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1. Introduction

As the title reveals, this thesis deals with algorithms for the solution of generalized Nash
equilibrium problems. In the introduction a definition of these problems and a discussion
of the used solution concept is given. Further an overview on existing approaches for its
solution is presented. Therefore it is necessary to introduce some notations first.

1.1. Abbreviations and Notations

The abbreviations used throughout this thesis are summarized in Table 1.1.

s.t. subject to
NEP Nash Equilibrium Problem
GNEP Generalized Nash Equilibrium Problem
VI Variational Inequality Problem
QVI Quasi-Variational Inequality Problem
KKT Karush-Kuhn-Tucker
CRCQ Constant Rank Constraint Qualification
CE Constrained System of Equations
GMRES Generalized Minimal Residual Method
BFGS Broyden-Fletcher-Goldfarb-Shanno
STRSCNE Scaled Trust-Region Solver for Constrained Equations

Table 1.1.: Abbreviations

Some standard notations are listed in Table 1.2.

N the natural numbers
Rn the n-dimensional real vector space
Rn

+ {(x1, . . . , xn) ∈ Rn | xi ≥ 0 for all i = 1, . . . , n}
Rn

− {(x1, . . . , xn) ∈ Rn | xi ≤ 0 for all i = 1, . . . , n}
Rn

++ {(x1, . . . , xn) ∈ Rn | xi > 0 for all i = 1, . . . , n}
Br(x) the open ball with radius r and centre x
int(X) the interior of the set X
bd(X) the boundary of the set X
cl(X) the closure of the set X
conv(X) the convex hull of the set X
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1. Introduction

∥.∥ the Euclidean vector norm or the 2-matrix norm
∥x∥1

∑n
i=1 |xi|, the Manhattan vector norm of a vector x ∈ Rn

⌈x⌉ the smallest integer larger than x ∈ R
x ◦ y (x1y1, . . . , xnyn)

T , the vector containing the products of the compo-
nents of x, y ∈ Rn

0n the vector (0, . . . , 0)T ∈ Rn

1n the vector (1, . . . , 1)T ∈ Rn

In the identity matrix in Rn×n

M−T the transposed of the inverse of a nonsingular matrix M
Mαβ the submatrix ofM that contains only those rows and columns whose

indices are in α and β, respectively
eigmin(M) the smallest eigenvalue of a symmetric matrix M
diag(x) the diagonal matrix with the vector x on its diagonal
dom(f) {x ∈ Rn | f(x) ̸= ∅}, the domain of the point-to-set map f : Rn ⇒ Rm

JH(x, y) the Jacobian of the differentiable function H : Rn×Rn → Rm at (x, y)
JxH(x, y) the Jacobian of the differentiable function H : Rn×Rn → Rm at (x, y)

with respect to x
∇H(x, y) the transposed of JH(x, y)
∇HJ(x, y) the matrix with column vectors {∇Hj(x, y)}j∈J
∇xH(x, y) the transposed of JxH(x, y)
∇2Ψ(x, y) the Hessian matrix of the twice differentiable function Ψ : Rn×Rn →

R at (x, y)
∇2

xyΨ(x, y) the matrix of the second partial derivatives of Ψ : Rn × Rn → R at
(x, y), first differentiated with respect to x and then with respect to y

∂BF (x, y) the B-subdifferential of the locally Lipschitz continuous function F :
Rn × Rn → Rm at (x, y)

∂F (x, y) the generalized Jacobian of the locally Lipschitz continuous function
F : Rn × Rn → Rm at (x, y) in the sense of Clarke [12]

πy∂F (x, y) the set of all matrices M ∈ Rn×n such that there exists a matrix
N ∈ Rn×m with [N,M ] ∈ ∂F (x, y)

Table 1.2.: Notations

Beside this some further notation should be explained:

• PX [x] stands for the Euclidean projection of a vector x ∈ Rn on a nonempty, closed
and convex set X ⊆ Rn, i.e., PX [x] is the unique solution of

min
z

1

2
∥z − x∥2 s.t. z ∈ X.

• A function g : Rn → Rm is called a PC1 (piecewise continuously differentiable)
function in a neighbourhood of a given point x∗, if g is continuous and there exist
a neighbourhood U of x∗ and a finite family of continuous differentiable functions
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1.2. Generalized Nash Equilibrium Problems

{G1, G2, . . . , Gk} defined on U , such that g(x) ∈ {G1(x), G2(x), . . . , Gk(x)} for all
x ∈ U .

• A matrix M ∈ Rn×n is called a P0-matrix if det(Mαα) ≥ 0 for all α ⊆ {1, 2, . . . , n},
and a P -matrix if det(Mαα) > 0 for all α ⊆ {1, 2, . . . , n}. Note that the class
of P0-matrices strictly includes the positive semidefinite matrices, see [13] for more
details.

1.2. Generalized Nash Equilibrium Problems

The generalized Nash equilibrium problem, GNEP for short, is a game which is described
through a finite set of N players ν = 1, . . . , N , each having a cost function and a strategy

set. All players ν control their variables xν ∈ Rnν and the vector x =
(
(x1)T , . . . , (xN)T

)T ∈
Rn with n = n1 + . . . + nN describes the decision vector of all players. To emphasize the
role of player ν the notation x = (xν , x−ν) is often used, where x−ν contains the variables
of all players except the ν-th one, but the ordering of the vector components is kept. The
cost function θν : Rn → R of the ν-th player can depend on all player’s decisions, and the
strategy set, or feasible set, Xν(x

−ν) ⊆ Rnν of the ν-th player can depend on the variables
x−ν of the other players. In the game every player ν tries to minimize his cost function
within his feasible set, that is, he solves the optimization problem

min
xν

θν(x
ν , x−ν) subject to xν ∈ Xν(x

−ν). (1.1)

By defining the Cartesian product of the strategy spaces

Ω(x) := X1(x
−1)× . . .×XN(x

−N),

it is possible to give a definition of a solution of a GNEP.

Definition 1.1 A vector x̄ ∈ Ω(x̄) is called a generalized Nash equilibrium, or a solution
of the GNEP, if

θν(x̄
ν , x̄−ν) ≤ θν(x

ν , x̄−ν) for all xν ∈ Xν(x̄
−ν)

holds for all players ν = 1, . . . , N .

In order to find a solution of a GNEP, one has to solve problem (1.1) simultaneously for
each player ν = 1, . . . , N . To do so, it is quite standard to assume that the feasible sets
are defined explicitly by constraint functions, i.e.,

Xν(x
−ν) := {xν ∈ Rnν | gν(xν , x−ν) ≤ 0} (1.2)

for suitable functions gν : Rn → Rmν , ν = 1, . . . , N . The total number of constraints is
m := m1 + . . .+mN . To guarantee solvability of (1.1) the following standard assumption
is used.
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1. Introduction

Assumption 1.2 (i) For all ν = 1, . . . , N the cost functions θν : Rn → R are continu-
ous and, as a function of xν alone, convex.

(ii) For all ν = 1, . . . , N and all i = 1, . . . ,mν, the component functions gνi : Rn → R are
continuous and, as a function of xν alone, convex.

GNEPs satisfying Assumption 1.2 are called player convex and they are in the main focus
of this thesis.
There are some important subclasses of the GNEPs that are obtained by requiring

special structures for the strategy sets. In the prominent Nash equilibrium problem, NEP
for short, the strategy spaces of each player are independent of the decisions of all the other
players, that is there are fixed sets Xν with Xν(x

−ν) = Xν for all strategies x ∈ Rn and
all players ν = 1, . . . , N . More general are the jointly convex GNEPs, where a common
convex strategy space X ⊆ Rn exists such that the feasible set of player ν is given by

Xν(x
−ν) = {xν ∈ Rnν | (xν , x−ν) ∈ X}.

In the setting of (1.2) this means g1 = . . . = gN =: g and

Xν(x
−ν) := {xν ∈ Rnν | g(xν , x−ν) ≤ 0}

for all ν = 1, . . . , N , with a common function g that is convex (“jointly”) in all variables
x.
Several approaches have been made in order to solve GNEPs. The possibility of formu-

lating a GNEP as a quasi-variational inequality problem (QVI) was pointed out in [5, 42].
Having continuously differentiable cost functions the QVI is given by: Find a x̄ ∈ Ω(x̄)
such that  ∇x1θ1(x̄

1, x̄−1)
...

∇xN θN(x̄
N , x̄−N)


T

(y − x̄) ≥ 0 for all y ∈ Ω(x̄).

In the special case of a NEP the QVI reduces to a simpler variational inequality problem
(VI), where the feasible set does no longer depend on x. There are theoretical results and
algorithms for the solution of a VI, see [31]. It is well known, see for example [25, 27],
that in the jointly convex case every solution of the variational inequality problem, find a
x̄ ∈ X such that  ∇x1θ1(x̄

1, x̄−1)
...

∇xN θN(x̄
N , x̄−N)


T

(y − x̄) ≥ 0 for all y ∈ X,

is also a solution of the GNEP, while the converse is not true in general. The solutions
of the variational inequality problem are called variational equilibria or normalized Nash
equilibria. Note, however, that the name normalized Nash equilibrium will be used in a
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different context here, see Definition 1.3 below, and that its original definition was given
by Rosen [68] in the context of the solution of Karush-Kuhn-Tucker (KKT) conditions.
For jointly convex GNEPs given in the form

min
xν

θν(x
ν , x−ν) s.t. g(xν , x−ν) ≤ 0

for all ν = 1, . . . , N with continuously differentiable functions θν : Rn → R and g : Rn →
Rm, these KKT conditions claim for each solution x̄ the existence of multipliers λν ∈ Rm

such that

∇xνθν(x̄
ν , x̄−ν) +∇xνg(x̄ν , x̄−ν)λν = 0,

g(x̄ν , x̄−ν) ≤ 0, λν ≥ 0, (λν)Tg(x̄ν , x̄−ν) = 0

holds for all ν = 1, . . . , N . Following the definition from [68] a normalized Nash equilibrium
is a solution of the KKT conditions of a GNEP where λ1 = . . . = λN holds.
In order to define normalized Nash equilibria for jointly convex GNEPs in the absence

of differentiability, and to introduce the definition that will be used in this thesis, consider
the Nikaido-Isoda function (also called Ky-Fan function) defined by

Ψ(x, y) :=
N∑
ν=1

[
θν(x

ν , x−ν)− θν(yν , x−ν)
]
,

cf. [59]. Using this function we get the following definition that corresponds to the one
given in, e.g., [37, 72].

Definition 1.3 A vector x̄ ∈ X is called a normalized Nash equilibrium of a jointly convex
GNEP, if

sup
y∈X

Ψ(x̄, y) ≤ 0

holds.

Note that many algorithms that are used to solve jointly convex GNEPs search for these
normalized Nash equilibria, since they are of special interest in some applications, see [42].
Since θν is convex in xν by Assumption 1.2, it is easy to see that Ψ(x, .) is concave for any
fixed x. Hence the regularized Nikaido-Isoda-function, cf. [41],

Ψα(x, y) :=
N∑
ν=1

[
θν(x

ν , x−ν)− θν(yν , x−ν)− α

2
∥xν − yν∥2

]
, (1.3)

is uniformly concave as a function of the second argument, where α > 0 denotes a fixed
parameter. This property implies that the maximization problem maxy∈X Ψα(x, y) has a
unique solution for any nonempty, closed, and convex set X ⊆ Rn, which can be exploited
to get optimization reformulations or fixed-point characterizations, as it was done in [45].
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1. Introduction

1.3. Existing Literature

The roots of equilibrium concepts are in oligopolistic economies considered by A.-A. Cournot
in 1838, see [14]. John F. Nash formally introduced the Nash equilibrium problem in [57, 58]
in 1950/51. Soon after Nash’s work K.J. Arrow and G. Debreu introduced the generalized
Nash equilibrium concept in [1], where the term social equilibrium was used. Some exis-
tence and uniqueness results were proven by J.B. Rosen in his paper [68] in 1965 and he
introduced normalized solutions. With the beginning of the 1990s the interest on GNEPs
outside the economic field grew and a number of equivalent reformulations along with algo-
rithms for its solution were developed. A detailed description of the historical development
is given in the survey paper [27], which is also a good starting point for research on GNEPs.
There are several ways to reformulate GNEPs, or some subclasses of them, as optimiza-

tion problems, fixed-point problems or (quasi-) variational inequalities. Many algorithms
that are used to solve the resulting problems only find a special solution, whereas there are
often multiple (typically infinitely many) solutions of the GNEP. Therefore, beside algo-
rithms that can find one special solution, also methods characterizing the entire solution
set are of interest.
There are some approaches for the solution of the general (not jointly convex) GNEP

designed for special instances, like generalized potential games considered in [34], or for
particular application with special structure, like the decomposition method used in [62].
For the general not jointly convex problem the existing approaches may be divided into
three groups:

1. Methods based on quasi-variational inequality formulations;

2. Penalty-type methods;

3. Methods using the concatenated KKT system of all players.

While variational inequality problems, which occur for NEPs, are quite well understood
from both the theoretical and numerical point of view, see [31], there are no efficient
methods for the quasi-variational inequality problem available yet. A good overview on
existing results in the VI approach for GNEPs, including existence and uniqueness results
and some iterative algorithms, can be found in [33]. Some recent ideas in the algorithmic
area are the use of gap functions as in the case of variational inequalities, see [39, 50, 70], a
parameterized variational inequality approach, see [56], some projection-like methods, see
[73], or to solve a sequence of penalized variational inequalities, see [61]. The last approach
can also be seen as a penalty-type method and therefore may be put into the second group.
This group, the penalty-type methods, add either all or at least the difficult (shared)

constraints to the players’ cost function in order to obtain a simpler standard NEP as a
subproblem at each iteration, see [28, 29, 30, 32, 38]. These penalty methods are globally
convergent under suitable assumptions. The subproblems may be difficult to solve in
practice, and the rate of convergence is typically slow. Nevertheless, extensive numerical
results are available for at least one of these methods, see [28], and indicate that the method
is working quite well.

6



1.4. Summary

The third group writes down the KKT system for all players and solves the resulting
system either by using a mixed complementarity/variational inequality approach, see [60],
or by applying a Newton-type method to a suitable reformulation of the system as a
nonsmooth system of equations, see [26]. Recently the use of Fritz-John points instead of
the KKT system was suggested in [18], and a nonsmooth projection method for its solution
was proposed. The main focus of this group of methods is on the local rate of convergence
which, however, is difficult since there is an inherit singularity problem as soon as there is
at least one joint constraint shared by two or more players.
All the methods designed for the general case can in particular be used to solve jointly

convex GNEPs. But there are also some further methods that are developed only for
jointly convex problems, in particular the methods from [44, 45, 46, 47, 51, 53, 72]. In the
jointly convex context the (regularized) Nikaido-Isoda function has become a useful tool
and it will be shown that this tool can also be used for the general case.

1.4. Summary

The intention of this thesis is to contribute new algorithms with the focus on their global
convergence properties. Since there are many small examples for the illustration of the
assumptions and theoretical results, the presentation of some useful theorems for the an-
alytical or graphical solution of small GNEPs is at the beginning in Section 2, before we
concentrate on the new algorithms in the following sections.
The first algorithm to be developed in Section 3 is the only considered algorithm that

deals with the jointly convex case. It is a Newton method and a globalization of the existing
method given in [47]. For this algorithm global convergence to a normalized solution and,
as one might expect for a Newton method, fast local convergence can be shown. This
makes the method special since to the author’s knowledge none of the existing methods
has been shown to enjoy both local fast and global convergence properties, in particular
not the methods mentioned above. The new method was published in [20], together with
A. von Heusinger, C. Kanzow and M. Fukushima.
The remaining theory sections consider the general (not jointly convex) case. In Sec-

tion 4 constrained and unconstrained optimization reformulations of the GNEP using the
regularized Nikaido-Isoda function are developed, and the methods and results from [45]
are generalized and extended. This nonsmooth optimization approach does not belong
to any of the three groups of approaches stated in the previous section. Together with
an appropriate algorithm the presented reformulations can be used to compute different
solutions spreading over the entire solution set. The results of this section were published
first for the jointly convex case together with C. Kanzow in [21] and then for the general
player convex case together with C. Kanzow and O. Stein in [22].
In Section 5 there are two approaches that belong to the third group of approaches

from the previous section, and there are two rather distinct classes of algorithms for the
solution of the GNEP, one using a merit function for the KKT system and the other
using an interior point approach. For all algorithms developed here theoretical conditions

7
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guaranteeing global convergence are stated. In particular for the interior point method
for GNEPs good theoretical convergence results can be shown and it turns out to be very
competitive to existing algorithms from the practical point of view. All the results of
this section, except the finite termination property for the interior point algorithm, were
published together with F. Facchinei, C. Kanzow, and S. Sagratella in [19].
In Section 6 all new methods are tested numerically on a large test set of GNEPs. The

globalized Newton method from Section 3 is compared to the existing local variant with
different parameters. An appropriate algorithm solving the unconstrained reformulation
from Section 4 is proposed and the advantages and disadvantages of the reformulation are
discussed. Moreover the algorithms from Section 5 that are solving the KKT system of the
GNEP are compared to each other and to the existing penalty method from [28], showing
their ability.
To conclude the thesis a short summary of the results together with some hints on future

research topics is given in the Final Remarks section.
Finally, the detailed numerical results are given in the appendix.

8



2. Analytical Solution of Small GNEPs

It is often useful to give small examples to illustrate the content of assumptions or theorems.
In many cases the solution sets of the GNEPs have to be computed for the discussion of the
examples. This section presents two theorems dealing with small (each player has exactly
one variable) player convex GNEPs, that can be used to calculate the solution sets of these
examples analytically, or for two players graphically, by using Euclidean projections. We
will use the domain of the point-to-set mapping x−ν 7→ Xν(x

−ν), given by

dom(Xν) = {x−ν ∈ Rn−nν | Xν(x
−ν) ̸= ∅}.

Theorem 2.1 Consider a player convex GNEP, where each player has exactly one vari-
able. Suppose that for all ν = 1, . . . , N the function θν(·, x−ν) has a unique unconstrained
global minimum for all x−ν ∈ dom(Xν). Then the solution set of the GNEP is given by

N∩
ν=1

{(
PXν(x−ν)[z

ν ], x−ν
) ∣∣∣x−ν ∈ dom(Xν), θν(z

ν , x−ν) ≤ θν(x
ν , x−ν) ∀xν ∈ R

}
.

Proof. For a given ν ∈ {1, . . . , N} and a given x̄−ν ∈ dom(Xν) let z̄
ν ∈ R be the unique

unconstrained global minimum of the function θν(·, x̄−ν), that is

θν(z̄
ν , x̄−ν) < θν(x

ν , x̄−ν) for all xν ∈ R \ {z̄ν}.

Let us first show an inequality that will play a central role in the proof. The convexity of
the function θν(·, x−ν) implies for all xν ̸= z̄ν and all λ ∈ [0, 1]

θν(λz̄
ν + (1− λ)xν , x̄−ν) ≤ λθν(z̄

ν , x̄−ν) + (1− λ)θν(xν , x̄−ν),

⇐⇒ θν(λz̄
ν + (1− λ)xν , x̄−ν) + λ (θν(x

ν , x̄−ν)− θν(z̄ν , x̄−ν))︸ ︷︷ ︸
>0

≤ θν(x
ν , x̄−ν),

and thus we get the inequality

θν(λz̄
ν + (1− λ)xν , x̄−ν) < θν(x

ν , x̄−ν) (2.1)

for all λ ∈ (0, 1] and all xν ̸= z̄ν .
Now suppose x̄ is a solution of the GNEP, i.e., x̄ν solves the problem

min
xν

θν(x
ν , x̄−ν) s.t. xν ∈ Xν(x̄

−ν) (2.2)

9



2. Analytical Solution of Small GNEPs

for all ν = 1, . . . , N . We claim that this is equivalent to

[x̄ν , z̄ν ] ∩Xν(x̄
−ν) = {x̄ν} for all ν = 1, . . . , N, (2.3)

which can be seen as follows: On the one hand, if x̄ is a solution, we get for all ν = 1, . . . , N
that x̄ν ∈ Xν(x̄

−ν), and no interior point of the line segment [x̄ν , z̄ν ] can be feasible by (2.1),
hence (2.3) holds. On the other hand, let (2.3) hold, and consider a fixed ν = 1, . . . , N and
an arbitrary feasible point xν ∈ Xν(x̄

−ν) \ {x̄ν}. By the convexity of Xν(x̄
−ν) we obtain

[xν , x̄ν ] ∈ Xν(x̄
−ν), and taking into account (2.3), we deduce x̄ν ∈ (xν , z̄ν ]. Now we can

find a λ ∈ (0, 1] such that x̄ν = λz̄ν + (1 − λ)xν , and, by (2.1), x̄ν is a solution of the
problem (2.2). This shows that x̄ being a solution of the GNEP is equivalent to (2.3).
Since each player has only one variable and Xν(x̄

−ν) is convex, condition (2.3) is equiv-
alent to

x̄ν = PXν(x̄−ν)[z̄
ν ] for all ν = 1, . . . , N,

⇐⇒ (x̄ν , x̄−ν) = (PXν(x̄−ν)[z̄
ν ], x̄−ν) for all ν = 1, . . . , N,

which in turn is equivalent to x̄ being an element of

N∩
ν=1

{
(PXν(x−ν)[z

ν ], x−ν)
∣∣∣x−ν ∈ dom(Xν), θν(z

ν , x−ν) ≤ θν(x
ν , x−ν)∀xν ∈ R

}
.

�

If the global minima of the cost functions can be computed, Theorem 2.1 can be used to
solve 2-player games graphically. We give a simple example here.

Example 2.2 Consider the jointly convex 2-player game defined via

Player 1: min
x1

1

2
(x1 + 2)2 s.t. 0 ≤ x1 ≤ 2, x2 ≤ x1, x1 − x2 ≤ 1,

Player 2: min
x2

1

2
(x2 + 2)2 s.t. 0 ≤ x1 ≤ 2, x2 ≤ x1, x1 − x2 ≤ 1.

Convexity and differentiability of the cost functions together with Theorem 2.1 imply that
the solution set is given by

N∩
ν=1

{
(PXν(x−ν)[z

ν ], x−ν)
∣∣∣x−ν ∈ dom(Xν), θν(z

ν , x−ν) ≤ θν(x
ν , x−ν)∀xν ∈ R

}
=

N∩
ν=1

{
(PXν(x−ν)[x

ν ], x−ν)
∣∣∣x−ν ∈ dom(Xν),∇xνθν(x

ν , x−ν) = 0
}
.

Hence the only generalized Nash equilibrium is (0,−1), see Figure 2.1. ♢

For the next result we need continuously differentiable functions. Define the set

W := {x ∈ RN | gν(x) ≤ 0 for all ν = 1, . . . , N},

and let the following assumption on the strategy sets hold:

10
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Figure 2.1.: Graphical solution of Example 2.2

Assumption 2.3 All constraint functions gνi , i = 1, . . . ,mν , ν = 1, . . . , N are continuously
differentiable. For all x ∈ W where gνi (x) = 0 and ∇xνgνi (x

ν , x−ν) = 0 for a player
ν = 1, . . . , N and an index i ∈ {1, . . . ,mν} the set Xν(x

−ν) is single valued.

Remark 2.4 (a) Consider GNEPs with linear constraints only. Then the condition
∇xνgνi (x

ν , x−ν) = 0 implies that gνi is independent of xν , hence this constraint can
be dropped for the ν-th player. If this is done for all players and all constraints, the
resulting GNEP is equivalent to the original one and it does satisfy Assumption 2.3
now.

(b) Consider a jointly convex 2-player GNEP with a single constraint

g(x) := (x1)2 + (x2)2 ≤ 1.

Then we have g(x) = 0 and ∇xνg(x) = 2xν = 0, if and only if xν = 0 and x−ν = ±1.
Since there Xν(x

−ν) = {0} is single valued, Assumption 2.3 is satisfied also in this
example.

(c) There are also GNEPs where Assumption 2.3 is not satisfied, for example consider a
jointly convex 2-player GNEP, where the common strategy set is defined by

X = {x ∈ [0, 1]2 | g(x) := (x2 − x1)2 − (x1)2 ≤ 0}.

Then Assumption 2.3 is violated for player 1 at the point x̄ = (x̄1, 0), since g(x̄) = 0,
∇x1g(x̄) = 0 independent of x̄1, and

X1(0) = {x1 ∈ [0, 1] | (0− x1)2 − (x1)2 ≤ 0} = [0, 1]

11



2. Analytical Solution of Small GNEPs

is not single valued.

For all GNEPs, where each player has exactly one variable and that satisfy the above
assumption, one can show the following theorem.

Theorem 2.5 Consider a player convex GNEP, where each player has exactly one variable
and Assumption 2.3 is satisfied. Suppose that for all ν = 1, . . . , N the function θν(·, x−ν)
is continuously differentiable and a unique unconstrained global minimum of the function
θν(·, x−ν) exists for all x−ν ∈ RN−1. Then the solution set is given by

S :=

N∩
ν=1

((
mν∪
i=1

{x ∈W | gνi (x) = 0,∇xνθν(x)∇xνgνi (x) ≤ 0}

)
∪ {x ∈W | ∇xνθν(x) = 0}

)
.

Proof. Suppose x̄ is a solution of the GNEP, that is x̄ solves the problem

min
xν

θν(x
ν , x̄−ν) s.t. gν(xν , x̄−ν) ≤ 0 (2.4)

for all ν = 1, . . . , N . Then we have in particular x̄ ∈ W . Fix an arbitrary player ν ∈
{1, . . . , N} and denote by z̄ν the unconstrained minimum of the convex and differentiable
function θν(·, x̄−ν), which implies ∇xνθν(z̄

ν , x̄−ν) = 0. Then we either have x̄ν = z̄ν and
hence ∇xνθν(x̄

ν , x̄−ν) = 0, or x̄ν ̸= z̄ν , in which case we can use the uniqueness of the
unconstrained minimum z̄ν and the convexity of θν(·, x̄−ν) to obtain equation (2.1) for x̄ν ,
i.e.,

θν(x̄
ν + λ(z̄ν − x̄ν), x̄−ν) < θν(x̄

ν , x̄−ν)

for all λ ∈ (0, 1]. Then, since x̄ is a solution and the constraint functions are continuous,
there exists an i ∈ {1, . . . ,mν} such that

gνi (x̄
ν , x̄−ν) = 0 and gνi (x̄

ν + λ(z̄ν − x̄ν), x̄−ν) > 0

for all λ ∈ (0, 1]. Thus we have

∇xνgνi (x̄
ν , x̄−ν)(z̄ν − x̄ν) = lim

λ↓0

gνi (x̄
ν + λ(z̄ν − x̄ν), x̄−ν)− gνi (x̄ν , x̄−ν)

λ
≥ 0.

From convexity and the minimum property of z̄ν we have

∇xνθν(x̄
ν , x̄−ν)(z̄ν − x̄ν) ≤ θν(z̄

ν , x̄−ν)− θν(x̄ν , x̄−ν) < 0.

The above inequalities and the fact that each player has one variable imply

∇xνθν(x̄
ν , x̄−ν)∇xνgνi (x̄

ν , x̄−ν) ≤ 0.

Altogether we obtain

x̄ ∈
mν∪
i=1

{x ∈ W | gνi (x) = 0,∇xνθν(x)∇xνgνi (x) ≤ 0} ∪ {x ∈ W | ∇xνθν(x) = 0}.

12



Since this holds for all ν ∈ {1, . . . , N} we have shown x̄ ∈ S.
Now suppose x̄ ∈ S and consider a fixed ν ∈ {1, . . . , N}. By the definition of S we

have x̄ ∈ W and either ∇xνθν(x̄
ν , x̄−ν) = 0, which implies that x̄ν is the unconstrained

minimum of θν(·, x̄−ν) and thus also the solution of problem (2.4), or we have an index
i ∈ {1, . . . ,mν} such that gνi (x̄

ν , x̄−ν) = 0 and ∇xνθν(x̄
ν , x̄−ν)∇xνgνi (x̄

ν , x̄−ν) ≤ 0. Here we
consider two cases:
First let ∇xνgνi (x̄

ν , x̄−ν) = 0. Then Assumption 2.3 implies that the set Xν(x̄
−ν) is single

valued and thus x̄ν is the solution of the problem (2.4), since it is the only feasible point.
The second case is ∇xνgνi (x̄

ν , x̄−ν) ̸= 0. Then there exists a γ ≥ 0 such that

∇xνθν(x̄
ν , x̄−ν) = −γ∇xνgνi (x̄

ν , x̄−ν).

Convexity of θν(·, x̄−ν) and gνi (·, x̄−ν) imply for all yν ∈ {xν ∈ R | gν(xν , x̄−ν) ≤ 0}

θν(y
ν , x̄−ν)− θν(x̄ν , x̄−ν) ≥∇xνθν(x̄

ν , x̄−ν)(yν − x̄ν)
=− γ∇xνgνi (x̄

ν , x̄−ν)(yν − x̄ν)
≥γ(gνi (x̄ν , x̄−ν)− gνi (yν , x̄−ν))

=− γgνi (yν , x̄−ν)

≥0,

and hence x̄ν is a solution of the problem (2.4).
In both cases x̄ν is a solution of the problem (2.4) and since this holds for all ν = 1, . . . , N ,
x̄ is a solution of the GNEP, which completes the proof. �

For some GNEPs it is possible to compute the single sets, in particular to determine the
empty sets, in the solution formula from the previous theorem. In case that a constraint
qualification is not satisfied for a GNEP, implying that the GNEP is not equivalent to the
KKT conditions, Theorem 2.5 can still be used. One academic example is the following.

Example 2.6 Consider a 3-player game, where each player controls a single variable.

Player 1: min
x1

1

2
(x1 − 1)2 s.t. (x1)2 − (x2)2 ≤ 0,

Player 2: min
x2

1

2
(x1 − x2)2 s.t. (x1)2 + (x2)2 ≤ 1,

Player 3: min
x3

1

2
(x3 − 3)2 s.t. x3 ≥ 0, x1 + x2 + x3 ≤ 2.

We want to compute the solutions of this GNEP, using Theorem 2.5. First of all x ∈ W
has to hold and thus by the constraints of the first two players (x1)2 ≤ (x2)2 ≤ 1− (x1)2,

implying x1 ≤
√
2
2
. Therefore ∇x1θ1(x) = x1−1 < 0 and Theorem 2.5 implies (x1)2 = (x2)2

and ∇x1g1(x) = 2x1 ≥ 0, thus x1 ∈
[
0,

√
2
2

]
.

If x1 ̸= x2 we can not have a solution, since∇x2θ2(x) = x2−x1 < 0 and∇x2g2(x) = 2x2 < 0.

Therefore x1 = x2 ∈
[
0,

√
2
2

]
and further ∇x2θ2(x) = 0 must hold at a solution.

13



2. Analytical Solution of Small GNEPs

Using this we get for the third player 0 ≤ x3 ≤ 2 and thus ∇x3θ3(x) = x3 − 3 < 0. By
Theorem 2.5 this means that the constraint x1 + x2 + x3 ≤ 2 has to be satisfied with
equality. This yields the solution set

S =

{
(λ, λ, 2− 2λ)

∣∣∣λ ∈ [0, √2
2

]}
.

Note that in this example the solution (0, 0, 2) is not a KKT point. ♢
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3. A Globalized Newton Method for
Normalized Nash Equilibria

The purpose of this section is to propose a globally convergent algorithm for the computa-
tion of a normalized Nash equilibrium for a jointly convex GNEP. The algorithm developed
here is of particular interest since it also has fast local convergence properties. The method
is based on the characterizations of normalized Nash equilibria given in [45, 47]. More
precisely, the algorithm consists of a combination of the locally superlinearly convergent
Newton method from [47] and a globally convergent gradient method with a continuously
differentiable merit function. It draws on the features of the regularized Nikaido-Isoda
function, which has earlier been used as a tool to derive globally convergent methods for
the computation of normalized Nash equilibria, see for example [46]. In the following
sections we first provide some known results before we state the algorithm and prove its
convergence properties. The stated results have been published in [20].

3.1. Preliminaries

The algorithm to be developed is suited for jointly convex GNEPs in the following setting.

Assumption 3.1 (i) The cost functions θν , ν = 1, . . . , N, are twice continuously differ-
entiable and, as a function of xν alone, convex.

(ii) The joint strategy set X ⊆ Rn is nonempty and defined by

X := {x ∈ Rn | g(x) ≤ 0},

where g : Rn → Rm is a twice continuously differentiable function with convex com-
ponent functions.

In contrast to Assumption 1.2 we further assume smoothness properties for the cost func-
tions and constraints which are necessary to design a locally superlinearly convergent
method and we restrict to jointly convex problems.
Assumption 3.1 implies that the regularized Nikaido-Isoda function

Ψγ(x, y) :=
N∑
ν=1

[
θν(x

ν , x−ν)− θν(yν , x−ν)− γ

2
∥xν − yν∥2

]
,
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3. A Globalized Newton Method for Normalized Nash Equilibria

where γ > 0 is a fixed parameter, is twice continuously differentiable and strongly concave
with respect to the second argument, and further that the feasible set X is nonempty,
closed and convex. Therefore the optimization problem

max
y∈X

Ψγ(x, y) (3.1)

has a unique solution. However, the solution function defined by

yγ(x) := argmax
y∈X

Ψγ(x, y) (3.2)

is, in general, not differentiable everywhere, see [45, Example 2.4]. Further define the
function

Vγ(x) := Ψγ

(
x, yγ(x)

)
, (3.3)

and, in particular, for two different fixed parameters β > α > 0 consider the function built
from the difference of two functions Vα and Vβ,

Vαβ(x) := Vα(x)− Vβ(x).

The functions yγ and Vαβ have a number of interesting properties that are summarized in
the following result, whose proof can be found in [45].

Theorem 3.2 Suppose that Assumption 3.1 holds and let γ > 0, β > α > 0 be fixed
parameters. Then:

(i) the functions yγ, Vγ and Vαβ are continuous;

(ii) any vector x̄ ∈ Rn with yγ(x̄) = x̄ is a normalized Nash equilibrium;

(iii) Vαβ(x) ≥ 0 for all x ∈ Rn;

(iv) any vector x̄ ∈ Rn with Vαβ(x̄) = 0 is a normalized Nash equilibrium;

(v) the function Vαβ is continuously differentiable and its gradient is given by

∇Vαβ(x) =
N∑
ν=1

[
∇θν(yνβ(x), x−ν)−∇θν(yνα(x), x−ν)

]

+

 ∇x1θ1(y
1
α(x), x

−1)−∇x1θ1(y
1
β(x), x

−1)
...

∇xN θN(y
N
α (x), x−N)−∇xN θN(y

N
β (x), x−N)


−α
(
x− yα(x)

)
+ β

(
x− yβ(x)

)
.
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3.1. Preliminaries

The statements (ii) and (iv) do not yield a characterization of the full set of generalized
Nash equilibria, but a characterization of the set of normalized Nash equilibria. Let γ =
β > α > 0. Statement (ii) says that a normalized Nash equilibrium is a solution of the
nonlinear equation

Fβ(x) := yβ(x)− x = 0, (3.4)

which is nonsmooth in general. Furthermore, statements (iii) and (iv) imply that x̄ is a
normalized Nash equilibrium if and only if it is a global solution with vanishing function
value of the optimization problem

min
x∈Rn

Vαβ(x), (3.5)

where the objective function Vαβ is continuously differentiable from (v). We combine
both characterizations to design a globally, and locally fast, convergent method for the
computation of a normalized Nash equilibrium. Specifically, we try to use a nonsmooth
Newton direction for the nonlinear equation (3.4) as long as it decreases the merit function
Vαβ, but we switch to the anti-gradient direction of the function Vαβ if it fails to be a
descent direction. The former aims at fast local convergence, while the latter ensures
global convergence of the algorithm.
To validate the proposed algorithm, we should find a condition that ensures that a sta-

tionary point of the function Vαβ is a solution of problem (3.5), and hence, a normalized
Nash equilibrium. Further, for the nonsmooth Newton method, we have to establish con-
ditions which ensure that the function Fβ is at least Lipschitz-continuous, and calculate a
suitable approximation for the Jacobian of Fβ(x), in order to make a nonsmooth Newton
method conveniently implementable. These questions have been answered in [45, 47]. In
particular, the proof of the next lemma can be found in [45, Theorem 4.6].

Lemma 3.3 Assume that, in addition to Assumption 3.1, for any x ∈ Rn with yα(x) ̸=
yβ(x) the inequality

N∑
ν=1

[
∇θν(yνβ(x), x−ν)−∇θν(yνα(x), x−ν)

]T (
yβ(x)− yα(x)

)
> 0 (3.6)

holds. Then any stationary point of the function Vαβ is a normalized Nash equilibrium.

Sufficient conditions for the condition (3.6) in Lemma 3.3 and a further discussion may
be found in [45, 46] and are somewhat related to the corresponding conditions given in
[37, 72], for example. Moreover, there is an inequality relation among the values of Vαβ(x),
∥yα(x)− x∥, and ∥yβ(x)− x∥, which can be found in [45, Lemma 4.1].

Lemma 3.4 The inequalities

β − α
2
∥x− yβ(x)∥2 ≤ Vαβ(x) ≤

β − α
2
∥x− yα(x)∥2 (3.7)

hold for all x ∈ Rn.
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3. A Globalized Newton Method for Normalized Nash Equilibria

In our method, this growth condition on the merit function Vαβ is a necessary tool for
the transition from the globally convergent gradient method based on Vαβ to the locally
convergent Newton method based on Fβ(x) = yβ(x)−x. Such a technique has been applied
to the numerical solution of nonlinear complementarity problems, see for instance [36] and
[16].
For the nonsmooth Newton method, we use the very same approach as in [47]. That

is, we compute an element of the computable generalized Jacobian of Fβ(x). By definition
(3.2), to calculate the value of yβ(x), we have to solve the maximization problem (3.1).
By Theorem 3.2 (i), yβ(·) is a continuous function. To get further insight into the analytic
properties of the function yβ(·), we formulate the KKT conditions for problem (3.1). To
this end, we need a constraint qualification. For our purposes, the constant rank constraint
qualification (CRCQ), which is weaker than the linear independence constraint qualification
(LICQ), see [49], suffices. For each x ∈ X, let

I(x) := {i ∈ {1, . . . ,m} | gi(x) = 0}

denote the index set of active constraints at x.

Assumption 3.5 The constant rank constraint qualification (CRCQ) holds at x∗ ∈ Rn

if there exists a neighbourhood N of x∗ such that, for every subset J ⊆ I(x∗), the set of
gradient vectors

{∇gi(x) | i ∈ J}

has the same rank (depending on J) for all x ∈ N .

Note, in particular, that linear constraints satisfy the CRCQ. For x ∈ Rn and the unique
solution yβ(x) of problem (3.1), Assumption 3.5 at yβ(x) guarantees the existence of a
Lagrange multiplier λ ∈ Rm such that the KKT conditions hold, see [49], i.e.,

−∇yΨβ(x, yβ(x)) +
m∑
i=1

λi∇gi(yβ(x)) = 0,

λi ≥ 0, gi(yβ(x)) ≤ 0, λi gi(yβ(x)) = 0 ∀i = 1, . . . ,m.

(3.8)

Since we assume only the constant rank constraint qualification to hold, the Lagrange
multiplier is not necessarily unique. Let

M(x) := {λ ∈ Rm | (x, yβ(x), λ) satisfies (3.8)} (3.9)

denote the set of Lagrange multipliers. We define a family of certain subsets of the active
index set I(x) by

B(x) :=
{
J ⊆ I(x) | ∃λ ∈M(x) such that λi = 0 for all i ∈ I(x) \ J,

and {∇gi(x)}i∈J are linearly independent
}
.

(3.10)

The next theorem is concerned with a formula for the computable generalized Jacobian of
Fβ. For details regarding its derivation see [47, Lemmata 3.4 and 3.5].
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3.2. A Globalization of a Newton Method via Vαβ

Lemma 3.6 Assume that Assumption 3.1 is satisfied and that the CRCQ Assumption 3.5
holds at yβ(x). Then the function Fβ(x) := yβ(x) − x is a PC1 function near x, and the
computable generalized Jacobian of Fβ at x is defined by

∂CFβ(x) :=
{
∇yJβ (x)T − In | J ∈ B(x)

}
,

where
∇yJβ (x)T = C−1A− C−1D(DTC−1D)−1DTC−1A

with
A := A(x) := ∇2

yxΨβ(x, yβ(x)),
C := CJ(x) := −∇2

yyΨβ(x, yβ(x)) +
∑

i∈J λi∇2gi(yβ(x)),
D := DJ(x) := ∇gJ(yβ(x)).

The explicit formulas for ∇2
yxΨβ(x, y) and ∇2

yyΨβ(x, y) are given as follows (cf. [44]):

∇2
yxΨβ(x, y) = −

 ∇2
x1x1θ1(y

1, x−1) · · · ∇2
x1xN θ1(y

1, x−1)
...

...
∇2

xNx1θN(y
N , x−N) · · · ∇2

xNxN θN(y
N , x−N)


+ blockdiag

 ∇
2
x1x1θ1(y

1, x−1)
. . .

∇2
xNxN θN(y

N , x−N)

+ βIn,

∇2
yyΨβ(x, y) = − blockdiag

 ∇
2
x1x1θ1(y

1, x−1)
. . .

∇2
xNxN θN(y

N , x−N)

− βIn,
where blockdiag means that the matrix has only the given square matrices as blocks on its
diagonal and all other elements are zero. Note that the Lagrange multiplier λ used in the
definition of C does depend on x, though not explicitly stated.

3.2. A Globalization of a Newton Method via Vαβ

Using the notation of the previous section, we are now ready to state the algorithm.

Algorithm 3.7 (Globalized Newton method via Vαβ)

(S.0) Choose x0 ∈ Rn, ε ≥ 0, s > 1, ρ > 0, τ ∈ (0, 1), σ ∈ (0, 1), and set k := 0.

(S.1) If ∥Fβ(x
k)∥ = ∥yβ(xk)− xk∥ ≤ ε, STOP.

(S.2) Compute an element Hk ∈ ∂CFβ(x
k), and find a solution dk ∈ Rn of the linear system

Hkd
k = −Fβ(x

k), (3.11)

if one exists.
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3. A Globalized Newton Method for Normalized Nash Equilibria

(S.3) If the system (3.11) was solved and if

Vαβ(x
k + dk) ≤ τVαβ(x

k), (3.12)

set xk+1 := xk + dk, k ← k + 1, and go to (S.1).

(S.4) If the system (3.11) was not solved or if the condition

∇Vαβ(xk)Tdk ≤ −ρ∥dk∥s (3.13)

is not satisfied, set dk := −∇Vαβ(xk).

(S.5) Compute tk := max{2−l | l = 0, 1, 2, . . .} such that

Vαβ(x
k + tkd

k) ≤ Vαβ(x
k) + σtk∇Vαβ(xk)Tdk. (3.14)

Set xk+1 := xk + tkd
k, k ← k + 1, and go to (S.1).

This algorithm is reminiscent of the algorithm in [40] for solving the mixed complementarity
problem, which combines a nonsmooth Newton method for the natural residual equation
with a globalization strategy using the D-gap function.
Our analysis of Algorithm 3.7 starts with its accumulation points.

Theorem 3.8 Suppose Assumption 3.1 holds, and that Assumption 3.5 is satisfied for all
x ∈ X. Then Algorithm 3.7 with ε = 0 either stops at a normalized Nash equilibrium or
every accumulation point x̄ of a sequence generated by the algorithm is either a stationary
point of Vαβ or a normalized Nash equilibrium.

Proof. The proof is similar to those of the corresponding global convergence results in
[15, 16].
If the algorithm stops at (S.1), then we have Fβ(x

k) = 0, and xk is a normalized Nash
equilibrium in view of Theorem 3.2 (ii). Otherwise, consider a subsequence {xk} converging
to x̄. If for an infinite set of indices in this subsequence, we have dk := −∇Vαβ(xk), then
x̄ is a stationary point of Vαβ by standard arguments. If (3.12) holds infinitely often, we
get Vαβ(x

k) → 0 since Vαβ(x) ≥ 0 and τ ∈ (0, 1), implying that x̄ is a normalized Nash
equilibrium by Theorem 3.2(i),(iv). Therefore we assume, without loss of generality, that
the search direction is always obtained from the linear system Hkd

k = −Fβ(x
k) and that

the condition (3.13) is always satisfied.
From (3.13), we have∇Vαβ(xk)Tdk ≤ −ρ∥dk∥s, which together with s > 1 and continuity

of ∇Vαβ implies boundedness of the sequence {∥dk∥}. Subsequencing if necessary, we can
assume dk → d̄.
Assume d̄ ̸= 0. From (3.14), we have Vαβ(x

k + tkd
k) ≤ Vαβ(x

k). Since Vαβ(x) ≥ 0 for all
x ∈ Rn, it follows that Vαβ(x

k + tkd
k)− Vαβ(xk)→ 0, which yields

tk∇Vαβ(xk)Tdk → 0. (3.15)
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3.2. A Globalization of a Newton Method via Vαβ

Now suppose tk → 0. Notice that the line search rule implies

Vαβ(x
k + 2tkd

k)− Vαβ(xk)
2tk

> σ∇Vαβ(xk)Tdk

for all k ∈ N sufficiently large. Passing to the limit and exploiting the continuous differen-
tiability of Vαβ, we have

∇Vαβ(x̄)T d̄ ≥ σ∇Vαβ(x̄)T d̄.

Since σ ∈ (0, 1), this yields ∇Vαβ(x̄)T d̄ ≥ 0, contradicting (3.13) since d̄ ̸= 0. Therefore,
{tk} must be bounded away from zero. However, (3.15) and (3.13) then imply dk → 0,
contradicting dk → d̄ ̸= 0.

Therefore we must have d̄ = 0. Lemma 3.6 implies that Fβ is a piecewise continu-
ously differentiable function, and hence, in a neighbourhood of x̄, each Hk is the Jaco-
bian of one of finitely many C1 functions. Thus, the sequence {Hk} is bounded. Since
∥Fβ(x

k)∥ = ∥Hkd
k∥ ≤ ∥Hk∥∥dk∥ and dk → d̄ = 0, it follows that Fβ(x̄) = 0. Hence, from

Theorem 3.2 (ii), we conclude that x̄ is a normalized Nash equilibrium. �

Remark 3.9 Note that Theorem 3.8 requires Assumption 3.5 to hold at every point x ∈
X. This requirement is unnecessarily strong and is used here only for a simple statement
of Algorithm 3.7 (since the computable generalized Jacobian may not exist without the
CRCQ). However, the result would remain true if the matrix Hk is alternatively chosen
from any set G(xk), where G is a set-valued mapping which is upper semi-continuous and
such that G(x) is a nonempty and compact set for all x ∈ Rn. A possible candidate for this
set-valued mapping is, for example, Clarke’s generalized Jacobian, cf. [12]. The reason for
using the computable generalized Jacobian from the very beginning is essentially due to
the observation that this Jacobian allows us to prove a very nice local convergence result.

Lemma 3.3 shows a condition under which any stationary point of the function Vαβ is a
normalized Nash equilibrium.

Next we examine the local convergence of Algorithm 3.7. To this end, we consider the
nonsingularity of matrices Hk and acceptance of the full Newton step in (S.3) of Algorithm
3.7. The nonsingularity of matrices Hk in a neighbourhood of a normalized Nash equilib-
rium is guaranteed by [47, Lemma 4.2] in conjunction with the following assumption. The
result in [47, Lemma 4.2] is stated for x ∈ X. However, taking a closer look at the proof
of the lemma reveals that the assertion holds for all x ∈ Rn.

Assumption 3.10 For each J ∈ B(x) and λ ∈M(x), we have

dT

(
M(x, yβ(x)) +

∑
j∈J

λj∇2gj(yβ(x))

)
d ̸= 0 ∀d ∈ T J(x) \ {0},
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3. A Globalized Newton Method for Normalized Nash Equilibria

with T J(x) := {d ∈ Rn | ∇gj(yβ(x))Td = 0∀j ∈ J} and

M(x, y) :=

 ∇
2
x1x1θ1(y

1, x−1) . . . ∇2
x1xN θ1(y

1, x−1)
...

...
∇2

xNx1θN(y
N , x−N) . . . ∇2

xNxN θN(y
N , x−N)

 .

In addition to the nonsingularity of the matrices Hk, we need a superlinear approximation
property to obtain local superlinear convergence. From [47, Theorem 4.5], we immediately
obtain the following lemma.

Lemma 3.11 Let x̄ be a normalized Nash equilibrium, suppose Assumptions 3.1, 3.5 and
3.10 hold at x̄, and let {xk} be any sequence converging to x̄. If dk is a solution of the
equation Hkd

k = −Fβ(x
k), then we have

∥xk + dk − x̄∥ = o(∥xk − x̄∥), i.e., lim
k∈N

∥xk + dk − x̄∥
∥xk − x̄∥

= 0.

Furthermore, if all functions θν , ν = 1, . . . , N and gi, i = 1, . . . ,m have locally Lipschitz
continuous second derivatives, then

∥xk + dk − x̄∥ = O(∥xk − x̄∥2), i.e., lim sup
k∈N

∥xk + dk − x̄∥
∥xk − x̄∥2

<∞.

It remains to show that the full Newton step is eventually accepted in (S.3) of Algorithm
3.7. This is done in a similar way as in [36] and [16] for the nonlinear complementarity
problem, using Lemma 3.11 and the growth condition from Lemma 3.4.

Theorem 3.12 Let x̄ be a normalized Nash equilibrium and suppose that x̄ is an accu-
mulation point of a sequence {xk} generated by Algorithm 3.7. If Assumptions 3.1, 3.5
and 3.10 hold at x̄, then the entire sequence {xk} converges to x̄. Moreover, eventually
the linear system (3.11) is solvable and condition (3.12) is satisfied, and {xk} converges
superlinearly to x̄. If, in addition, all functions θν , ν = 1, . . . , N and gi, i = 1, . . . ,m have
locally Lipschitz continuous second derivatives, the convergence rate is quadratic.

Proof. We divide the proof into three steps.
Step 1: We begin with some preliminary observations. From [47, Lemma 4.2], under
Assumption 3.10, all matrices H(x̄) ∈ ∂CFβ(x̄) are nonsingular, and so are the matrices
H(x) ∈ ∂CFβ(x) for all x sufficiently close to x̄. Hence, the system (3.11) is solvable for
all x near x̄, and

∥H(x)(x− x̄)∥ ≥ ∥x− x̄∥
∥H(x)−1∥

≥ c∥x− x̄∥

for some constant c > 0 and all x in a sufficiently small neighbourhood of x̄. Moreover, we
have

∥Fβ(x)−H(x)(x− x̄)∥ ≤ c

2
∥x− x̄∥

22



3.2. A Globalization of a Newton Method via Vαβ

for all x sufficiently close to x̄, cf. [47, Lemma 4.4]. Therefore we obtain

c∥x− x̄∥ − ∥Fβ(x)∥ ≤ ∥H(x)(x− x̄)∥ − ∥Fβ(x)∥
≤ ∥Fβ(x)−H(x)(x− x̄)∥

≤ c

2
∥x− x̄∥,

that is,
c

2
∥x− x̄∥ ≤ ∥Fβ(x)∥, (3.16)

provided x is sufficiently close to x̄.

Step 2: Next, we show that the entire sequence {xk} converges to x̄. By [55, Lemma 4.10],
it suffices to show that x̄ is a locally unique solution of Fβ(x) = 0 and that {∥xk+1−xk∥}K
converges to 0 for any subsequence {xk}K converging to x̄.
Under our assumptions, the fact that x̄ is a locally unique solution follows immediately
from (3.16). The updating rules in Algorithm 3.7 imply

∥xk+1 − xk∥ ≤ ∥dk∥ ∀k ∈ K. (3.17)

Furthermore, for all k ∈ K satisfying the test (3.13), the Cauchy-Schwarz inequality gives

ρ∥dk∥s ≤ −∇Vαβ(xk)Tdk ≤ ∥∇Vαβ(xk)∥ ∥dk∥,

which together with s > 1 implies

ρ∥dk∥s−1 ≤ ∥∇Vαβ(xk)∥.

Then it follows from Theorem 3.8 that {∥dk∥}K tends to 0. (Recall that dk = −∇Vαβ(xk)
for all k ∈ K violating (3.13).) Hence the desired result follows from (3.17).

Step 3: Finally, we prove that {xk} converges locally superlinearly/quadratically to x̄.
This is done by showing that the globalized Newton method from Algorithm 3.7 eventually
coincides with the local Newton method and, therefore, inherits the convergence properties
from the local method. To this end, we have to show that the linear system (3.11) is solvable
and the corresponding Newton direction dk satisfies the test (3.12) for all k ∈ N sufficiently
large.
From Lemma 3.4, we know that

β − α
2
∥Fβ(x)∥2 ≤ Vαβ(x) ≤

β − α
2
∥Fα(x)∥2 (3.18)

for all x ∈ Rn. Let L > 0 be the local Lipschitz constant of the function Fα around x̄
(which exists since Fα is piecewise continuously differentiable due to Lemma 3.6). Then
we have √

Vαβ(xk + dk)
(3.18)

≤
√
β − α
2
∥Fα(x

k + dk)− Fα(x̄)︸ ︷︷ ︸
=0

∥
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3. A Globalized Newton Method for Normalized Nash Equilibria

≤
√
β − α
2

L∥xk + dk − x̄∥
Lemma 3.11

= o
(
∥xk − x̄∥

)
.

Therefore, for k ∈ N sufficiently large, we have√
Vαβ(xk + dk) ≤

√
τ

√
β − α
2

c

2
∥xk − x̄∥

(3.16)

≤
√
τ

√
β − α
2
∥Fβ(x

k)∥
(3.18)

≤
√
τ
√
Vαβ(xk).

Hence the test (3.12) is eventually successful. By Lemma 3.11, we then have superlinear
or quadratic convergence of {xk} to x̄. �

The above proof shows that the globalized Newton method eventually coincides with the
local Newton method. Consequently [47, Proposition 4.6] can be applied to Algorithm 3.7
and we obtain the following finite termination property:
If the assumptions of Theorem 3.12 hold and the generalized Nash equilibrium problem
is a quadratic game, i.e., the cost functions θν are quadratic for all players ν = 1, . . . , N
and the strategy set X is polyhedral, and if xk is sufficiently close to a normalized Nash
equilibrium x̄, then the next iterate xk+1 coincides with x̄.
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4. Optimization Reformulations of
GNEPs Using the Nikaido-Isoda
Function

In section 3 only jointly convex GNEPs were considered and the method described there
is able to find normalized Nash equilibria. Now we will consider the much more general
case of player convex GNEPs. The aim of this section is to reformulate the player convex
GNEP as an optimization problem. The minima of the resulting optimization problem
then coincide with the entire solution set of the underlying GNEP, which allows us to
find also non-normalized Nash equilibria. Further we will see that we obtain a nonsmooth
objective function in general, but we will establish conditions needed to apply a solver for
nonsmooth optimization problems. Using the Nikaido-Isoda function it is shown in [27] that
the minima of a constrained “quasi-optimization” problem are exactly the solutions of the
GNEP. Further [45] shows the equivalence of the GNEP solutions to the minima of a real
constrained optimization problem in the case of jointly convex GNEPs. The constrained
reformulation for player convex GNEPs we are going to present in the next section is similar
to the results in [45]. Note, however, that the class of jointly convex GNEPs is just a small,
but important, subclass of all player convex GNEPs. Having a constrained reformulation
we will develop a new unconstrained one, which has almost the same smoothness properties.
Since there are efficient algorithms for nonsmooth unconstrained optimization problems the
unconstrained reformulation has advantages from a practical point of view, however, we
will see that we don’t get a reformulation for the whole class of player convex GNEPs. The
results of this section were published first for the jointly convex case in [21] and then for
the player convex case in [22].

4.1. Optimization Reformulations

Here we present two reformulations of the GNEP, one as a constrained optimization prob-
lem and the other one as an unconstrained optimization problem. Using the regularized
Nikaido-Isoda function Ψα from (1.3), we define

Vα(x) := max
y∈Ω(x)

Ψα(x, y)

= max
y∈Ω(x)

N∑
ν=1

[
θν(x

ν , x−ν)− θν(yν , x−ν)− α

2
∥xν − yν∥2

]
(4.1)
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=
N∑
ν=1

[
θν(x

ν , x−ν)− min
yν∈Xν(x−ν)

(
θν(y

ν , x−ν) +
α

2
∥xν − yν∥2

)]
.

In view of Assumption 1.2, Xν(x
−ν), ν = 1, . . . , N and Ω(x) are closed and convex sets,

and all appearing objective functions are uniformly concave or convex, respectively. Hence
the mapping Vα(x) is well-defined for all x ∈ Rn satisfying Ω(x) ̸= ∅. In [45] it was shown
that finding a solution of the GNEP is equivalent to computing a global minimum of the
constrained optimization problem

minVα(x) s.t. x ∈ Ω(x).

To handle the constraints it is very natural to define the following set

W := {x ∈ Rn | xν ∈ Xν(x
−ν) for all ν = 1, . . . , N} (4.2)

= {x ∈ Rn | gν(x) ≤ 0 for all ν = 1, . . . , N},

where the second equality follows from the representation of the sets Xν(x
−ν), cf. Assump-

tion 1.2. From the last representation it is clear that W contains all those points which
satisfy all the constraints of all players. Some further simple observations are summarized
in the following remark.

Remark 4.1 (a) Consider a generalized Nash game with two players having arbitrary
cost functions. Player 1 controls the single variable x1, and player 2 controls the
single variable x2. Let the strategy spaces X1(x

2) and X2(x
1) be defined by the

mappings

g1(x) := (x1)2 − (x2)2 and g2(x) := (x1)2 + (x2)2 − 1,

respectively. Note that these functions satisfy the properties from Assumption 1.2,
but that g1 is not convex as a function of the whole vector x. The corresponding set
W is shown in Figure 4.1. Obviously, this set is not convex. Note also that there
is no (clear) connection to the sets Ω(x). For example, taking x := (1

2
, 1
2
) ∈ W , a

simple calculation shows that Ω(x) = [−1
2
, 1
2
] × [−

√
3
2
,
√
3
2
], and this set is neither a

subset of W nor vice versa.

(b) Consider once again a Nash game with two players, each having a single decision
variable, and arbitrary cost functions. Let the strategy spaces be defined by

X1(x
2) =

{
R, if x2 ̸= 0,
∅, if x2 = 0,

and X2(x
1) =

{
R, if x1 ̸= 0,
∅, if x1 = 0.

Note that these sets are always closed and convex. In this case, however, the set W
is equal to R2\{(x1, x2) | x1x2 = 0}, hence W is neither closed nor convex.
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W

W

-1.0 -0.5 0.5 1.0
x1

-1.0

-0.5

0.5

1.0

x 2

Figure 4.1.: The set W for the example from Remark 4.1 (a)

(c) The previous counterexample is somewhat artificial since the sets Xν(x
−ν) were not

defined by some functions gν . Of course, if we have Xν(x
−ν) = {xν | gν(xν , x−ν) ≤ 0}

for all ν = 1, . . . , N for some continuous functions gν (as required in Assumption 1.2),
then the set W is obviously closed. Recall, however, that Figure 4.1 shows that W
is nonconvex in general.

(d) Let x̄ be a solution of the GNEP. Then x̄ ∈ Ω(x̄), and this implies x̄ ∈ W , see
Theorem 4.2 (a). In particular, W is nonempty whenever the GNEP has at least one
solution.

Using the setW and the mapping Vα it is possible to reformulate the GNEP as a constrained
optimization problem not only for jointly convex GNEPs as it was done in [45] but also
for player convex GNEPs. This is the content of the following theorem, whose proof is an
adaption on the proofs of [45, Theorem 2.2 and Proposition 2.3].

Theorem 4.2 Let Assumption 1.2 be satisfied. Then the following statements hold:

(a) x ∈ W if and only if x ∈ Ω(x).

(b) Vα(x) ≥ 0 for all x ∈ W .

(c) x̄ is a generalized Nash equilibrium if and only if x̄ ∈ W and Vα(x̄) = 0.

(d) For all x ∈ Rn with Ω(x) ̸= ∅, there exists a unique vector

yα(x) :=
(
y1α(x), . . . , y

N
α (x)

)
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such that
argmin

yν∈Xν(x−ν)

[
θν(y

ν , x−ν) +
α

2
∥xν − yν∥2

]
= yνα(x) (4.3)

for all ν = 1, . . . , N .

(e) x̄ is a generalized Nash equilibrium if and only if x̄ is a fixed point of the mapping
x 7→ yα(x), i.e., if and only if x̄ = yα(x̄).

Proof. (a) By definition, x ∈ Ω(x) means xν ∈ Xν(x
−ν) for all ν = 1, . . . , N , which is

equivalent to x ∈ W .

(b) For all x ∈ W we have x ∈ Ω(x) by part (a). Therefore

Vα(x) = max
y∈Ω(x)

Ψα(x, y) ≥ Ψα(x, x) = 0.

(c) Let x̄ be a generalized Nash equilibrium. Then we have x̄ ∈ Ω(x̄) (hence x̄ ∈ W by
part (a)) and for all ν = 1, . . . , N

θν(x̄
ν , x̄−ν) ≤ θν(x

ν , x̄−ν) for all xν ∈ Xν(x̄
−ν).

This implies

Ψα(x̄, y) =
N∑
ν=1

(
θν(x̄

ν , x̄−ν)− θν(yν , x̄−ν)
)︸ ︷︷ ︸

≤0

−α
2
∥x̄− y∥2 ≤ 0

for all y ∈ Ω(x̄). Therefore, we get Vα(x̄) = maxy∈Ω(x̄)Ψα(x̄, y) ≤ 0. Together with part
(b), we obtain Vα(x̄) = 0.
Conversely, assume that x̄ ∈ W (which is equivalent to x̄ ∈ Ω(x̄) by part (a)) and

Vα(x̄) = 0. Then Ψα(x̄, y) ≤ 0 holds for all y ∈ Ω(x̄). Let ν ∈ {1, . . . , N} be a fixed player,
xν ∈ Xν(x̄

−ν) and λ ∈ (0, 1) arbitrary. Define y = (y1, . . . , yN) ∈ Rn by

yµ :=

{
x̄µ, if µ ̸= ν,
λx̄ν + (1− λ)xν , if µ = ν

∀µ = 1, . . . , N.

The convexity ofXν(x̄
−ν) implies yµ ∈ Xµ(x̄

−µ) for all µ = 1, . . . , N and therefore y ∈ Ω(x̄).
Using this special y and exploiting the convexity of θν with respect to xν , we get

0 ≥ Ψα(x̄, y)

= θν(x̄
ν , x̄−ν)− θν(λx̄ν + (1− λ)xν , x̄−ν)− α

2
(1− λ)2∥x̄ν − xν∥2

≥ (1− λ)θν(x̄ν , x̄−ν)− (1− λ)θν(xν , x̄−ν)− α

2
(1− λ)2∥x̄ν − xν∥2.

Dividing both sides by (1− λ) and taking the limit λ ↑ 1, we see

θν(x̄
ν , x̄−ν) ≤ θν(x

ν , x̄−ν).
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Since this is true for all xν ∈ Xν(x̄
−ν) and all players ν = 1, . . . , N , x̄ is a generalized Nash

equilibrium.

(d) For x ∈ Rn with Ω(x) ̸= ∅, the closed and convex sets Xν(x
−ν) are nonempty for all

ν = 1, . . . , N . The statement therefore follows from the fact that the uniformly convex
function (uniform with respect to yν)

θν(y
ν , x−ν) +

α

2
∥xν − yν∥2

attains a unique minimum on the nonempty, closed and convex set Xν(x
−ν).

(e) First, let x̄ be a generalized Nash equilibrium. Then x̄ ∈ Ω(x̄) follows by definition,
and further Vα(x̄) = 0 holds in view of part (c). Therefore, we obtain

Ψα(x̄, x̄) = 0 = Vα(x̄) = max
y∈Ω(x̄)

Ψα(x̄, y) = Ψα(x̄, yα(x̄)).

With x̄ ∈ Ω(x̄), we get x̄ = yα(x̄) from part (d), taking into account the uniqueness of the
maximizer yα(x̄).
Conversely, let x̄ ∈ Rn be such that x̄ = yα(x̄). Then x̄ ∈ Ω(x̄) and, therefore, x̄ ∈ W in

view of part (a). Moreover, we obtain

0 = Ψα(x̄, x̄) = Ψα(x̄, yα(x̄)) = Vα(x̄),

and this means that x̄ is a generalized Nash equilibrium by part (c). �

In view of Theorem 4.2 finding a solution of the GNEP is equivalent to finding a minimum
x̄ of the constrained optimization problem

minVα(x) s.t. x ∈ W (4.4)

satisfying Vα(x̄) = 0. Remark 4.1 shows that W is nonempty (at least if the GNEP has a
solution) and closed under Assumption 1.2, but might be nonconvex. As for each x ∈ W
we have x ∈ Ω(x) by Theorem 4.2 (a), it follows that Ω(x) is nonempty and, thus, the
objective function Vα is well-defined on W . However, Vα is, in general, nondifferentiable
and might even be discontinuous. The following is an example for the latter effect.

Example 4.3 Consider a jointly convex 2-player game, where player 1 has one variable x1

and player 2 has two variables (x21, x
2
2). As usual define x = (x1, x21, x

2
2). Let the common

strategy space be given by

X = {x ∈ [0, 10]× [−10, 10]× [0, 20] | (x21)2 + (x22 − x1)2 − (x1)2 ≤ 0}.

Further let the cost functions be defined by

θ1(x) := (x1 + 10)2 and θ2(x) := (x21)
2 + (x22)

2,
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respectively. The corresponding regularized Nikaido-Isoda function is given by

Ψα(x, y) := (x1 + 10)2 + (x21)
2 + (x22)

2 − (y1 + 10)2 − (y21)
2 − (y22)

2 − α

2
∥x− y∥2.

The unconstrained maximum of Ψα(x, y) with respect to y is
(

−20+αx1

2+α
,
αx2

1

2+α
,
αx2

2

2+α

)T
. Now

consider for δ > 0 sufficiently small the feasible sequence

x(δ) := (10,
√
20δ − δ2, δ)T → (10, 0, 0)T := x∗ for δ ↓ 0.

Note that x∗ belongs to X. Since the strategy set X1(x
2(δ)) = {10} is single valued and

the unconstrained maximum is feasible for the second player we have for all α > 0 and all
δ > 0 sufficiently small

yα
(
x(δ)

)
=

(
10,

α
√
20δ − δ2
2 + α

,
αδ

2 + α

)T

→ (10, 0, 0)T for δ ↓ 0.

On the other hand, for the parameter α = 2 or, more generally, for an arbitrary parameter
α ∈ (0, 2], it can be shown that yα(x

∗) = (0, 0, 0)T , hence the function yα is not continuous
in (10, 0, 0)T . Furthermore, we have

Vα
(
x(δ)

)
= Ψα

(
x(δ), yα(x(δ))

)
= 20δ

(
1− α2

(2 + α)2
− α

2

(
1− α

2 + α

)2
)
→ 0 for δ ↓ 0,

whereas Vα(x
∗) = 202 − 102 − α

2
102 ̸= 0, which shows that Vα is not continuous in x∗. ♢

In Section 4.2 we will give conditions guaranteeing that the function Vα is continuous and
even a PC1 mapping under fairly mild conditions. For the moment, however, we will leave
the constrained problem (4.4) and present a new unconstrained optimization reformulation
of the GNEP.
To this end, we have to find a way to define the function Vα(x) := maxy∈Ω(x)Ψα(x, y)

for those points x ∈ Rn where Ω(x) is empty. By Theorem 4.2 (a) Ω(x) ̸= ∅ for all x ∈ W .
Hence the idea is first to project x ∈ Rn on W and then take the set Ω at the projected
point. To get a well-defined Euclidean projection we need a nonempty closed and convex
set. Since the set W is, in general, non convex, we define the set

X := cl(conv(W )), (4.5)

and make the following central assumption for our subsequent analysis.

Assumption 4.4 The set W = {x ∈ Rn | xν ∈ Xν(x
−ν) for all ν = 1, . . . , N} is

nonempty and Ω(x) is nonempty for all x ∈ X = cl(conv(W )).
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By this Assumption 4.4 the set X is always nonempty, closed, and convex which implies
that the Euclidean projection onto this set is well-defined and unique. This paves the way
to our unconstrained optimization reformulation. The necessity of the closure in (4.5) is
discussed in Remark 4.5 (d) below. Further the following remark shows that the class
of GNEPs satisfying Assumption 4.4 contains the jointly convex GNEPs, and is, in fact,
strictly larger, but that not all GNEPs satisfy Assumption 4.4.

Remark 4.5 (a) Consider a jointly convex GNEP. Then there is a common nonempty,
closed, and convex set Y ⊆ Rn such that

Xν(x
−ν) := {xν ∈ Rnν | (xν , x−ν) ∈ Y }

for all players ν = 1, . . . , N . In this case, we obviously have W = Y which, in turn,
implies X = cl(conv(W )) = cl(conv(Y )) = Y since Y is already convex and closed.
Moreover, we have W ̸= ∅ and Ω(x) ̸= ∅ for all x ∈ X = W = Y since x belongs
to Ω(x) for all x ∈ W by Theorem 4.2 (a). Hence Assumption 4.4 holds for jointly
convex GNEPs.

(b) Remark (a) can be generalized on GNEPs with strategy sets

Xν(x
−ν) := {xν ∈ Rnν | gν(xν , x−ν) ≤ 0}

for ν = 1, . . . , N , where gν : Rn → Rmν are continuous and convex functions of all
variables x. Then, again, X =W holds due to the assumed continuity and convexity
of all gν . Moreover Ω(x) ̸= ∅ for all x ∈ W = X. If a solution exists, we have W ̸= ∅.
Hence Assumption 4.4 also holds in this situation.

(c) An explicit example of a non-jointly convex GNEP which obviously satisfies Assump-
tion 4.4 is the one from Remark 4.1 (a), see Figure 4.1. In particular, this shows that
the class of GNEPs satisfying Assumption 4.4 strictly includes the class of jointly
convex GNEPs.

(d) On the other hand, there exist GNEPs which do not satisfy Assumption 4.4. To
see this, consider a GNEP with two players, each controlling a single variable, with
strategy spaces defined by

X1(x
2) := {x1 ∈ R | g1(x) := 1− x1x2 ≤ 0} =


(−∞, 1/x2], if x2 < 0,

∅, if x2 = 0,
[1/x2,∞), if x2 > 0,

X2(x
1) := {x2 ∈ R | g2(x) := x2 − 1 ≤ 0} = (−∞, 1].

Then the functions gν are convex in xν for fixed x−ν and all the sets Xν(x
−ν) are

closed and convex. Moreover, we have W = {x ∈ R2 | x1x2 ≥ 1, x2 ≤ 1} which
is not connected and, in particular, not convex, see Figure 4.2. We further get
X = cl(conv(W )) = R × (−∞, 1] and Ω((0, 0)) = ∅. Hence Assumption 4.4 is
violated in this case.
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Figure 4.2.: The set W for the example from Remark 4.5 (d)

(e) If we have a GNEP where Assumption 1.2 holds, but there exist x ∈ X with Ω(x) = ∅
then the set W is not convex, because otherwise, if W = conv(W ), Assumption 1.2
makes W a closed set, see Remark 4.1 (c), and hence X = cl(conv(W )) = W , so
that Ω(x) ̸= ∅ for all x ∈ X =W would follow from Theorem 4.2 (a). These GNEPs
are the hard ones, since we do not get an unconstrained reformulation for them and
even the constrained optimization problem is a non-convex and therefore difficult
problem.

Next we define the function for our unconstrained optimization reformulation of the GNEPs
satisfying Assumption 4.4.

Definition 4.6 Consider GNEPs where Assumption 4.4 holds. For those we define for all
x ∈ Rn and α > 0

ȳα(x) := argmax
y∈Ω(PX [x])

Ψα(x, y) and

V̄α(x) := max
y∈Ω(PX [x])

Ψα(x, y) = Ψα(x, ȳα(x)).

Given two parameters 0 < α < β and a constant c > 0, we further define

V̄ c
αβ(x) := V̄α(x)− V̄β(x) + c∥x− PX [x]∥2

for all x ∈ Rn, where V̄β(x) is defined similarly to V̄α(x).
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The difference between the definitions of Vα and V̄α is that we maximize over Ω(x) in
the former case, whereas we maximize over the set Ω(PX [x]) in the latter case. This is
important since Ω(x) might be empty for certain x ∈ Rn, whereas the projection PX [x]
always exists due to the fact that X is nonempty, closed, and convex as a consequence
of Assumption 4.4 and, furthermore, the set Ω(PX [x]) is (closed, convex, and) nonempty
again by Assumption 4.4. Consequently, ȳα(x) and therefore also V̄α(x) are well-defined
for all x ∈ Rn. This, in turn, implies that V̄ c

αβ is well-defined for all x ∈ Rn. Therefore,
Assumption 4.4 guarantees that our functions are well-defined. Note that we have

ȳα(x) = yα(x) and therefore V̄α(x) = Vα(x) for all x ∈ X, (4.6)

hence these two functions coincide on the set X. This simple observation will be used
fruitfully in the proof of the main theorem of this section, showing that we get an uncon-
strained optimization reformulation of the GNEP via V̄ c

αβ. But first the following crucial
lemma, which is similar to Lemma 3.4, has to be proven.

Lemma 4.7 Let Assumption 4.4 hold. Then we have the following inequalities for all
x ∈ Rn:

β − α
2
∥x− ȳβ(x)∥2 + c∥x− PX [x]∥2 ≤ V̄ c

αβ(x),

β − α
2
∥x− ȳα(x)∥2 + c∥x− PX [x]∥2 ≥ V̄ c

αβ(x).

Proof. Assumption 4.4 guarantees that all involved functions are well-defined. We have
ȳα(x) ∈ Ω(PX [x]) and ȳβ(x) ∈ Ω(PX [x]). Therefore

V̄β(x) = Ψβ(x, ȳβ(x)) = max
y∈Ω(PX [x])

Ψβ(x, y) ≥ Ψβ(x, ȳα(x)), (4.7)

V̄α(x) = Ψα(x, ȳα(x)) = max
y∈Ω(PX [x])

Ψα(x, y) ≥ Ψα(x, ȳβ(x)). (4.8)

On the one hand, this implies

V̄ c
αβ(x) = V̄α(x)− V̄β(x) + c∥x− PX [x]∥2

(4.7)

≤ Ψα(x, ȳα(x))−Ψβ(x, ȳα(x)) + c∥x− PX [x]∥2

=
β − α
2
∥x− ȳα(x)∥2 + c∥x− PX [x]∥2

and, on the other hand, we obtain

V̄ c
αβ(x) = V̄α(x)− V̄β(x) + c∥x− PX [x]∥2

(4.8)

≥ Ψα(x, ȳβ(x))−Ψβ(x, ȳβ(x)) + c∥x− PX [x]∥2

=
β − α
2
∥x− ȳβ(x)∥2 + c∥x− PX [x]∥2
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for all x ∈ Rn. �

We are now in a position to show that the function V̄ c
αβ provides an unconstrained opti-

mization reformulation of the GNEP.

Theorem 4.8 Under Assumption 4.4 the following statements hold:

(a) V̄ c
αβ(x) ≥ 0 for all x ∈ Rn.

(b) x̄ is a generalized Nash equilibrium if and only if x̄ is a minimum of V̄ c
αβ satisfying

V̄ c
αβ(x̄) = 0.

Proof. Again Assumption 4.4 is needed to guarantee that the functions are all well-defined.
The first inequality in Lemma 4.7 immediately gives

V̄ c
αβ(x) ≥

β − α
2
∥x− ȳβ(x)∥2 + c∥x− PX [x]∥2 ≥ 0

for all x ∈ Rn, hence statement (a) holds.
In order to verify the second statement, first assume that x̄ is a generalized Nash equi-

librium. Then x̄ ∈ Ω(x̄), and Theorem 4.2 (a) therefore implies x̄ ∈ W ⊆ X. This, in
turn, gives PX [x̄] = x̄, and together with the fixed point characterization of Theorem 4.2
(e), we get

x̄ = yα(x̄) = ȳα(x̄),

where the second equality follows from (4.6). The second inequality of Lemma 4.7 then
implies V̄ c

αβ(x̄) ≤ 0. In view of part (a), we therefore have V̄ c
αβ(x̄) = 0.

Conversely, assume that V̄ c
αβ(x̄) = 0 for some x̄ ∈ Rn. Then we obtain from the first

inequality of Lemma 4.7 that

0 = V̄ c
αβ(x̄) ≥

β − α
2
∥x̄− ȳβ(x̄)∥2 + c∥x̄− PX [x̄]∥2 ≥ 0. (4.9)

Since c > 0, this means PX [x̄] = x̄, i.e., x̄ ∈ X, and

x̄ = ȳβ(x̄) = yβ(x̄),

where, once again, we used (4.6). Hence x̄ is a generalized Nash equilibrium by the fixed
point characterization from Theorem 4.2 (e). �

Theorem 4.8 shows that the generalized Nash equilibria x̄ are exactly the minima of the
function V̄ c

αβ satisfying V̄ c
αβ(x̄) = 0. We therefore have the unconstrained optimization

reformulation
min V̄ c

αβ(x), x ∈ Rn, (4.10)

in order to find solutions of a GNEP. Note, however, that we obtain this unconstrained
reformulation only for the class of GNEPs which satisfy Assumption 4.4, whereas the
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corresponding constrained reformulation (4.4) holds for an arbitrary player convex GNEP,
not necessarily satisfying this condition.
In the jointly convex case, it is possible to show that the additional term c∥x− PX [x]∥2 is
not necessary, so we can define V̄ c

αβ with c := 0 in this case. This is content of the following
Corollary.

Corollary 4.9 Assume Assumption 4.4 holds for a jointly convex GNEP and set c := 0
in the definition of V̄ 0

αβ. Then we obtain

(a) V̄ 0
αβ(x) ≥ 0 for all x ∈ Rn.

(b) x̄ is a generalized Nash equilibrium if and only if x̄ is a minimum of V̄ 0
αβ satisfying

V̄ 0
αβ(x̄) = 0.

Proof. Lemma 4.7 also holds for c = 0 and statement (a) is again an immediate conse-
quence of it. We can follow the lines of the proof of Theorem 4.8 to get that a generalized
Nash equilibrium x̄ is a minimum of V̄ 0

αβ satisfying V̄ 0
αβ(x̄) = 0, which is one part of (b).

It remains to show the other direction of (b). Therefore assume that V̄ 0
αβ(x̄) = 0 for some

x̄ ∈ Rn. Then we obtain from the first inequality in Lemma 4.7

0 = V̄ 0
αβ(x̄) ≥

β − α
2
∥x̄− ȳβ(x̄)∥2 ≥ 0.

Consequently, we have x̄ = ȳβ(x̄) ∈ Ω(PX [x̄]), i.e.,

x̄ν ∈ Xν((PX [x̄])
−ν) = {xν ∈ Rnν | (xν , (PX [x̄])

−ν) ∈ X}

for all ν = 1, . . . , N . Let µ ∈ {1, . . . , N} be arbitrarily given. Then (x̄µ, (PX [x̄])
−µ) ∈ X

and we have

∥x̄− (x̄µ, (PX [x̄])
−µ)∥2 =

N∑
ν=1,ν ̸=µ

∥x̄ν − (PX [x̄])
ν∥2

≤
N∑
ν=1

∥x̄ν − (PX [x̄])
ν∥2

= ∥x̄− PX [x̄]∥2.

Since the projection PX [x̄] onto the nonempty, closed and convex set X is the unique
solution of the problem

min
1

2
∥x̄− z∥2 s.t. z ∈ X,

we must have x̄µ = (PX [x̄])
µ. Since µ ∈ {1, . . . , N} was arbitrarily chosen, this is true for

all components and hence x̄ = PX [x̄], i.e., x̄ ∈ X. Thus we get yβ(x̄) = ȳβ(x̄) = x̄ by
(4.6). Therefore, x̄ is a generalized Nash equilibrium by the fixed point characterization of
Theorem 4.2 (e). �

With the previous Corollary 4.9 the question rises, if the additional term is necessary in
the general case. The next example gives the answer, it is strictly necessary.
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Example 4.10 Consider the two player game defined via

Player 1: min
x1

(x1)2 s.t. (x1)2 + (x2)2 ≤ 1,

Player 2: min
x2

(x2 + 3)2 s.t. −2 ≤ x2 ≤ −1.

X=W

x
`

-1.5 -1.0 -0.5 0.5 1.0 1.5
x1

-2.0

-1.5

-1.0

-0.5

0.5

1.0

x 2

Figure 4.3.: The feasible set for Example 4.10

Here we have W = X = {(0,−1)}, see Figure 4.3. If we consider the point x̂ = (0,−2),
we have PX [x̂] = (0,−1) and Ω((0,−1)) = {0} × [−2,−1]. Thus we get

ȳγ(x̂) = (0,−2) = x̂

for all γ > 0 and this implies for 0 < α < β

V̄α(x̂)− V̄β(x̂) = Ψα(x̂, ȳα(x̂))−Ψβ(x̂, ȳβ(x̂)) = 0.

But we have x̂ ̸∈ W and, therefore, x̂ is not a solution of the GNEP. This shows that we
cannot skip the additional term c∥x− PX [x]∥2 in the definition of V̄ c

αβ. ♢

Similar to the constrained reformulation the objective function V̄ c
αβ is nondifferentiable in

general and, even worse, might be discontinuous. The smoothness properties of V̄ c
αβ will

be discussed in more detail in Section 4.3.
There exists an alternative unconstrained optimization formulation of the GNEP, de-

scribed in the following remark. This formulation can be shown to have similar smoothness
properties as those we show in the next two sections.
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Remark 4.11 For an arbitrary parameter α > 0, let us define the functions

ỹα(x) := argmax
y∈Ω(PX [x])

Ψα(PX [x], y) and

Ṽα(x) := max
y∈Ω(PX [x])

Ψα(PX [x], y) = Ψα(PX [x], ỹα(x))

for all x ∈ Rn. Then, given two parameters 0 < α < β and a positive constant c > 0, let
us define

Ṽ c
αβ(x) := Ṽα(x)− Ṽβ(x) + c∥x− PX [x]∥2.

The difference to the previous reformulation is that the first argument of the function Ψα

is the projection PX [x] instead of x. In a way similar to the above approach, one can
show that finding a generalized Nash equilibrium is equivalent to finding solutions of the
unconstrained optimization problem

min Ṽ c
αβ(x), x ∈ Rn

with vanishing function value. Note that the functions V̄ c
αβ and Ṽ c

αβ coincide on the set X
and only differ outside of it. In this reformulation the additional term c∥x − PX [x]∥2 is
needed to guarantee that the solutions of our optimization problem belong to X even in
the jointly convex case.

4.2. Smoothness Properties of the Constrained
Reformulation

In [45, Example 2.4] it was shown that the constrained reformulation (4.4) of a jointly
convex GNEP does not result in a differentiable objective function Vα in general. This
was the reason why the approach was not further investigated there. In Example 4.3 we
have seen that the objective function might even be discontinuous. Nevertheless one can
show that Vα has certain smoothness properties under mild conditions. We will show the
following results:

• Vα is continuous provided that Xν(x
−ν) either satisfies a Slater condition or consists

of a single element;

• Vα is a PC1 function provided that it is continuous, the functions gν and θν are twice
continuously differentiable and a constant rank constraint qualification holds.

To verify the continuity of Vα, we first recall some terminology and results from set-valued
analysis.

Definition 4.12 Suppose X ⊆ Rn, Y ⊆ Rm, and Φ : X ⇒ Y is a point-to-set mapping.
Then Φ is called
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(a) lower semicontinuous in x∗ ∈ X, if for all sequences {xk} ⊆ X with xk → x∗ and all
y∗ ∈ Φ(x∗), there exists a number m ∈ N and a sequence {yk} ⊆ Y with yk → y∗ and
yk ∈ Φ(xk) for all k ≥ m;

(b) closed in x∗ ∈ X, if for all sequences {xk} ⊆ X with xk → x∗ and all sequences
yk → y∗ with yk ∈ Φ(xk) for all k ∈ N sufficiently large, we have y∗ ∈ Φ(x∗);

(c) lower semicontinuous or closed on X if it is lower semicontinuous or closed in every
x ∈ X.

The definition of a lower semicontinuous set-valued mapping is in the sense of Berge [6].
Alternative names used in the literature are “open mapping” (see [48]) and “inner semi-
continuous mapping” (see [67]). These references are also useful sources to find further
results on set-valued analysis. For our subsequent analysis a useful result is stated in the
next lemma, which is immediately obtained from [48, Corollaries 8.1 and 9.1].

Lemma 4.13 Let X ⊆ Rn arbitrary, Y ⊆ Rm convex, and f : X × Y → R be concave in
y for fixed x and continuous on X × Y . Let Φ : X ⇒ Y be a point-to-set map which is
closed in a neighbourhood of x̄ and lower semicontinuous in x̄, and let Φ(x) be convex in a
neighbourhood of x̄. Define

Y (x) := {z ∈ Φ(x) | sup
y∈Φ(x)

f(x, y) = f(x, z)}

and assume that Y (x̄) has exactly one element. Then the point-to-set mapping x 7→ Y (x)
is lower semicontinuous and closed in x̄.

The equivalence of closedness of a point-to-set mapping and closedness of its graph was
shown in [48, Theorem 2], and has become a useful tool. We can use this equivalence and
Lemma 4.13 to prove a sufficient condition for continuity of Vα.

Theorem 4.14 Suppose that Assumption 1.2 holds and that the point-to-set mapping x 7→
Ω(x) is lower semicontinuous in x∗ ∈ W . Then the functions yα and Vα are continuous at
x∗ ∈ W .

Proof. First observe that Assumption 1.2 implies that the function Ψα(x, .) is concave for
fixed x and continuous on Rn × Rn.
By the product structure Ω(x) = X1(x

−1) × . . . × XN(x
−N) it is clear that Ω(x) is

closed if and only if Xν(x
−ν) is closed for all ν = 1, . . . , N . The point-to-set mappings

x−ν 7→ Xν(x
−ν), ν = 1, . . . , N , are closed for all x ∈ W since their graphs

{(yν , x−ν) ∈ Rnν × Rn−nν | gν(yν , x−ν) ≤ 0}

are closed sets due to the assumed continuity of gν , cf. [48, Theorem 2].
Theorem 4.2 (a) implies that Ω(x) is nonempty for all x ∈ W ; moreover, these sets are

also convex as a consequence of Assumption 1.2. Theorem 4.2 (d) shows that the sets
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Yα(x) := {z ∈ Ω(x) | supy∈Ω(x)Ψα(x, y) = Ψα(x, z)} consist of exactly one element for
all x ∈ W , namely yα(x). Lemma 4.13 therefore implies that x 7→ {yα(x)}, viewed as a
point-to-set mapping, is lower semicontinuous and closed in x∗ ∈ W . This implies that the
single-valued function x 7→ yα(x) is continuous at x∗ ∈ W . Hence Vα(x) = Ψα(x, yα(x)),
being a composition of continuous maps, is also continuous at x∗ ∈ W . �

In view of Theorem 4.14, our next aim is to find a condition guaranteeing that the mapping
x−ν 7→ Xν(x

−ν) = {yν ∈ Rnν | gν(yν , x−ν) ≤ 0} is lower semicontinuous for all ν =
1, . . . , N . By [48, Theorem 12] lower semicontinuity can be obtained by continuity of gν ,
convexity of the components of gν in yν for fixed x−ν , and the Slater condition, saying
that for a given x−ν ∈ Rn−nν there exists a yν ∈ Rnν such that gν(yν , x−ν) < 0 for all
ν = 1, . . . , N . The proof of the following lemma is based on this fact.

Lemma 4.15 Suppose that Assumption 1.2 holds. Then the functions yνα, ν = 1, . . . , N ,
and Vα are continuous in x∗ ∈ W provided the Slater condition holds at Xν(x

∗,−ν) for all
ν = 1, . . . , N .

Proof. Let x∗ ∈ W be given such that Xν(x
∗,−ν) satisfies the Slater condition for all

ν = 1, . . . , N . By Assumption 1.2 we can apply [48, Theorem 12] and get lower semiconti-
nuity of the point-to-set map x−ν 7→ Xν(x

−ν) at x∗,−ν for all ν = 1, . . . , N . Therefore, also
the point-to-set map x 7→ Ω(x) is lower semicontinuous at x∗. Hence continuity of yα, in
particular of all components yνα, ν = 1, . . . , N , and of Vα at x∗ follow from Theorem 4.14. �

Unfortunately, it seems natural that many GNEPs possess points x∗ ∈ W at which the
Slater condition is violated for some ν = 1, . . . , N . In the example from Remark 4.1 (a),
e.g., for x∗ = (0, 0) the set X1(0) violates the Slater condition.
Whereas the latter example is degenerate, at least in the jointly convex case with a

bounded common strategy space Y = {x ∈ Rn|g(x) ≤ 0} the failure of the Slater condition
at certain (boundary) points ofW = Y cannot be avoided: for any ν = 1, . . . , N the domain
of Xν ,

dom(Xν) = {x−ν ∈ Rn−nν |Xν(x
−ν) ̸= ∅},

is closed and bounded as the orthogonal projection of Y to Rn−nν and, by the continuity
of g, at all boundary points x̄−ν of dom(Xν) the Slater condition has to be violated in
Xν(x̄

−ν) = {yν ∈ Rnν |g(yν , x̄−ν) ≤ 0}. In view of x̄−ν ∈ dom(Xν), on the other hand,
there exists some ȳν ∈ Rnν with (ȳν , x̄−ν) ∈ Y or, equivalently, g(ȳν , x̄−ν) ≤ 0. As Xν(x̄

−ν)
violates the Slater condition, the latter inequality has to be satisfied with equality and,
thus, under mild assumptions (ȳν , x̄−ν) is a boundary point of W = Y (e.g., if Y itself
satisfies the Slater condition). Note that simple examples show that in general not all
boundary points of W correspond to the violation of the Slater condition in some player’s
strategy space.
In the following we will prove continuity of yα and Vα at points x ∈ W also in the case

that the Slater condition is violated in one or more strategy spaces Xν(x
−ν), ν = 1, . . . , N ,
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as long as the strategy spaces then collapse to singletons. In view of Theorem 4.2 (a), they
then have to coincide with the corresponding set {xν}.
Note that a violation of the Slater condition does not automatically mean a degenerated

strategy space, as one can see in the feasible set from Example 4.3. There we have for
x2 = (0, 0) and arbitrary x1 that the joint constraint (x21)

2 + (x22 − x1)2 − (x1)2 ≤ 0 is
satisfied with equality, thus violating the Slater condition. But the set X1((0, 0)) does not
collapse to a singleton here, since

X1((0, 0)) = {x1 ∈ [0, 10] | (0)2 + (0− x1)2 − (x1)2 ≤ 0} = [0, 10].

Theorem 4.16 Suppose Assumption 1.2 holds, and assume that for each x∗ ∈ W and all
ν = 1, . . . , N the set Xν(x

∗,−ν) either satisfies the Slater condition or coincides with the
singleton {x∗,ν}. Then the functions yα and Vα are continuous on W .

Proof. Let x∗ ∈ W be given. In view of Theorem 4.14 we have to show lower semicon-
tinuity of x 7→ Ω(x) at x∗, that is, for all sequences {xk} ⊆ W with limk→∞ xk = x∗ and
all y∗ ∈ Ω(x∗) we have to find a sequence {yk} converging to y∗ with yk ∈ Ω(xk) for all
k ∈ N sufficiently large. We will define the elements of yk componentwise for each player
ν = 1, . . . , N . For those ν ∈ {1, . . . , N}, where Xν(x

∗,−ν) satisfies the Slater condition, the
mapping x−ν 7→ Xν(x

−ν) is lower semicontinuous at x∗,−ν by Lemma 4.15, and hence a se-
quence {yk,ν} converging to y∗,ν with yk,ν ∈ Xν(x

k,−ν) for all k sufficiently large exists. For
all the other ν ∈ {1, . . . , N} we have Xν(x

∗,−ν) = {x∗,ν} = {y∗,ν} by assumption. Defining
yk,ν := xk,ν we get a sequence {yk,ν} converging to y∗,ν with yk,ν = xk,ν ∈ Xν(x

k,−ν) by
Theorem 4.2 (a), since xk ∈ W . Therefore x 7→ Ω(x) is lower semicontinuous at x∗, since
we have a sequence {yk} with limk→∞ yk = y∗ and yk,ν ∈ Xν(x

k,−ν) for all ν = 1, . . . , N ,
that is, yk ∈ Ω(xk) for all k sufficiently large. �

Hence the optimization reformulation (4.4) of the GNEP is at least a continuous problem
under the assumptions of Theorem 4.16. This observation immediately gives the existence
result from part (a) of the following note.

Remark 4.17 (a) If the set W is nonempty and bounded and for each x∗ ∈ W and all
ν = 1, . . . , N , the set Xν(x

∗,−ν) either satisfies the Slater condition or coincides with
the singleton {x∗,ν}, it is an immediate consequence of the Weierstraß theorem that
the optimization problem (4.4) possesses a globally minimal point.

(b) In general, there are three possible situations which fully describe the relationship
between the GNEP and the optimization problem (4.4):

– The GNEP has a solution, and therefore the optimization problem (4.4) also
has a solution in view of Theorem 4.2 (with zero as optimal function value).

– The GNEP has no solution, but the optimization problem (4.4) has a solution
(then, necessarily, with a positive optimal function value).

– Neither the GNEP nor the optimization problem (4.4) have a solution.
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Under the assumption from part (a), the last case cannot occur. In this situation,
the optimization problem (4.4) therefore characterizes the solvability of a GNEP:
The existing minimum of (4.4) is a solution of the GNEP if and only if the optimal
function value is zero.

(c) Here we give an instance for the second case mentioned in (b). In Example 4.10 we
have a nonempty and bounded setW = {(0,−1)}, the single valued setX1(−1) = {0}
and the set X2(0) = [−2,−1], which satisfies the Slater condition, but we do not
have a solution, since for the only possible point (0,−1) ∈ W , we get yα((0,−1)) =
(0,−2) ̸= (0,−1) for all α ≤ 2. A short calculation shows that Vα((0,−1)) = 3−α/2
holds for all α ≤ 2, hence the optimal value of the optimization problem (4.4) is
strictly positive.

In our subsequent analysis we will show that (4.4) has, in fact, a piecewise continuously
differentiable objective function under some stronger assumptions. This additional smooth-
ness property is highly important from a practical point of view since it implies that several
algorithms for nonsmooth optimization problems can be applied to the problem (4.4).
To this end it will be useful to define the function

h : Rn × Rn → Rm by h(x, y) :=

 g1(y1, x−1)
...

gN(yN , x−N)

 ,

where

m := m1 + . . .+mN

with mν being given by Assumption 1.2. This assumption also implies that all component
functions hi are convex as a function of y alone. Furthermore, the function h has the nice
property that

y ∈ Ω(x)⇐⇒ h(x, y) ≤ 0 (4.11)

for any given x.
Now we require some stronger smoothness properties of the defining functions θν and gν .

Assumption 4.18 The functions θν : Rn → R and gν : Rn → Rmν are twice continuously
differentiable for all ν = 1, . . . , N .

Note that Assumption 4.18 implies that the function h is also twice continuously dif-
ferentiable. Hence yα(x) is the unique solution of the twice continuously differentiable
optimization problem

max
y

Ψα(x, y) s.t. h(x, y) ≤ 0. (4.12)

Let

I(x) := {i ∈ {1, . . . ,m} | hi(x, yα(x)) = 0}
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4. Optimization Reformulations of GNEPs Using the Nikaido-Isoda Function

be the set of active constraints. Consider, for a fixed subset I ⊆ I(x), the problem (which
has equality constraints only)

max
y

Ψα(x, y) s.t. hi(x, y) = 0 (i ∈ I). (4.13)

Let
LI
α(x, y, λ) := −Ψα(x, y) +

∑
i∈I

λihi(x, y)

be the Lagrangian of the optimization problem (4.13). Then the KKT system of this
problem reads

∇yL
I
α(x, y, λ) = −∇yΨα(x, y) +

∑
i∈I

λi∇yhi(x, y) =0,

hi(x, y) =0 ∀i ∈ I.
(4.14)

This can be written as a nonlinear system of equations

ΦI
α(x, y, λ) = 0 with ΦI

α(x, y, λ) :=

(
∇yL

I
α(x, y, λ)

hI(x, y)

)
, (4.15)

where hI consists of all components hi of h with i ∈ I. The function ΦI
α is continuously

differentiable since Ψα and g are twice continuously differentiable, and its Jacobian is given
by

JΦI
α(x, y, λ) =

(
∇2

yxL
I
α(x, y, λ)

T ∇2
yyL

I
α(x, y, λ)

T ∇yhI(x, y)
JxhI(x, y) JyhI(x, y) 0

)
.

Therefore, we obtain

∇(y,λ)Φ
I
α(x, y, λ) =

(
∇2

yyL
I
α(x, y, λ) ∇yhI(x, y)

JyhI(x, y) 0

)
.

Then we have the following result whose proof is standard and therefore omitted.

Lemma 4.19 Suppose that Assumption 4.18 holds, that ∇2
yyL

I
α(x, y, λ) is positive definite

and that the gradients ∇yhi(x, y) (i ∈ I) are linearly independent. Then ∇(y,λ)Φ
I
α(x, y, λ)

is nonsingular.

Note that the positive definiteness assumption of the Hessian ∇2
yyL

I(x, y, λ) can be relaxed
in Lemma 4.19, but that this condition automatically holds in our situation, so we do not
really need a weaker assumption here. Furthermore, we stress that the assumed linear
independence of the gradients ∇yhi(x, y) (i ∈ I) is a very strong condition for certain
index sets I, however, in our subsequent application of Lemma 4.19, we will only consider
index sets I where this assumption holds automatically, so this condition is not crucial in
our context.
We next introduce another assumption that will be used in order to show that our

objective function Vα is a PC1 mapping.
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Assumption 4.20 The (feasible) constant rank constraint qualification (CRCQ) holds at
x∗ ∈ W if there exists a neighbourhood N of x∗ such that for every subset I ⊆ I(x∗), the
set of gradient vectors

{∇yhi(x, yα(x)) | i ∈ I}

has the same rank (depending on I) for all x ∈ N ∩W .

Note that the previous CRCQ definition requires the same rank only for those x ∈ N
which also belong to the common feasible set W ; this is why we call this assumption the
feasible CRCQ, although, in our subsequent discussion, we will simply speak of the CRCQ
condition when we refer to Assumption 4.20. This feasible CRCQ has also been used before
in [31], for example, where the authors simply call this condition the CRCQ.
The following result is motivated by [65] (see also [47]) and states that both yα and Vα

are piecewise continuously differentiable functions.

Theorem 4.21 Suppose that Assumptions 1.2 and 4.18 hold, let x∗ ∈ W be given, and
suppose that the solution mapping yα : W → Rn of (4.12) is continuous in a neighbourhood
of x∗ (see Theorem 4.16 for sufficient conditions). Then there exists a neighbourhood N̂
of x∗ ∈ W such that yα is a PC1 function on N̂ ∩W provided that the (feasible) CRCQ
condition from Assumption 4.20 holds at x∗.

Proof. We divide the proof into four steps.

Step 1: Here we introduce some notation and summarize some preliminary statements that
will be useful later on.
First let x∗ ∈ W be fixed such that Assumption 4.20 holds in a neighbourhood N of x∗.

Recall that
I(x) := {i | hi(x, yα(x)) = 0}

for all x ∈ N ∩W . Furthermore, for any such x ∈ N ∩W , let us denote by

M(x) := {λ ∈ Rm | (yα(x), λ) is a KKT point of (4.12)}

the set of all Lagrange multipliers of the optimization problem (4.12). Since CRCQ holds at
x∗, it is easy to see that CRCQ also holds for all x ∈ W sufficiently close to x∗. Without loss
of generality, let us say that CRCQ holds for all x ∈ N ∩W with the same neighbourhood
N as before. Then it follows from a result in [49] that the set M(x) is nonempty for all
x ∈ N ∩W . This, in turn, implies that the set

B(x) :=
{
I ⊆ I(x) | ∇yhi(x, yα(x)) (i ∈ I) are linearly independent

and supp(λ) ⊆ I for some λ ∈M(x)
}

is also nonempty for all x in a sufficiently small neighbourhood of x∗, say, again, for
all x ∈ N ∩ W (see [47] for a formal proof), where supp(λ) denotes the support of the
nonnegative vector λ, i.e.,

supp(λ) := {i | λi > 0}.
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Furthermore, it can be shown that, in a suitable neighbourhood of x∗ (which we assume
to be N once again), we have B(x) ⊆ B(x∗), see, e.g., [65, 47].

Step 2: Here we show that, for every x ∈ N ∩W and every I ∈ B(x), there is a unique
multiplier λIα(x) ∈M(x) such that ΦI

α(x, yα(x), λ
I
α(x)) = 0, where N,M(x), and B(x) are

defined as in Step 1.
To this end, let x ∈ N ∩ W and I ∈ B(x) be arbitrarily given. The definition of
B(x) implies that there is a Lagrange multiplier λIα(x) ∈ M(x) with supp(λIα(x)) ⊆ I.
Since (x, yα(x), λ

I
α(x)) satisfies the KKT conditions of the optimization problem (4.12),

[λIα(x)]i = 0 for all i ̸∈ I, and hi(x, yα(x)) = 0 for all i ∈ I (since I ⊆ I(x)), it follows that
ΦI

α(x, yα(x), λ
I
α(x)) = 0. Moreover, the linear independence of the gradients ∇yhi(x, yα(x))

for i ∈ I shows that the multiplier λIα(x) is unique.

Step 3: Here we claim that, for any given x∗ ∈ W satisfying Assumption 4.20 and an arbi-
trary I ∈ B(x∗) with corresponding multiplier λ∗, there exist open neighbourhoods N I(x∗)
and N I(yα(x

∗), λ∗) as well as a C1-diffeomorphism
(
yI(·), λI(·)

)
: N I(x∗)→ N I(yα(x

∗), λ∗)
such that yI(x∗) = yα(x

∗), λI(x∗) = λ∗ and ΦI
α(x, y

I(x), λI(x)) = 0 for all x ∈ N I(x∗).
To verify this statement, let x∗ ∈ W be given such that the CRCQ holds, choose I ∈
B(x∗) arbitrarily, and let λ∗ ∈ M(x∗) with supp(λ∗) ⊆ I be a corresponding multiplier
coming from the definition of the set B(x∗). Now, consider once again the nonlinear
system of equations ΦI

α(x, y, λ) = 0 with ΦI
α being defined in (4.15). The function ΦI

α

is continuously differentiable, and the triple (x∗, yα(x
∗), λ∗) satisfies this system. The

convexity of θν with respect to xν implies that −ΨI
α(x

∗, ·) is strongly convex with respect
to the second argument and, therefore,∇2

yy(−ΨI
α(x

∗, yα(x
∗))) is positive definite. Moreover,

the convexity of hi(x
∗, ·) in the second argument implies the positive semidefiniteness of

∇2
yyhi(x

∗, yα(x
∗)). Since λ∗ ≥ 0, it follows that the Hessian of the Lagrangian LI

α evaluated
in (x∗, yα(x

∗), λ∗), i.e., the matrix

∇2
yyL

I
α(x

∗, yα(x
∗), λ∗) = −∇2

yyΨα(x
∗, yα(x

∗)) +
∑
i∈I

λ∗i∇2
yyhi(x

∗, yα(x
∗)),

is positive definite. Since, in addition, ∇yhi(x
∗, yα(x

∗)) (i ∈ I) are linearly independent
in view of our choice of I ∈ B(x∗), the matrix ∇(y,λ)Φ

I
α(x

∗, yα(x
∗), λ∗) is nonsingular by

Lemma 4.19. The statement therefore follows from the standard implicit function theorem,
where, without loss of generality, we can assume that N I(x∗) ⊆ N .

Step 4: Here we verify the statement of our theorem.
Let x∗ ∈ W satisfying the CRCQ be given. Define N̂ :=

∩
I∈B(x∗)N

I(x∗) with the

neighbourhoods N I(x∗) from Step 3. Since B(x∗) is a finite set, N̂ is a neighbourhood
of x∗. Choose x ∈ N̂ ∩W arbitrarily. Step 2 shows that for each I ⊆ B(x)

(
⊆ B(x∗)

)
there exists a unique multiplier λIα(x) ∈M(x) satisfying ΦI

α(x, yα(x), λ
I
α(x)) = 0. Further,

Step 3 guarantees that there exist neighbourhoods N I(x∗) and N I(yα(x
∗), λ∗) and a C1-

diffeomorphism
(
yI(·), λI(·)

)
: N I(x∗) → N I(yα(x

∗), λ∗) such that ΦI
α(x, y

I(x), λI(x)) = 0
for all x ∈ N I(x∗). In particular, (yI(x), λI(x)) is the locally unique solution of the system
of equations ΦI

α(x, y, λ) = 0. Hence, as soon as we can show that (yα(x), λ
I
α(x)) belongs
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to the neighbourhood N I(yα(x
∗), λ∗) for all x ∈ N̂ ∩W sufficiently close to x∗, the local

uniqueness implies yα(x) = yI(x) (for all I ∈ B(x) ⊆ B(x∗)).
Suppose this is not true in a sufficiently small neighbourhood. Then there is a sequence
{xk} ⊆ W with {xk} → x∗ and a corresponding sequence of index sets Ik ∈ B(xk) such
that (

yα(x
k), λI

k

α (xk)
)
̸∈ N Ik(yα(x

∗), λ∗) for all k ∈ N.

Since B(xk) ⊆ B(x∗) contains only finitely many index sets, we may assume that Ik is the
same index set for all k which we denote by I.
By the continuity of yα in x∗, we have yα(x

k) → yα(x
∗). On the other hand, for every

xk with associated yα(x
k) and λIα(x

k) from Step 2, we have

−∇yΨα(x
k, yα(x

k)) +
∑
i∈I

[λIα(x
k)]i∇yhi(x

k, yα(x
k)) = 0 (4.16)

for all k. The continuity of all functions involved, together with the linear independence of
the vectors∇yhi(x

∗, yα(x
∗)) (which is a consequence of I ∈ B(xk) ⊆ B(x∗) and the assumed

CRCQ condition) implies that the sequence {λIα(xk)} is convergent, say {λIα(xk)} → λ̄I for
some limiting vector λ̄I . Taking the limit in (4.16) and using once again the continuity of
the solution mapping yα(·) in x∗ then gives

−∇yΨα(x
∗, yα(x

∗)) +
∑
i∈I

λ̄Ii∇yhi(x
∗, yα(x

∗)) = 0.

Note that the CRCQ condition implies that λ̄I is uniquely defined by this equation and
the fact that λ̄Ii = 0 for all i ̸∈ I. However, by definition, the vector λ∗ also satisfies
this equation, hence we have λIα(x

k) → λ∗. But then it follows that (yα(x
k), λIα(x

k)) ∈
N I(yα(x

∗), λ∗), and this implies the desired statement. �

Thus we get the following corollary.

Corollary 4.22 Suppose that Assumptions 1.2 and 4.18 hold. Moreover, suppose that for
each x∗ ∈ W and all ν = 1, . . . , N the set Xν(x

∗,−ν) either satisfies the Slater condition or
coincides with the singleton {x∗,ν}, and that Assumption 4.20 holds in x∗ ∈ W . Then yα
and Vα are PC1 functions in a neighbourhood of x∗ in W .

Proof. From Corollary 4.16, we obtain the continuity of yα, whereas Theorem 4.21 implies
the PC1 property of yα near x∗. Hence the composite mapping Vα(x) = Ψα(x, yα(x)) is
also continuous and a PC1 mapping in a neighbourhood of x∗. �

To close this section, we want to give an example showing that the (feasible) CRCQ from
Assumption 4.20, without the Slater condition, does not even imply continuity.
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Example 4.23 Consider the following 2-player game where each player controls a single
variable.

Player 1: min
x1

(x1 − 1)2 s.t. (x1)2(x2)2 ≤ 0,

Player 2: min
x2

(x2 − 1)2 s.t. (x1)2(x2)2 ≤ 0.

The common constraint function g1(x) ≡ g2(x) := (x1)2(x2)2 satisfies the requirements
from Assumptions 1.2 and 4.18 (whereas the Slater condition is violated). We have W =
{x ∈ R2 | x1 = 0 or x2 = 0}. An easy calculation shows that

yα(x) =
1

1 + α


(1, 1), if x = (0, 0),
(1 + αx1, 0), if x1 ̸= 0, x2 = 0,
(0, 1 + αx2), if x1 = 0, x2 ̸= 0,
(0, 0), if x1 ̸= 0, x2 ̸= 0.

Using this expression for yα(x) and Theorem 4.2 (e), we deduce that the GNEP has two so-

lutions given by (0, 1) and (1, 0). With the function h : R4 → R2, h(x, y) =

(
(y1)2(x2)2

(y2)2(x1)2

)
,

we have

∇yh(x, yα(x)) =

(
2y1α(x)(x

2)2 0
0 2y2α(x)(x

1)2

)
=

(
0 0
0 0

)
for all x ∈ R2 which shows, in particular, that the (feasible) CRCQ condition from As-
sumption 4.20 holds everywhere. But, obviously, the function yα is not continuous in any
point of W except (− 1

α
, 0) and (0,− 1

α
), in particular, it is discontinuous in the two solu-

tions. Moreover, this function is discontinuous in (0, 0) even if we view it as a mapping on
W only. ♢

4.3. Smoothness Properties of the Unconstrained
Reformulation

In contrast to the previous section where a general player convex GNEP was considered,
this section deals with GNEPs satisfying Assumption 4.4. Recall, however, that this is
still a rather large class of GNEPs including, in particular, the jointly convex ones, cf.
the observations from Remark 4.5. Under Assumption 4.4, we have the unconstrained
optimization reformulation (4.10) with the objective function V̄ c

αβ from Definition 4.6 and
X = cl(conv(W )) from (4.5).
We will show that the PC1 property, that was shown for the constrained reformulation

in the previous section, also holds for the unconstrained reformulation and, with a further
assumption, also the continuity property transfers to the unconstrained reformulation. The
proofs of these smoothness properties are similar (though not identical) to the proofs given
in the previous section, so that we concentrate on the differences in the proofs without
recapitulating all the details.
Our first aim is to obtain a continuity result for V̄ c

αβ. Since the projection mapping is
continuous the additional term c∥x−PX [x]∥2 is continuous, hence we only need continuity
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of ȳα for arbitrary α > 0 to get this property for V̄α and V̄ c
αβ. In Theorem 4.16 we used the

property x ∈ Ω(x) for all x ∈ W . The problem occurring here is that the corresponding
property PX [x] ∈ Ω(PX [x]) is only valid for x ∈ W but not necessarily for x ∈ X. To prove
a continuity result for the unconstrained reformulation we need the additional assumption
of uniform continuity of the functions gνi (y

ν , ·) : Rn−nν → R, ν = 1, . . . , N, i = 1, . . . ,mν

for all yν ∈ Rnν .

Theorem 4.24 Suppose Assumptions 1.2 and 4.4 hold and further assume that the func-
tions gνi (y

ν , ·) : Rn−nν → R, ν = 1, . . . , N, i = 1, . . . ,mν are uniformly continuous for all
yν ∈ Rnν . Then V̄ c

αβ is continuous in x∗ ∈ Rn provided the sets Xν(PX [x
∗]−ν) are either

single-valued or satisfy the Slater condition.

Proof. As in Theorem 4.14 we obtain continuity of V̄ c
αβ in x∗ if the point-to-set mappings

x 7→ Xν(PX [x]
−ν), ν = 1, . . . , N are closed on Rn and lower semicontinuous in x∗. The

proof of closedness is analogous to the constrained formulation, see Theorem 4.14, and so
is the proof of lower semicontinuity in the case where Xν(PX [x

∗]−ν) satisfies the Slater
condition, see Lemma 4.15.
Hence it remains to show lower semicontinuity when Xν(PX [x

∗]−ν) is single valued.
Therefore let an x∗ ∈ Rn and an arbitrary but fixed ν ∈ {1, . . . , N} be given such that
we have a single valued set Xν(PX [x

∗]−ν) = {y∗,ν}. For a given sequence {xk} ⊆ Rn with
xk → x∗ we have to show the existence of a sequence {yk,ν} ⊆ Rnν with yk,ν → y∗,ν and
yk,ν ∈ Xν(PX [x

k]−ν) for all k ∈ N sufficiently large.
Define the function gνmax : Rn → R by

gνmax(y
ν , x−ν) := max

i=1,...,mν

gνi (y
ν , x−ν).

With the functions gνi also the function gνmax is uniformly continuous and convex in yν .
Further define the set

K := {k ∈ N | y∗,ν ̸∈ Xν(PX [x
k]−ν)}.

For k ̸∈ K we simply set yk,ν := y∗,ν . If K is finite the proof is already complete.
Otherwise consider only the subsequence K. We have gνmax(y

∗,ν , PX [x
k]−ν) > 0 and,

since Xν(PX [x
k]−ν) is nonempty by Assumption 4.4, there exists a wk,ν ∈ Rnν such

that gνmax(w
k,ν , PX [x

k]−ν) ≤ 0. Continuity of gνmax implies the existence of an yk,ν ∈
Xν(PX [x

k]−ν) on the line segment from wk,ν to y∗,ν with gνmax(y
k,ν , PX [x

k]−ν) = 0. It
remains to show that yk,ν converges to y∗,ν .
First of all we have limk∈K g

ν
max(y

k,ν , PX [x
k]−ν) = 0. The uniform continuity of gνmax

together with the continuity of the projection map and xk → x∗ imply

lim
k∈K
|gνmax(y

k,ν , PX [x
k]−ν)− gνmax(y

k,ν , PX [x
∗]−ν)| = 0,

and thus we obtain

lim
k∈K

gνmax(y
k,ν , PX [x

∗]−ν) = 0. (4.17)
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We have gνmax(z
ν , PX [x

∗]−ν) > 0 for all zν ̸= y∗,ν , becauseXν(PX [x
∗]−ν) = {y∗,ν}. Therefore

y∗,ν is a strict global minimum of the convex function gνmax(·, PX [x
∗]−ν) which implies

ε := min
zν∈bd(B1(y∗,ν))

gνmax(z
ν , PX [x

∗]−ν) > 0,

where bd(B1(y
∗,ν)) := {zν | ∥zν − y∗,ν∥ = 1} is the boundary of the ball B1(y

∗,ν) with
centre y∗,ν and radius 1. With the convexity of gνmax(·, PX [x

∗]−ν) we get

gνmax(y
ν , PX [x

∗]−ν) ≥ ε for all yν ̸∈ B1(y
∗,ν).

This together with (4.17) shows that {yk,ν} ∈ B1(y
∗,ν) for all k ∈ K sufficiently large.

But this implies boundedness of the entire sequence {yk,ν} and thus the existence of an
accumulation point ŷν . Closedness of the point-to-set mapping x 7→ Xν(PX [x]

−ν) therefore
shows ŷν ∈ Xν(PX [x

∗]−ν) = {y∗,ν}. Since this is true for all accumulation points, we have
convergence of the sequence {yk,ν} to y∗,ν , which completes the proof. �

Our next aim is to show that the function V̄ c
αβ is a PC1 mapping under suitably adopted

assumptions. To this end, we first define the function

h̄ : Rn × Rn → Rm by h̄(x, y) :=

 g1(y1, (PX [x])
−1)

...
gN(yN , (PX [x])

−N)

 .

This function will play the role of the mapping h from Section 4.2. In particular, it has
the corresponding property that, for any given x,

y ∈ Ω(PX [x]) ⇐⇒ h̄(x, y) ≤ 0. (4.18)

This implies that ȳα(x) is the unique solution of

max
y

Ψα(x, y) s.t. h̄(x, y) ≤ 0. (4.19)

Note, however, that (in contrast to the function h) the function h̄ is not differentiable
in general (even if all gν are differentiable) due to the projection term inside the defini-
tion of h̄. This causes some technical difficulties in generalizing the PC1 property to the
unconstrained reformulation. However h̄ is a PC1 mapping if all gν are smooth and the
projection mapping is PC1. The latter holds in view of [63] under the smoothness condi-
tions of Assumption 4.18 and a constant rank constraint qualification in a version that we
define next.

Assumption 4.25 The constant rank constraint qualification (CRCQ) holds at x∗ ∈ Rn

if there exists a neighbourhood N of x∗ such that, for every subset I ⊆ Ī(x∗) := {i |
h̄i(x

∗, ȳα(x
∗)) = 0}, the set of gradient vectors

{∇yh̄i(x, ȳα(x)) | i ∈ I}

has the same rank (depending on I) for all x ∈ N .
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Assumption 4.25 is slightly stronger than the feasible CRCQ from Assumption 4.20 since a
full-dimensional neighbourhood N of x∗ is used, whereas in Assumption 4.20 only a feasible
neighbourhood of x∗ is used.
Consider the optimization problem (4.19) once again. Let

Ī(x) := {i ∈ {1, . . . ,m} | h̄i(x, ȳα(x)) = 0}

be the set of active inequality constraints. Consider, for a fixed subset I ⊆ Ī(x), the
equality constrained problem

max
y

Ψ(x, y) s.t. h̄i(x, y) = 0 (i ∈ I). (4.20)

Let
L̄I
α(x, y, λ) := −Ψα(x, y) +

∑
i∈I

λih̄i(x, y)

be the corresponding Lagrangian. Then the KKT conditions of (4.20) are equivalent to
the nonlinear system of equations

Φ̄I
α(x, y, λ) = 0 with Φ̄I

α(x, y, λ) :=

(
∇yL̄

I
α(x, y, λ)

h̄I(x, y)

)
. (4.21)

In the proof of Theorem 4.21 (Step 3), we applied the implicit function theorem to the
mapping ΦI

α from the previous section. In contrast to ΦI
α, however, Φ̄

I
α is not differentiable

everywhere, hence the standard implicit function theorem cannot be used in the current
situation. But under suitable assumptions, including the CRCQ condition, the projection
map and therefore also Φ̄I

α is a PC1 mapping. Hence we need an implicit function theorem
for PC1 equations.

Theorem 4.26 Assume H : Rm×Rn → Rn is a PC1 function in a neighbourhood of (x̄, ȳ)
with H(x̄, ȳ) = 0 and all matrices in πy∂H(x̄, ȳ) have the same nonzero determinantal sign.
Then there exists an open neighbourhood U of x̄ and a function g : U → Rn which is a
PC1 function on U such that g(x̄) = ȳ and H(x, g(x)) = 0 for all x ∈ U .

Proof. Define the mapping F : Rm × Rn → Rm × Rn by

F (x, y) :=

(
x− x̄
H(x, y)

)
.

Then we have

∂F (x̄, ȳ) ⊆
(

Im 0
πx∂H(x̄, ȳ) πy∂H(x̄, ȳ)

)
,

and all elements A ∈ ∂F (x̄, ȳ) have the same nonzero determinantal sign, because the
matrices in πy∂H(x̄, ȳ) have. Therefore they are all nonsingular. With H also the function
F is a PC1 function in a neighbourhood of (x̄, ȳ) and hence in particular locally Lipschitz
continuous. Clarke’s inverse function theorem [12, Theorem 7.1.1] implies the existence

49



4. Optimization Reformulations of GNEPs Using the Nikaido-Isoda Function

of open neighbourhoods V of (x̄, ȳ) and W of (0, 0) = F (x̄, ȳ) such that F : V → W
is a homeomorphism and the local inverse G : W → V is a locally Lipschitz continuous
function. Moreover, by [31, Theorem 4.6.5], G is a PC1 function, because F is a locally
Lipschitz continuous homeomorphism and a PC1 function. Define the set

U := {x ∈ Rm | (x− x̄, 0) ∈ W}.

U is nonempty and open (in Rn) since (0, 0) ∈ W and W is open. Let x ∈ U be arbitrarily
given. Then we have (x− x̄, 0) ∈ W and hence, by the definition of a homeomorphism, we
obtain the existence of a unique y with (x, y) ∈ V and F (x, y) = (x− x̄, 0). Thus we have
H(x, y) = 0. Since y depends on x, we write y =: g(x) which defines a function g : U → Rn

such that H(x, g(x)) = 0 for each x ∈ U . Therefore we have

F (x, g(x)) =

(
x− x̄

H(x, g(x))

)
=

(
x− x̄
0

)
for all x ∈ U . Applying the inverse function G on both sides, we obtain

(x, g(x)) = G(x− x̄, 0)

for all x ∈ U . Since g coincides with some component functions of the PC1 function G, it
is a PC1 function itself which completes the proof. �

Now we are in a position to generalize Theorem 4.21 to the unconstrained optimization
reformulation.

Theorem 4.27 Suppose that Assumptions 1.2, 4.4, and 4.18 hold. Furthermore, suppose
that x∗ ∈ Rn is such that the CRCQ condition from Assumption 4.25 is satisfied at x∗ and
the solution mapping ȳα : Rn → Rn of (4.19) is continuous in a neighbourhood of x∗ (see
Theorem 4.24 for a sufficient condition). Then ȳα is a PC1 function in a neighbourhood
of x∗.

Proof. We follow the proof of Theorem 4.21 by dividing the proof into four steps. Rather
than giving all the details we more or less only mention the differences.

Step 1: Similar to the discussion in Section 4.2, let us introduce the sets

M̄(x) := {λ ∈ Rm | (ȳα(x), λ) is a KKT point of (4.19)} and

B̄(x) :=
{
I ⊆ Ī(x) | ∇yh̄i(x, ȳα(x)) (i ∈ I) are linearly independent

and supp(λ) ⊆ I for some λ ∈ M̄(x)
}
.

Then Assumption 4.25 implies that there is a neighbourhood N of x∗ such that M̄(x) ̸=
∅, B̄(x) ̸= ∅ and B̄(x) ⊆ B̄(x∗) for all x ∈ N .

Step 2: Using the notation of (4.19), L̄I
α and Φ̄I

α, it follows as in the proof of Theorem 4.21
that, for every x ∈ N and every I ∈ B̄(x), there is a unique multiplier λIα(x) ∈ M̄(x) such
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that Φ̄I
α(x, ȳα(x), λ

I
α(x)) = 0, where N,M̄(x), and B̄(x) are the sets defined in Step 1.

Step 3: Here we have the main difference to the proof of Theorem 4.21 since the mapping Φ̄I
α

defined in Step 2 is only a PC1 function, but not continuously differentiable (as the map-
ping ΦI

α). Therefore, we have to use an implicit function theorem for PC1 functions instead
of the standard implicit function theorem. Let any x∗ ∈ Rn satisfying Assumption 4.25
and an arbitrary I ∈ B̄(x∗) with corresponding multiplier λ∗ be given. Since Φ̄I

α(x, y, λ) is
continuously differentiable with respect to y and λ, it follows that π(y,λ)∂Φ

I
α(x

∗, ȳα(x
∗), λ∗)

has only one element, whose nonsingularity can be shown as in the proof of Theorem 4.21.
In particular, the same nonzero orientation of all the elements is guaranteed. Using the
PC1 implicit function Theorem 4.26 we get the existence of open neighbourhoods N I(x∗)
and N I(ȳα(x

∗), λ∗) as well as a PC1 function
(
yI(·), λI(·)

)
: N I(x∗)→ N I(ȳα(x

∗), λ∗) such
that yI(x∗) = ȳα(x

∗), λI(x∗) = λ∗ and Φ̄I
α(x, y

I(x), λI(x)) = 0 for all x ∈ N I(x∗).

Step 4: Repeating the arguments from Step 4 of the proof of Theorem 4.21, we obtain
ȳα(x) ∈ {yI(x) | I ∈ B̄(x∗)} for all x in a sufficiently small neighbourhood of x∗. Since all
yI are PC1 functions, it follows that also ȳα is a PC1 mapping in a neighbourhood of any
x∗ satisfying the CRCQ condition from Assumption 4.25. �

Altogether, we get the following corollary.

Corollary 4.28 Suppose that Assumptions 1.2, 4.4 and 4.18 hold. Moreover, suppose that
the functions gνi (y

ν , ·) : Rn−nν → R are uniformly continuous for all yν ∈ Rnν , the CRCQ
Assumption 4.25 holds in x∗ ∈ Rn and that the sets Xν(PX [x]

−ν), ν = 1, . . . , N either
satisfy the Slater condition or coincide with a singleton for all x sufficiently close to x∗.
Then V̄ c

αβ is a PC1 function in a neighbourhood of x∗.

Proof. Since the projection mapping has PC1 property, the additional term c∥x−PX [x]∥2
also has. From Theorem 4.24 we obtain the continuity of ȳα. Theorem 4.27 there-
fore implies the PC1 property of ȳα near x∗ satisfying the CRCQ condition from As-
sumption 4.25. Hence the composite mapping V̄α(x) = Ψα(x, ȳα(x)) and therefore also
V̄ c
αβ = V̄α(x)− V̄β(x) + c∥x− PX [x]∥2 are PC1 mappings in a neighbourhood of x∗. �

Being a PC1 mapping, it follows that V̄ c
αβ is, in particular, directionally differentiable,

locally Lipschitz continuous and semismooth, cf. [10].

4.4. Stationarity

In the previous sections a constrained reformulation of all solutions of a player convex
GNEP and an unconstrained reformulation for a class of general player convex GNEPs
which, in particular, includes the jointly convex case was given. Both reformulations
characterize all solutions of general player convex GNEPs as solutions of optimization
problems. These problems have PC1 objective functions, which allows the application of
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4. Optimization Reformulations of GNEPs Using the Nikaido-Isoda Function

nonsmooth optimization software for finding a solution of it. However, most algorithms
can only find Clarke stationary points which may correspond to local minima and therefore
are not necessarily solutions of the GNEP. The following example illustrates this situation.

Example 4.29 Consider once again Example 2.2, a jointly convex 2-player game defined
via

θ1(x) :=
1

2
(x1 + 2)2, θ2(x) :=

1

2
(x2 + 2)2, and

X := {x ∈ R2 | 0 ≤ x1 ≤ 2, x2 − x1 ≤ 0, x1 − x2 − 1 ≤ 0}.

A simple calculation shows that, for all α ∈ (0, 1] and all x ∈ X, we have

ȳα(x) = (max{0, x2}, x1 − 1).

It was shown in Example 2.2 that the only solution of this GNEP is given by (0,−1).
Taking 0 < α < β ≤ 1, we obtain from the previous observation that ȳα(x) = ȳβ(x) and,
therefore, using c = 0 since we have a jointly convex GNEP,

V̄ 0
αβ(x) =

β − α
2
∥x− ȳα(x)∥2.

Thus we have for all x2 ≥ 0

V̄ 0
αβ(x) =

β − α
2

(
(x1 − x2)2 + (x2 − x1 + 1)2

)
= (β − α)

((
x2 − x1 + 1

2

)2

+
1

4

)
.

Hence we see, that for all x ∈ X with x2 ≥ 0 and x2− x1 = −1
2
, the function V̄ 0

αβ has local

minima with function value β−α
4

> 0 and hence stationary points, which are no solutions
of the GNEP. ♢

In view of this example and the application of an algorithm searching for Clarke station-
ary points, a result giving suitable conditions for a stationary point to be a solution of
the GNEP is important. Unfortunately such a result has not been found yet, and this
topic is nontrivial since standard techniques provide overestimates for Clarke’s generalized
Jacobian of V̄ c

αβ which are, in general even in simple examples, by far too large. This is
due to the fact that the objective function involves the difference of two closely related
nondifferentiable terms. A lengthy example illustrating this is the following.

Example 4.30 Consider the jointly convex 2-player game, where each player controls a
single variable, the cost functions are

θ1(x) =
1

2
(x1 − 2)2 and θ2(x) =

1

2
(x2 − 2)2,

and the common strategy set is

X = {x ∈ R2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}.
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4.4. Stationarity

Solution set: {x ∈ X | x1 + x2 = 1} Regions for projection

õx1Θ1HxL=0

õx2Θ2HxL=0
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Figure 4.4.: Solution set and regions for calculations of PX [x]

Theorem 2.1 yields the solution set

{x ∈ X | x1 + x2 = 1},

see Figure 4.4 on the left side. Here we have

Ψγ(x, y) =
1

2
(x1 − 2)2 +

1

2
(x2 − 2)2 − 1

2
(y1 − 2)2 − 1

2
(y2 − 2)2 − γ

2
∥x− y∥2,

and for ν = 1, 2

ȳνγ(x) =


0, for xν ≤ − 2

γ
,

2+γxν

1+γ
, for − 2

γ
< xν < 1

γ
(γ − 1− (1 + γ)(PX [x])

−ν) ,

1− (PX [x])
−ν , for xν ≥ 1

γ
(γ − 1− (1 + γ)(PX [x])

−ν) .

We only discuss the main case, where we have

ȳγ(x) =
(
1− (PX [x])

2, 1− (PX [x])
1
)

for γ = α, β,

because this case includes the whole set X for γ < 1. Therein we obtain

V̄ 0
αβ(x) =

1

2
(β − α)

(
1− x2 − (PX [x])

1
)2

+
1

2
(β − α)

(
1− x1 − (PX [x])

2
)2
.

Depending on the projection PX [x] we computed V̄ 0
αβ and ∇V̄ 0

αβ, see Table 4.1 and Figure
4.4 on the right hand side.
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Region PX [x] 1
β−α V̄

0
αβ(x)

1
β−α∇V̄

0
αβ(x)

int(X) x (1− x1 − x2)2 (2(x1 + x2 − 1), 2(x1 + x2 − 1))

int(A) (0, 0) 1
2(1− x2)2 + 1

2(1− x1)2 (x1 − 1, x2 − 1)

int(B) (x1, 0) 1
2(1− x1 − x2)2 + 1

2(1− x1)2 (2x1 + x2 − 2, x1 + x2 − 1)

int(C) (1, 0) 1
2(x

2)2 + 1
2(1− x1)2 (x1 − 1, x2)

int(D) (1+x1−x2

2 , 1−x1+x2

2 ) 1
4(1− x1 − x2)2 (12(x

1 + x2 − 1), 12(x
1 + x2 − 1))

int(E) (0, 1) 1
2(x

1)2 + 1
2(1− x2)2 (x1, x2 − 1)

int(F ) (0, x2) 1
2(1− x2)2 + 1

2(1− x1 − x2)2 (x1 + x2 − 1, x1 + 2x2 − 2)

Table 4.1.: Calculation of V̄ 0
αβ and ∇V̄ 0

αβ

Using the results of Table 4.1 we see, that V̄ 0
αβ is continuous differentiable at the interior

of each region, and Clarke’s generalized Jacobian, which is then equal to the gradient, is
unequal to zero there. On the border of different regions the generalized Jacobian can be
computed as the convex hull of the limits of the gradients from the adjacent regions, see
Table 4.2.

Region 1
β−α

∂V̄ 0
αβ(x)

(0,0) conv{(−2,−2), (−1,−1), (−2,−1), (−1,−2)} = [−2,−1]2
(1,0) conv{(0, 0), (0, 0), (0, 0), (0, 0)} = {(0, 0)}
(0,1) conv{(0, 0), (0, 0), (0, 0), (0, 0)} = {(0, 0)}
D ∩X conv{(0, 0), (0, 0)} = {(0, 0)}
B ∩X conv{(2x1 − 2, 2x1 − 2), (2x1 − 2, x1 − 1)} = {2x1 − 2} × [2x1 − 2, x1 − 1]
F ∩X conv{(2x2 − 2, 2x2 − 2), (x2 − 1, 2x2 − 2)} = [2x2 − 2, x2 − 1]× {2x2 − 2}
A ∩B conv{(−1, x2 − 1), (x2 − 2, x2 − 1)} = [x2 − 2,−1]× {x2 − 1}
B ∩ C conv{(x2, x2), (0, x2)} = [x2, 0]× {x2}
C ∩D conv{(x2, x2), (x2, x2)} = {(x2, x2)}
D ∩ E conv{(x1, x1), (x1, x1)} = {(x1, x1)}
E ∩ F conv{(x1, 0), (x1, x1)} = {x1} × [x1, 0]
A ∩ F conv{(x1 − 1,−1), (x1 − 1, x1 − 2)} = {x1 − 1} × [x1 − 2,−1]

Table 4.2.: Clarke’s generalized Jacobian

Table 4.2 shows that in the considered region, which in particular contains X, 0 ∈ ∂V̄ 0
αβ(x)

is equivalent to x ∈ {x ∈ X | x1 + x2 = 1}, which is exactly the set of generalized Nash
equilibria.

Now consider the upper approximation for Clarke’s generalized Jacobian from [52, The-
orem 4.9]:

∂(−V̄γ(x∗)) ⊆ {s ∈ Rn | (s, 0) ∈ −∇Ψγ(x
∗, ȳγ(x

∗)) +Ngraph(Ω)(x
∗, ȳγ(x

∗))},
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with the Clarke normal cone Ngraph(Ω)(x
∗, ȳγ(x

∗)) on the graph of Ω in (x∗, ȳγ(x
∗)). We

have
graph(Ω) = {(x, y) | y ∈ Ω(x)} = {(x, y) | A(x1, x2, y1, y2)T − b ≤ 0}

with

A :=


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 0 0 1
0 1 1 0

 and b :=


0
0
0
0
1
1

 .

Further if I(x) := {i ∈ {1, . . . , 6} | Ai(x
1, x2, y1, y2)T − bi = 0} denotes the set of all active

inequalities and Ai the i-th row of A, Clarke’s normal cone is

Ngraph(Ω)(x
∗, ȳγ(x

∗)) =

 ∑
i∈I(x∗)

λiA
T
i

∣∣∣∣∣λi ≥ 0

 .

For the subsequent calculations we need the gradient of Ψγ on X, that is

∇(x,y)Ψγ(x, ȳγ(x)) =


x1 − 2 + γ(1− x1 − x2)
x2 − 2 + γ(1− x1 − x2)
x2 + 1− γ(1− x1 − x2)
x1 + 1− γ(1− x1 − x2)

 .

Since we only want to discuss x ∈ X, we consider the following cases:

(a) For x ∈ X with x1 ̸= 0, x2 ̸= 0 we have I(x) = {5, 6}, A5 and A6 are linearly
independent, and therefore the multipliers λ5, λ6 are unique and we get(

λ̄6
λ̄5

)
= ∇yΨγ(x, ȳγ(x)) =

(
x2 + 1− γ(1− x1 − x2)
x1 + 1− γ(1− x1 − x2)

)
.

Hence the upper estimate is single-valued (implying differentiability)

∂(−V̄γ(x)) =
{
−∇xΨγ(x, ȳγ(x)) +

(
λ̄5
λ̄6

)}
=

{(
3− 2γ(1− x1 − x2)
3− 2γ(1− x1 − x2)

)}
.

(b) For x = (0, 0) we have I(x) = {1, 2, 5, 6}, λ5, λ6 are unique, λ1, λ2 ≥ 0 are arbitrary

and this implies ∂(−V̄γ(x)) ⊆
(
3− 2γ
3− 2γ

)
+

(
R−
R−

)
.

(c) For x = (1, 0) we have I(x) = {2, 4, 5, 6}, λ6 = 1, λ5−λ4 = 2 and λ2 ≥ 0 is arbitrary.
This implies

∂(−V̄γ(x)) ⊆
{(

1
2

)
+

(
λ5

1− λ2

) ∣∣∣λ5 ≥ 2, λ2 ≥ 0

}
=

(
3
3

)
+

(
R+

R−

)
.
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(d) Analogous for x = (0, 1) we have ∂(−V̄γ(x)) ⊆
(
3
3

)
+

(
R−
R+

)
.

(e) For x = (x1, 0) with 0 < x1 < 1 we have I(x) = {2, 5, 6}, λ5, λ6 are unique, λ2 ≥ 0 is

arbitrary and ∂(−V̄γ(x)) ⊆
(
3− 2γ(1− x1)
3− 2γ(1− x1)

)
+

(
0
R−

)
.

(f) Analogous for x = (0, x2) with 0 < x2 < 1: ∂(−V̄γ(x)) ⊆
(
3− 2γ(1− x2)
3− 2γ(1− x2)

)
+

(
R−
0

)
.

Using ∂V̄ 0
αβ(x) ⊆ ∂(−V̄β(x))− ∂(−V̄α(x)) we get

∂V̄ 0
αβ(x) ⊆ (β − α)



(2(x1 + x2 − 1), 2(x1 + x2 − 1)), x ∈ X, x1 ̸= 0, x2 ̸= 0,
(R,R), x = (0, 0),
(R,R), x = (1, 0),
(R,R), x = (0, 1),

(2x1 − 2, 2x1 − 2) + (0,R), x ∈ X, x2 = 0, x1 ̸∈ {0, 1},
(2x2 − 2, 2x2 − 2) + (R, 0), x ∈ X, x1 = 0, x2 ̸∈ {0, 1}.

The upper estimate for Clarke’s generalized Jacobian of V̄ 0
αβ contains 0 not only for the set

of global minima {x ∈ X | x1 + x2 = 1} but also for the point (0, 0). This shows that even
in simple cases like the one discussed above, the known upper estimates from literature are
not good enough for an appropriate condition for stationary points to be global minima.♢

This example indicates that known upper estimates for Clarke’s generalized Jacobian might
be not good enough to get a condition for stationary points to be global minima. Thus
it is a challenging problem to obtain such a result, since probably new estimates for the
generalized Jacobian have to be developed.
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While for the previous considerations the Nikaido-Isoda function played a central role, we
are now going a completely different way by using the KKT conditions of a GNEP. Let
x̄ be a solution of the GNEP. Assuming any standard constraint qualification holds, the
following KKT conditions will be satisfied for every player ν = 1, . . . , N :

∇xνθν(x̄
ν , x̄−ν) +

mν∑
i=1

λνi∇xνgνi (x̄
ν , x̄−ν) = 0,

λνi ≥ 0, gνi (x̄
ν , x̄−ν) ≤ 0, λνi g

ν
i (x̄

ν , x̄−ν) = 0 ∀i = 1, . . . ,mν ,

(5.1)

where λν ∈ Rmν is the vector of Lagrange multipliers of player ν. Vice versa, recalling that
the player’s problems are convex by the Assumption 1.2, we have: if a point x̄ together
with a suitable vector of multipliers λ := (λ1, λ2, . . . , λN) satisfies the KKT conditions
(5.1) for every ν = 1, . . . , N , then x̄ is a solution of the GNEP. Thus one may try to solve
the GNEP by solving the system obtained by concatenating the N systems (5.1). In order
to use a more compact notation, we introduce some further definitions. We denote by

Lν(x, λν) := θν(x
ν , x−ν) +

mν∑
i=1

λνi g
ν
i (x

ν , x−ν)

the Lagrangian of player ν. If we set

F (x, λ) := (∇xνLν(x, λν))Nν=1 and g(x) := (gν(x))Nν=1,

the concatenated KKT system can be written as

F (x, λ) = 0, λ ≥ 0, g(x) ≤ 0, λTg(x) = 0. (5.2)

There exists a lot of literature on reformulating the KKT conditions of an optimization
problem or of a variational inequality as a (constrained) system of equations or as a (con-
strained) optimization problem; and these reformulations are the basis for many efficient
algorithms for the solution of these problems, see [31]. However up to now there are no
meaningful results showing if and when these techniques will lead to useful results in the
case of the KKT system of a GNEP. Therefore the main aim of this section is to derive
theoretical results related to system (5.2) and to find some new solution methods. More
specifically, we will analyse a merit function approach and an interior point method for
the solution of the GNEP KKT system (5.2). These two approaches can be viewed as
natural extensions of the corresponding methods for the solution of the KKT system of an
optimization problem. We will explore the theoretical properties of the methods here. The
presented results, except the finite termination property for the interior point algorithm,
were published in [19].
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5.1. Merit Function Approach

In order to solve the concatenated KKT system, an approach that has been very widely
used in the optimization and VI communities and that has lead to very useful developments,
see [23, 31], is to reduce it to a system of equations through the use of a complementarity
function. More specifically, let ϕ : R2 → R be any function such that ϕ(a, b) = 0 if and
only if a ≥ 0, b ≥ 0, and ab = 0. Then, it one can immediately see that the concatenated
KKT system can be rewritten as

F (x, λ) = 0, Φ(x, λ) = 0,

where

Φ(x, λ) :=



ϕ(λ11,−g11(x))
...

ϕ(λ1m1
,−g1m1

(x))
ϕ(λ21,−g21(x))

...
ϕ(λNmN

,−gNmN
(x))


∈ Rm.

There exist many types of complementarity functions ϕ, but the two most prominent ones
are the minimum-function ϕ(a, b) := min{a, b} and the Fischer-Burmeister function

ϕ(a, b) :=
√
a2 + b2 − (a+ b).

The minimum-function is used in the developments of local Newton methods discussed in
[26]. However, when it comes to the development of globally convergent algorithms, the
Fischer-Burmeister function has the distinctive advantage of giving rise to continuously
differentiable merit functions. There exist also variants of the latter complementarity
function, like the penalized Fischer-Burmeister function, defined for an arbitrary parameter
γ ∈ (0, 1) by

ϕ(a, b) := γ
(√

a2 + b2 − (a+ b)
)
− (1− γ)max{0, a}max{0, b},

which was introduced in [11]. By [11, Proposition 1] the penalized Fischer-Burmeister
function is a strongly semismooth complementarity function, which is continuously differ-
entiable on R2 \ {(a, b) | a ≥ 0, b ≥ 0, ab = 0}. We will use both the standard and the
penalized Fischer-Burmeister function. If a result holds for both functions we simply write
ϕ. Otherwise we will explicitly mention which function we use.

Once the concatenated KKT system has been reformulated as a system of equations, we
can solve the resulting system by finding a (global) minimum of the natural merit function

Θ(x, λ) :=
1

2

∥∥∥∥( F (x, λ)
Φ(x, λ)

)∥∥∥∥2 .
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Note that Φ (using the (penalized) Fischer-Burmeister function) is not differentiable in
general, because the (penalized) Fischer-Burmeister complementarity function is nondif-
ferentiable. However, it is very well known that Θ is once (though not twice) continuously
differentiable for the Fischer-Burmeister function and also for the penalized one, c.f. [11].
Hence we can use standard optimization software to attempt to (globally) minimize Θ and
find in this way a solution of the GNEP.
This is a well-established path and it is well understood that the two key issues that

need to be addressed are

• conditions guaranteeing that unconstrained stationary points of Θ are global solu-
tions, and

• conditions under which Θ can be shown to be coercive.

Once this has been done, one can safely attempt to solve the KKT system (5.2) by per-
forming the unconstrained minimization of Θ. Unfortunately, while in the optimization
and VI fields “reasonable” conditions guaranteeing the above mentioned results can be
identified, see [31], the situation becomes much more involved in the case of system (5.2).

5.1.1. Stationarity Conditions

For the sake of notational simplicity, it is useful to introduce the matrix

E(x) :=

 ∇x1g1(x) 0
. . .

0 ∇xNgN(x)

 with ∇xνgν(x) ∈ Rnν×mν . (5.3)

Using the chain rule from [12] and some standard calculations, we obtain that the gradient
of Θ is given by

∇Θ(x, λ) =

(
JxF (x, λ) E(x)

−Dg(x, λ) Jxg(x) Dλ(x, λ)

)T (
F (x, λ)
Φ(x, λ)

)
,

where the matrices Dλ and Dg are m×m diagonal matrices

Dλ(x, λ) := diag
(
a1(x, λ1), . . . , aN(x, λN)

)
,

Dg(x, λ) := diag
(
b1(x, λ1), . . . , bN(x, λN)

)
,

with vectors aν(x, λν), bν(x, λν) ∈ Rmν whose entries are given by elements of the gen-
eralized Jacobian of the complementarity function, i.e., for all i = 1, . . . ,mν and for all
ν = 1, . . . , N we have

(aνi (x, λ
ν
i ), b

ν
i (x, λ

ν
i ))

{
=

(λν
i ,−gνi (x))√

(λν
i )

2+gνi (x)
2
− (1, 1), if (λνi ,−gνi (x)) ̸= (0, 0),

∈ cl(B1(0, 0))− (1, 1), if (λνi ,−gνi (x)) = (0, 0)
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for the Fischer-Burmeister function, and

(aνi (x, λ
ν
i ), b

ν
i (x, λ

ν
i )) ∈



(
γ

(
λν
i√

(λν
i )

2+(gνi (x))
2
− 1

)
− (1− γ)max{0,−gνi (x)}∂(λνi )+ ,

γ

(
−gνi (x)√

(λν
i )

2+(gνi (x))
2
− 1

)
− (1− γ)max{0, λνi }∂(−gνi (x))+

)
,

if (λνi ,−gνi (x)) ̸= (0, 0),
cl(Bγ(0, 0))− (γ, γ), if (λνi ,−gνi (x)) = (0, 0),

with

∂(c)+ :=


1, if c > 0,
[0, 1], if c = 0,
0, if c < 0,

for the penalized Fischer-Burmeister function with parameter γ ∈ (0, 1), cf. [11]. For both
complementarity functions aνi (x, λ

ν
i ) and b

ν
i (x, λ

ν
i ) are nonpositive for all i = 1, . . . ,mν and

for all ν = 1, . . . , N and aνi (x, λ
ν
i ) = 0 or bνi (x, λ

ν
i ) = 0 implies ϕ(λνi ,−gνi (x)) = 0. There-

fore, in spite of the fact that the matrix appearing in the expression of ∇Θ is not uniquely
defined, the gradient of Θ itself is uniquely determined because the possibly multivalued
elements of the generalized Jacobian are cancelled by corresponding zero entries in Φ(x, λ).
Based on this expression it is possible to establish a result, giving a sufficient condition

for a stationary point of Θ to be a solution of the GNEP.

Theorem 5.1 Let (x̄, λ̄) ∈ Rn×Rm be a stationary point of Θ, and suppose that JxF (x̄, λ̄)
is nonsingular and

M(x̄, λ̄) := Jxg(x̄) JxF (x̄, λ̄)
−1E(x̄)

is a P0-matrix. Then x̄ is a solution of the GNEP.

Proof. Since (x̄, λ̄) is a stationary point of Θ, it holds that

∇xF (x̄, λ̄)F (x̄, λ̄)−∇xg(x̄)Dg(x̄, λ̄) Φ(x̄, λ̄) = 0, (5.4)

E(x̄)T F (x̄, λ̄) +Dλ(x̄, λ̄) Φ(x̄, λ̄) = 0. (5.5)

By the nonsingularity of ∇xF (x̄, λ̄), we obtain from (5.4)

F (x̄, λ̄) = ∇xF (x̄, λ̄)
−1∇xg(x̄)Dg(x̄, λ̄) Φ(x̄, λ̄), (5.6)

and substituting this into (5.5), we get

0 = E(x̄)T ∇xF (x̄, λ̄)
−1∇xg(x̄)Dg(x̄, λ̄) Φ(x̄, λ̄) +Dλ(x̄, λ̄) Φ(x̄, λ̄)

=
[
M(x̄, λ̄)T Dg(x̄, λ̄) +Dλ(x̄, λ̄)

]
Φ(x̄, λ̄). (5.7)

Now recall that aνi (x̄, λ̄
ν
i ), b

ν
i (x̄, λ̄

ν
i ) are nonpositive with (aνi (x̄, λ̄

ν
i ), b

ν
i (x̄, λ̄

ν
i )) ̸= (0, 0) for all

i, ν, and that aνi (x̄, λ̄
ν
i ) = 0 or bνi (x̄, λ̄

ν
i ) = 0 can happen only if ϕ(λ̄νi ,−gνi (x̄)) = 0. Since in

the previous equations both elements aνi (x̄, λ̄
ν
i ) and b

ν
i (x̄, λ̄

ν
i ) are always post-multiplied by
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ϕ(λ̄νi ,−gνi (x̄)) = 0, we do not change these equations if we assume without loss of generality
that both diagonal matrices Dλ(x̄, λ̄) and Dg(x̄, λ̄) are negative definite. Since M(x̄, λ̄) is
assumed to be a P0-matrix, it follows that

(
M(x̄, λ̄)T Dg(x̄, λ̄) +Dλ(x̄, λ̄)

)
is nonsingular.

Hence Φ(x̄, λ̄) = 0 by (5.7), and this immediately implies F (x̄, λ̄) = 0 by (5.6). Therefore
(x̄, λ̄) is a solution. �

This result is particularly simple to verify when the constraints of the problem are all
linear. In fact, in this case the matrix M(x, λ) does not actually depend on the values
of the multipliers. The situation becomes still simpler for games with quadratic objec-
tive functions and linear constraints, because in this case the matrix M(x, λ) is actually
independent of (x, λ) and the condition in the theorem reduces to the verification of the
nonsingularity and P0 property of two matrices.

Example 5.2 Consider a GNEP with three players ν = 1, 2, 3, where player ν controls
the single variable xν ∈ R, and the problem is given by

Player 1: min
x1

1

2
(x1 − 1)2 − x1x2 s.t. x1 + x2 + x3 ≤ 1,

Player 2: min
x2

1

2
(x2 − 1)2 + x1x2 s.t. x1 + x2 + x3 ≤ 1,

Player 3: min
x3

1

2
(x3 − 1)2 s.t. 0 ≤ x3 ≤ x1 + x2.

Then we have a nonsingular matrix

JxF (x, λ) =

1 −1 0
1 1 0
0 0 1

 ,
and we get

M(x, λ) =


1 1 1
1 1 1
0 0 −1
−1 −1 1


 1

2
1
2

0
−1

2
1
2

0
0 0 1

1 0 0 0
0 1 0 0
0 0 −1 1

 =


0 1 −1 1
0 1 −1 1
0 0 1 −1
0 −1 −1 1

 .
An elementary calculation shows that det

(
M(x, λ)αα

)
≥ 0 holds for all α ⊆ {1, 2, 3, 4},

hence M(x, λ) is a P0-matrix. Consequently, Theorem 5.1 can be applied and guarantees
that every stationary point of Θ is a solution of the GNEP. ♢

This example also indicates a limitation of Theorem 5.1, if the constraints are not linear.
In this case, the nonsingularity of JxF (x, λ) and the P0 property of M(x, λ) must hold
even for negative values of λ, and it is apparent that this won’t be the case in general. In
fact, JxF (x, λ) will contain block-diagonal terms of the type λνi∇2

xνxνgνi (x), which will be
negative definite if λνi is negative, and can lead to a singular matrix JxF (x, λ) as in the
following example.
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Example 5.3 Consider a 2-player game where each player controls a single variable, given
by

Player 1: min
x1

1

2
(x1)2 +

32

5
x1 s.t.

1

6
(x1)2 + x2 − 5

2
≤ 0,

Player 2: min
x2

1

2
(x2)2 + x1x2 − 4

5
x2 s.t. x2 ∈ R.

Then we have

JxF (x, λ) =

[
1 + 1

3
λ 0

1 1

]
,

which is nonsingular for all λ ̸= −3. But if we consider the point x̄ = (3,−3) together with
λ̄ = −3, we obtain (using the Fischer-Burmeister function)

∇Θ(x̄, λ̄) =

1 + 1
3
λ̄ 1 −1

3
x̄1b(x̄, λ̄)

0 1 −b(x̄, λ̄)
1
3
x̄1 0 a(x̄, λ̄)

 x̄1 + 32
5
+ 1

3
x̄1λ̄

x̄2 + x̄1 − 4
5

ϕ(λ̄,−1
6
(x̄1)2 − x̄2 + 5

2
)


=

0 1 1
5

0 1 1
5

1 0 −8
5

 32
5

−4
5

4

 =

0
0
0

 .

Hence we have a stationary point that is certainly not a solution of the GNEP, since
Θ(x̄, λ̄) = 1

2
∥(32

5
,−4

5
, 4)∥2 ̸= 0. ♢

This example might suggest that negativity of the multipliers is the reason for the failure
of a stationary point being a solution. Therefore one could wish to solve the problem by
considering a constrained minimization of Θ, that is by solving the problem

minΘ(x, λ) s.t. λ ≥ 0. (5.8)

This leads to successful results in the optimization/VI case, see [24, 31]. Unfortunately, the
approach leads to problems in our game setting, as illustrated by the following example.

Example 5.4 Consider an apparently well-behaved game where each player controls a
single variable, and the players’ problems are given by

Player 1: min
x1

x1 s.t. (x1)2 + x2 ≤ 1,

Player 2: min
x2

1

2
(x2)2 s.t. x2 ∈ R.

For player 2 the global minimum x2 = 0 of the cost function is always feasible, and thus it
is attained at the solution. For player 1 this implies that x1 = −1 is the constrained opti-
mum, hence the point (−1, 0) is the only generalized Nash equilibrium. The corresponding
Lagrange multiplier is λ = 1

2
. Since

∇Θ(x, λ) =

 2λ 0 −2x1b(x, λ)
0 1 −b(x, λ)
2x1 0 a(x, λ)

 1 + 2x1λ
x2

ϕ(λ, 1− (x1)2 − x2)

 ,
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the point x̄ = (0, 0) together with λ̄ = 0 is an unconstrained stationary point of Θ, and
also a stationary point of the constrained problem (5.8), but x̄ is not a solution. ♢

In case the feasible sets of the players do not depend on the rivals’ strategies, so that we
have a standard Nash equilibrium problem (NEP), we can obtain a result that looks more
familiar.

Theorem 5.5 Consider a NEP. Let (x̄, λ̄) ∈ Rn × Rm be a stationary point of Θ, and
suppose that JxF (x̄, λ̄) is positive semidefinite and it holds that

dTJxF (x̄, λ̄)d > 0 for all d ∈
{
d ∈ Rn \ {0} | E(x̄)Td = 0

}
.

Then x̄ is a solution of the NEP.

Proof. In a NEP we have∇xg(x) = E(x). Taking the two stationarity conditions (5.4) and
(5.5), multiplying the first with F (x̄, λ̄)T and substituting the second one in the resulting
expression, we get

F (x̄, λ̄)T ∇xF (x̄, λ̄)F (x̄, λ̄) + Φ(x̄, λ̄)T Dλ(x̄, λ̄)Dg(x̄, λ̄) Φ(x̄, λ̄) = 0.

By the positive semidefiniteness of JxF (x̄, λ̄) and since we may assume, without loss of
generality, that both diagonal matrices Dλ(x̄, λ̄) and Dg(x̄, λ̄) have negative entries (cf.
the proof of Theorem 5.1), we get Φ(x̄, λ̄) = 0. Then equations (5.4) and (5.5), together
with dTJxF (x̄, λ̄)d > 0 for all d ∈

{
d ∈ Rn \ {0} | E(x̄)Td = 0

}
, imply F (x̄, λ̄) = 0, which

completes the proof. �

At first glance, the previous result looks very standard. We stress, however, that this is
not so since the tangent cone in the assumptions of the theorem {d | E(x̄)Td = 0} is (in
general) much smaller than the usual tangent cone. To this end, note that this tangent
cone may be rewritten as

T (x) =
{
d = (d1, . . . , dN) | ∇gνi (xν)Tdν = 0, ∀i = 1, . . . ,mν ∀ν = 1, . . . , N

}
,

meaning that this set contains all vectors d whose block components dν are orthogonal
to the gradients of all constraints gνi (x

ν) ≤ 0 and not just to the active ones. Hence the
requirement in Theorem 5.5 is significantly weaker than the usual one.

5.1.2. Coercivity

The previous results provide conditions under which a stationary point of Θ is a solution of
the underlying GNEP. Now, suppose we use a suitable descent method for the minimization
of Θ. Any reasonable method has the property that each of its accumulation points is a
stationary point of Θ and, therefore, a global minimum under the conditions given in our
previous results. Hence, the main question remaining to be answered, at least from a
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theoretical point of view, is under which assumptions a sequence {(xk, λk)}, generated by
a descent method, is guaranteed to be bounded, so that an accumulation point exists. A
sufficient condition would be the boundedness of the level sets of Θ. Unfortunately, these
level sets are typically unbounded, even under very restrictive assumptions. However, a
closer look at the merit function Θ shows that this has mainly to do with the behavior of
the sequence {λk} which, in particular, might be unbounded.
From now on the analysis depends on the specific choice of the complementarity function.

Let us first choose the Fischer-Burmeister function. Then it is possible to show that the
sequence {xk} remains bounded under very reasonable assumptions. To this end, consider
a GNEP that is defined via the optimization problems

min
xν

θν(x
ν , x−ν) s.t. gν(xν , x−ν) ≤ 0, hν(xν) ≤ 0, ν = 1, . . . , N,

with functions hνj : Rnν → R and gνi : Rn → R for j = 1, . . . , pν , i = pν+1, . . . ,mν , that are
assumed to be convex in xν . Here we distinguish, for each player ν = 1, . . . , N , between
those constraints hν that depend on his own variables xν only, and those constraints gν

that are allowed to depend on all variables. Consider the set

X0 := {x ∈ Rn | hν(xν) ≤ 0 ∀ν = 1, . . . , N}.

This set is closed and convex since the constraints hν are convex by assumption. Assuming
boundedness of the set X0, one can show boundedness of the x part of the iterates.

Proposition 5.6 Suppose hνj : Rnν → R is convex for all ν = 1, . . . , N, j = 1, . . . , pν and
the set X0 is nonempty and bounded. Furthermore, let {(xk, λk)} be any sequence such that
Θ(xk, λk) ≤ Θ(x0, λ0) for all k ∈ N. Then the sequence {xk} is bounded.

Proof. Let us define

hmax(x) := max
{
h11(x

1), . . . , h1p1(x
1), h21(x

2), . . . , hNpN (x
N)
}
.

Being the maximum of convex functions, it follows that hmax itself is also convex. Moreover

hνj (x
ν) ≤ γ ∀j = 1, . . . , pν ∀ν = 1, . . . , N ⇐⇒ hmax(x) ≤ γ

for any given γ ∈ R. In particular, we can rewrite the set X0 as

X0 = {x ∈ Rn | hmax(x) ≤ 0}.

Since hmax is a single convex function, it follows from our boundedness assumption on X0

together with [66, Corollary 8.7.1] that the level sets

Xγ := {x ∈ Rn | hmax(x) ≤ γ} = {x ∈ Rn | hνj (xν) ≤ γ ∀j = 1, . . . , pν ∀ν = 1, . . . , N}

are also bounded for any γ ∈ R.
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Now, assume that the sequence {xk} is unbounded, say {∥xk∥} → ∞. Since Xγ is
bounded for each γ ∈ R, we can therefore find, for any given γ = k, k ∈ N, an index
ℓ(k) ∈ N such that xℓ(k) ̸∈ Xk. This means that, for every k ∈ N, there are indices

ν(k) ∈ {1, . . . , N} and j(k) ∈ {1, . . . , pν(k)} such that h
ν(k)
j(k)(x

ℓ(k)) > k. Since there is only

a finite number of players and constraints, there exist fixed indices ν ∈ {1, . . . , N} and
j ∈ {1, . . . , pν}, independent of k ∈ N, such that hνj (x

ℓ(k)) > k on a suitable subsequence,
say, for all k ∈ K. Exploiting this fact, it follows from the definition of the Fischer-
Burmeister function that

ϕ
(
(λℓ(k))νj ,−hνj (xℓ(k))

)
=

√(
hνj (x

ℓ(k))
)2

+
(
(λℓ(k))νj

)2 − (λℓ(k))νj + hνj (x
ℓ(k))

≥ hνj (x
ℓ(k)) > k,

and thus we obtain

Θ(xℓ(k), λℓ(k)) ≥ 1

2
ϕ2
(
(λℓ(k))νj ,−hνj (xℓ(k))

)
>

1

2
k2.

Hence we have Θ(xℓ(k), λℓ(k)) →K ∞ for k →K ∞, contradicting the assumption that
Θ(xk, λk) ≤ Θ(x0, λ0) for all k ∈ N. �

Using the penalized Fischer-Burmeister function with parameter γ ∈ (0, 1) (and different
assumptions) it is possible to show boundedness not only for the sequence {xk} but also for
the sequence {λk}. Before stating this result, let us first recall some properties of the penal-
ized Fischer-Burmeister function. By [11, Proposition 1] the penalized Fischer-Burmeister
function is a strongly semismooth complementarity function, which is continuously differ-
entiable on R2 \ {(a, b) | a ≥ 0, b ≥ 0, ab = 0}. Further we have |ϕ(ak, bk)| → ∞ for any
sequences {ak}, {bk} ⊂ R with

(
max{0, ak}max{0, bk}

)
→ +∞ or ak → −∞ or bk → −∞.

Theorem 5.7 Assume that

(a) lim
∥x∥→∞

∥g+(x)∥ = +∞, where g+(x) := max{0, g(x)};

(b) the Extended Mangasarian-Fromovitz Constraint Qualification (EMFCQ) holds for
each player, i.e., for all ν = 1, . . . , N and for all x ∈ Rn there exists a dν ∈ Rnν such
that

∇xνgνi (x)
Tdν < 0 for all i ∈ Iν≥(x), (5.9)

where Iν≥(x) :=
{
i ∈ {1, . . . ,mν} | gνi (x) ≥ 0

}
denotes the set of active or violated

constraints for player ν.

Furthermore, let {(xk, λk)} be any sequence such that Θ(xk, λk) ≤ Θ(x0, λ0) for all k ∈ N.
Then the sequence {(xk, λk)} is bounded.

Proof. First assume that the sequence {xk} is unbounded, i.e., for some K ⊆ N we have
∥xk∥ →K ∞. Then by (a) there exist a ν ∈ {1, . . . , N} and an i ∈ {1, . . . ,mν} such that
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{gνi (xk)} →K +∞. The properties of the penalized Fischer-Burmeister function imply
|ϕ
(
(λk)νi ,−gνi (xk)

)
| →K +∞, which, in turn, implies Θ(xk, λk)→K +∞. This contradicts

Θ(xk, λk) ≤ Θ(x0, λ0) and thus shows that {xk} is bounded. Therefore, without loss of
generality, the sequence {xk} converges to some x̄.

Now assume that {λk} is unbounded. Then there exist indices ν ∈ {1, . . . , N} and i ∈
{1, . . . ,mν} with (λk)νi →K +∞ or (λk)νi →K −∞ on a subsetK ⊆ N. The latter one again
implies |ϕ

(
(λk)νi ,−gνi (xk)

)
| →K +∞ and hence contradicts Θ(xk, λk) ≤ Θ(x0, λ0). Thus

we have (λk)νi →K +∞. For gνi (x̄) < 0, we obtain
(
max{0, (λk)νi }max{0,−gνi (xk)}

)
→K

+∞ and the properties of ϕ imply |ϕ
(
(λk)νi ,−gνi (xk)

)
| →K +∞, which contradicts our

assumptions. Hence we have gνi (x̄) ≥ 0.

Let J be the set of all i ∈ {1, . . . ,mν} with (λk)νi →K +∞ on an appropriate subsequence
K. By the above we know gνi (x̄) ≥ 0 for all i ∈ J . Using EMFCQ from (5.9), there exists
a vector dν such that ∇xνgνi (x̄)

Tdν < 0 for all i ∈ J . This yields

lim
k∈K
∇xνLν(xk, (λk)ν)Tdν = lim

k∈K

(
∇xνθν(x

k) +
∑
i ̸∈J

(λk)νi∇xνgνi (x
k)

)T

dν

+ lim
k∈K

(∑
i∈J

(λk)νi∇xνgνi (x
k)

)T

dν = −∞,

since the first term is bounded (because of {xk} →K x̄, the continuity of the functions
∇xνθν and ∇xνgν and because all sequences (λk)νi for i ̸∈ J are bounded by the definition
of the index set J), whereas the second term is unbounded since (λk)νi →K +∞ and
∇xνgνi (x̄)

Tdν < 0 for all i ∈ J . Using the Cauchy-Schwarz inequality, we therefore obtain

∥∇xνLν(xk, (λk)ν)∥ ∥dν∥ ≥ |∇xνLν(xk, (λk)ν)Tdν | →K +∞.

Since dν is a fixed vector, this implies ∥∇xνLν(xk, (λk)ν)∥ →K +∞ which, in turn, contra-
dicts Θ(xk, λk) ≤ Θ(x0, λ0). Thus also the sequence {λk} is bounded. �

Note that condition (a) in the theorem above is a mild boundedness assumption on the
feasible sets of the players. In particular, (a) holds in the setting of Proposition 5.6. Also
condition (b) is rather mild and common in an optimization context.

Inspecting the proof of Theorem 5.7, one can see that condition (a) is also sufficient to
show boundedness of the sequence {xk} for the Fischer-Burmeister function. However, the
boundedness of the λ-sequence can only be obtained by the penalized Fischer-Burmeister
function, because the penalty term is needed to ensure the crucial part gνi (x̄) ≥ 0 in the
proof.

The given results show that the penalized Fischer-Burmeister function has better theo-
retical properties than the usual one.
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5.2. Interior Point Method

As we have seen in Section 5.1.1, there are some problems with the “λ-part” of the variables.
We already discussed, see (5.8), that a straightforward treatment of the sign constraints for
the multipliers is not likely to be helpful in the merit function approach. Another suitable
alternative seems to be an interior point approach to the solution of the GNEP KKT
system (5.2), since these methods are well known to be efficient methods for solving KKT
systems arising from optimization or VI problems. We will develop an inexact potential
reduction algorithm out of an exact version and analyse its properties. To this end, we
formulate the GNEP KKT system as a constrained nonlinear system of equations (CE or,
more precisely, CE(H,Z)) of the form

H(z) = 0, z ∈ Z (5.10)

for a given function H : Rl → Rl and a given set Z ⊆ Rl that we define below.
We introduce slack variables w := (wν)Nν=1, where w

ν ∈ Rmν , and set

λ ◦ w :=
(
λ11w

1
1, . . . , λ

N
mN
wN

mN

)T
.

Then we define

H(z) := H(x, λ, w) :=

 F (x, λ)
g(x) + w
λ ◦ w

 (5.11)

and
Z := {z = (x, λ, w) | x ∈ Rn, λ ∈ Rm

+ , w ∈ Rm
+}. (5.12)

It is immediate to verify that a point (x, λ) solves the KKT system (5.2) if and only if
this point, together with a suitable w, solves the constrained equation defined by (5.11)
and (5.12). In order to solve this constrained equation problem, we use an interior point
approach that generates points in the interior of Z. In other words, our method will
generate a sequence (xk, λk, wk) with λk > 0 and wk > 0 for every k. The particular
method that we base our analysis on is the potential reduction method from [54], also
discussed in detail in [31]. We generalize this potential reduction method by allowing
inexact solutions of the subproblems and study in detail its implication in the case of our
specific system (5.11) and (5.12). Note that we want to keep the notation from [31]. Thus
we define the set

S := Rn × R2m
+ ,

which coincides with the set Z in our case, as well as a potential function on int(S)

p(u, v) := ζ log(∥u∥2 + ∥v∥2)−
2m∑
i=1

log(vi), (u, v) ∈ Rn × R2m
++, ζ > m.

The properties of this function are well known from the literature on interior point methods.
Basically, the function p is defined in the interior of S and penalizes points that are near
the boundary of S, but are far from the origin. Some further properties we will use are
stated in the following lemma.
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Lemma 5.8 Define a := (0Tn , 1
T
2m)

T . Then it holds that

∇p(u, v)T
(
u

v

)
= 2(ζ −m) > 0, (5.13)(

aT
(
u

v

))(
aT∇p(u, v)

)
≤ ∥a∥2∇p(u, v)T

(
u

v

)
(5.14)

for all (u, v) ∈ Rn × R2m
++.

Proof. Equation (5.13) follows with v−1 :=
(
v−1
1 , . . . , v−1

2m

)
from the definition of p by

∇p(u, v)T
(
u

v

)
=

 ζ
2u

∥u∥2 + ∥v∥2

ζ
2v

∥u∥2 + ∥v∥2
− v−1


T (

u

v

)

= ζ
2∥u∥2

∥u∥2 + ∥v∥2
+ ζ

2∥v∥2

∥u∥2 + ∥v∥2
− vTv−1︸ ︷︷ ︸

=2m

= 2ζ − 2m.

Further, taking into account the definition of a and ∥v∥1 =
∑2m

i=1 vi, it follows that(
aT
(
u

v

))(
aT∇p(u, v)

)
= (1T2mv)

(
1T2m∇vp(u, v)

)
=

(
2m∑
i=1

vi

)(
2m∑
i=1

[
ζ

2vi
∥u∥2 + ∥v∥2

− 1

vi

])

=
2ζ∥v∥21

∥u∥2 + ∥v∥2
−

(
2m∑
i=1

vi

)(
2m∑
i=1

1

vi

)
.

It is known that ∥v∥1 ≤
√
2m∥v∥ and, by the arithmetic-geometric mean inequality,

1

2m

2m∑
i=1

vi ≥ 2m
√
v1 · . . . · v2m,

1

2m

2m∑
i=1

1

vi
≥ 2m

√
1

v1
· . . . · 1

v2m
.

This can be used in order to estimate the previous expression by(
aT
(
u

v

))(
aT∇p(u, v)

)
≤ 2ζ2m∥v∥2

∥u∥2 + ∥v∥2
− 4m2 2m

√
v1 · . . . · v2m 2m

√
1

v1
· . . . · 1

v2m︸ ︷︷ ︸
=1

≤ 2ζ2m− 4m2
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= 2m2(ζ −m)

= ∥a∥2∇p(u, v)T
(
u

v

)
,

where the last equality follows from (5.13) and ∥a∥2 = ∥12m∥2 = 2m. �

Based on p, we obtain a potential function for the CE(H,Z) which is defined on the
nonempty set

ZI := H−1(int(S)) ∩ int(Z)

by setting
ψ(z) := p(H(z)) for z ∈ ZI .

Throughout this section, p and ψ always denote these two potential functions.
We are now in the position to formulate our interior point method. The core of this

approach is the calculation of a Newton-type direction for the system H(z) = 0. According
to standard procedures in interior point methods, the Newton direction is “bent” in order
to follow the central path. Operatively this means that the search direction used in this
method is the solution of the system

H(zk) + JH(zk)dk = σk
aTH(zk)

∥a∥2
a (5.15)

with a defined by aT :=
(
0Tn , 1

T
2m

)
. Once this direction has been calculated, a line-search is

performed by using the potential function ψ. The version we describe and analyse below
is a variant where we allow the possibility of an inaccurate solution of system (5.15).

Algorithm 5.9 (Inexact Potential Reduction Method for GNEPs)

(S.0) Choose z0 ∈ ZI , β, γ ∈ (0, 1), and set k := 0, σ̄ = 1, aT = (0Tn , 1
T
2m).

(S.1) If H(zk) = 0: STOP.

(S.2) Choose σk ∈ [0, σ̄), ηk ≥ 0, and compute a vector dk ∈ Rl such that∥∥∥∥H(zk) + JH(zk)dk − σk
aTH(zk)

∥a∥2
a

∥∥∥∥ ≤ ηk∥H(zk)∥ and (5.16)

∇ψ(zk)Tdk < 0. (5.17)

(S.3) Compute a stepsize tk := max
{
βℓ | ℓ = 0, 1, 2, . . .

}
such that

zk + tkd
k ∈ ZI and (5.18)

ψ(zk + tkd
k) ≤ ψ(zk) + γtk∇ψ(zk)Tdk. (5.19)

(S.4) Set zk+1 := zk + tkd
k, k ← k + 1, and go to (S.1).
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5. Solving the KKT System of a GNEP

Remark 5.10 (a) By construction, all iterates zk generated by Algorithm 5.9 belong to
the set ZI , hence we have zk ∈ int(Z) and H(zk) ∈ int(S) for all k ∈ N.

(b) If JH(zk) ∈ Rl×l is a nonsingular matrix for all k, it follows that the linear system
of equations (5.15) always has an exact solution d̂k. In particular, this exact solution
satisfies the inexactness requirement from (5.16) for an arbitrary number ηk ≥ 0.
Furthermore, this exact solution also satisfies the descent property ∇ψ(zk)T d̂k < 0,
as shown below in Lemma 5.11, cf. [31]. It therefore follows that one can always find a
vector dk satisfying the two requirements (5.16) and (5.17), i.e., (S.2) is well-defined.
Numerically this can be done by applying an iterative linear solver, like GMRES
or one of its variants, to the exact equation system (5.15). Thus a suitable vector
satisfying the inexactness requirement (5.16) and the descent property (5.17) can be
found after a finite number of iterations.

(c) Since, by construction, we have zk ∈ ZI for an arbitrary fixed iteration k ∈ N and
since ZI is an open set, we see that the test (5.18) holds for all sufficiently small
stepsizes tk. Furthermore, the Armijo line search from (5.19) is eventually satisfied
since dk is a descent direction of the potential function ψ in view of the construction
in (S.2), cf. (5.17). In particular, this means that (S.3) is also well-defined.

Now we want to show that the exact solution of (5.16), that is the solution of (5.15), is
under some assumptions on the sequence {σk} a descent direction of the potential function
ψ.

Lemma 5.11 If zk ∈ int(Z), dk satisfies the exact equation (5.15), and the sequence {σk}
satisfies σk ∈ [0, 1) for all k ∈ N, it holds that

∇ψ(zk)Tdk ≤ 2(ζ −m)(σk − 1) < 0,

in particular, dk is a direction of descent of ψ at zk.

Proof. Using the definition of ψ and the Newton-type equation (5.15), we have

∇ψ(zk)Tdk = ∇p(H(zk))TJH(zk)dk

= ∇p(H(zk))T
[
−H(zk) + σk

aTH(zk)

∥a∥2
a

]
= −∇p(H(zk))TH(zk) + σk

(
aTH(zk)

)(
∇p(H(zk))Ta

)
∥a∥2

.

Writing (u, v) := H(zk) ∈ Rn+2m, applying (5.13) to the first term as well as (5.14) and
thereafter (5.13) to the second term, we obtain

∇ψ(zk)Tdk ≤ −2(ζ −m) + σk2(ζ −m) = 2(ζ −m)(σk − 1) < 0,

which is the desired result. �
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The following is the main convergence result for Algorithm 5.9, where, implicitly, we assume
that Algorithm 5.9 does not terminate within a finite number of iterations with a solution
of the constrained nonlinear system CE(H,Z).

Theorem 5.12 Assume that JH(z) is nonsingular for all z ∈ ZI , and that the two se-
quences {σk} and {ηk} from (S.2) of Algorithm 5.9 satisfy the conditions

lim sup
k→∞

σk < σ̄ and lim
k→∞

ηk = 0. (5.20)

Let {zk} be any sequence generated by Algorithm 5.9. Then:

(a) The sequence {H(zk)} is bounded.

(b) Any accumulation point of {zk} is a solution of (5.10).

Proof. We first note that our assumptions together with Remark 5.10 (b), (c) guarantee
that Algorithm 5.9 is at least well-defined. Throughout this proof, we use the abbreviation
uk := H(zk) for all k ∈ N.

(a) Suppose that {uk} is unbounded. Subsequencing if necessary, we may assume without
loss of generality that limk→∞ ∥uk∥ = ∞. Since {uk} ⊆ int(S) in view of Remark 5.10
(a), an elementary calculation then shows that limk→∞ p(uk) =∞. However, since dk is a
descent step for ψ, it follows from the definition of the potential function ψ together with
the line search rule from (5.19) that

p(uk) = p
(
H(zk)

)
= ψ(zk) < ψ(zk−1) < . . . < ψ(z0),

and this contradiction completes the proof of part (a).

(b) Let z∞ be an accumulation point of the sequence {zk}, and let {zk}K be a corresponding
subsequence converging to z∞. Since zk ∈ int(Z) for all k ∈ N, cf. Remark 5.10 (a),
it follows that z∞ ∈ Z since Z is a closed set. Define u∞ := H(z∞) and assume, by
contradiction, that u∞ ̸= 0. In view of part (a) and assumption (5.20), we may assume
without loss of generality that

lim
k∈K

σk = σ∞ for some σ∞ ∈ [0, σ̄) and lim
k∈K

uk = u∞ ̸= 0.

Hence there exists an ε > 0 such that ∥uk∥ ≥ ε holds for all k ∈ K. Furthermore, the
proof of part (a) also shows that p(uk) ≤ δ for all k ∈ K with δ := ψ(z0). This means that
the sequence {uk} belongs to the set

Λ(ε, δ) := {u ∈ int(S) | p(u) ≤ δ, ∥u∥ ≥ ε}

which is a compact set. Hence we have u∞ = H(z∞) ∈ Λ(ε, δ) ⊆ int(S). Consequently, we
have z∞ ∈ H−1(int(S)) ∩ Z. However, since H−1(int(S)) ∩ bd(Z) ⊆ int(Z) ∩ bd(Z) = ∅,
it therefore follows that z∞ belongs to the set H−1(int(S)) ∩ int(Z) = ZI .
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We now claim that the subsequence {dk}k∈K is also bounded. To this end, let us define
the residuals

rk := H(zk) + JH(zk)dk − σk
aTH(zk)

∥a∥2
a for all k ∈ N. (5.21)

Then the inexactness requirement (5.16) can be written as

∥rk∥ ≤ ηk∥H(zk)∥ for all k ∈ N. (5.22)

Since the Jacobian JH(zk) is nonsingular at zk ∈ ZI , we obtain from (5.21) that

dk = JH(zk)−1

[
rk −H(zk) + σk

aTH(zk)

∥a∥2
a

]
for all k ∈ N. (5.23)

Since {zk}k∈K → z∞, the continuity of the Jacobian implies that {JH(zk)}k∈K → JH(z∞).
However, since we already know that z∞ belongs to the set ZI , it follows that JH(z∞) is
nonsingular. This implies that there exists a constant ω > 0 such that ∥JH(zk)−1∥ ≤ ω for
all k ∈ K sufficiently large. We then obtain from (5.23) and the Cauchy-Schwarz inequality
that

∥dk∥ ≤ ω(ηk + 1 + σk)∥H(zk)∥

for all k ∈ K sufficiently large. Since {∥H(zk)∥} is bounded by part (a), we immediately
get from (5.20) that the sequence {dk}k∈K is also bounded. Without loss of generality, we
may therefore assume that limk∈K d

k = d∞ for some vector d∞. Using statement (a) once
again together with ηk → 0, it follows from (5.22) that rk → 0. On the other hand, using
the definition of the residuum rk and taking the limit k → ∞ on the subset K ⊆ N, it
follows that

0 = H(z∞) + JH(z∞)d∞ − σ∞
aTH(z∞)

∥a∥2
a.

Recalling that z∞ ∈ ZI by assumption, we obtain ∇ψ(z∞)Td∞ < 0 by Lemma 5.11. The
convergence of {zk}k∈K to z∞ together with the continuity of ψ on the set ZI implies that
the subsequence {ψ(zk)}k∈K also converges. On the other hand, the Armijo rule (5.19)
implies that the entire sequence {ψ(zk)}k∈N is monotonically decreasing. This shows that
the whole sequence {ψ(zk)}k∈N converges. Using the Armijo line search rule (5.19) once
more, we have

ψ(zk+1)− ψ(zk) ≤ γtk∇ψ(zk)Tdk < 0

for all k ∈ N. Since the left-hand side converges to zero, limk→∞ tk∇ψ(zk)Tdk = 0 must
hold. This, in turn, implies limk∈K tk = 0 since

lim
k∈K
∇ψ(zk)Tdk = ∇ψ(z∞)Td∞ < 0.

Let ℓk ∈ N0 be the unique index such that tk = βℓk holds in (S.3) for all k ∈ N. With
limk∈K tk = 0, we also have limk∈K

tk
β
= 0. Since the limit point z∞ belongs to the open
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set ZI , it therefore follows that the sequence {zk + tk
β
dk}k∈K also belongs to this set, at

least for all sufficiently large k ∈ K. Consequently, for these k ∈ K, the line search test in
(5.19) fails for the stepsize tk

β
= βℓk−1. We therefore have

ψ(zk + βℓk−1dk)− ψ(zk)
βℓk−1

> γ∇ψ(zk)Tdk

for all k ∈ K sufficiently large. Taking the limit k → ∞ on the subset K, the continuous
differentiability of the potential function ψ on the set ZI then gives

∇ψ(z∞)Td∞ ≥ γ∇ψ(z∞)Td∞.

Since ∇ψ(z∞)Td∞ < 0, this is only possible if γ ≥ 1, a contradiction to the choice of
γ ∈ (0, 1). Consequently, we have 0 = u∞ = H(z∞), and z∞ is a solution of the con-
strained system of nonlinear equations (5.10). �

Note that the previous convergence result requires the Jacobian matrices JH(z) to be
nonsingular for all z ∈ ZI (an assumption that will be discussed in the next section),
however, it does not state any assumptions for the limit points that might not belong
to ZI . In fact, the above convergence result also holds when the Jacobian is singular at
a limit point. This singularity of the Jacobian, however, also indicates that in general
we cannot expect local fast convergence of our interior point method since Newton-type
methods for nonlinear systems typically require a nonsingular Jacobian at the solution
in order to achieve a local superlinear/quadratic rate of convergence. This sounds like a
disadvantage compared to some other Newton-type methods, however, we recall that these
Newton-type methods also have severe troubles in basically all interesting situations where
at least one joint constraint is active at the solution since then singularity problems arise,
cf. [26]. Hence, also these Newton methods are not quadratically convergent, and the rate
of convergence may actually slow down dramatically.

5.2.1. Nonsingularity Conditions

The critical issue in applying Theorem 5.12 is establishing the nonsingularity of JH. This
section is devoted to this issue. We will see that while the conditions we will use in
order to establish the nonsingularity of JH are similar to those obtained in the equation
reformulation approach in Section 5.1.1 they only need to be valid for positive values of λ.
The structure of JH(z) is the following

JH(z) :=

 JxF (x, λ) E(x) 0
Jxg(x) 0 Im

0 W Λ

 , (5.24)

with
W := diag(w), Λ := diag(λ),
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and E defined in (5.3). In order to analyse the nonsingularity of this matrix, we first
introduce the following terminology, cf. [31].

Definition 5.13 A matrix Q = (M1M2M3) is said to have the mixed P0-property if M3

has full column rank and

M1u+M2v +M3s = 0
(u, v) ̸= 0

}
=⇒ uivi ≥ 0 for some i such that |ui|+ |vi| > 0.

Note that the matrix M3 in the previous definition might vanish. Then it is easy to see
that a square matrix M is a P0-matrix if and only if the pair [M − I] (with a vacuous
M3-part) has the mixed P0-property. Therefore Definition 5.13 generalizes the standard
notion of a P0-matrix. A useful characterization of the mixed P0-property is given in [31,
Lemma 11.4.3] and restated in the following result.

Lemma 5.14 Let M1 and M2 be matrices of order (n +m) ×m and M3 be a matrix of
order (n +m)× n. The matrix Q = (M1M2M3) has the mixed P0-property if and only if
for every pair of m×m diagonal matrices D1 and D2 both having positive diagonal entries,
the (2m+ n)× (2m+ n) square matrix

M :=

(
D1 D2 0
M1 M2 M3

)
is nonsingular.

Note that this Lemma is immediately applicable to (5.24) and gives a necessary and suffi-
cient condition for the nonsingularity of JH when λ > 0 and w > 0. However, the mixed
P0-property is difficult to interprete and to verify. Therefore we now give some sufficient
conditions which are derived taking into account the GNEP structure and which lead more
easily to verification and comparison with previous results. The proofs of these results may
be carried out by referring to Lemma 5.14, however, we prefer to give direct proofs to be
independent of that result, and because the direct proofs are not really longer than those
based on Lemma 5.14.
The following theorem gives a first nonsingularity result.

Theorem 5.15 Let z = (x, λ, w) ∈ Rn × Rm
++ × Rm

++ be given such that JxF (x, λ) is
nonsingular and

M(x, λ) := Jxg(x) JxF (x, λ)
−1E(x) (5.25)

is a P0-matrix. Then the Jacobian JH(z) is nonsingular.

Proof. Using the structure of JH(z) the homogeneous linear system JH(z)q = 0, with
q =

(
q(1), q(2), q(3)

)
being partitioned in a suitable way, can be rewritten in the following

way:

JxF (x, λ)q
(1) + E(x)q(2) = 0, (5.26)
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Jxg(x)q
(1) + q(3) = 0, (5.27)

Wq(2) + Λq(3) = 0. (5.28)

Since JxF (x, λ) is nonsingular by assumption, (5.26) yields

q(1) = −JxF (x, λ)−1E(x)q(2).

Hence we obtain

q(3) = −Jxg(x)q(1) = Jxg(x)JxF (x, λ)
−1E(x)q(2) =M(x, λ)q(2)

from (5.27) and the definition of M(x, λ). Substituting this expression into (5.28) gives

[W + ΛM(x, λ)] q(2) = 0.

SinceM(x, λ) is a P0-matrix by assumption and w, λ > 0, it follows that [W + ΛM(x, λ)] is
nonsingular and hence q(2) = 0. This, in turn, implies q(1) = 0 and q(3) = 0. Consequently,
JH(z) is nonsingular. �

Note that the conditions of Theorem 5.15 are identical to the assumptions for the station-
arity condition in Theorem 5.1. The difference is that the multipliers are now guaranteed
to be positive in the interior point approach, whereas this condition was crucial in the
equation/merit function approach, cf. the corresponding discussion in Section 5.1.1.
To illustrate this point, let us consider once again Example 5.4: It is now easy to see

that this example satisfies the conditions of Theorem 5.15:

JxF (x, λ) =

(
2λ 0
0 1

)
is nonsingular for all λ > 0 and M(x, λ) = 2(x1)2

λ
≥ 0 for all λ > 0. Hence this example is

no longer a counterexample for our interior point approach.
The following theorem gives another sufficient condition for the nonsingularity of JH.

This condition is stronger than that in Theorem 5.15, nevertheless it is interesting because
it gives a quantitative insight into what is necessary to guarantee the nonsingularity of
JH.

Theorem 5.16 Let z = (x, λ, w) ∈ Rn × Rm
++ × Rm

++ be given such that JxF (x, λ) is
nonsingular and

eigmin

(
1

2
E(x)T

(
JxF (x, λ)

−1 + JxF (x, λ)
−T
)
E(x)

)
≥∥∥Jxg(x)− E(x)T∥∥ ∥∥JxF (x, λ)−1

∥∥ ∥E(x)∥ .
Then the Jacobian JH(z) is nonsingular.
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Proof. For all u ∈ Rm we have

uTE(x)TJxF (x, λ)
−1E(x)u =

1

2
uT
(
E(x)T

(
JxF (x, λ)

−1 + JxF (x, λ)
−T
)
E(x)

)
u

≥ eigmin

(
1

2
E(x)T

(
JxF (x, λ)

−1 + JxF (x, λ)
−T
)
E(x)

)
∥u∥2

≥
∥∥Jxg(x)− E(x)T∥∥ ∥∥JxF (x, λ)−1

∥∥ ∥E(x)∥ ∥u∥2
≥ |uT

(
Jxg(x)− E(x)T

)
JxF (x, λ)

−1E(x)u|
≥ −uT

(
Jxg(x)− E(x)T

)
JxF (x, λ)

−1E(x)u.

Using the matrix M(x, λ) from (5.25), this implies that

uTM(x, λ)u = uTJxg(x) JxF (x, λ)
−1E(x)u ≥ 0

for all u ∈ Rm. ThereforeM(x, λ) is positive semidefinite, hence a P0-matrix, and Theorem
5.15 guarantees nonsingularity of JH(z). �

In the case of a NEP, if JxF (x, λ) is positive definite, the matrix M(x, λ) from (5.25) is
automatically P0 (actually, positive semidefinite) since Jxg(x) = E(x)T in this case. Then
it may be interesting to see that in the case of a NEP we can relax a bit the nonsingularity
assumption on JxF (x, λ) and still get nonsingularity of JH(z). In fact, we have the
following counterpart of the stationary point condition from Theorem 5.5.

Theorem 5.17 Consider a NEP, and let z = (x, λ, w) ∈ Rn × Rm
++ × Rm

++ be given such
that JxF (x, λ) is positive semidefinite and it holds that

dTJxF (x, λ)d > 0, for all d ∈
{
d ∈ Rn \ {0} | E(x̄)Td = 0

}
.

Then the Jacobian JH(z) is nonsingular.

Proof. Consider once again the homogeneous linear system JH(z)q = 0, so that (5.26)–
(5.28) hold with Jxg(x) = E(x)T , since we are in the NEP case. Since λ ∈ Rm

++, (5.28) can
be solved for q(3) and we obtain

0
(5.26)
= (q(1))TJxF (x, λ)q

(1) + (q(1))TE(x)q(2)

(5.27)
= (q(1))TJxF (x, λ)q

(1) − (q(3))T q(2)

(5.28)
= (q(1))TJxF (x, λ)q

(1) + (q(2))T (WΛ−1)q(2).

Positive semidefiniteness of JxF (x, λ), together with w > 0, λ > 0, implies q(2) = 0 and
thus also q(3) = 0 by (5.28). Then we have from (5.26) and (5.27)

(q(1))TJxF (x, λ)q
(1) = 0 and E(x)T q(1) = 0,
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and the assumptions show q(1) = 0, hence nonsingularity of JH(z). �

In spite of the result above, it should be pointed out that in general, in Theorem 5.15, we
do not need the matrix JxF (x, λ) to be positive (semi-) definite. This is illustrated by the
following example.

Example 5.18 Consider a GNEP with two players, each controlling a single variable, that
is given by

Player 1: min
x1

1

2
(x1)2 − 2x1 s.t. (x1)2 + x2 ≤ 0,

Player 2: min
x2

1

2
(x2)2 + (2− (x1)2)x2 s.t. x2 ∈ R.

It is easy to see that

JxF (x, λ) =

(
1 + 2λ 0
−2x1 1

)
is nonsingular for all x ∈ R2 and all λ > 0 but it is not positive semidefinite everywhere.
However, since

M(x, λ) = Jxg(x) JxF (x, λ)
−1E(x) =

(
2x1, 1

)( 1
1+2λ

0
2x1

1+2λ
1

)(
2x1

0

)
=

8(x1)2

(1 + 2λ)
≥ 0,

it follows that the conditions from Theorem 5.15 are satisfied. ♢

As we have seen in the previous sections, nonsingularity of JxF (x, λ) and the P0-condition
on the matrix M(x, λ) guarantee both that stationary points of the merit function are
solutions of the GNEP and that the matrix JH(z) is nonsingular. In the case of NEPs
we obtain these properties by some semi-definiteness assumptions on JxF (x, λ). Let us
recall that in the context of the interior point approach, all conditions only have to hold
for positive λ and, therefore, are less restrictive than in the merit function context.
To conclude this subsection, we remark that the matrix JH(z) is not positive semidefi-

nite.

Remark 5.19 A necessary condition for positive semidefiniteness of

JH(z) :=

 JxF (x, λ) E(x) 0
Jxg(x) 0 Im

0 W Λ


is positive semidefiniteness of the lower right block or equivalently of its symmetric part

1

2

((
0 Im
W Λ

)
+

(
0 Im
W Λ

)T
)

=

(
0 1

2
(Im +W )

1
2
(Im +W ) Λ

)
.
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5. Solving the KKT System of a GNEP

But elementary calculations show that the eigenvalues of this matrix are given by{
λi ±

√
(λi)2 + (1 + wi)2

2

∣∣∣i = 1, . . . ,m

}
.

Therefore, if wi = −1 and λi ≥ 0 for all i = 1, . . . ,m does not hold, there are negative
eigenvalues and the matrix JH(z) is not positive semidefinite. In particular for all zk ∈
Rn × Rm

++ × Rm
++ the matrix JH(zk) is never positive semidefinite.

Since the matrix JH(z) is not positive semidefinite, the mapping H is not monotone.
Therefore a VI approach for the solution of the constrained equation CE(H,Z) is difficult,
since it often requires some monotonicity assumption.

5.2.2. Boundedness

Note that Theorem 5.12 does not guarantee the existence of an accumulation point of the
sequence generated by Algorithm 5.9. The following result therefore considers precisely
this question and provides conditions under which the entire sequence remains bounded.

Theorem 5.20 Assume that

(a) JH(z) is nonsingular for all z ∈ ZI ;

(b) lim
∥x∥→∞

∥g+(x)∥ = +∞;

(c) the Extended Mangasarian-Fromovitz Constraint Qualification (EMFCQ) holds for
each player, i.e., for all ν = 1, . . . , N and for all x ∈ Rn there exists a dν ∈ Rnν such
that

∇xνgνi (x)
Tdν < 0 for all i ∈ Iν≥(x) :=

{
i ∈ {1, . . . ,mν} | gνi (x) ≥ 0

}
.

Then any sequence {(xk, λk, wk)} generated by Algorithm 5.9 remains bounded.

Proof. Assume that there exists a sequence {(xk, λk, wk)} ⊆ ZI that is unbounded, i.e.
limk→∞ ∥(xk, λk, wk)∥ = ∞. We will show that this implies ∥H(xk, λk, wk)∥ → ∞ for
k →∞, contradicting part (a) of Theorem 5.12. We consider two cases.

Case 1: ∥(xk, wk)∥ → ∞. Then either {xk} is bounded, or ∥xk∥ → ∞, without loss of
generality on the entire sequence. If {xk} is bounded, then, subsequencing if necessary, we
have ∥wk∥ → ∞. By the continuity of g the sequence {g(xk)} is bounded. We therefore
obtain ∥g(xk) + wk∥ → ∞. This, in turn, implies ∥H(xk, λk, wk)∥ → ∞.
On the other hand, if ∥xk∥ → ∞, it follows from assumption (b) that ∥g+(xk)∥ → ∞. More-
over, since all components of the vector wk are positive, this also implies ∥g(xk)+wk∥ → ∞,
and it follows once again that ∥H(xk, λk, wk)∥ → ∞ also in this (sub-) case.
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Case 2: ∥(xk, wk)∥ is bounded. Then we have ∥λk∥ → ∞. Let ν be a player such that
∥(λk)ν∥ → ∞, and let J be the set of indices such that (λk)νj →∞, whereas, subsequencing
if necessary, we can assume that the remaining components stay bounded. Without loss
of generality, we may also assume that xk → x̄ and wk → w̄. If, for some j ∈ J , we have
w̄ν

j > 0, it follows that (λk)νj (w
k)νj → +∞, and therefore ∥H(xk, λk, wk)∥ → ∞. Hence it

remains to consider the case where w̄ν
j = 0 for all j ∈ J . Since (xk, λk, wk) belongs to ZI ,

we have gνj (x
k) + (wk)νj > 0 and, therefore, gνj (x̄) ≥ 0 for all j ∈ J . Now we can use the

EMFCQ condition and repeat the corresponding part of the proof of Theorem 5.7 to get
∥∇xνLν(xk, (λk)ν)∥ → +∞ which, in turn, implies ∥H(xk, λk, wk)∥ → ∞ for k →∞, also
in this case. �

5.2.3. A Finite Termination Result

In this section we want to find a relation between the number of iterations until the
termination criterion ∥H(zk)∥ ≤ ε is satisfied and the accuracy ε > 0. For this purpose
we assume throughout this section that the exact version of Algorithm 5.9 is implemented,
that is we assume ηk = 0 for all k ∈ N. Let us begin with a relation between the two
quantities ∥H(z)∥ and Ψ(z).

Lemma 5.21 It holds that

∥H(z)∥2 ≤ exp
( ψ(z)

ζ −m

)
.

Proof. By definition and ln(x2) = 2 ln(x), we have

ψ(z) = ζ ln
(
∥H(z)∥2

)
−

2m∑
i=1

ln (Hn+i(z))

= (ζ −m) ln
(
∥H(z)∥2

)
+ 2m ln (∥H(z)∥)−

2m∑
i=1

ln (Hn+i(z))

≥ (ζ −m) ln
(
∥H(z)∥2

)
,

which immediately implies the statement. �

Using this Lemma we can prove the following relation between ∥H(zk)∥ and the stepsizes.

Lemma 5.22 If ηk = 0 for all k ∈ N and σ̃ := supk∈N σk < 1 we have

∥H(zk)∥2 ≤ exp

(
ψ(z0)

ζ −m
− 2γ(1− σ̃)

k−1∑
ℓ=0

tℓ

)
for all k ∈ N.
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5. Solving the KKT System of a GNEP

Proof. By the Armijo line-search rule, Lemma 5.11, and σ̃ := supk∈N σk < 1 we have

ψ(zk+1)− ψ(zk) ≤ γtk∇ψ(zk)Tdk

≤ 2γ(ζ −m)tk(σk − 1)

≤ −2γ(ζ −m)(1− σ̃)tk.
Summing up this inequality for k = 0, 1, 2, . . . yields

ψ(zk)− ψ(z0) ≤ −2γ(ζ −m)(1− σ̃)
k−1∑
ℓ=0

tℓ.

Lemma 5.21 therefore gives

∥H(zk)∥2 ≤ exp

(
ψ(zk)

ζ −m

)
≤ exp

(
ψ(z0)

ζ −m
− 2γ(1− σ̃)

k−1∑
ℓ=0

tℓ

)
.

�

In view of Lemma 5.22 we see that for ε > 0 the termination criterion ∥H(zk)∥ ≤ ε is
certainly satisfied for some k ∈ N if

exp

(
ψ(z0)

ζ −m
− 2γ(1− σ̃)

k−1∑
ℓ=0

tℓ

)
≤
√
ε

holds. This is equivalent to

k−1∑
ℓ=0

tℓ ≥
ψ(z0)

2γ(ζ −m)(1− σ̃)
− ln ε

4γ(1− σ̃)
,

which will be satisfied for some k ∈ N if
∑

ℓ∈N tℓ =∞. In particular, it will be satisfied if
there is a lower bound t̄ > 0 on the sequence of stepsizes, such that tk ≥ t̄ for all k ∈ N.
From this stronger assumption we similarly obtain that

kt̄ ≥ ψ(z0)

2γ(ζ −m)(1− σ̃)
− ln ε

4γ(1− σ̃)

implies ∥H(zk)∥ ≤ ε. This proves the following result, where the notation ⌈a⌉ is used for
the smallest integer that is larger than a ∈ R.
Theorem 5.23 Let {zk} be a sequence generated by Algorithm 5.9 with ηk = 0 for all
k ∈ N, and suppose that σ̃ := supk∈N σk < 1 and tk ≥ t̄ holds for all k ∈ N for some lower
bound t̄ > 0. Then the termination criterion ∥H(zk)∥ ≤ ε is satisfied after at most

k =

⌈
ψ(z0)

2γ(ζ −m)(1− σ̃)t̄
− ln ε

4γ(1− σ̃)t̄

⌉
iterations.
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For the application of this theorem we have to prove the existence of a lower bound t̄ > 0
for the sequence of the stepsizes. This is the content of the remaining part of this section.
Therefore let us first introduce some notation. Since we consider the exact version of
Algorithm 5.9, there is a linear system of equations to be solved at iteration k. Partitioning

the vector dk :=
(
(dkx)

T , (dkλ)
T , (dkw)

T
)T ∈ Rn+m+m, this system becomes

JxF (x
k, λk)dkx + E(xk)dkλ = −F (xk, λk), (5.29)

Jxg(x
k)dkx + dkw = −g(xk)− wk + σkµk1m, (5.30)

W kdkλ + Λkdkw = −ΛkW k1m + σkµk1m, (5.31)

where we used W k := diag(wk) ∈ Rm×m
++ ,Λk := diag(λk) ∈ Rm×m

++ , and

µk :=
aTH(zk)

∥a∥2
.

Further define

dkλ
λk

:= (Λk)−1dkλ =

(
dkλ,1
λk1

, . . . ,
dkλ,m
λkm

)T

∈ Rm,

dkw
wk

:= (W k)−1dkw =

(
dkw,1

wk
1

, . . . ,
dkw,m

wk
m

)T

∈ Rm.

By (S.3) of Algorithm 5.9 the stepsize tk must satisfy two conditions. The first one is
zk + tkd

k ∈ ZI , which requires

λki + tkd
k
λ,i > 0,

wk
i + tkd

k
w,i > 0,(

λki + tkd
k
λ,i

) (
wk

i + tkd
k
w,i

)
> 0,

gi(x
k + tkd

k
x) +

(
wk

i + tkd
k
w,i

)
> 0

for all i = 1, . . . ,m. Obviously if two of the first three inequalities hold also the third one
holds. Assuming convexity of the constraint functions and boundedness of some sequences
we can show the following theorem.

Theorem 5.24 Let the constraint functions gi, i = 1, . . . ,m be convex and let {zk} be a
sequence generated by Algorithm 5.9 with ηk = 0 for all k ∈ N. Assume there are constants
cλ > 0 and cw > 0 such that

dkλ,i
λki
≤ cλ and

dkw,i

wk
i

≤ cw for all k ∈ N, i = 1, . . . ,m. (5.32)

Then we have zk + tkd
k ∈ ZI for all tk ∈

[
0, t̃
]
with t̃ := min

{
1

1+cλ
, 1
1+cw

}
.
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Proof. Writing equation (5.31) for each component and solving it by dkw,i we obtain for
all i ∈ {1, . . . ,m}

wk
i + tkd

k
w,i = wk

i + tk

[
−wk

i

(
1 +

dkλ,i
λki

)
+
σkµk

λki

]

= wk
i

[
1− tk

(
1 +

dkλ,i
λki

)]
+ tk

σkµk

λki
.

If
dkλ,i
λk
i
≤ 0 we certainly have 1−tk

(
1 +

dkλ,i
λk
i

)
≥ 0 for all tk ∈ [0, 1] and hence wk

i +tkd
k
w,i > 0.

Otherwise we have, by the definition of t̃ and
dkλ,i
λk
i
≤ cλ,

tk

(
1 +

dkλ,i
λki

)
≤ 1

1 + cλ
(1 + cλ) = 1

and hence wk
i + tkd

k
w,i > 0 for all tk ∈

[
0, t̃
]
. Similarly we obtain for all i ∈ {1, . . . ,m}

λki + tkd
k
λ,i = λki

[
1− tk

(
1 +

dkw,i

wk
i

)]
+ tk

σkµk

wk
i

,

and hence using
dkw,i

wk
i
≤ cw we can show λki + tkd

k
λ,i > 0 for all tk ∈

[
0, t̃
]
.

Furthermore we get(
wk

i + tkd
k
w,i

) (
λki + tkd

k
λ,i

)
> 0 for all tk ∈

[
0, t̃
]
.

Using that all gi, i = 1, . . . ,m are continuously differentiable and convex together with
equation (5.30) we obtain

gi(x
k + tkd

k
x) +

(
wk

i + tkd
k
w,i

)
≥ gi(x

k) + tk∇gi(xk)Tdkx +
(
wk

i + tkd
k
w,i

)
(5.30)
= (1− tk)

(
gi(x

k) + wk
i

)
+ tkσkµk

which is positive for all tk ∈ [0, 1] and all i = 1, . . . ,m, since zk ∈ ZI implies gi(x
k)+wk

i > 0.
Altogether this proves zk + tkd

k ∈ ZI for all tk ∈
[
0, t̃
]
. �

In Theorem 5.24 we assume boundedness (from above) for each component of
{

dkλ
λk

}
. This

assumption holds under suitable conditions, which we will derive next.
If JxF (x

k, λk) is nonsingular for all (xk, λk) ∈ Rn × Rm
++ one can solve (5.29) by dkx,

(5.31) by dkw and insert this in (5.30), to obtain the equation

(
MkΛk +W k

) dkλ
λk

= rk (5.33)
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with

Mk := M(xk, λk) = Jxg(x
k) JxF (x

k, λk)−1E(xk),

rk := −Jxg(xk) JxF (xk, λk)−1 F (xk, λk) + g(xk) + σkµk

(
(Λk)−1 − Im

)
1m. (5.34)

As we have seen in Theorem 5.15 the nonsingularity of JxF (x
k, λk) and the P0 property of

Mk on Rn ×Rm
++ ×Rm

++ imply nonsingularity of JH(zk) and also of (MkΛk +W k) for all
k ∈ N. Therefore we can use Cramer’s Rule to get

dkλ,i
λki

=
det
(
M̃k

i Λ̃
k
i + W̃ k

i

)
det (MkΛk +W k)

, (5.35)

with

Λ̃k
i := diag

(
λk1, . . . , λ

k
i−1, 1, λ

k
i+1, . . . , λ

k
m

)
,

W̃ k
i := diag

(
wk

1 , . . . , w
k
i−1, 0, w

k
i+1, . . . , w

k
m

)
,

M̃k
i :=

(
Mk

1 . . .M
k
i−1 r

kMk
i+1 . . .M

k
m

)
,

where Mk
j denotes the j-th column of the matrix Mk.

If we assume that JxF (x, λ) is nonsingular for all (x, λ) in Rn × Rm
+ (not only Rn ×

Rm
++), and {zk} and σkµk(Λ

k)−11m are bounded, we get boundedness of rk. Moreover,
assuming strict complementarity at all solutions of the GNEP and Mk to be a P -matrix,
implies nonsingularity of any limiting matrix of {MkΛk +W k} and hence boundedness of{

dkλ
λk

}
. Unfortunately if there are repeated constraints for two or more players, which is in

particular the case for jointly convex GNEPs, the matrixMk has identical rows, and hence
can not be nonsingular or even a P -matrix. Nevertheless, as we will see next, it is possible

that the sequence
{

dkλ
λk

}
stays bounded.

Let us first introduce some notation. For a set α ⊆ {1, . . . ,m}, define

ᾱ := {1, . . . ,m} \ α.

In the subsequent analysis we consider a solution z̄ = (x̄, λ̄, w̄) of the constrained equation
H(z) = 0, z ∈ Rn × Rm

+ × Rm
+ and we define the index sets

I<(x̄) := {j | gj(x̄) < 0} and I=(x̄) := {j | gj(x̄) = 0}.

All constraints with indices belonging to I=(x̄) are called active constraints, the ones with
indices belonging to I<(x̄) are inactive constraints at x̄. It is possible that we have a joint
constraint for different players, meaning gi ≡ gj for i ̸= j. We are in particular interested
in index sets, where all these repeated active constraints are dropped except one. Thus let
us define the maximum number q(x̄) ≤ m of different active constraints that we have, by

q(x̄) := max {|α| | α ⊆ I=(x̄), gi ̸≡ gj ∀i, j ∈ α} .
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Depending on q(x̄) and |I=(x̄)| define the following sets of index sets:

I0=(x̄) :=
{
α ⊆ I=(x̄)

∣∣|α| = q(x̄), gi ̸≡ gj ∀i, j ∈ α
}
;

I−k
= (x̄) :=

{
α ⊆ I=(x̄)

∣∣∃βα ∈ I0=(x̄)∃i1, . . . , ik ∈ βα : α = βα \ {i1, . . . , ik}
}
,

for 1 ≤ k ≤ q(x̄);

I1=(x̄) :=
{
α ⊆ I=(x̄)

∣∣∃βα ∈ I0=(x̄)∃i, j ∈ α, i ̸= j : gi ≡ gj, α \ {i} ⊆ βα
}
,

if |I=(x̄)| > q(x̄);

Ik=(x̄) :=
{
α ⊆ I=(x̄)

∣∣α ̸∈ Ik−1
= (x̄), ∃βα ∈ Ik−1

= (x̄) ∃i ∈ α : α \ {i} = βα
}
,

for 2 ≤ k ≤ |I=(x̄)| − q(x̄).

I0=(x̄) contains all those index sets, where every active constraint is exactly once included,
and there are no repeated constraints. This set is assumed to be nonempty since otherwise
there are no active constraints at all and hence (almost) nothing to prove. Further, if we
take an index set of I0=(x̄) and drop exactly k elements, with 1 ≤ k ≤ q(x̄), we obtain
an index set in I−k

= (x̄). On the other hand we get for each element α ∈ I−k
= (x̄) a related

element βα ∈ I0=(x̄) with α ⊆ βα. Therefore we have no repeated active constraints in
any index set contained in I−k

= (x̄) for 1 ≤ k ≤ q(x̄) and the superscript indicates that k
different constraints are missing to get an element of I0=(x̄). In particular, the index sets
for different nonpositive superscripts are disjoint and I−q(x̄)

= (x̄) = {∅}.
The index sets with positive superscript are defined recursively. I1=(x̄) contains all those
index sets where exactly one active repeated constraint is included twice and all the others
at most once. Therefore, by dropping one of the two repeated active constraints, we get
an index set that does no longer contain repeated active constraints. Hence it is a subset
of some index set βα ∈ I0=(x̄), but it might be a strict subset, since it must not contain all
different active constraints.
Any set α ∈ I2=(x̄) is not contained in I1=(x̄) and by dropping one element of α we must
obtain a set in I1=(x̄). This means that I2=(x̄) contains all those index sets, where exactly
two constraints have to be dropped in order to get only different active constraints. Hence
we either have three different indices i1, i2, i3 ∈ α with gi1 ≡ gi2 ≡ gi3 or two pairs of
different indices i1, i2 ∈ α and j1, j2 ∈ α with gi1 ≡ gi2 ̸≡ gj1 ≡ gj2 .
Further, the recursive definition implies that having any index set in Ik=(x̄), we must drop
exactly k indices to obtain an index set from I0=(x̄). The entire set I=(x̄) is contained
in I |I=(x̄)|−q(x̄)

= (x̄). Note that if we consider GNEPs where all constraints of all players
are different, we have |I=(x̄)| = q(x̄) and we do not have the index sets with positive
superscript.
Altogether we have a disjoint partition of the power set P(I=(x̄)) of I=(x̄),

P(I=(x̄)) =
∪

−q(x̄)≤k≤m−q(x̄)

Ik=(x̄). (5.36)

Let us illustrate the defined index sets in an example.
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Example 5.25 Consider the 2-player game

Player 1: min
x1

1

2
(x1 − 1)2 s.t. x1 ≥ 0, x1 + x2 ≤ 1,

Player 2: min
x2

1

2
(x2 − 1)2 s.t. x2 ≥ 0, x1 + x2 ≤ 1.

õx1Θ1HxL=0

õx2Θ2HxL=0

-0.5 0.5 1.0 1.5
x1

-0.5

0.5

1.0

1.5

x 2

Figure 5.1.: Graphical solution of Example 5.25

Using Theorem 2.1 and Figure 5.1 we get the solution set

{(a, 1− a) | a ∈ [0, 1]}.

Define the constraint function

g(x) := (−x1, x1 + x2 − 1,−x2, x1 + x2 − 1)T .

Then we have g2 ≡ g4 and for the sets of active constraints at the solutions I=(x̄) and the
index sets Ik=(x̄) we get:

(0, 1) (1, 0) (a, 1− a), a ∈ (0, 1)
I=(0, 1) = {1, 2, 4} I=(1, 0) = {2, 3, 4} I=(a, 1− a) = {2, 4}
I0=(0, 1) = {{1, 2}, {1, 4}} I0=(1, 0) = {{2, 3}, {3, 4}} I0=(a, 1− a) = {{2}, {4}}
I1=(0, 1) = {{2, 4}, {1, 2, 4}} I1=(1, 0) = {{2, 4}, {2, 3, 4}} I1=(a, 1− a) = {{2, 4}}
I−1
= (0, 1) = {{1}, {2}, {4}} I−1

= (1, 0) = {{2}, {3}, {4}} I−1
= (a, 1− a) = {∅}

I−2
= (0, 1) = {∅} I−2

= (1, 0) = {∅}
♢
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The above index sets will play a crucial role in the proofs later on. For the set of assump-

tions that are used to show boundedness of
{

dkλ
λk

}
we only need the set I0=(x̄).

Assumption 5.26 (A1) The sequence {zk} is bounded.

(A2) If there are identical constraints gi ≡ gj with i, j ∈ {1, . . . ,m}, i ̸= j, then we have
w0

i = w0
j for the starting vector w0.

(A3) At every iteration k, the parameter σk is sufficiently small to guarantee boundedness
of σkµk

wk
j λ

k
j
for all j = 1, . . . ,m.

(A4) The matrix JxF (x
k, λk) is nonsingular for all (xk, λk) ∈ Rn × Rm

+ .

(A5) At every solution z̄ of H(z) = 0, z ∈ Rn × Rm
+ × Rm

+ there is a β ∈ I0=(x̄), such that
Mββ(x̄, λ̄) is nonsingular and λ̄j > 0 for all j ∈ β. Further det(Mαα(x̄, λ̄)) is zero or
has the same sign for all α ∈ I0=(x̄).

Sufficient conditions for Assumption (A1), the boundedness of the sequence {zk}, are
given in Theorem 5.20. Assumption (A2), the choice of equal starting parameters for equal
constraints gi ≡ gj, i ̸= j is very natural. A simple consequence of (A2) is stated in the
next Lemma.

Lemma 5.27 Let (A2) be satisfied. If there are indices i, j ∈ {1, . . . ,m} with gi ≡ gj, we
have wk

i = wk
j for all k ∈ N. Furthermore ∏

i∈ᾱ1\I<(x̄)

wk
i

 =

 ∏
i∈ᾱ2\I<(x̄)

wk
i


holds for all α1, α2 ∈ I0=(x̄) and all k ∈ N, that is the product is independent of the choice
of α ∈ I0=(x̄).

Proof. Let α1, α2 ∈ I0=(x̄). By definition ᾱ1 \ I<(x̄) and ᾱ2 \ I<(x̄) contain only active
constraints that are joined by several players, and they contain all but one of each joined
active constraint. Thus (A2) implies ∏

i∈ᾱ1\I<(x̄)

w0
i

 =

 ∏
i∈ᾱ2\I<(x̄)

w0
i

 .

If we have indices i, j ∈ {1, . . . ,m} with gi ≡ gj and wk
i = wk

j for some k ∈ N0, (5.30)
yields

dkw,i = −wk
i − gi(xk)−∇gi(xk)Tdkx + σkµk

= −wk
j − gj(xk)−∇gj(xk)Tdkx + σkµk = dkw,j,
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and hence

wk+1
i = wk

i + tkd
k
w,i = wk

j + tkd
k
w,j = wk+1

j ,

which implies the first assertion. Furthermore, by induction, we obtain

 ∏
i∈ᾱ1\I<(x̄)

wk+1
i

 =

 ∏
i∈ᾱ2\I<(x̄)

wk+1
i

 ,

and this completes the proof. �

Assumption (A3) is not restrictive but rather gives an idea, how to choose the parameter
σk at every iteration. Note, that if minj{wk

jλ
k
j}, the smallest of the last m components of

H(zk), vanishes faster than the average µk = aTH(zk)
∥a∥2 = 1

2m

∑2m
i=1Hn+i(z

k) of the last 2m

components of H(zk), (A3) implies σk → 0.

The assumptions (A4) and (A5) restrict the number of GNEPs under consideration. As-
sumption (A4) also plays an important role for the nonsingularity of JH(zk). But note
that nonsingularity is required for λ ≥ 0 and not only for λ > 0. It will be needed to
guarantee the existence of the limiting matrices M(x̄, λ̄). Further we can use (A4) to-
gether with (A1), (A3), and the continuity of g, Jxg, and F to ensure that rk, defined in
(5.34), is bounded. For the nonsingularity ofMββ(x̄, λ̄) in (A5) it is clear that at a solution
x̄ all different active constraints have to be linearly independent, to get full row rank of
Jxgβ(x̄). Further the columns of E(x̄) with indices in β must be linearly independent. If
we do not have any joint constraints, this requires that LICQ holds for each player, i.e.,
{∇xνgνi (x̄) | gνi (x̄) = 0} has to be linearly independent for each player ν = 1, . . . , N . For
joint active constraints the condition is more relaxed, since we then have β ⊂ I=(x̄), and
thus for some players less gradients to be linearly independent. The second part of (A5),
λ̄j > 0 for all j ∈ β, is strict complementarity, if there are no repeated active constraints,
since then β = I=(x̄). Having repeated constraints this is a weaker assumption, since the
Lagrange multiplier has to be positive only for one player and not for all players sharing a
common constraint.

If for a given sequence (xk, λk) that converges to a solution (x̄, λ̄), the matricesM(xk, λk) =
Jxg(x

k) JxF (x
k, λk)−1E(xk) are P0-matrices, which is the sufficient condition for nonsingu-

larity of JH(zk) from Theorem 5.15, we have det(Mαα(x
k, λk)) ≥ 0 for all α ⊆ {1, . . . ,m}.

Using continuity of Jxg and E, and (A4), which guarantees continuity of JxF (x
k, λk)−1

for (xk, λk) → (x̄, λ̄), we get det(Mαα(x̄, λ̄)) ≥ 0 for all α ⊆ {1, . . . ,m}. Therefore also
the matrix M(x̄, λ̄) has the P0 property. In this case the third part of (A5), that the
determinants det(Mαα(x̄, λ̄)) are zero or have the same sign for all α ∈ I0=(x̄), is satisfied.
Now we want to give an example showing that the assumptions (A1) to (A5) can be

satisfied without JH(z̄) being nonsingular at a solution z̄, or M being a P -matrix.
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Example 5.28 Consider the 2-player game, defined via

Player 1: min
x1

1

2
(x1 − 1)2 s.t. −x1 ≤ 1, x1 + x2 ≤ 1,

Player 2: min
x2

1

2
(x2 − 1)2 s.t. −x2 ≤ 1, x1 + x2 ≤ 1.

Using Theorem 2.1 we can determine the solutions x̄ of the game, see Figure 5.2. By
setting

g(x) :=
(
−x1 − 1, x1 + x2 − 1,−x2 − 1, x1 + x2 − 1

)T
,

we can compute the corresponding Lagrange multipliers λ̄ and the slack variables w̄. The
solution set is

{(x̄, λ̄, w̄) | x̄ = (a, 1− a), λ̄ = (0, 1− a, 0, a), w̄ = (1 + a, 0, 2− a, 0), a ∈ [0, 1]}.

õx1Θ1HxL=0

õx2Θ2HxL=0

-1.0 -0.5 0.5 1.0 1.5 2.0
x1

-1.0

-0.5

0.5

1.0

1.5

2.0

x 2

Figure 5.2.: Graphical solution of Example 5.28

We have JxF (x, λ) = I2, which is nonsingular for all (x, λ) ∈ Rn × Rm
+ . Hence (A4) is

satisfied and further

M =M(x, λ) =


−1 0
1 1
0 −1
1 1

 I2

(
−1 1 0 0
0 0 −1 1

)
=


1 −1 0 0
−1 1 −1 1
0 0 1 −1
−1 1 −1 1

 .

Now we can see thatM is a P0-matrix independent of (x, λ) ∈ Rn×Rm
+ , but not a P -matrix.

We have I0=(x̄) = {{2}, {4}} and det(M{2},{2}) = 1 = det(M{4},{4}). Further one of the
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multipliers λ̄2 = 1− a or λ̄4 = a is positive for all a ∈ [0, 1] and therefore (A5) is satisfied.
With M being a P0-matrix we get nonsingularity of JH(zk) for all zk ∈ Rn × Rm

++ × Rm
++

by Theorem 5.15. Since all constraints are linear and the feasible set is bounded, we obtain
boundedness of the sequence {zk} from Theorem 5.20. Thus also (A1) is satisfied. If we
choose equal starting vectors w0

2 = w0
4 and σk sufficiently small at each iteration, also (A2)

and (A3) and hence (A1) to (A5) is satisfied in this example. But, if we consider the
solutions

x̄ = (0, 1), λ̄ = (0, 1, 0, 0), w̄ = (1, 0, 2, 0), or
x̄ = (1, 0), λ̄ = (0, 0, 0, 1), w̄ = (2, 0, 1, 0),

where strict complementarity does not hold, we get a singular matrix

JH(x̄, λ̄, w̄) =



1 0 −1 1 0 0 0 0 0 0
0 1 0 0 −1 1 0 0 0 0
−1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 1
0 0 w̄1 0 0 0 λ̄1 0 0 0
0 0 0 w̄2 0 0 0 λ̄2 0 0
0 0 0 0 w̄3 0 0 0 λ̄3 0
0 0 0 0 0 w̄4 0 0 0 λ̄4


,

since the 10th or 8th row contains only zeros. ♢

Using the Cramer Rule, see (5.35), we will show that the sequence
{

dkλ
λk

}
is bounded under

the Assumptions (A1) to (A5). This will be done in three Lemmata. First we prove a
lower bound for the denominator of the Cramer Rule formula, then we will show that any

subsequence of
{

dkλ
λk

}
converging to a solution stays bounded, and finally we prove the

statement. For the denominator we get the following bound.

Lemma 5.29 Suppose Assumptions (A2), (A4) and (A5) hold. Consider a subsequence
{zk}k∈K converging to a solution z̄ = (x̄, λ̄, w̄) of the constrained equation H(z) = 0, z ∈
Rn × Rm

+ × Rm
+ . Let β ∈ I0=(x̄) be defined by (A5). Then there is a constant C > 0, such

that

| det
(
MkΛk +W k

)
| ≥ C

 ∏
i∈β̄\I<(x̄)

wk
i


for all zk, k ∈ K, sufficiently close to z̄.

Proof. Let z̄ be a solution of the constrained equation and let β ∈ I0=(x̄) satisfy As-
sumption (A5). Exploiting the diagonal structure of W k we can use a known determinant
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formula, see [13, p. 60], to get

det
(
MkΛk +W k

)
=

∑
α⊆{1,...,m}

det(W k
ᾱᾱ) det

(
(MkΛk)αα

)
=

∑
α⊆{1,...,m}

det(W k
ᾱᾱ) det(M

k
αα) det(Λ

k
αα)

=
∑

α⊆{1,...,m}

(∏
i∈ᾱ

wk
i

)(∏
i∈α

λki

)
det(Mk

αα).

By (5.36), for each α ⊆ {1, . . . ,m} there is a ℓ ∈ Z with −q(x̄) ≤ ℓ ≤ |I=(x̄)| − q(x̄)
such that α ∩ I=(x̄) ∈ Iℓ=(x̄). If ℓ > 0 we have two indices i, j ∈ α with i ̸= j and
gi ≡ gj, resulting in two identical rows in Mk

αα = Jxgα(x
k) JxF (x

k, λk)−1 (E(xk)){1,...,n},α.
This implies det(Mk

αα) = 0 and hence these summands vanish. If ℓ ≤ 0 the definition of
Iℓ=(x̄) implies the existence of an index set βα ∈ I0=(x̄) such that α \ I<(x̄) ⊆ βα, and hence
β̄α \ I<(x̄) ⊆ ᾱ \ I<(x̄) must hold. Then by splitting ᾱ via

ᾱ =
(
β̄α \ I<(x̄)

)
∪
(
(ᾱ \ I<(x̄)) \ (β̄α \ I<(x̄))

)
∪ (ᾱ ∩ I<(x̄)) ,

and using that

 ∏
i∈β̄α\I<(x̄)

wk
i

 =

 ∏
i∈β̄\I<(x̄)

wk
i

 by Lemma 5.27 and (A2) we get

∑
α⊆{1,...,m}

(∏
i∈ᾱ

wk
i

)(∏
i∈α

λki

)
det(Mk

αα) = ∏
i∈β̄\I<(x̄)

wk
i

 ∑
α⊆{1,...,m},
det(Mk

αα )̸=0

 ∏
i∈(ᾱ\I<(x̄))\(β̄α\I<(x̄))

wk
i

 ∏
i∈ᾱ∩I<(x̄)

wk
i

(∏
i∈α

λki

)
det(Mk

αα).

It is enough to show that the absolute value of the sum converges to some positive constant.
Since wk

i →K 0 for all i ∈ (ᾱ \ I<(x̄)) \
(
β̄α \ I<(x̄)

)
, all summands where this set is

nonempty converge to zero. Further λki →K 0 for all i ∈ α ∩ I<(x̄), which also implies a
vanishing summand. If both cases do not occur, we must have ᾱ \ I<(x̄) = β̄α \ I<(x̄) and
α ∩ I<(x̄) = ∅, which implies α = βα ∈ I0=(x̄). Thus we only have to consider the sum

∑
α∈I0=(x̄)

 ∏
i∈I<(x̄)

wk
i

(∏
i∈α

λki

)
det
(
Mαα(x

k, λk)
)
.

By Assumption (A5), det
(
Mαα(x̄, λ̄)

)
is zero or has the same sign for all α ∈ I0=(x̄). This

together with (λk, wk) ∈ R2m
++ shows that all terms in the last sum are either nonnegative

or nonpositive in the limit, so they have the same sign or converge to zero, whereas at least
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one term (α = β) is nonzero since by (A5) det
(
Mββ(x̄, λ̄)

)
̸= 0 and λ̄j > 0 for all j ∈ β.

Thus we can find a constant C > 0 such that∣∣∣∣∣∣
∑

α∈I0=(x̄)

 ∏
i∈I<(x̄)

wk
i

(∏
i∈α

λki

)
det(Mk

αα)

∣∣∣∣∣∣→K 2C.

This yields the statement,

∣∣det (MkΛk +W k
)∣∣ ≥ C

 ∏
i∈β̄\I<(x̄)

wk
i


for all zk, k ∈ K, sufficiently close to z̄. �

Looking at the bound derived in this lemma, we see that it contains
(∏

i∈β̄\I<(x̄)w
k
i

)
, which

converges to zero, if there are repeated active constraints. Therefore it is not enough to
show that the numerator in the Cramer Rule is bounded by some constant, which can be
obtained from the boundedness of zk and the continuity of all involved functions, but that

it stays bounded if divided by
(∏

i∈β̄\I<(x̄)w
k
i

)
. The next Lemma shows this and therefore

boundedness of
{

dkλ
λk

}
on a subsequence converging to a solution.

Lemma 5.30 Let Assumption 5.26 hold. Consider a subsequence {zk}k∈K converging to
a solution z̄ = (x̄, λ̄, w̄) of the constrained equation H(z) = 0, z ∈ Rn × Rm

+ × Rm
+ . Then{

dkλ
λk

}
k∈K

is bounded.

Proof. Let k ∈ K. For an arbitrary j ∈ {1, . . . ,m} we will show boundedness of
{

dkλ,j
λk
j

}
using the representation

dkλ,j
λkj

=
det
(
M̃k

j Λ̃
k
j + W̃ k

j

)
det (MkΛk +W k)

=
∑

α⊆{1,...,m}

det
(
(W̃ k

j )ᾱᾱ

)
det
(
(M̃k

j )αα

)
det
(
(Λ̃k

j )αα

)
det (MkΛk +W k)

, (5.37)

obtained by Cramer’s Rule, see (5.35), and the determinantal formula from [13]. From
Lemma 5.29 we have a β ∈ I0=(x̄) satisfying Assumption (A5), and a constant C > 0, such
that the denominator satisfies

| det(MkΛk +W k)| ≥ C

 ∏
i∈β̄\I<(x̄)

wk
i

 (5.38)

for all zk sufficiently close to z̄. All summands α ⊆ {1, . . . ,m} in (5.37) with j ∈ ᾱ are zero
by construction of W̃ k

j . Thus we only consider α with j ∈ α. By (5.36) there is a ℓ ∈ Z
with −q(x̄) ≤ ℓ ≤ |I=(x̄)| − q(x̄) such that α ∩ I=(x̄) ∈ Iℓ=(x̄). Now one of the following
three cases must occur for each α:
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• j ∈ α and ℓ ≤ 0: Then the definition of Iℓ=(x̄) implies the existence of an index set
βα ∈ I0=(x̄) such that α \ I<(x̄) ⊆ βα, and hence β̄α \ I<(x̄) ⊆ ᾱ \ I<(x̄). Therefore
we get∣∣∣ det((W̃ k

j )ᾱᾱ

)
det
(
(M̃k

j )αα

)
det
(
(Λ̃k

j )αα

) ∣∣∣
=

 ∏
i∈β̄α\I<(x̄)

wk
i

 ∏
i∈ᾱ\(β̄α\I<(x̄))

wk
i


∏

i∈α
i̸=j

λki

∣∣∣det((M̃k
j )αα

)∣∣∣
≤

 ∏
i∈β̄α\I<(x̄)

wk
i

Bα,

where the existence of the constant Bα > 0 follows from (A1), which guarantees
boundedness of all iterates, together with (A3) and (A4) which imply boundedness

of rk and thus also of det
(
(M̃k

j )αα

)
. This together with (5.38) and Lemma 5.27

shows ∣∣∣det((W̃ k
j )ᾱᾱ

)
det
(
(M̃k

j )αα

)
det
(
(Λ̃k

j )αα

)∣∣∣
| det (MkΛk +W k) |

≤
Bα

(∏
i∈β̄α\I<(x̄)w

k
i

)
C
(∏

i∈β̄\I<(x̄)w
k
i

)
=

Bα

C
,

which means boundedness of these summands.

• j ∈ α and ℓ = 1: Per definition we have an index set βα ∈ I0=(x̄) and two indices
l1, l2 ∈ α \ I<(x̄) such that l1 ̸= l2, gl1 ≡ gl2 , and α \ I<(x̄) ⊆ βα ∪ {l1}, which implies
β̄α \ (I<(x̄) ∪ {l1}) ⊆ ᾱ \ I<(x̄). We can change the rows of (M̃k

j )αα such that the
row corresponding to l1 is directly under the one corresponding to l2, and this does

not change the absolute value
∣∣∣det((M̃k

j )αα

)∣∣∣. Then developing the determinant by

the j-th column, and using that the l1-th and l2-th row of Mk are identical, we get∣∣∣det(M̃k
j )αα

∣∣∣ =
∣∣∣det (Mk

1 . . .M
k
j−1 r

kMk
j+1 . . .M

k
m

)
αα

∣∣∣
=

∣∣rkl1 det (Mk
α\{l1},α\{j}

)
− rkl2 det

(
Mk

α\{l2},α\{j}
)∣∣

=
∣∣rkl1 − rkl2∣∣ ∣∣det (Mk

α\{l1},α\{j}
)∣∣ .

(A1) and (A4) imply that
∣∣∣det(Mk

α\{l1},α\{j}

)∣∣∣ is bounded. Thus using once again
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(A1) and β̄α \ (I<(x̄) ∪ {l1}) ⊆ ᾱ \ I<(x̄), there exists a constant Bα > 0 such that

| det
(
(W̃ k

j )ᾱᾱ

)
det
(
(M̃k

j )αα

)
det
(
(Λ̃k

j )αα

)
|

=

 ∏
i∈β̄α\(I<(x̄)∪{l1})

wk
i

 ∏
i∈ᾱ\(β̄α\(I<(x̄)∪{l1}))

wk
i


∏

i∈α
i̸=j

λki

∣∣∣det((M̃k
j )αα

)∣∣∣
≤

 ∏
i∈β̄α\(I<(x̄)∪{l1})

wk
i

∣∣rkl1 − rkl2∣∣Bα.

By Lemma 5.27 we get ∏
i∈β̄α\(I<(x̄)∪{l1})

wk
i

 =

 ∏
i∈β̄\(I<(x̄)∪{l1})

wk
i

 ,

since βα, β ∈ I0=(x̄). This together with (5.38) implies

∣∣∣det((W̃ k
j )ᾱᾱ

)
det
(
(M̃k

j )αα

)
det
(
(Λ̃k

j )αα

)∣∣∣
|det(MkΛk +W k)|

≤

∣∣rkl1 − rkl2∣∣
( ∏

i∈β̄α\(I<(x̄)∪{l1})
wk

i

)
Bα

C

( ∏
i∈β̄\I<(x̄)

wk
i

)

=

∣∣rkl1 − rkl2∣∣Bα

wk
l1
C

.

Since gl1 ≡ gl2 and, again by Lemma 5.27, wk
l1
= wk

l2
holds, we have

∣∣rkl1 − rkl2∣∣
wk

l1

=

σkµk

∣∣∣∣ 1
λk
l1

− 1
λk
l2

∣∣∣∣
wk

l1

≤ σkµk

min
{
wk

l1
λkl1 , w

k
l2
λkl2
} ,

which is bounded by Assumption (A3). Therefore the summands of (5.37) are
bounded in this case.

• j ∈ α and ℓ ≥ 2: Then there are two possibilities. Either we have three different
indices l1, l2, l3 ∈ α \ I<(x̄) with gl1 ≡ gl2 ≡ gl3 . Then the corresponding rows of
(M̃k

j )αα can only differ in one column (the one corresponding to j). Hence the rows

are linearly dependent and det(M̃k
j )αα = 0 which implies that the summand in (5.37)

vanishes. Or there are four indices j1, j2, l1, l2 ∈ α \ I<(x̄) with j1 ̸= j2, l1 ̸= l2
and gj1 ≡ gj2 ̸≡ gl1 ≡ gl2 . Then the corresponding four rows of (M̃k

j )αα are linearly
dependent and again the summand vanishes in (5.37).
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Altogether we have shown that all summands in (5.37) are bounded, hence
{

dkλ,j
λk
j

}
k∈K

is

bounded for all j ∈ {1, . . . ,m}. �

Now we are able to show the desired boundedness result not only on a subsequence but
for the entire sequence.

Lemma 5.31 Let the assumptions of Theorem 5.12 and Assumption 5.26 hold. Then the

entire sequence
{

dkλ
λk

}
k∈N

is bounded.

Proof. Assume
{

dkλ
λk

}
k∈N

is unbounded. Then there exists a K ⊆ N, such that the subse-

quence
{∥∥∥ dkλ

λk

∥∥∥}
k∈K

is monotonically increasing and going to infinity. By (A1), the sequence

{zk}k∈K is bounded and hence has an accumulation point z̄, which is by Theorem 5.12 a
solution of H(z) = 0, z ∈ Rn × Rm

+ × Rm
+ . Therefore we can find a subsequence K1 ⊆ K

with zk →K1 z̄ and, using the monotonicity,
∥∥∥ dkλ
λk

∥∥∥ →K1 ∞. This contradicts Lemma 5.30

and shows that the entire sequence
{

dkλ
λk

}
k∈N

remains bounded. �

By this Lemma 5.31 we have boundedness of
dkλ,i
λk
i

not only from above. Thus we get the

existence of a constant cλ > 0 such that
|dkλ,i|
λk
i
≤ cλ for all i = 1, . . . ,m. Now using equation

(5.31) we have

dkw,i

wk
i

= −1−
dkλ,i
λki

+
σkµk

λkiw
k
i

. (5.39)

By the boundedness of σkµk

λk
i w

k
i
from (A3), we further get a constant cw > 0 such that

dkw,i

wk
i
< cw

for all i = 1, . . . ,m. Therefore by Theorem 5.24 and Lemma 5.31 we have shown the
following result.

Corollary 5.32 Let the assumptions of Theorem 5.12 and Assumptions 5.26 hold, and
assume that all constraint functions gi, i = 1, . . . ,m are convex. Then there exists a t̃ > 0
such that zk + tkd

k ∈ ZI for all tk ∈ [0, t̃].

The previous theorem is only the first part for a lower bound result for the stepsize tk. The
remaining part is to show that the Armijo linesearch rule

Ψ(zk + tkd
k) ≤ Ψ(zk) + γtk∇Ψ(zk)Tdk

is satisfied for tk ≤ t̄ with a t̄ ≤ t̃. Again, boundedness of some sequences, in particular of{
dkλ

∥H(zk)∥

}
is used to prove this. Therefore consider once again equation (5.33). Multiplying
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this equation by 1
∥H(zk)∥Λ

k and using the diagonal structure of the matrices W k and Λk we
obtain

(ΛkMk +W k)
dkλ

∥H(zk)∥
=

Λkrk

∥H(zk)∥
. (5.40)

Similarly to the previous part we want to use the Cramer Rule to get boundedness of{
dkλ

∥H(zk)∥

}
, that is we consider

dkλ,i
∥H(zk)∥

=
det
(
ΛkM̂k

i + W̃ k
i

)
det (ΛkMk +W k)

, (5.41)

with

M̂k
i :=

(
Mk

1 . . .M
k
i−1

rk

∥H(zk)∥
Mk

i+1 . . .M
k
m

)
.

Note that we can use the full matrix Λk here also in the numerator and the matrix W̃ k
i is

the same as before in (5.35).
For our boundedness result we will need a stronger assumption on the parameter σk.

Assumption 5.33 (A3’) At every iteration k, the parameter σk is sufficiently small to
guarantee boundedness of σkµk

∥H(zk)∥Hn+j(zk)
for all j = 1, . . . , 2m.

In contrast to (A3) the new assumption includes all elements n+1 to n+2m from H and
not only the last m elements. It is easy to see that (A3’) implies (A3), but in fact it is
much stronger, since we have the additional term ∥H(zk)∥ in the denominator, which is
aimed to become zero. For any sequence {zk} with ∥H(zk)∥ → 0, (A3’) implies

σkµk

∥H(zk)∥
→ 0 and

σkµk

Hn+j(zk)
→ 0 for all j = 1, . . . , 2m. (5.42)

In particular we now have σk → 0. Using this stronger assumption (A3’) instead of (A3)
we can obtain the following.

Lemma 5.34 Let Assumption 5.26 with (A3’) instead of (A3) hold. Then the sequences{
dkλ

∥H(zk)∥

}
and

{
dkx

∥H(zk)∥

}
are bounded.

Proof. This proof is very similar to the ones of Lemma 5.30 and 5.31. Let k ∈ K. For an

arbitrary j ∈ {1, . . . ,m} we will show boundedness of
{

dkλ,j
∥H(zk)∥

}
using the representation

dkλ,j
∥H(zk)∥

=
det(ΛkM̂k

j + W̃ k
j )

det (ΛkMk +W k)
=

∑
α⊆{1,...,m}

det
(
(W̃ k

j )ᾱᾱ

)
det
(
Λk

αα

)
det
(
(M̂k

j )αα

)
det (ΛkMk +W k)

, (5.43)
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obtained by Cramer’s Rule, see (5.41). Since the determinants of the matrices (ΛkMk+W k)
and (MkΛk +W k) coincide, because

det
(
MkΛk +W k

)
=

∑
α⊆{1,...,m}

det(W k
ᾱᾱ) det(M

k
αα) det(Λ

k
αα) = det

(
ΛkMk +W k

)
,

Lemma 5.29 yields the existence of a β ∈ I0=(x̄) and a constant C > 0, such that

∣∣det (ΛkMk +W k
)∣∣ ≥ C

 ∏
i∈β̄\I<(x̄)

wk
i


for all zk sufficiently close to a solution z̄ = (x̄, λ̄, w̄) of the constrained equation CE(H,Z).
All summands in (5.43) with j ∈ ᾱ are zero by construction of W̃ k

j . Thus consider only
summands with j ∈ α. By (5.36), for each α ⊆ {1, . . . ,m} there is a ℓ ∈ Z with −q(x̄) ≤
ℓ ≤ |I=(x̄)| − q(x̄) such that α∩ I=(x̄) = Iℓ=(x̄). Now one of the following three cases must
occur for each α:

• j ∈ α and ℓ ≤ 0: In order to get boundedness of∣∣∣det((M̂k
j )αα

)
det
(
(Λk)αα

)∣∣∣ = ∣∣∣det((ΛkM̂k
j )αα

)∣∣∣ ,
we can use (A1), (A4) and further we only have to assure boundedness of

λkj r
k
j

∥H(zk)∥
=− λkj∇gj(xk)TJxF (xk, λk)−1F (x

k, λk)

∥H(zk)∥

+
λkj (gj(x

k) + wk
j )− λkjwk

j

∥H(zk)∥
+
σkµk(1− λkj )
∥H(zk)∥

.

But this is bounded by (A1), (A3’) and (A4). Now we get analogous to Lemma 5.30
an index set βα ∈ I0=(x̄) and a constant Bα > 0 such that∣∣∣det((W̃ k

j )ᾱᾱ

)
det
(
(M̂k

j )αα

)
det
(
Λk

αα

)∣∣∣
| det(ΛkMk +W k)|

≤
Bα

(∏
i∈β̄α\I<(x̄)w

k
i

)
C
(∏

i∈β̄α\I<(x̄)w
k
i

)
=

Bα

C
,

which means boundedness of these summands.

• j ∈ α and ℓ = 1: We can follow the corresponding part of the proof of Lemma 5.30.
We have two indices l1, l2 ∈ α \ I<(x̄) such that l1 ̸= l2, gl1 ≡ gl2 and we get∣∣∣det(M̂k

j )αα

∣∣∣ = ∣∣rkl1 − rkl2∣∣
∥H(zk)∥

∣∣det (Mk
α\{l1},α\{j}

)∣∣ .
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Further there is some bound Bα > 0 such that∣∣∣det((W̃ k
j )ᾱᾱ

)
det
(
(M̂k

j )αα

)
det(Λk)αα

∣∣∣
|det (ΛkMk +W k)|

≤
∣∣rkl1 − rkl2∣∣Bα

∥H(zk)∥wk
l1
C
.

Finally we use

∣∣rkl1 − rkl2∣∣
∥H(zk)∥wk

l1

=

σkµk

∣∣∣∣ 1
λk
l1

− 1
λk
l2

∣∣∣∣
∥H(zk)∥wk

l1

≤ σkµk

∥H(zk)∥min
{
wk

l1
λkl1 , w

k
l2
λkl2
} ,

which is bounded by Assumption (A3’), and obtain boundedness of the summands
of (5.43) in this case.

• j ∈ α and ℓ ≥ 2: In this case we get in complete analogy to the proof of Lemma 5.30
that all summands vanish, since det(M̂k

j )αα = 0.

Altogether we have shown that all summands in (5.43) are bounded. Hence
{

dkλ,j
∥H(zk)∥

}
is

bounded for all j ∈ {1, . . . ,m} first on a subsequence and then using the same arguments
as in the proof of Lemma 5.31 on the entire sequence.
Finally using (5.29) and the nonsingularity assumption from (A4) we obtain

dkx
∥H(zk)∥

= −JxF (xk, λk)−1

(
E(xk)

dkλ
∥H(zk)∥

+
F (xk, λk)

∥H(zk)∥

)
,

which implies boundedness of the sequence
{

dkx
∥H(zk)∥

}
. �

Before exploiting the boundedness properties from the previous Lemma for our main result,
we want to prove a technical lemma giving a relation between H(zk + tkd

k) and H(zk).

Lemma 5.35 Suppose Assumption 5.26 with (A3’) instead of (A3) holds. Let {zk}k∈K =
{(xk, λk, wk)}k∈K ⊆ Rn × Rm

+ × Rm
+ be a sequence converging to a solution and tk ∈ [0, 1].

Define q(zk, tk) :=

q1(zk, tk)q2(z
k, tk)

q3(z
k, tk)

 ∈ Rn+m+m by

q1(z
k, tk) :=

(∫ 1

0

(
JxF (x

k + stkd
k
x, λ

k + stkd
k
λ)− JxF (xk, λk)

)
ds

)
dkx

+

(∫ 1

0

(
E(xk + stkd

k
x)− E(xk)

)
ds

)
dkλ,

q2(z
k, tk) :=

(∫ 1

0

(
Jxg(x

k + stkd
k
x)− Jxg(xk)

)
ds

)
dkx + σkµk1m,

q3(z
k, tk) := σkµk1m + tk(d

k
w ◦ dkλ).
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Then we have

H(zk + tkd
k) = (1− tk)H(zk) + tkq(z

k, tk),

and further if tk →K 0 we get

lim
k∈K

∥q(zk, tk)∥
∥H(zk)∥

= 0.

Proof. Using the mean value theorem we obtain for the first n-dimensional part of H

F (xk + tkd
k
x, λ

k + tkd
k
λ) = F (xk, λk) + tk

(
JxF (xk, λk)dkx + E(xk)dkλ

)
+tk

(∫ 1

0

(
JxF (xk + stkd

k
x, λ

k + stkd
k
λ)− JxF (xk, λk)

)
ds

)
dkx

+tk

(∫ 1

0

(
E(xk + stkd

k
x)− E(xk)

)
ds

)
dkλ

(5.29)
= (1− tk)F (xk, λk)

+tk

(∫ 1

0

(
JxF (xk + stkd

k
x, λ

k + stkd
k
λ)− JxF (xk, λk)

)
ds

)
dkx

+tk

(∫ 1

0

(
E(xk + stkd

k
x)− E(xk)

)
ds

)
dkλ

= (1− tk)F (xk, λk) + tkq1(z
k, tk),

for the second m-dimensional part

g(xk + tkd
k
x) + wk + tkd

k
w = g(xk) + wk + tk

(
Jxg(x

k)dkx + dkw
)

+tk

(∫ 1

0

(
Jxg(x

k + stkd
k
x)− Jxg(xk)

)
ds

)
dkx

(5.30)
= (1− tk)

(
g(xk) + wk

)
+ tkσkµk1m

+tk

(∫ 1

0

(
Jxg(x

k + stkd
k
x)− Jxg(xk)

)
ds

)
dkx

= (1− tk)
(
g(xk) + wk

)
+ tkq2(z

k, tk),

and for the third m-dimensional part

(λk + tkd
k
λ) ◦ (wk + tkd

k
w) = λk ◦ wk + tk(λ

k ◦ dkw + wk ◦ dkλ) + t2k(d
k
w ◦ dkλ)

(5.31)
= (1− tk)λk ◦ wk + tkσkµk1m + t2k(d

k
w ◦ dkλ)

= (1− tk)λk ◦ wk + tkq3(z
k, tk).

This proves

H(zk + tkd
k) = (1− tk)H(zk) + tkq(z

k, tk).
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Now assume tk →K 0. Since zk converges to a solution, σkµk

∥H(zk)∥ →K 0 is a consequence of

(A3’), see (5.42). Further from Lemma 5.31 and equation (5.39) we obtain that
|dkλ,idkw,i|
∥H(zk)∥ ≤

|dkλ,idkw,i|
λk
i w

k
i

is bounded, and thus tk →K 0 yields tk
|dkλ,idkw,i|
∥H(zk)∥ →K 0. From Lemma 5.34 we know

that the sequences
{

dkλ
∥H(zk)∥

}
and

{
dkx

∥H(zk)∥

}
are bounded. Therefore limk∈K

∥q(zk,tk)∥
∥H(zk)∥ = 0

follows if we can show that all the integrals in the definition of q(zk, tk) converge to zero.

With
{

dkλ
∥H(zk)∥

}
and

{
dkx

∥H(zk)∥

}
also dkλ and dkx are bounded. Thus using the boundedness

assumption (A1) we can find a compact set C such that (xk + stkd
k
x, λ

k + stkd
k
λ) ∈ C for

all s ∈ [0, 1] and all k ∈ K. Since JxF is continuous on Rn, it is uniformly continuous on
C. Hence tk → 0 implies

lim
k∈K

∥∥∥∥∫ 1

0

(
JxF (x

k + stkd
k
x, λ

k + stdkλ)− JxF (xk, λk)
)
ds

∥∥∥∥
≤ lim

k∈K
max
s∈[0,1]

∥∥JxF (xk + stkd
k
x, λ

k + stdkλ)− JxF (xk, λk)
∥∥ = 0.

Using the continuity of E and Jxg the same argument shows that all the integrals in the
definition of q(zk, tk) converge to zero, which completes the proof. �

Finally we are in the position to prove the boundedness of the stepsize from below.

Theorem 5.36 Let the assumptions of Theorem 5.12 and Assumptions 5.26 with (A3’)
instead of (A3) hold. Further assume that all constraint functions gi, i = 1, . . . ,m are
convex. Then the sequence of the stepsizes {tk} generated by Algorithm 5.9 with ηk = 0 for
all k ∈ N is bounded away from zero, that is, there exists a t̄ > 0 such that tk ≥ t̄ for all
k ∈ N.

Proof. By Corollary 5.32, there is a t̃ ∈ (0, 1] such that zk + tkd
k ∈ ZI for all tk ∈ [0, t̃].

Since dk is a direction of descent of Ψ by Lemma 5.11, we can always find a tk = βlk =
max{βl | βl ≤ t̃, l = 0, 1, 2, . . .} such that the Armijo linesearch rule

Ψ(zk + tkd
k) ≤ Ψ(zk) + γtk∇Ψ(zk)Tdk

is satisfied. We have to show that this sequence {tk} is bounded away from zero, because
this immediately implies that the stepsize computed by Algorithm 5.9 with ηk = 0 for all
k ∈ N is bounded away from zero. Assume by contradiction that there is a subsequence
K ⊆ N with tk = βlk →K 0 and then also βlk−1 →K 0. Subsequencing, if necessary, we
may assume that {zk} converges to a solution, i.e., H(zk)→K 0. For all k ∈ K sufficiently
large we obtain βlk−1 ≤ t̃, hence zk + βlk−1dk ∈ ZI , and from the linesearch rule

Ψ(zk + βlk−1dk)−Ψ(zk)

βlk−1
> γ∇Ψ(zk)Tdk.
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On the one hand, using the definitions and Lemma 5.8 we have

lim
k∈K
∇Ψ(zk)Tdk = lim

k∈K
∇p(H(zk))TJH(zk)dk

= lim
k∈K

[
−∇p(H(zk))TH(zk) + σk

(
aTH(zk)

)(
∇p(H(zk))Ta

)
∥a∥2

]
= lim

k∈K

[
−2(ζ −m) + σkµk∇p(H(zk))Ta

]
= lim

k∈K

[
−2(ζ −m) + 2ζ

2m∑
i=1

σkµkHn+i(z
k)

∥H(zk)∥2
−

2m∑
i=1

σkµk

Hn+i(zk)

]
= −2(ζ −m),

where for the last equality we used (5.42) which is a consequence of (A3’).

On the other hand we consider

lim inf
k∈K

Ψ(zk + βlk−1dk)−Ψ(zk)

βlk−1

= lim inf
k∈K

1

βlk−1

[
ζ ln(∥H(zk + βlk−1dk)∥2)− ζ ln(∥H(zk)∥2)

−
m∑
i=1

(
ln
(
(λki + βlk−1dkλ,i)(w

k
i + βlk−1dkw,i)

)
− ln(λkiw

k
i )
)

−
m∑
i=1

(
ln
(
gi(x

k + βlk−1dkx) + wk
i + βlk−1dkw,i

)
− ln(gi(x

k) + wk
i )
) ]

= lim inf
k∈K

1

βlk−1

[
2ζ ln

∥H(zk + βlk−1dk)∥
∥H(zk)∥

−
m∑
i=1

ln
(λki + βlk−1dkλ,i)(w

k
i + βlk−1dkw,i)

λkiw
k
i

−
m∑
i=1

ln
gi(x

k + βlk−1dkx) + wk
i + βlk−1dkw,i

gi(xk) + wk
i

]
.

Using Lemma 5.35, the monotonicity of ln, and ln(1 + y) ≤ y for all y > −1, we get for
the first term

2ζ ln
∥H(zk + βlk−1dk)∥

∥H(zk)∥
= 2ζ ln

∥(1− βlk−1)H(zk) + βlk−1q(zk, βlk−1)∥
∥H(zk)∥

≤ 2ζ ln

(
1− βlk−1 + βlk−1∥q(zk, βlk−1)∥

∥H(zk)∥

)
≤ 2ζβlk−1

(
−1 + ∥q(z

k, βlk−1)∥
∥H(zk)∥

)
.
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For the other terms the following approximation, that is valid for all t ∈ [0, 1] and y ∈ R
with t|y| < 1, can be used. From the Taylor series of ln(1 + ty) and the properties of a
geometric series one gets

− ln(1 + ty) = −
∞∑
j=1

(−1)j+1 (ty)
j

j
≤

∞∑
j=1

tj|y|j = t|y|
∞∑
j=0

tj|y|j = t|y|
1− t|y|

. (5.44)

By (5.42), σkµk

λk
i w

k
i
→K 0, and, as we have seen in the proof of Lemma 5.35, βlk−1 d

k
λ,id

k
w,i

λk
i w

k
i
→K 0,

since βlk−1 →K 0. Hence we obtain for the second term for all i = 1, . . . ,m

− ln
(λk

i + βlk−1dkλ,i)(w
k
i + βlk−1dkw,i)

λk
iw

k
i

(5.31)
= − ln

(1− βlk−1)λk
iw

k
i + βlk−1σkµk + (βlk−1)2dkλ,id

k
w,i

λk
iw

k
i

= − ln

(
1 + βlk−1

(
−1 + σkµk

λk
iw

k
i

+ βlk−1
dkλ,id

k
w,i

λk
iw

k
i

))

(5.44)

≤
βlk−1

∣∣∣∣−1 + σkµk

λk
i w

k
i

+ βlk−1 dk
λ,id

k
w,i

λk
i w

k
i

∣∣∣∣
1− βlk−1

∣∣∣−1 + σkµk

λk
i w

k
i

+ βlk−1
dk
λ,id

k
w,i

λk
i w

k
i

∣∣∣ .
For the third term we can use convexity of gi, i.e.,

gi(x
k + βlk−1dkx) ≥ gi(x

k) + βlk−1∇gi(xk)Tdkx,

monotonicity of ln, and σkµk

gi(xk)+wk
i
→K 0 by (5.42) to obtain

− ln
gi(x

k + βlk−1dkx) + wk
i + βlk−1dkw,i

gi(xk) + wk
i

≤ − ln
gi(x

k) + wk
i + βlk−1

(
∇gi(xk)Tdkx + dkw,i

)
gi(xk) + wk

i

(5.30)
= − ln

(
1 + βlk−1

(
−1 + σkµk

gi(xk) + wk
i

))
(5.44)

≤
βlk−1

∣∣∣−1 + σkµk

gi(xk)+wk
i

∣∣∣
1− βlk−1

∣∣∣−1 + σkµk

gi(xk)+wk
i

∣∣∣
for all i = 1, . . . ,m. Altogether yields

lim inf
k∈K

Ψ(zk + βlk−1dk)−Ψ(zk)

βlk−1
= lim inf

k∈K

1

βlk−1

[
2ζ ln

∥H(zk + βlk−1dk)∥
∥H(zk)∥

−
m∑
i=1

ln
(λki + βlk−1dkλ,i)(w

k
i + βlk−1dkw,i)

λkiw
k
i

−
m∑
i=1

ln
gi(x

k + βlk−1dkx) + wk
i + βlk−1dkw,i

gi(xk) + wk
i

]
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≤ lim inf
k∈K

[
2ζ

(
−1 + ∥q(z

k, βlk−1)∥
∥H(zk)∥

)

+
m∑
i=1

∣∣∣−1 + σkµk

λk
i w

k
i
+ βlk−1 d

k
λ,id

k
w,i

λk
i w

k
i

∣∣∣
1− βlk−1

∣∣∣−1 + σkµk

λk
i w

k
i
+ βlk−1

dkλ,id
k
w,i

λk
i w

k
i

∣∣∣
+

m∑
i=1

∣∣∣−1 + σkµk

gi(xk)+wk
i

∣∣∣
1− βlk−1

∣∣∣−1 + σkµk

gi(xk)+wk
i

∣∣∣
]

= −2(ζ −m),

where the last equality follows since βlk−1 →K 0, ∥q(zk,βlk−1)∥
∥H(zk)∥ →K 0 by Lemma 5.35,

σkµk

λk
i w

k
i
→K 0, βlk−1 d

k
λ,id

k
w,i

λk
i w

k
i
→K 0, and σkµk

gi(xk)+wk
i
→K 0. Thus we finally get

−2(ζ −m) ≥ lim inf
k∈K

Ψ(zk + βlk−1dk)−Ψ(zk)

βlk−1
≥ γ lim

k∈K
∇ψ(zk)Tdk = −2γ(ζ −m),

which contradicts γ < 1. Therefore the assumption tk →K 0 was wrong, and we have
shown that there exists a t̄ > 0 such that tk ≥ t̄ for all k ∈ N. Thus the sequence {tk} is
bounded away from zero. �

With σk → 0 by (A3’) we can define σk <
1
2
for all k ∈ N. Then, having a lower bound

for the stepsizes, the assumptions of Theorem 5.23 are satisfied and we can guarantee
∥H(zk)∥ ≤ ε after at most

k =

⌈
ψ(z0)

γ(ζ −m)t̄
− ln ε

2γt̄

⌉
iterations. This is the desired relation between the number of iterations and the accuracy.
The formula gives an idea of the rate of convergence of our algorithm. However, we only
proved the existence of the lower bound t̄ > 0 for the stepsizes and there is no estimate for
its size yet, which results in a limitted practical applicability of the formula.
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The theoretical results in this thesis suggest algorithms or foundations for them which
have to be tested in practice. In the following sections the implementational details for
the specific algorithms are described and a comparison of the algorithms is given. The
implementation of all algorithms was done in MATLABR⃝ (version 7.12.0.635 (R2011a)–
64bit from March 18, 2011).
The considered methods can be divided into three groups. One group is the globalized

Newton method which is restricted to jointly convex GNEPs and can only find normalized
solutions. It is a globalization of the local method from [47] and therefore it is compared
to the local variant with different parameters. A second group is the gradient sampling
algorithm for solving the unconstrained optimization reformulation using V̄ c

αβ. In this
case all GNEPs satisfying Assumption 4.4 can be solved, in particular all jointly convex
ones. This method is much more expensive at each iteration than the methods of the
third group, but due to the sampling strategy the computed solutions spread over the
solution set. Finally, all the remaining algorithms form a third group, since they all solve
the concatenated KKT system of a player convex GNEP. The main computational effort
for all these methods is the solution of a linear equation system at each iteration. Thus
the effort of the algorithms in this group is comparable and a performance profile of the
iteration numbers, as described below, draws a fair picture of the performance of these
methods. Note that also numerical tests for the constrained problem (5.8)

minΘ(x, λ) s.t. λ ≥ 0

were performed, but the results were not competitive to the other methods. Some more
details are given at the end of the Sections 6.3 and 6.6.
As introduced in [17] performance profiles are defined in the following way. Consider a set

A of na algorithms, a set P of np problems and a performance measure mp,a (e.g., number
of iterations, function evaluations). The performance on problem p ∈ P by algorithm
a ∈ A is compared with the best performance by any algorithm on this problem using the
performance ratio

rp,a =
mp,a

min{mp,ā | ā ∈ A}
.

Then, one obtains an overall assessment of the performance of the algorithm by defining
the value

ρa(τ) =
|{p ∈ P | rp,a ≤ τ}|

np

,

which represents the probability for algorithm a ∈ A that the performance ratio rp,a is
within a factor τ ∈ R of the best possible ratio. The function ρa represents the distribution
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function for the performance ratio. Thus ρa(1) gives the fraction of problems for which
the algorithm a was the most effective, ρa(2) gives the fraction of problems for which the
algorithm a is within a factor of 2 of the best algorithm, and so on.
The test problems under consideration are the commonly used ones in GNEP literature.

Most of them are taken from the numerical test library in [28]. Additionally we used
further problems, namely Harker’s problem (Harker) described in [42], an electricity market
problem (Heu) from [43], two small problems (NTF1, NTF2) from [56], a transportation
problem from [35] in different dimensions (Tr1,Tr2, Tr3), a Spam-filtering problem (Spam)
which is a multi-player version of the 2-player game described in [7], and a model for
a lobbying process (Lob), see [71]. A detailed description of all the problems can be
found in the references. The Table in Appendix A.1 gives an overview about the problem
dimensions and the structure of the cost and constraint functions. Note, however, that
some of the nonlinear cost functions are not defined everywhere, which can cause trouble,
if the algorithms compute iterates there. All the test problems were used for the third
group of algorithms, since all methods in this group can deal with player convex GNEPs
in its most general form. For the globalized Newton method and its local counterpart only
the jointly convex GNEPs can be used. Since the function evaluation of V̄ c

αβ needs a lot of
time for complicated problems the gradient sampling algorithm is only tested on the lower
dimensional problems. In order to show the distribution of the solutions computed by this
method there are four 2-player games, where each player controls one variable, with 100
randomly chosen starting vectors considered. These are the following four examples, the
two jointly convex GNEPs NTF1 and NTF2 and two further academic not jointly convex
problems, where the solution set can be found graphically using Theorem 2.1.

Example 6.1 This is the NTF1 example from [56], defined by

Player 1: min
x1

(x1)2 − x1x2 − x1 s.t. x1 ≥ 0, x1 + x2 ≤ 1,

Player 2: min
x2

(x2)2 − 1

2
x1x2 − 2x2 s.t. x2 ≥ 0, x1 + x2 ≤ 1.

The solution set is given by {
(λ, 1− λ)

∣∣∣λ ∈ [0, 2
3

]}
,

see Figure 6.1, and the starting vectors are chosen randomly in [0, 1]2. ♢

Example 6.2 This is the NTF2 problem, a modification of the previous Example 6.1,
that is also from [56].

Player 1: min
x1

(x1)2 − x1x2 − x1 s.t. x1 ≥ 0, (x1)2 + (x2)2 ≤ 1,

Player 2: min
x2

(x2)2 − 1

2
x1x2 − 2x2 s.t. x2 ≥ 0, (x1)2 + (x2)2 ≤ 1.

By Figure 6.1 the solution set is{
(λ,
√
1− λ2)

∣∣∣λ ∈ [0, 4
5

]}
,
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and starting vectors are randomly taken from [0, 1]× [0, 2]. ♢

Example 6.3 This 2-player game is defined via:

Player 1: min
x1

(x1 − 2)2 s.t. x1 + x2 ≤ 1,

Player 2: min
x2

(x2 − 2)2 s.t. x1 + x2 ≤ 1, x2 − x1 ≤ 0.

It can be shown, see Figure 6.1, that the solution set is given by{
(λ, 1− λ)

∣∣∣λ ∈ [1
2
, 2

]}
.

The starting points are chosen randomly in [−10, 10]2. ♢

Example 6.4 This problem is given by

Player 1: min
x1

1

2
(x1)2 + 3x1x2 s.t. x1 − 3x2 ≤ 2, −3x1 + x2 ≤ 2, x1 + x2 ≤ 1,

Player 2: min
x2

1

2
(x2)2 + 3x1x2 s.t. x1 − 3x2 ≤ 2, −3x1 + x2 ≤ 2.

The corresponding solution set is by Figure 6.1 the set

{(0, 0), (−1,−1)} ∪
{
(λ,−2

3
+

1

3
λ)
∣∣∣λ ∈ [1

5
, 1

]}
∪
{
(λ, 2 + 3λ)

∣∣∣λ ∈ [−3

5
,−1

3

]}
.

The starting vectors are taken randomly from [−2, 2]2. ♢

6.1. Globalized Newton Method via Vαβ

In the implementation of Algorithm 3.7 the subproblem

max
y

Ψγ(x, y) s.t. g(y) ≤ 0

is solved by the SNOPT solver from the TOMLAB R⃝ package (version 7.7.0–64bit) at every
iteration. The algorithm stops if ∥Fβ(x

k)∥ < ε, or if the maximum number of iterations
kmax is reached. The algorithm parameters are ε = 10−6, kmax = 100, s = 2.1, ρ = 10−8,
τ = 0.5, σ = 10−2, and for the function Vαβ, α = 10−2 and β = 1 are used.
The Table in Appendix A.2 reports the details of the test runs for the globalized New-

ton method and the original local variant for two different parameters γ ∈ {α, β}. The
local method has the same stopping criteria as the globalized one. Additionally the local
algorithm stops if the Newton equation (3.11) cannot be solved sufficiently accurate in the
sense that ∥Hkd

k + Fγ(x
k)∥ > 10−2 for the computed solution dk. The results show that

the local method is very sensitive to the choice of the parameter γ ∈ {α, β}.
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Example 6.1: Example 6.2:

{(λ, 1− λ) | λ ∈ [0, 2
3
]} {(λ,

√
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Figure 6.1.: Graphically solutions of the 2-dimensional GNEPs
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For the Examples A11–A17, Harker, NTF1, NTF2 and Spam there is not much difference
between the local and the globalized Newton methods. Note, however, that for Examples
A16a, A16c and A16d, there are failures for the starting point x0 = 1000 for the local
method with the smaller parameter α = 10−2. Moreover, Example A18 suffers from the
singularity of matrices Hk, and hence the globalized method does not use the Newton
direction. Therefore the globalized method is just a gradient method, and so it is slowly
convergent. The local methods have the same singularity problem in A18, but nevertheless
try to compute the Newton direction. Although this fails in most cases, the method is
successful in one case (for the smaller parameter α and starting point x0 = 1), since the
Newton equation is solved with sufficient accuracy without Hk being nonsingular! Example
Heu shows the expected behavior. The globalized method first takes some gradient steps
until it is close to a solution, and then switches to Newton steps for fast local convergence.
The local method (with the small parameter α) is successful and much faster than the global
one for the two starting points closer to the solution, but can not find a solution within
the maximum number of iterations for the more far away one. For the larger parameter
β, however, the local method can not solve the Newton equation with sufficiently high
accuracy for any of the starting points.

The results show that the globalized Newton method is, as expected, more reliable than
the local one, because it has the additional option to switch to the anti-gradient step. In
fact, the globalized Newton method is able to solve all test problems, whereas the local
method has six failures for each of the parameter values α and β (on a different set of
examples). The results also verify the finite termination property of the Newton method
that was mentioned at the end of Section 3.2. In fact, for most examples, the function
value at the last iterate is exactly zero!

6.2. Gradient Sampling Algorithm

To test the nonsmooth unconstrained optimization reformulation using the objective func-
tion V̄ c

αβ from Section 4 the robust gradient sampling algorithm from [8] is used. The
implementation is the one written by the authors of [8] which is available online, see [9].

With probability one every limiting point of a sequence generated by this method is a
Clarke stationary point. The algorithm stops if the norm of the vector with the smallest
Euclidian norm in the convex hull of the sampled gradients is less than 10−6. Apart from
using standard parameter settings, the three values α = 0.02, β = 0.05 and c = 103 are
used to define the objective function V̄ c

αβ. In view of Corollary 4.9, c = 0 was used for
jointly convex GNEPs. For every function evaluation there are optimization problems that
have to be solved to obtain ȳα(x) and ȳβ(x). This is done by the fmincon solver from the
Matlab Optimization Toolbox. Further if x ̸∈ X the projection onto the convex set X has
to be computed, which is either done with the quadprog (for polyhedral X) or again with
the fmincon solver (for nonpolyhedral X) from the Matlab Optimization Toolbox.

By the famous Rademacher Theorem a Lipschitz continuous, and hence also a PC1

function, is differentiable with probability one at any randomly chosen point. Since the
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algorithm computes gradients at randomly chosen points in a neighbourhood of the current
iterate it is with probability one enough to be able to compute the gradient of V̄ c

αβ at a
differentiable point. This leads to the necessity of the computation of the gradient of the
projection mapping at a differentiable point. One possibility to do this is to reformulate the
KKT conditions of the corresponding minimization problem as an equation system using a
complementarity function and then differentiate the system using chain rules. The required
gradient can be computed by solving the resulting system, see [44] for details. The way
we compute the gradients ∇V̄γ for γ = α, β is by using some results from [69]. Assuming
we are at a differentiable point x of all involved functions and that some assumptions like
a Slater condition and uniqueness of the multipliers λνγ(x) are satisfied for the problem
defining ȳγ, we obtain, for example by using the formula for the directional derivative from
[69, Propsition 4.2.15],

∇V̄γ(x) =
N∑
ν=1

[
∇θν(xν , x−ν)−∇xL

ν
γ(x, ȳ

ν
γ(x), λ

ν
γ(x))

]
,

where

Lν
γ(x, ȳ

ν
γ(x), λ

ν
γ(x)) := θν(ȳ

ν
γ(x), x

−ν) +
γ

2
∥ȳνγ(x)− xν∥2 +

N∑
ν=1

λνi,γ(x)g
ν
i (ȳ

ν
γ(x), PX [x]

−ν)

is the Lagrange function of the corresponding problem. Putting all these pieces together
we can build a formula for the gradient of V̄ c

αβ.
The results obtained by our method are reported in the first two Tables in Appendix A.3.

Since the Matlab function fmincon computes a solution at a limited precision it is possible
that for ȳα(x) ≈ ȳβ(x) the objective function values V̄ c

αβ(x) get slightly negative, although
theoretically V̄ c

αβ(x) ≥ 0 holds for all x ∈ Rn. Note that the use of an unconstrained
reformulation may naturally lead to problems with examples were the cost functions are
defined only on a subspace of Rn and the starting vector or some iterate gets out of this
subspace. In most cases, however, the solutions are sufficiently far inside the subspace and
an appropriate choice of the starting vector leads to successful runs.
The use of a random sampling strategy in the algorithm may result in different solutions

for different test runs, even if the same starting point is used. If the starting points are
chosen randomly the computed solutions spread over the entire solution set. To show this
effect, four small Examples 6.1 - 6.4 with 2 players, each contolling a single variable, are
presented. For these examples the numerical tests were run with 100 randomly chosen
starting vectors. The distribution of the solutions is shown in scatter plots in Figure 6.2,
where one can see that the solutions obtained by the algorithm spread over the entire
solution set that was determined in Figure 6.1 by using Theorem 2.1. For problems where
the solution set can not be computed analytically (or where it is at least difficult), one
can also see that different solutions are computed, see the last Table in Appendix A.3 for
some results on two of the test problems with 10 test runs. Thus if a GNEP has multiple
solutions and we are not searching for only one, for example a normalized, this method
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with randomly chosen starting vectors can be used to compute different solutions and it
gives an idea about the distribution of the solutions. For GNEPs with a unique solution
this algorithm is not competitive to the algorithms described in the subsequent sections,
because at each iteration ȳα(x

k) and ȳβ(x
k), and for iterates xk ̸∈ X also PX [x

k], have to
be computed by solving constrained optimization problems, which makes the method very
expensive and slow, in particular for large examples or those with more complicated cost
or constraint functions.

Example 6.1: Example 6.2:
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3
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Figure 6.2.: Scatter plots of the solutions of the 2-dimensional GNEPs via V̄ c
αβ
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6.3. Matlab’s fminunc Solver

In the merit function approach to the solution of the GNEP KKT system the unconstrained
optimization problem

Θ(x, λ) :=
1

2

∥∥∥∥( F (x, λ)
Φ(x, λ)

)∥∥∥∥2
has to be solved. In Section 5.1 the properties of the merit function were studied, but no
specific algorithm was proposed. One option is to use a general purpose algorithm that
does not exploit in any way the structure of the objective function Θ. This is by far the
simplest choice and requires little beyond furnishing routines that calculate the objective
and gradient values. In particular the Matlab function fminunc from the Optimization
Toolbox with option GradObj set to ’on’ is used. The Matlab option LargeScale was
set to ’off’, so that fminunc uses a BFGS line-search algorithm for the minimization. For
the complementarity function the penalized Fischer-Burmeister function with parameter
γ = 0.975 is used. Beside the function and the gradient, this routine only requires a
starting point (x0, λ0), but no further ingredients.

The main stopping criteria for this method and all the subsequent ones, is a small
violation of the KKT conditions (5.2), i.e., the algorithm stops, if

V (x, λ) :=

∥∥∥∥( F (x, λ)
min(λ,−g(x))

)∥∥∥∥ ≤ √n+mε, (6.1)

with ε = 10−4. Further a maximum number of 103 iterations is allowed.

In addition to the main stopping criteria, fminunc stops if the relative change in function
value is less than the parameter TolFun = 10−8 or the maximum number of function
evaluations MaxFunEvals = 105 is reached. The λ-part of the starting vector was always
set to λ0 = 0, whereas details regarding the x-part are reported in the tables with the
results in Appendix A.4.

Using the Matlab function fminunc for the unconstrained problem, immediately suggests
to use the Matlab function fmincon for the constrained problem (5.8). The obtained results
are very poor (45 % failures) and thus they are not reported. In view of Example 5.4 and
the fact that also the fminunc solver is not very successful, this is not surprising.

6.4. Semismooth-like Minimization Algorithm

It should be noted that the general purpose minimization algorithm just described pre-
supposes that the objective function is two times continuously differentiable, but Θ is not
so, in fact ∇Θ is only strongly semismooth, see [11, 31]. So, as an alternative method for
the solution of the unconstrained optimization problem, one can use the semismooth min-
imization algorithm from [16, 15, 31]. The references give all the details of this globalized
semismooth Newton-type method and here are only some relevant implementation details
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reported. For the sake of notational simplicity set

T (x, λ) :=

(
F (x, λ)
Φ(x, λ)

)
,

where Φ is defined with the penalized Fischer-Burmeister function with parameter γ =
0.975. In order to find a search direction an element H of the B-subdifferential ∂BT (x, λ)
is evaluated at each iteration, see [31, 64]. This can be done by the following theoretical
procedure which is similar to the procedure in [15] for the Fischer-Burmeister function and
in [11] for the penalized variant.

Algorithm 6.5 (Procedure to compute an element H ∈ ∂BT (x, λ))

(S.0) For a given (x, λ) ∈ Rn+m define

M1 = {(ν, i) | λνi = 0 = gνi (x)} and M2 = {(ν, i) | λνi > 0,−gνi (x) > 0}.

(S.1) For (ν, i) ∈M1 set

aνi := −2 +
√
2

2
γ and bνi := −2 +

√
2

2
γ.

(S.2) For (ν, i) ∈M2 set

aνi := γ

(
λνi√

(λνi )
2 + (gνi (x))

2
− 1

)
− (1− γ)(−gνi (x)) and

bνi := γ

(
−gνi (x)√

(λνi )
2 + (gνi (x))

2
− 1

)
− (1− γ)λνi .

(S.3) For (ν, i) ̸∈M1 ∪M2 set

aνi := γ

(
λνi√

(λνi )
2 + (gνi (x))

2
− 1

)
and bνi := γ

(
−gνi (x)√

(λνi )
2 + (gνi (x))

2
− 1

)
.

(S.4) Using the definitions of Section 5.1.1, set

H :=

(
JxF (x, λ) E(x)

−Dg(x, λ) Jxg(x) Dλ(x, λ)

)
.

Lemma 6.6 Assume that for all x̄ ∈ Rn there exists a sequence {xk} converging to x̄ such
that −gνi (xk) < 0 for all (ν, i) ∈ {(ν, i) | gνi (x̄) = 0} and all k ∈ N. Then Algorithm 6.5
computes an element of ∂BT (x, λ).
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Proof. Let (x̄, λ̄) ∈ Rn+m be given. By the assumption we can find a sequence {xk}
converging to x̄ such that

−gνi (xk)
{
< 0, if − gνi (x̄) ≤ 0,
> 0, if − gνi (x̄) > 0,

for all ν = 1, . . . , N, i = 1, . . . ,mν and all k ∈ N. Further let us define the sequence

(λk)νi :=


λ̄νi , if λ̄νi ̸= 0,
−gνi (xk), if λ̄νi = 0, gνi (x̄) = 0,
−1/k, if λ̄νi = 0, gνi (x̄) ̸= 0

for all ν = 1, . . . , N, i = 1, . . . ,mν and all k ∈ N. Then the sequence {(xk, λk)} converges
to (x̄, λ̄) and we have gνi (x

k) ̸= 0 and (λk)νi ̸= 0 for all ν = 1, . . . , N, i = 1, . . . ,mν and all
k ∈ N. Thus the penalized Fischer-Burmeister function, and hence also T , is differentiable
at all points (xk, λk) and the statement follows with the formulas of Section 5.1.1. �

The assumption of the previous lemma is rather weak and requires that for any x̄ ∈
Rn where we have active constraints, we can find a sequence {xk} converging to x̄ that
simultaneously violates all these constraints. If this assumption is not satisfied, we can at
least find for each active constraint one sequence that violates this constraint, and we can
show analogous to the construction in the above proof that Algorithm 6.5 computes an
element of the C-subdifferential of T (x, λ), an upper estimate for ∂BT (x, λ). Note that the
computational costs to get the matrix H are negligible.
Semismooth Newton methods for solving nonsmooth systems, usually enjoy a superlin-

ear/ quadratic convergence rate under mild assumptions. However, as discussed in great
detail in [26], the conditions under which superlinear convergence occur are often in jeop-
ardy when solving reformulations of GNEPs. Since the focus of the algorithms given here
is on the global convergence property, the local properties are not analysed and hence there
is no guarantee whether the implemented semismooth Newton method enjoys locally fast
convergence properties under reasonable assumptions, although, in practice, a fast local
convergence was often observed.
The search direction dk is computed at each iteration by Matlab’s linear systems solver

linsolve, that solves the (n+m)-dimensional square linear system

Hkd = −T (x, λ) (6.2)

with the matrix Hk belonging to the B-subdifferential of T (x, λ).
If the Newton-like direction does not satisfy certain “sufficient descent” conditions, the line
search is performed along the anti-gradient of Θ. The details are as follows: if the 1-norm
condition number estimate of Hk is bigger than 1016 (then the linear system (6.2) is ill
conditioned), or if

∇Θ(xk, λk)Tdk > −10−8∥dk∥2.1
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(then dk is rather orthogonal to∇Θ(xk, λk) and thus the succeeding linesearch will generate
tiny stepsizes), then dk is taken as −∇Θ(xk, λk).
The linesearch is an Armijo-type one, that computes tk = max{2−ℓ | ℓ = 0, 1, 2, . . .} such
that

Θ((xk, λk) + tkd
k) ≤ Θ(xk, λk) + 10−4tk∇Θ(xk, λk)Tdk.

λ0 = 0 was always used as λ-part of the starting vector. Furthermore the main stopping
criteria (6.1) and a maximum number of 103 iterations are used.

6.5. Potential Reduction Method

The used implementation is the exact version of Algorithm 5.9, because the library of test
problems considered does not contain large scale problems. More in detail, at step (S.2)
of Algorithm 5.9 the search direction dk is determined by solving a reduced linear system
of equations with

σk = min

{
0.1, 104

∥H(zk)∥min{Hn+i(z
k) | i = 1, . . . , 2m}

µk

}
.

This choice of σk guarantees that dk is a uniform descent direction in view of Lemma
5.11, and further that Assumption (A3’) from section 5.2.3 is satisfied. By this choice
for σk we obtain slightly different results than in [19], where σk = 0.1 was fixed. Note
that formally the method calls for the solution of a n + 2m square linear system at each
iteration. However, this system is very structured and some simple manipulations permit
to solve it by actually solving a linear system of dimension n. More precisely, a solution
(d̄1, d̄2, d̄3) of the following linear system of dimension n+ 2mJxF (x, λ) E(x) 0

Jxg(x) 0 Im
0 W Λ

d1d2
d3

 =

b1b2
b3

 (6.3)

has to be found, where all the quantities involved are defined in detail in Section 5.2. It is
easy to verify, by substitution and by the fact that w > 0 in ZI , that if d̄

1 is a solution of(
JxF (x, λ) + E(x)W−1ΛJxg(x)

)
d1 = b1 + E(x)W−1Λb2 − E(x)W−1b3

and d̄2 and d̄3 are computed by

d3 = b2 − Jxg(x)d1 and

d2 = W−1b3 −W−1Λd3,

respectively, this is indeed a solution of (6.3). This shows clearly that the main computa-
tional burden in solving the linear system (6.3) is actually the solution of an n× n square
linear system, which is done by Matlab’s linear systems solver linsolve.
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Similarly to the semismooth-like approach, if the Newton-like direction does not satisfy

∇ψ(xk, λk, wk)Tdk ≤ −10−5∥dk∥2.1,

that is if the direction dk is almost orthogonal to ∇ψ(xk, λk, wk), then the anti-gradient
−∇ψ(xk, λk, wk) is used as search direction dk. In view of Lemma 5.11 this can only happen
if we were not able to solve the exact equation accurate enough.
For the line search, as described in step (S.3) of Algorithm 5.9, γ = 10−2 and ξ = 2m

are used. dk = (dkx, d
k
λ, d

k
w) is preliminarily rescaled in order to stay in ZI . First an

analytically computation of a positive constant α such that λk + αdkλ and wk + αdkw are
greater than 10−14 is made to ensure that the last two blocks in zk+αdk are in the interior
of R2m

+ . Then, if necessary, a further reduction of α by successive bisections is made until
g(xk + αdkx) + wk + αdkw ≥ 10−14, thus finally guaranteeing that zk + αdk belongs to ZI .
In this latter phase, an evaluation of g is needed for each bisection. At the end of this
process, set dk ← αdk and proceed to perform the Armijo line-search (5.19).
Since we implemented the exact version of Algorithm 5.9 the choice of the starting vector

gives some opportunities, as a consequence of the following Lemma.

Lemma 6.7 Suppose that for indices i, j ∈ {1, . . . ,m} with gi ≡ gj we have λ0i = λ0j and
w0

i = w0
j . Then we have λki = λkj and wk

i = wk
j for all k ∈ N.

Proof. Let i, j ∈ {1, . . . ,m} with gi ≡ gj be given. By Lemma 5.27 w0
i = w0

j implies
wk

i = wk
j and dkw,i = dkw,j for all k ∈ N. If λki = λkj for some k ∈ N, we get from equation

(5.31)

dkλ,i = −λki − λki
dkw,i

wk
i

+
σkµk

wk
i

= −λkj − λkj
dkw,j

wk
j

+
σkµk

wk
j

= dkλ,j,

and thus
λk+1
i = λki + tkd

k
λ,i = λkj + tkd

k
λ,j = λk+1

j ,

which completes the proof. �

As an immediate consequence, choosing equal starting vectors for repeated constraints
leads to equal multipliers at the solution. In particular for jointly convex GNEPs the
algorithm then finds normalized Nash equilibria in the sense of [68].
For the (λ,w)-part of the starting vector λ0ν = 10− ν

N
(which is different for each player)

and w0 = max(10, 5 − g(x0)) are used to keep the possibility to compute non normalized
solutions, and to ensure that the starting point is “well inside” ZI , thus resulting in larger
stepsizes. If x0 is close to a solution, other choices of the (λ0, w0)-part which are also
closer to the solution might seem better, but our numerical experiments did not show an
overall improvement. Again the main stopping criteria (6.1) and a maximum number of
103 iterations are used.
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6.6. Scaled Trust-Region Solver for Constrained Nonlinear
Equations

As it was shown in Section 5.2 the KKT system can be written as a constrained equation
defined by (5.11) and (5.12). This can be solved by STRSCNE (Scaled Trust-Region Solver
for Constrained Nonlinear Equations), a software that is freely available, see [4], and whose
detailed description can be found in [2, 3]. In order to compare this method with the others,
a few details have to be mentioned. STRSCNE is essentially a suitably tailored method that
minimizes 1

2
∥H(x, λ, w)∥2 over (5.12). The method uses ellipsoidal trust-regions defined

by an affine scaling. The scaling is determined by the nearness of the current iterate
to the box boundary and has the effect of angling the scaled steepest descent direction
away from the boundary, possibly allowing a longer step to be taken within the feasible
region. At each step of the method, a dogleg strategy is used to approximately minimize
a quadratic approximation of the objective function over the elliptical trust-region whose
shape depends on the bounds. An important property of the proposed method is that all
the iterates generated are in the strict interior of the set defined by (5.12). To maintain
strict feasibility, suitable restrictions of the chosen steps are performed, if necessary. Note
that although STRSCNE is not an interior-point method in the classical sense, it does
generate strictly feasible iterates only, and thus comparison with the interior-point method
appears particularly appropriate and meaningful.

The algorithm is globally convergent to a stationary point of 1
2
∥H(x, λ, w)∥2 over (5.12).

As usual, if the stationary point so found is a global minimizer with zero value, the point
is a solution of the constrained system (5.11) and (5.12). However, conditions that guaran-
tee that stationary points are actually solutions of the original constrained system (5.11)
and (5.12) are not available at the moment, hence it is not clear how typical nonoptimal
stationary points are.

The used algorithm is a slightly modified STRSCNE implementation so that the method
uses the same stopping criteria employed by the other methods tested. For the (λ,w)-part
of the starting vector λ0 = 10 and w0 = max(10, 5− g(x0)) are used. The dogleg strategy
used in order to approximately solve the trust region problem entails that, as in all other
methods considered for the solution of the KKT formulation, the main computational
burden per iteration is the solution of a linear system. More precisely the linear system
that is solved at each iteration is exactly the same one considered in the potential reduction
algorithm.

Also for the constrained optimization problem (5.8) STRSCNE can be used. However,
the numerical solution of the constrained problem leads to failures in 26 % of all test runs,
and hence to non competitive results, which are therefore not reported.
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6.7. Comparison of the Algorithms Solving the KKT
System

In order to compare the algorithms from Sections 6.3 to 6.6, they are all run on the same
set of examples using, in some cases, several starting points. This results in 57 runs for
each method. At each iteration of the algorithms considered, the most costly operation
is the solution of a square linear system. These systems have dimension n + m for the
first two algorithms and n + 2m for the last two. However, as discussed in Section 6.5,
the system solved by the interior point method can be easily reduced to the solution of
a square system of dimension n and this is also possible for the STRSCNE method. It
might seem that similar manipulations could be performed also for the system arising in
the semismooth method. In fact, the matrix of the linear system is(

JxF (x, λ) E(x)
−Dg(x, λ)Jxg(x) Dλ(x, λ)

)
.

The peculiarity of this matrix is that the bottom right block is diagonal. So one could
think that, similarly to what is done for the interior point method linear system, one could
express the λ variables in function of x and then solve a square n-dimensional system.
However, in general the bottom right diagonal block could easily have zero or very small
entries. In particular, suppose that (x̄, λ̄) is a solution of the KKT conditions of the game.
If, for example, we have g11(x̄) = 0 and λ̄11 > 0, that is if the first constraint of the first
player is active and has a positive multiplier (a common case indeed), one can see that the
corresponding element [Dλ(x̄, λ̄)]1,1 is 0. So, in a neighbourhood of this point this entry
will be either 0 or very small, and one cannot directly exploit the diagonal structure of this
block in order to reduce the dimension of the linear system. It is clear that there will be
situations (especially in early iterations, probably) where the diagonal elements of Dλ(x, λ)
are all negative, but for the reasons exposed the detection and handling of this diagonal
block was left to the linear system solver. Note that, here, the interior point method has
an advantage, since the diagonal blocks present in its linear system are always guaranteed
to have positive diagonal elements, because the iterates are in ZI .
The detailed numerical results are reported in the Tables in Appendix A.4. It is obvious

that the unconstrained minimization of Θ through the general purpose code fminunc is not
competitive with the other three approaches and there is not much difference in the results
whether the standard Fischer-Burmeister function is used, as in [19], or the penalized
variant as used here. This approach leads to very many failures (21) and the iteration
numbers are constantly higher than those for the other algorithms. Table 6.1 reports the
total number of failures for the semismooth-like algorithm, STRSCNE, and the interior
point method, along with the cumulative counts of iterations obtained by considering only
runs that are solved by all three algorithms (for a total of 48 runs).
Table 6.1 shows that the interior point method seems more reliable, in that it solves all
problems except one. The cumulative iteration numbers are a bit smaller for the interior
point algorithm than for the semismooth-like. STRSCNE has a small number of failures
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Algorithm Failures It.

Semismooth-like 7 846

STRSCNE 3 1633

Interior Point 1 816

Table 6.1.: Cumulative counts of iterations for the semismooth-like algorithm, STRSCNE,
and the interior point method for 48 test runs.

but needs about twice as much iterations than the other algorithms. A closer look at the
Tables in Appendix A.4 shows that actually the semismooth-like algorithm performs best
on a good part of the problems, but it can not solve any of the transportation problems
Tr1, Tr2 or Tr3. The large cumulative iteration numbers for the semismooth-like method
are mainly caused by Example A8, where many anti-gradient steps are used.
To get a better picture of the behavior of the algorithms, performance profiles with the

number of iterations as performance measure are used and the results are shown in Figure
6.3. The left figure shows the performance profiles for small τ , and hence describes the
speed of the algorithms, whereas the robustness of the methods can be seen for large τ and
thus at the right end of the right figure.
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Figure 6.3.: Performance Profiles

These profiles confirm and make the impressions described above more precise. The fmin-
unc algorithm is not competitive to any of the other methods. For τ = 1 the semismooth-
like algorithm performs best. However, in comparing the number of iterations one should
keep in mind that the dimensions of the linear system solved by the interior point method
are, in general, smaller, as discussed at the beginning of this section. As soon as τ is
greater than 2,5 (more or less) the interior point method takes the lead, thus showing that
the overall performance of this method is not too distant from that of the semismooth-like
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and more reliable. The performance of the STRSCNE method is for τ < 1, 5 about the
same as for the interior point method, but for larger τ the latter one is superior.
There is probably only one other method for which convergence properties are known and

a relatively extensive numerical testing has been performed. This is the penalty approach
proposed in [28] which is the preprint version with complete numerical results of the paper
[29]. It is not totally straightforward to compare the results reported there and those
reported here. For one thing, the test set used for the penalty method is a subset of the
problems considered in this paper and the stopping criterion is different. Nevertheless,
each minor iteration in the penalty method requires the solution of a linear system and,
from the linear algebra point of view, this is still the main computational effort of the
algorithm. A comparison of the results shows that the solution of the KKT conditions is
by far more efficient than the penalty approach.
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Let us summarize the results of this thesis. At the beginning we showed two theorems
for the analytical solution of small GNEPs. They can be used for the computation of the
solution sets of many simple examples, also if no constraint qualification holds.
The main part started with a globalization of a known local Newton method for the

computation of normalized Nash equilibria in the case of jointly convex GNEPs. The
presented algorithm uses two characterizations of the normalized solutions, a nonsmooth
fixed point formulation for the computation of the Newton direction and an optimization
formulation with a differentiable merit function as a basis of a linesearch procedure that
guarantees global convergence.
Next we considered optimization reformulations of the GNEP using the Nikaido-Isoda

function. While the constrained reformulation was known before, we gave a new uncon-
strained reformulation for a large class of GNEPs including the jointly convex ones. The
merit functions of the constrained and unconstrained reformulations were shown to be
PC1 functions, which allows us to use a solver for nonsmooth problems that is able to find
Clarke stationary points. Unfortunately we were not able to find conditions guaranteeing
that Clarke stationary points are solutions. It was indicated why this is a very challenging
future research topic since probably new estimates for the Clarke subdifferential have to
be developed.
Moreover, this thesis presented theoretical results on the solution of GNEPs via their

KKT conditions. Two different approaches were discussed. The first simply uses a merit
function for an equation formulation equivalent to the KKT conditions and the second one
develops an interior point algorithm based on a potential function to solve a constrained
equation. The conditions guaranteeing that stationary points of the merit function are so-
lutions, and the solvability of the subproblem of the interior point method, respectively, are
very similar and require the nonsingularity and P0 property for certain matrices. However,
these properties have to hold only at the feasible sets, and therefore are less restrictive for
the constrained equation solver. Furthermore, boundedness of the generated sequences,
implying the existence of an accumulation point, was shown under similar mild conditions
for both approaches. For the interior point method a finite termination result, describing
the relation between the achieved accuracy at the solution and the number of iterations,
was proved. It is a further research topic if the result can be improved, such that the step-
size bound can be estimated by problem data, thus allowing a more general complexity
result.
At the end, we described practical implemented versions for the theoretical approaches

and we reported the obtained numerical results, showing benefits of the methods. Finally,
the new methods were compared to each other and to existing algorithms and the interior
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point method turns out to be very competitive in its overall performance. Moreover the
semismooth-like algorithm is quite fast at many of the test problems, but its robustness
should be improved.
All the methods were developed with the focus on global convergence. For the subclass

of jointly convex GNEPs and the aim of finding a normalized Nash equilibrium the stated
globalized Newton method is a robust, global convergent, and also fast local convergent
algorithm. This comfortable situation has not been achieved yet by any algorithm dealing
with the most general case of GNEPs. The most promising approach is probably the
solution of the KKT system. The necessary results for global convergence were presented
here. Combining the semismooth-like and the interior point approaches with each other or
for example with a Levenberg-Marquardt algorithm, as described in [26], might result in a
global and local fast convergent algorithm.
Due to its computational effort the presented algorithm based on the optimization re-

formulations using the Nikaido-Isoda function is not competitive in convergence speed.
However, using the gradient sampling algorithm we have seen that the computed solutions
spread over the solution set. Thus the algorithm can be used if we are searching for all (or
as many as possible) solutions of a GNEP and not only one, in particular since the number
of alternative algorithms dealing with this question is very limited.
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A. Tables for Numerical Results

The appendix contains a couple of tables with some more details regarding the test prob-
lems and the numerical results presented in Section 6. More precisely,

• Appendix A.1 contains an overview of test problems that were used. For every
example the number of players N and the total number of variables n and constraints
m are reported. Some of the test problems were run more than once, using different
starting points. The number of runs is given in column “runs”. For a better overview
the Table also shows to which “class” the problems belong, a pure NEP, a jointly
convex problem or a general GNEP. Further the cost functions θν(·, x−ν) are for
fixed x−ν either linear or quadratic or non linear and similar the constraint functions
gν(·, x−ν) are either linear or nonlinear. For a detailed description see the references
given in Section 6.

• Appendix A.2 shows the results for the local and the globalized Newton methods.
The name of the example and the chosen starting point x0 are listed in the first two
columns. Most of the starting points x0 are chosen so that all of their components are
identical. For simplicity of notation, x0 = 1 is written instead of x0 = (1, 1, . . . , 1)T .
The next three columns of the table show the number of iterations “It.”, the number
of gradient steps “grad”, and the function value “∥Fβ(x)∥” at the computed solution
for the globalized Newton method. Since the method is a globalization of the local
Newton method from [47], there are also numerical results for the local method
reported, using both the parameter α in columns 6 and 7 and the parameter β in
columns 8 and 9. If the maximum number of iterations is reached or if the Newton
direction can not be computed accurate enough an “F” is reported instead of the
function value at the solution, thus indicating a failure of the method.

• the tables in Appendix A.3 show numerical results for the gradient sampling algo-
rithm for general GNEPs, jointly convex GNEPs and two problems with randomly
chosen starting vectors, respectively. As before the column “Example” contains the
name of the test problem, the x0-column gives details on the starting vector and
“It.” lists the number of iterations until convergence was obtained. The column
“x∗” contains the computed solution and the function value at the solution is in the
last column “V̄ c

αβ(x
∗)”. The first two Tables in Appendix A.3 only report results for

lower dimensional examples, where the solution vector can be printed in a few lines.
For the two problems reported in the last Table the 10 starting vectors are chosen
randomly in (0, 10)n, hence there is no extra column “x0” given there.
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A. Tables for Numerical Results

• the Tables in Appendix A.4 report the results for the four algorithms used to solve
the KKT conditions of the GNEPs. For each method the column “It.” gives the
iteration number or an “F” for a failure, and the column “merit” contains the value
of the merit function from (6.1), when the algorithm stops. The “Example” and
“x0” columns are as before. For the Examples A10a–A10e the starting vectors from
[28] are used, where most components are 0 and some of the last components are
chosen equal and sum up to 1. This is indicated by an “0,=” in the column “x0”.
For the other parts of the starting vectors standard values are used as described in
the corresponding sections. The smallest number of iterations from any of the four
algorithms is printed in boldface for each run.
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A.1. Data of the Test Problems

A.1. Data of the Test Problems

Example N n m runs class θν gν

A1 10 10 20 3 general GNEP non linear linear
A2 10 10 24 3 general GNEP non linear linear
A3 3 7 18 3 general GNEP quadratic linear
A4 3 7 18 3 general GNEP quadratic linear
A5 3 7 18 3 general GNEP quadratic linear
A6 3 7 21 3 general GNEP quadratic non linear
A7 4 20 44 3 general GNEP quadratic linear
A8 3 3 8 3 general GNEP quadratic linear
A9a 7 56 63 1 general GNEP linear non linear
A9b 7 112 119 1 general GNEP linear non linear
A10a 8 24 33 1 general GNEP quadratic non linear
A10b 25 125 151 1 general GNEP non linear non linear
A10c 37 222 260 1 general GNEP quadratic non linear
A10d 37 370 408 1 general GNEP non linear non linear
A10e 48 576 625 1 general GNEP non linear non linear
Tr1 6 18 72 2 general GNEP non linear linear
Tr2 6 60 228 2 general GNEP non linear linear
Tr3 7 80 304 2 general GNEP non linear linear
A11 2 2 2 1 jointly convex quadratic linear
A12 2 2 4 1 NEP quadratic linear
A13 3 3 9 1 jointly convex quadratic linear
A14 10 10 20 1 jointly convex non linear linear
A15 3 6 12 1 NEP quadratic linear
A16a 5 5 10 1 jointly convex non linear linear
A16b 5 5 10 1 jointly convex non linear linear
A16c 5 5 10 1 jointly convex non linear linear
A16d 5 5 10 1 jointly convex non linear linear
A17 2 3 7 1 jointly convex quadratic linear
A18 2 12 28 3 jointly convex quadratic linear

Harker 2 2 6 1 jointly convex quadratic linear
Heu 2 10 22 2 jointly convex non linear linear
NTF1 2 2 4 1 jointly convex quadratic linear
NTF2 2 2 4 1 jointly convex quadratic non linear
Lob 50 50 50 1 NEP non linear linear
Spam 101 2020 4040 1 NEP non linear linear
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A.2. The Globalized and Local Newton Methods

globalized Newton method local method with α local method with β
Example x0 It. grad ∥Fβ(x)∥ It. ∥Fα(x)∥ It. ∥Fβ(x)∥

A11 0 2 0 0.0e+00 1 0.0e+00 2 0.0e+00
A11 1 1 0 0.0e+00 1 0.0e+00 1 0.0e+00
A11 100 1 0 0.0e+00 1 0.0e+00 1 0.0e+00

A12 0 1 0 0.0e+00 1 0.0e+00 1 0.0e+00
A12 1 1 0 0.0e+00 1 0.0e+00 1 0.0e+00
A12 100 1 0 0.0e+00 3 0.0e+00 1 0.0e+00

A13 0 2 0 0.0e+00 1 0.0e+00 2 0.0e+00
A13 1 2 0 0.0e+00 1 0.0e+00 2 0.0e+00
A13 100 2 0 0.0e+00 1 0.0e+00 2 0.0e+00

A14 0.01 3 0 0.0e+00 3 0.0e+00 3 0.0e+00
A14 1 3 0 0.0e+00 4 0.0e+00 3 0.0e+00
A14 100 4 1 0.0e+00 3 0.0e+00 3 0.0e+00

A15 0 1 0 0.0e+00 2 0.0e+00 1 0.0e+00
A15 1 1 0 0.0e+00 2 0.0e+00 1 0.0e+00
A15 100 2 0 0.0e+00 3 0.0e+00 2 0.0e+00

A16a 10 3 0 0.0e+00 2 0.0e+00 3 0.0e+00
A16a 100 3 0 0.0e+00 3 0.0e+00 3 0.0e+00
A16a 1000 3 0 0.0e+00 1 F 3 0.0e+00

A16b 10 3 0 0.0e+00 3 0.0e+00 3 0.0e+00
A16b 100 3 0 0.0e+00 3 0.0e+00 3 0.0e+00
A16b 1000 3 0 0.0e+00 3 0.0e+00 3 0.0e+00

A16c 10 3 0 0.0e+00 3 0.0e+00 3 0.0e+00
A16c 100 3 0 0.0e+00 3 0.0e+00 3 0.0e+00
A16c 1000 3 0 0.0e+00 2 F 3 0.0e+00

A16d 10 4 0 0.0e+00 2 0.0e+00 4 0.0e+00
A16d 100 3 0 0.0e+00 3 0.0e+00 3 0.0e+00
A16d 1000 3 0 0.0e+00 2 F 3 0.0e+00

A17 0 2 0 0.0e+00 3 0.0e+00 2 0.0e+00
A17 1 2 0 0.0e+00 1 0.0e+00 2 0.0e+00
A17 100 2 0 0.0e+00 4 0.0e+00 2 0.0e+00

A18 0 17 17 2.9e-07 4 F 9 F
A18 1 17 17 2.9e-07 2 0.0e+00 8 F
A18 100 14 14 3.2e-07 7 F 1 F

Harker 0 1 0 0.0e+00 1 0.0e+00 1 0.0e+00

Heu 100 33 30 0.0e+00 4 0.0e+00 1 F
Heu 500 17 13 0.0e+00 6 0.0e+00 1 F
Heu 1000 19 14 0.0e+00 100 F 1 F

NTF1 0 2 0 0.0e+00 1 0.0e+00 2 0.0e+00

NTF2 0 5 0 0.0e+00 5 0.0e+00 5 0.0e+00

Spam 1 3 0 0.0e+00 3 0.0e+00 3 0.0e+00
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A.3. The Gradient Sampling Algorithm

Example x0 It. x∗ V̄ c
αβ(x

∗)

A1 0.01 36
(0.3002, 0.0696, 0.0693, 0.0694, 0.0694,
0.0692, 0.0690, 0.0695, 0.0697, 0.0696)

8.4e-09

A1 0.1 27
(0.3000, 0.0693, 0.0693, 0.0692, 0.0692,
0.0696, 0.0695, 0.0693, 0.0697, 0.0695)

-4.8e-07

A1 1 67
(0.3002, 0.0694, 0.0695, 0.0694, 0.0694,
0.0693, 0.0692, 0.0696, 0.0693, 0.0694)

3.0e-09

A2 0.01 66
(0.3022, 0.0323, 0.0336, 0.0326, 0.2031,
0.2916, 0.0240, 0.0237, 0.0255, 0.0216)

3.0e-06

A2 0.1 36
(0.3001, 0.0174, 0.0258, 0.0279, 0.2759,
0.3008, 0.0105, 0.0103, 0.0105, 0.0108)

2.5e-08

A2 1 F -2.3e+13

A3 0 53 (−0.3850,−0.1233,−1.0066, 0.3947, 1.1770, 0.0514, 0.0187) 7.5e-08
A3 1 82 (−0.3749,−0.1272,−0.9857, 0.3833, 1.1495, 0.0482, 0.0187) -3.8e-07
A3 10 153 (−0.3787,−0.1207,−0.9843, 0.3881, 1.1513, 0.0513, 0.0187) -4.2e-07

A4 0 31 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000) 3.5e-12
A4 1 6 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000) 0.0e+00
A4 10 51 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000) 9.7e-12

A5 0 87 (0.0004, 0.2021, 0.0002, 0.0002, 0.0705, 0.0261, 0.0004) -4.8e-07
A5 1 42 (0.0002, 0.2030, 0.0002, 0.0000, 0.0724, 0.0253, 0.0001) -3.6e-07
A5 10 95 (0.0024, 0.2010, 0.0027, 0.0008, 0.0661, 0.0248, 0.0027) -1.1e-10

A6 0 35 (1.0000, 1.0000, 1.0000, 1.4167, 1.0000, 1.0000, 1.0000) 2.7e-11
A6 1 53 (1.0000, 1.0000, 1.0000, 1.4167, 1.0000, 1.0000, 1.0000) -4.2e-07

A6 10 81 (1.0000, 1.0000, 1.0000, 1.4167, 1.0000, 1.0000, 1.0000) 3.1e-11

A7 0 133
(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.8427, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)
1.3e-11

A7 1 123
(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.8427, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)
1.8e-11

A7 10 136
(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.8427, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)
1.0e-11

A8 0 29 ( 0.4991, 0.5007, 0.7487 ) -5.0e-07
A8 1 29 ( 0.4993, 0.4988, 0.7490 ) -5.0e-07
A8 10 43 ( 0.4995, 0.5003, 0.7489 ) 1.3e-08
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Example x0 It. x∗ V̄ c
αβ(x

∗)

A11 0 11 (0.6933, 0.3067) 2.6e-11

A12 0 24 (5.3337, 5.3332) 0.0e+00

A13 0 34 (10.6017, 8.3580, 13.3568) 4.4e-13

A14 0.01 38
(0.090913, 0.091040, 0.089130, 0.089906, 0.089606,
0.089806, 0.089658, 0.089857, 0.088901, 0.087955)

-8.6e-08

A15 0 111 (46.6617, 32.1544, 15.0025, 22.1071, 12.3397, 12.3394) 0.0e+00

A16a 10 46 (14.1175, 14.7200, 15.2233, 15.6173, 15.3269) 7.5e-08

A16b 10 111 (18.4665, 19.5989, 20.4153, 20.6567, 20.8715) 2.4e-07

A16c 10 90 (27.3867, 30.2220, 31.5729, 31.1880, 29.6344) 4.7e-08

A16d 10 79 (35.7361, 40.4337, 42.7623, 42.1098, 38.9585) 5.5e-10

A17 0 37 (1.6724, 9.3276, 6.3276) 5.4e-12

A18 0 117
(43.5366, 28.1381, 28.3253, 26.8698, 11.4714, 11.6588,
43.5364, 28.1381, 28.3256, 26.8696, 11.4713, 11.6591)

1.2e-11

Harker 0 30 (9.2669, 5.7331) 2.2e-13

Heu 100 506
(117.6409, 356.6286, 176.1078, 328.4737, 121.6064,
101.6896, 300.3188, 178.3936, 328.4737, 178.3936)

-4.7e-12

NTF1 0 13 (0.1838, 0.8162) 1.9e-13

NTF2 0 7 (0.2922, 0.9564) 0.0e+00
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Example It. x∗ V̄ c
αβ(x

∗)

A13 23 (13.8502, 5.8946, 11.5439) 1.2e-11

21 ( 9.2381, 12.6505, 13.1304) 1.1e-11

22 ( 9.9375, 4.7432, 14.9756) 1.4e-11

24 ( 9.1918, 10.2697, 13.8884) 7.4e-12

27 (14.8561, 12.1414, 8.8584) 1.3e-12

21 ( 7.9660, 12.8074, 14.0852) 3.7e-12

27 (11.8854, 14.8102, 10.3902) 5.7e-12

28 (11.8203, 14.4521, 10.5500) 2.2e-13

32 (10.3767, 9.0941, 13.3111) 1.5e-12

28 (13.3028, 8.6643, 11.1359) 5.7e-12

A18 110
(47.7517, 25.4226, 26.8256, 25.2728, 14.1868, 10.5404,
43.2123, 26.0796, 30.7082, 24.5756, 13.5299, 11.8944)

2.2e-12

105
(47.1941, 27.8550, 24.9509, 23.9604, 11.7548, 14.2848,
43.1392, 28.2309, 28.6299, 26.5184, 11.3792, 12.1024)

7.7e-13

106
(41.9968, 28.6816, 29.3217, 28.1979, 10.9279, 10.8743,
40.0750, 30.5576, 29.3675, 30.5428, 9.0520, 10.4052)

7.0e-12

105
(45.4940, 26.4997, 28.0063, 27.2335, 13.1097, 9.6568,
42.8491, 26.0692, 31.0817, 25.2358, 13.5404, 11.2239)

4.6e-12

108
(43.3011, 28.9710, 27.7279, 27.6139, 10.6384, 11.7477,
41.5365, 29.1595, 29.3039, 28.3609, 10.4499, 11.1892)

1.2e-11

104
(42.5858, 28.3888, 29.0254, 27.7189, 11.2206, 11.0605,
43.6225, 26.9470, 29.4305, 26.8852, 12.6625, 10.4523)

9.0e-12

103
(44.4937, 28.1075, 27.3988, 26.7454, 11.5020, 11.7527,
42.2235, 29.0464, 28.7301, 27.3499, 10.5630, 12.0871)

1.8e-12

115
(44.3022, 29.3935, 26.3043, 26.9583, 10.2161, 12.8256,
42.9913, 26.8983, 30.1103, 26.5605, 12.7111, 10.7284)

8.4e-12

106
(43.2772, 29.5307, 27.1922, 29.7289, 10.0788, 10.1923,
44.1572, 27.3817, 28.4611, 23.6492, 12.2278, 14.1231)

8.2e-12

99
(46.1020, 28.1984, 25.6996, 26.3866, 11.4112, 12.2022,
42.6535, 26.1116, 31.2349, 25.6702, 13.4978, 10.8319)

4.5e-12
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A.4. Results for Solving the KKT System

fminunc semismooth Interior Point STRSCNE
Example x0 It. merit It. merit It. merit It. merit

A1 0.01 68 7.7e-05 7 1.5e-07 13 4.8e-05 9 8.0e-06
A1 0.1 28 8.9e-05 4 3.1e-06 10 6.5e-05 F 3.5e-01
A1 1 44 9.9e-05 5 1.5e-07 10 8.1e-05 9 2.8e-05

A2 0.01 217 4.8e-04 8 5.5e-06 23 1.0e-04 17 1.6e-05
A2 0.1 138 4.6e-04 5 2.6e-05 21 9.8e-05 34 7.6e-05
A2 1 217 4.4e-04 9 4.3e-06 46 8.6e-05 432 8.9e-05

A3 0 118 9.5e-05 1 1.5e-15 8 1.6e-05 10 5.6e-05
A3 1 118 6.2e-05 1 6.0e-15 8 1.6e-05 8 7.0e-07
A3 10 119 3.3e-04 8 6.5e-07 11 1.4e-05 10 7.0e-06

A4 0 F 3.9e-01 7 8.5e-10 36 1.6e-05 230 8.5e-06
A4 1 F 4.4e-01 9 1.3e-07 24 7.3e-05 16 5.6e-07
A4 10 F 3.2e+00 10 1.3e-05 17 8.3e-05 15 7.5e-05

A5 0 228 8.6e-05 6 2.0e-07 10 5.7e-05 13 1.2e-06
A5 1 268 8.2e-05 6 5.4e-07 10 5.5e-05 13 2.2e-07
A5 10 277 8.1e-05 8 6.7e-07 11 3.3e-05 14 4.9e-06

A6 0 F 4.2e-01 12 7.0e-06 17 1.1e-05 17 1.8e-06
A6 1 F 4.2e-01 11 3.3e-06 15 9.4e-05 16 2.1e-07
A6 10 F 4.1e+02 F 2.4e+00 30 3.1e-05 21 1.2e-06

A7 0 F 7.4e-02 10 3.3e-05 21 4.3e-05 17 2.4e-06
A7 1 F 7.5e-02 13 6.0e-05 20 5.7e-05 17 7.9e-06
A7 10 F 2.1e-01 10 9.5e-05 20 4.5e-05 20 2.2e-07

A8 0 30 5.6e-05 89 9.9e-05 18 6.3e-05 10 8.6e-06
A8 1 36 7.6e-05 494 2.3e-07 18 6.3e-05 10 4.1e-06
A8 10 51 8.6e-05 463 9.9e-05 18 8.0e-05 11 3.9e-05

A9a 0 345 1.0e-04 6 6.6e-05 12 2.7e-05 14 7.6e-05

A9b 0 597 8.9e-05 7 3.3e-05 13 6.0e-05 16 4.2e-05

A10a 0,= F 3.1e-02 12 1.4e-06 21 2.3e-05 15 2.8e-07

A10b 0,= F 6.9e-03 57 5.4e-05 21 2.0e-05 F 4.7e-02

A10c 0,= F 3.8e-01 27 2.6e-05 53 6.4e-05 664 5.4e-05

A10d 0,= F 1.5e-02 123 5.5e-05 28 7.9e-05 22 6.1e-05

A10e 0,= F 1.3e-02 119 9.6e-05 28 3.3e-05 48 3.3e-05

Tr1 1 F 8.4e-03 F 3.0e-03 33 6.4e-05 61 4.6e-05
Tr1 10 F 8.4e-03 F 7.0e-03 29 7.2e-05 30 3.0e-05

Tr2 1 F 4.6e-01 F 3.3e-03 43 4.7e-05 943 1.0e-04
Tr2 10 F 5.2e-01 F 2.9e-02 49 6.0e-05 109 9.9e-05

Tr3 1 F 8.5e-01 F 4.8e-02 59 4.5e-05 F 1.3e+01
Tr3 10 F 8.1e-01 F 1.9e-03 F 1.3e-02 33 9.3e-05
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fminunc semismooth Interior Point STRSCNE

Example x0 It. merit It. merit It. merit It. merit

A11 0 12 5.9e-05 5 1.1e-06 9 1.1e-05 9 3.1e-06

A12 0 23 3.9e-05 1 8.1e-16 7 5.2e-05 8 9.7e-07

A13 0 51 8.2e-05 14 8.7e-07 9 8.7e-05 11 1.9e-05

A14 0.01 9 5.6e-04 7 1.7e-07 10 1.0e-05 7 2.7e-05

A15 0 154 5.7e-05 5 4.3e-08 9 1.6e-05 13 1.3e-06

A16a 10 60 6.8e-05 5 5.1e-05 10 8.9e-05 123 4.9e-07

A16b 10 60 9.9e-05 6 3.2e-05 11 7.7e-05 89 6.6e-06

A16c 10 64 5.0e-05 6 1.3e-05 12 4.1e-05 38 1.1e-05

A16d 10 79 9.8e-05 9 8.2e-07 11 1.7e-05 20 5.9e-06

A17 0 39 3.3e-05 5 4.3e-06 16 1.9e-05 12 1.6e-07

A18 0 95 4.7e-05 9 4.0e-05 15 1.1e-05 20 1.2e-07

A18 1 96 6.3e-05 9 2.0e-07 15 1.1e-05 20 1.5e-07

A18 10 83 6.4e-05 8 3.4e-08 14 1.4e-05 17 5.8e-08

Harker 0 44 1.4e-05 5 1.0e-08 11 9.2e-05 11 2.9e-06

Heu 1 F 4.8e-01 15 7.2e-08 43 2.1e-06 39 4.8e-05

Heu 10 830 9.7e-05 12 7.2e-08 18 1.3e-05 40 4.8e-05

NTF1 0 16 4.1e-05 5 1.6e-06 9 1.3e-05 8 3.5e-06

NTF2 0 16 4.5e-05 6 2.4e-06 9 1.5e-05 9 6.8e-07

Lob 0.1 50 9.8e-05 10 5.9e-05 22 9.6e-06 15 4.6e-05

Spam 1 150 9.8e-05 5 3.5e-06 6 4.0e-05 13 3.5e-06
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