fraleigh and Beauregard (1987,

[16])). In the first step we expand by the last row and the next step we transform

the matrices that the induction assumptions can be used. Thereby in the first

determinant we interchange the last column with the preceding one and then

the former last column which is now the second last with its preceding column

and continue until we reached the first column. Furthermore we also use the

scalar-multiplication property of a determinant on both determinants in several
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ways.

det (A1,...,d) =

=(−1)d cd det



1
c

d−1∏
k=1

σαkk α1γ1σ
−1
1

d−1∏
k=1

σαkk . . . αd−1γd−1σ
−1
d−1

d−1∏
k=1

σαkk

1
c
γα1

1

d−1∏
k=2

σαkk −α1γ
α1−1
1 σ1

d−1∏
k=2

σαkk
. . .

...

... 0
. . .

...
...

...
. . . αd−1γ

αd−2

d−2 γd−1σ
αd−1−1
d−1

1
c
γ
αd−1

d−1 0 . . . 0 −αd−1γ
αd−1−1
d−1 σd−1


= (−1)d cd

(
(−1)d+1 1

c
γ
αd−1

d−1 c
d−1

det



α1γ1σ
−1
1

d−1∏
k=1

σαkk . . . . . . . . . αd−1γd−1σ
−1
d−1

d−1∏
k=1

σαkk

−α1γ
α1−1
1 σ1

d−1∏
k=2

σαkk
. . .

...

0
. . .

...
...

. . . . . .
...

0 . . . 0 −αd−2γ
αd−2−1
d−2 σd−2σ

αd−1

d−1 αd−1γ
αd−2

d−2 γd−1σ
αd−1−1
d−1


− αd−1γ

αd−1−1
d−1 σd−1 (−1)d−1 (−1)d−1 cd−1

det



1
c

d−1∏
k=1

σαkk α1γ1σ
−1
1

d−1∏
k=1

σαkk . . . . . . αd−2γd−2σ
−1
d−2

d−1∏
k=1

σαkk

1
c
γα1

1

d−1∏
k=2

σαkk −α1γ
α1−1
1 σ1

d−1∏
k=2

σαkk
. . .

...

... 0
. . .

...

...
...

. . . αd−2γ
αd−3

d−3 γd−2σ
−1
d−2

d−1∏
k=d−2

σαkk

1
c
γα1

1 σ
αd−1

d−1 0 . . . 0 −αd−2γ
αd−2−1
d−2 σd−2σ

αd−1

d−1




= (−1)d c

(
γ
αd−1

d−1 αd−1 (−1)d−2 σ
(d−1)αd−1−1
d−1 γd−1 det (A1,...,d−1)

− (−1)d−1 αd−1γ
αd−1−1
d−1 σd−1σ

(d−1)αd−1

d−1 det (A1,...,d−1)
)

= (−1)d cαd−1γ
αd−1−1
d−1 σ

(d−1)αd−1−1
d−1 det (A1,...,d−1)

(
(−1)d−2 γ2

d−1 + (−1)d σ2
d−1

)
= (−1) cαd−1γ

αd−1−1
d−1 σ

(d−1)αd−1−1
d−1 cd−2

d−2∏
i=1

αiσ
iαi−1
i γαi−1

i
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= (−1) cd−1

d−1∏
i=1

αiσ
iαi−1
i γαi−1

i

which completes the proof.

�

Let

Bλ1,...,λd−1
r :=

{
x ∈ (−∞, 0)d : ‖x‖λ1,...,λd−1

< r
}
, r > 0

be the ball in (−∞, 0)d of radius r with respect to the norm ‖·‖λ1,...,λd−1
, centered

at the origin.

The next results are up to now only proven for dimension 3.

Lemma 7.6. Let (X1, X2, X3) < 0 be a random vector which is distributed accord-

ing to a GPD Wλ1,λ2 of nested logistic type. Choose a number c0 > 0 that Wλ1,λ2

has on Bλ1,λ2
c0

the representation

Wλ1,λ2 (x1, x2, x3) = 1− ‖x‖λ1,λ2

and denote by wλ1,λ2 the density of Wλ1,λ2. Then the density of the Shi trans-

formation ST−1
λ1,λ2

: Bλ1,λ2
c0

→ (0, c0) ×
(
0, π

2

)2
of the random vector restricted to

Bλ1,λ2
c0

is independent of the radial component c and factorizes with regard to the

angular components ψ1, ψ2.

The function

f (c, ψ1, ψ2) =

(
2− 2

λ2

)(
2
λ1 − λ2

λ1

+ σ2
2

(
4λ2 − 2

λ1

))
σ1σ2γ1γ2

is the density of ST−1
λ1,λ2

(X1, X2, X3) on (0, c0) ×
(
0, π

2

)2
under the restriction

(X1, X2, X3) ∈ Bλ1,λ2
c0

.

Proof. Using the Density Transformation Theorem (see for example Section

9.5 in Fristedt and Gray (1997, [18])), Lemma 5.3.3 and Lemma 7.6 it is

f (c, ψ1, ψ2)

= wλ1,λ2 (STλ1,λ2 (c, ψ1, ψ2))
∣∣∣det

(
JSTλ1,λ2

(c, ψ1, ψ2)
)∣∣∣

= (λ2 − 1)
(

(cσα2
2 σα1

1 )λ1 + (cσα2
2 γα1

1 )λ1

)−2

(cσα2
2 σα1

1 )λ1−1 (cσα2
2 γα1

1 )λ1−1 (cγα2
2 )λ2−1
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((
(cσα2

2 σα1
1 )λ1 + (cσα2

2 γα1
1 )λ1

)λ2
λ1 +(cγα2

2 )λ2

) 1
λ2
−3(

(cσα2
2 σα1

1 )λ1 + (cσα2
2 γα1

1 )λ1

)λ2
λ1

(
(cγα2

2 )λ2 (λ1 − λ2) +
(

(cσα2
2 σα1

1 )λ1 + (cσα2
2 γα1

1 )λ1

)λ2
λ1 (λ1 + λ2 − 1)

)
(
c2α1α2σ

α1−1
1 σ2α2−1

2 γα1−1
1 γα2−1

2

)
= (λ2 − 1)

(
(σα2

2 σα1
1 )λ1 + (σα2

2 γα1
1 )λ1

)−2

c−2λ1c2λ1−2 (σα2
2 σα1

1 )λ1−1 (σα2
2 γα1

1 )λ1−1

cλ2−1 (γα2
2 )λ2−1 c1−3λ2

((
(σα2

2 σα1
1 )λ1 + (σα2

2 γα1
1 )λ1

)λ2
λ1 + (γα2

2 )λ2

) 1
λ2
−3

cλ2

(
(σα2

2 σα1
1 )λ1 + (σα2

2 γα1
1 )λ1

)λ2
λ1

cλ2

(
(γα2

2 )λ2 (λ1 − λ2) +
(

(σα2
2 σα1

1 )λ1 + (σα2
2 γα1

1 )λ1

)λ2
λ1 (λ1 + λ2 − 1)

)
(
c2α1α2σ

α1−1
1 σ2α2−1

2 γα1−1
1 γα2−1

2

)
= (λ2 − 1)

(
(σα2

2 σα1
1 )λ1 + (σα2

2 γα1
1 )λ1

)−2

(σα2
2 σα1

1 )λ1−1 (σα2
2 γα1

1 )λ1−1 (γα2
2 )λ2−1

((
(σα2

2 σα1
1 )λ1 + (σα2

2 γα1
1 )λ1

)λ2
λ1 + (γα2

2 )λ2

) 1
λ2
−3 (

(σα2
2 σα1

1 )λ1 + (σα2
2 γα1

1 )λ1

)λ2
λ1

(
(γα2

2 )λ2 (λ1 − λ2) +
(

(σα2
2 σα1

1 )λ1 + (σα2
2 γα1

1 )λ1

)λ2
λ1 (λ1 + λ2 − 1)

)
(
α1α2σ

α1−1
1 σ2α2−1

2 γα1−1
1 γα2−1

2

)
= (λ2 − 1)α1α2σ1σ2γ1γ2

(
λ1 + λ2

(
σ2

2 − γ2
2

)
− σ2

2

)
=

(
2− 2

λ2

)
2

λ1

(
λ1 + λ2

(
σ2

2 − γ2
2

)
− σ2

2

)
σ1σ2γ1γ2

=

(
2− 2

λ2

)(
2
λ1 − λ2

λ1

+ σ2
2

(
4λ2 − 2

λ1

))
σ1σ2γ1γ2

as asserted.
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CHAPTER 7. SIMULATION VIA THE SHI TRANSFORMATION

Theorem 7.7. Let (X1, X2, X3) follow a nested logistic GPD with parameters

λ1 ≥ λ2 > 1 and which has the density

f (ψ1, ψ2) = f (c, ψ1, ψ2)

with regard to its Shi coordinates on Bλ
c0

as in Lemma 7.6. Then f has a positive

mass on
(
0, π

2

)2
:

ν :=

∫
(0,π

2 )
2
f (ψ1, ψ2) d (ψ1, ψ2) =

(λ2 − 1) (2λ1 − 1)

2λ1λ2

> 0.

Furthermore we have conditional on C = ‖X‖λ1,λ2
< c0:

(i) The Shi coordinates C,Ψ1,Ψ2 are independent.

(ii) The random variable C is on (0, c0) uniformly distributed.

(iii) The angular component Φ1 has the density

f1 (ψ1) := 2σ1γ1

and the angular component Φ2 has the density

f2 (ψ2) := 4σ2γ2

(
λ1 − λ2

2λ1 − 1
+

2λ2 − 1

2λ1 − 1
σ2

2

)
and therefore they have the distribution functions

F1 (ψ1) :=

∫ ψ1

0

f1 (t) d t = sin2 (ψ1)

and

F2 (ψ1) :=

∫ ψ2

0

f2 (t) d t = 2
λ1 − λ2

2λ1 − 1
sin2 (ψ2) +

2λ2 − 1

2λ1 − 1
sin4 (ψ2)

with the corresponding quantile functions

F−1
1 (ψ1) = arcsin

(√
ψ1

)
and

F−1
2 (ψ2) = arcsin

√λ2−λ1+
√
ψ2−2ψ2λ1+λ2

1−2ψ2λ2−2λ1λ2+4ψ2λ1λ2+λ2
2

2λ2 − 1

 .
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Proof. Note that for τ ∈ R\ {−1} it is

d

dx

sinτ+1 x

τ + 1
= sinτ x cosx

and therefore using the First Fundamental Theorem of Calculus (see for example

Chapter 14 in Spivak (2006, [40])) we obtain∫ ψ

0

sinτ x cosx dx =

[
sinτ+1 x

τ + 1

]ψ
0

=
sinτ+1 ψ

τ + 1

and in the special case of ψ = π
2∫ π

2

0

sinτ x cosx dx =
1

τ + 1
.

Using Fubini’s Theorem (see for example Theorem 8 in Section II §6 of Shiryaev

(1984, [38])) we get

ν :=

∫
(0,π

2 )
2
f (ψ1, ψ2) dψ

=

∫
(0,π

2 )
2

(
2− 2

λ2

)(
2
λ1 − λ2

λ1

+ σ2
2

(
4λ2 − 2

λ1

))
σ1σ2γ1γ2 d (ψ1, ψ2)

=

(
2− 2

λ2

)((
2
λ1 − λ2

λ1

)∫ π
2

0

σ1γ1 dψ1

∫ π
2

0

σ2γ2 dψ2

+

(
4λ2 − 2

λ1

)∫ π
2

0

σ1γ1 dψ1

∫ π
2

0

σ3
2γ2 dψ2

)

=

(
2− 2

λ2

)((
2
λ1 − λ2

λ1

)
1

2

1

2
+

(
4λ2 − 2

λ1

)
1

2

1

4

)
=

(λ2 − 1) (2λ1 − 1)

2λ1λ2

.

Since λ1 ≥ λ2 ≥ 1 because of the definition of the nested logistic model (see

Lemma 5.3.1) the condition ν > 0 is equivalent to λ2 > 1.

For c < c0 one gets

P (C < c) = P

(
C < c, (Ψ1,Ψ2) ∈

(
0,
π

2

)2
)

=

∫ c

0

∫
(0,π

2 )
2
f (c, ψ1, ψ2) d (ψ1, ψ2) d c
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CHAPTER 7. SIMULATION VIA THE SHI TRANSFORMATION

=

∫ c

0

∫
(0,π

2 )
2
f (ψ1, ψ2) d (ψ1, ψ2) d c

= cν.

Therefore we have for c ∈ (0, c0)

P (C < c|C < c0) =
P (C < c,C < c0)

P (C < c0)

=
P (C < c)

P (C < c0)

=
cν

c0ν

=
c

c0

.

Thus C is uniformly distributed on (0, c0) and we have established (ii).

Let B be a Borel set in
(
0, π

2

)
. Using again Fubini’s Theorem we obtain

P (ψ1 ∈ B|C < c0)

=
P
(
ψ1 ∈ B,ψ2 ∈

(
0, π

2

)
C < c0

)
P (C < c0)

=
1

c0ν

∫ c0

0

∫
B

∫ π
2

0

f (c, ψ1, ψ2) dψ2dψ1dc

=
1

c0ν
c0

(
2
λ2 − 1

λ2

)(∫
B

2
λ1 − λ2

λ1

σ1γ1

∫ π
2

0

σ2γ2 dψ2 dψ1

+

∫
B

(
4λ2 − 2

λ1

)
σ1γ1

∫ π
2

0

σ3
2γ2 dψ2 dψ1

)

=
1

ν

(
2
λ2 − 1

λ2

)(∫
B

λ1 − λ2

λ1

σ1γ1 dψ1 +

∫
B

1

2

(
2λ2 − 1

λ1

)
σ1γ1 dψ1

)
=

1

ν

(λ2 − 1) (2λ1 − 1)

λ1λ2

∫
B

σ1γ1 dψ1

=

∫
B

2σ1γ1︸ ︷︷ ︸
=f1(ψ1)

dψ1.

Using the above equation with B = (0, ψ1] we get

F1 (ψ1) =

∫ ψ1

0

f1 (t) d t
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=

∫ ψ1

0

2σ1γ1 d t

= sin2 (ψ1)

and therefore the quantile function is given by

F−1
1 (ψ1) = arcsin

(√
ψ1

)
.

So we have established the density, distribution and quantile function of the first

angular component. Using the same approach as above we will continue with

the second angular density though we will see that those functions are more

complicated. We have

P (ψ2 ∈ B|C < c0)

=
P
(
ψ1 ∈

(
0, π

2

)
, ψ2 ∈ B,C < c0

)
P (C < c0)

=
1

c0ν

∫ c0

0

∫ π
2

0

∫
B

f (c, ψ1, ψ2) dψ2 dψ1 d c

=
2λ1λ2

(λ2 − 1) (2λ1 − 1)

∫
B

2

λ2

(λ2 − 1)


∫ π

2

0

σ1γ1 dψ1︸ ︷︷ ︸
= 1

2

2
λ1 − λ2

λ1

σ2γ2

+

∫ π
2

0

σ1γ1 dψ1︸ ︷︷ ︸
= 1

2

2
2λ2 − 1

λ1

σ3
2γ2d

 dψ2

=

∫
B

4σ2γ2

(
λ1 − λ2

2λ1 − 1
+

2λ2 − 1

2λ1 − 1
σ2

2

)
︸ ︷︷ ︸

=f2(ψ2)

dψ2.

Setting again B = (0, ψ2] we obtain

F2 (ψ2) =

∫ ψ2

0

f2 (t) d t

= 2
λ1 − λ2

2λ1 − 1
sin2 (ψ2) +

2λ2 − 1

2λ1 − 1
sin4 (ψ2)
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and therefore

F−1
2 (ψ2) =

arcsin

√λ2− λ1 +
√
ψ2− 2ψ2λ1 + λ2

1− 2ψ2λ2− 2λ1λ2 + 4ψ2λ1λ2 + λ2
2

2λ2 − 1

 .

So we have proven (iii).

Let A ⊆
(
0, π

2

)2
be a Borel set and 0 < c < c0. Once again using Fubini’s

Theorem we obtain

P (C < c,Ψ ∈ A|C < c0) =
P (C < c,Ψ ∈ A)

P (C < c0)

=
1

c0ν

∫
A

∫
(0,c)

f (t, ψ) d t dψ

=
c

c0ν

∫
A

f (ψ) dψ

=
1

c0ν
c0

∫
A

f (ψ) dψ
c

c0

=
1

c0ν

∫
(0,c0)

∫
A

f (ψ) dψ d t
c

c0

=
P (C < c0,Ψ ∈ A)

P (C < c0)
P (C < c|C < c0)

= P (Ψ ∈ A|C < c0) P (C < c|C < c0)

which shows the conditional independence of the Shi coordinates Ψ and C.

Let A1 and A2 be Borel sets in
(
0, π

2

)
. With Fubini’s Theorem we have

P (Ψ1 ∈ A1,Ψ2 ∈ A2|C < c0)

=
P (Ψ1 ∈ A1,Ψ2 ∈ A2, C < c0)

P (C < c0)

=
1

c0ν

∫ c0

0

∫
A1

∫
A2

f (c, ψ) dψ2 dψ1 d c

=
2λ1λ2

(2λ1 − 1) (λ2 − 1)∫
A1

∫
A2

(
4

λ1λ2

(λ2 − 1)
(
(λ1 − λ2) + σ2

2 (2λ2 − 1)
)
σ1σ2γ1γ2

)
dψ2 dψ1
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= 2
1

2λ1 − 1

∫
A1

∫
A2

(
4
(
(λ1 − λ2) + σ2

2 (2λ2 − 1)
)
σ1σ2γ1γ2

)
dψ2 dψ1

=

∫
A1

2σ1γ1︸ ︷︷ ︸
=f1(ψ1)

dψ1

∫
A2

4σ2γ2

(
λ1 − λ2

2λ1 − 1
+

2λ2 − 1

2λ1 − 1
σ2

2

)
︸ ︷︷ ︸

=f2(ψ2)

dψ2

= P (Ψ1 ∈ A1|C < c0) P (Ψ2 ∈ A2|C < c0) .

Thus the angular components are (conditionally) independent and the proof is

finished.

�

Following the outline of the proof we see that things get more complicated in

higher dimensions. In contrary to the logistic model as regarded in Michel (2006,

[26]) the density of the nested logistic model can not expressed in a “neat” formula

and is far more complex.

Using the theorem above we can give an algorithm to create random variables

from a GPD of nested logistic type on Bλ1,λ2
c0

.

Algorithm 7.8.

(i) Generate U1, U2 and U3 uniformly distributed on (0, 1), all pairwise

independent.

(ii) Compute

Ψ1 := arcsin
(√

U2

)
and

Ψ2 := arcsin

√λ2−λ1+
√
U3−2U3λ1+λ2

1−2U3λ2−2λ1λ2+4U3λ1λ2+λ2
2

2λ2 − 1

 .

(iii) Return the vector (X1, X2, X3) = STλ1,λ2 (U1,Ψ1,Ψ2).
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CHAPTER 8

Final remarks

The Main Theorem of this thesis completes the characterization of extreme value

distributions with norms. This topic was started by Falk et al. (2004, [13])

where the D-Norm was introduced. But the question in which cases a norm is

a D-Norm was still unresolved. Two years later Falk (2006, [12]) answered this

question in the bivariate case which turns out to be much simpler then the case

of dimension 3 or higher. In my diploma thesis (Hofmann, 2006, [22]) I showed

that the condition given in Falk (2006, [12]) is not sufficient in arbitrary dimen-

sion. In this thesis I gave a necessary and sufficient condition of a norm to be a

D-Norm and therefore extreme value distributions can be expressed in terms of

norms and a new notation of extreme value distributions has been established.

As mentioned in Section 2.1 there are already different representations of a mul-

tivariate extreme value distribution. One big advantage of the representation via

a norm is the fact that norms are well-known and this yields to a representation

of an EVD every undergraduate student can understand. Also linking EVD to

norms may give more insight in EVDs using results from other mathematical

disciplines.

Furthermore as a byproduct the also open question which functions yield a

Pickands dependence function is answered since the D-Norm and the Pickands

dependence function are closely related to each other.

Besides, the Main Theorem can be used to answer an open question. It was

unclear if the condition λi ≥ λi+1, 1 ≤ i ≤ d − 2, for the nested logistic model

is necessary. It is established in Lemma 5.3.1 that the condition of the Main

Theorem is not fulfilled if the λi are descending and therefore this condition for

the λi is not only sufficient as already known but it is also necessary.

Michel (2006, [26]) extended the counterexample for a GPF that is not a dis-

tribution function over its whole support from dimension 3 to higher dimension
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and from the sum-norm to the λ-Norm where λ is close to 1. He also raised the

question whether there is a λ-Norm with λ <∞ that really defines a distribution

function over its whole support. This question is now also answered: there is no

λ for which this is the case.

The last two chapters are independent from the Main Theorem.

In Chapter 6 we specified the left neighborhood of 0 where the GPD defines a

multivariate distribution function, namely the GPD is a distribution function on[
−1
d
, 0
]d

.

Furthermore Chapter 6 deals with the GPD-Flow based on a method to create

GPDs using random vectors coming from copulas. This approach goes back to

Buishand et. al. (2008, [7]) and was extended by Aulbach, Bayer and Falk in an

unpublished paper ([1]). Since a copula is linked to a GPD there is also a norm

(the D-Norm) linked to the copula. We determined a formula for the D-Norm

in dependency of the copula. Finally the iteration step named “GPD-Flow” was

examined in more detail and first results are obtained. It is shown that if the

GPD-Flow converges then it must be against the copula of complete dependence.

However the convergence of the GPD-Flow is still an open question. Moreover

it can be investigated for more different copulas which GPD they yield. Fur-

thermore if we want to obtain a certain copula which multivariate distribution

must be used to obtain this GPD is another open problem. There is a practical

relevance of this question. The problem of creating random numbers that follow

a GPD could then be translated to the problem of creating random numbers that

follow this multivariate distribution function.

In Chapter 7 the algorithm of creating random vectors following a GPD of the

logistic model using the Shi-Transformation as introduced by Michel (2006, [26])

was generalized in dimension 3 to the nested logistic model. Unfortunately the

Pickands density and the angular density are not easy to express for the nested

logistic model in a simple form in dimension 4 and higher.
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APPENDIX A

Definitions

Here we give several definitions used in this thesis. The source where they are

taken from are quoted.

Definition A.1 (Semiring, see Halmos (1974 [20]) on page 22).

A semiring is a nonempty class P of sets such that

(i) if E ∈ P and F ∈ P, then E ∩ F ∈ P, and

(ii) if E ∈ P, F ∈ P and E ⊆ F , then there is a finite class {C0, C1, ..., Cn}
of sets in P such that E = C0 ⊆ C1 ⊆ · · · ⊆ Cn = F and

Di = Ci\Ci−1 ∈ P for i = 1, . . . , n.

Definition A.2 (Measurable selection, see Molchanov (2005, [27]), page 26).

A random element ξ with values in E is called a (measurable) selection of X if

ξ (ω) ∈ X (ω) for almost all ω ∈ Ω. The family of all selections of X os denoted

by S (X).

Definition A.3 (p-integrable selections, see Molchanov (2005, [27]), page 146).

If X is a random closed set in E, then Sp (X), 1 ≤ p ≤ ∞, denotes the family of

all selections of X from Lp, so that

Sp (X) = S (X) ∩ Lp,

where S (X) denotes the family of all (measurable) selections of X and Lp denote

the space of random elements with values in E such that the Lp-norm is finite.

In particular S1 (X) is the family of integrable selections.

Definition A.4 (Selection Expectation, see Molchanov (2005, [27]), page 151).

Let X be a random closed set in a separable Banach space E. The selection

expectation of X is the closure of the set of all expectations of integrable selections,

i.e.

EX = {E ξ : ξ ∈ S1 (X)}.

The selection expectation is also often called the Aumann expectation.
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