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“Cuiusvis hominis est errare,
nullius nisi insipientis in errore perseverare.
(Jeder Mensch kann irren!

Unsinnige nur verharren im Irrtum!) ”

(Marcus Tullius Cicero)

“Was wir wissen, ist ein Tropfen;
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was wir nicht wissen, ein Ozean.

(Sir Isaac Newton)
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Abstract: In the following dissertation we consider three preconditioners of alge-
braic multigrid type, though they are defined for arbitrary prolongation and restriction
operators, we consider them in more detail for the aggregation method. The strength-
ened Cauchy-Schwarz inequality and the resulting angle between the spaces will be
our main interests. For the problem of the one-dimensional convection we obtain per-
fect theoretical results. Although this is not the case for more complex problems, the
numerical results we present will show that the modifications are also useful in these
situation. Additionally, we will consider a symmetric problem in the energy norm and

present a simple rule for algebraic aggregation.
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1 Introduction

It is a quite old and simple, but even still interesting question how we can practically

solve the system of linear equations
Au=f.

Since scientists from different disciplines use computers to solve mathematical models,
the dimension of the systems of linear equations that can be solved exactly and in ac-
ceptable time is one of the limits for the complexity of the models and the precision of
the conclusions they get. In particular, if the number of equations represents a number
of gridpoints then the dependency of the precision on the size of the matrix is obvious.
As the memory of computers grows and the processors become faster there is also a

need for fast and robust solutions for systems of linear equations.

In the following section we will briefly sum up the popular methods to solve a system
of linear equations. All the presented methods are based on the idea that we consider
a partial differential equation (PDE) on a domain 2 C R? (R?) and that the system of
linear equations results from the discretisation of the PDE. For some of the methods
this is a necessary condition. For other methods this is only a motivation (black box
solvers). The following dissertation belongs to the second kind of methods.

We will consider the papers [Van92], [Van95|, [VBM96], [VBMO01] and [VBT99] in more
detail. These papers introduce and develop the smoothed aggregation method. This
method has a similarity to this thesis. Of course we will present the differences of the

ideas, too. Afterwards we will give a brief outline of this thesis.

The first idea we present is called the domain decomposition method. The idea is based
on the notion that there is a domain €2 on which the continuous problem is defined.
Thus the domain is simply decomposed in n subdomains §2; C €2, ¢ = 1,...n. On each
of these, a smaller system of linear equations results. It is obvious that these problems

are easier to solve. But now the problem occurs that the right-hand side for several
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1 Introduction

of the smaller problems is influenced by the solution on the whole domain itself. Fur-
thermore we have to compose the solutions on the different subdomains to a global
solution. For both problems it is obvious that the more the solutions on the subdo-
mains are influenced by each other, the bigger the problem is. Hence this is particularly
problematic for elliptic problems.

In fact this is a quite old idea. The first time the idea was mentioned was in the 19th
century in [Sch70]. Since that time there have been many evolutions and modifications
for this method. Here we just mention the papers [BPS86], [BPS87], [BPS88] and
[BPS89] as examples.

The first applications for the domain decomposition method on big domains are consid-
ered in [VARGO] in the 1960s. The first applications for elliptic problems are considered
twenty years later in [BjH88], [BjW84], [Rou89], [Smi92] and [TRVI1].

Another concept is what we call the multigrid method. It is basically motivated as
follows: If we use an iterative solver for the system of linear equations (for example the
Jacobi-method), and we consider the residual error ef = AufF — f after k iterations,
then we can decompose e* into frequences. Even if the iterative method converges,
there are frequences in which the error is reduced quite slowly by the iterative method.
The idea is that on different grids, the error in different frequences shrinks fast. Hence
we use the different grids and solve a linear system of equations on each of them. Again

the problem occurs that we have to build a solution from the solutions on different grids.

In fact these methods can be split into two different types. First there are the mul-
tiplicative methods. In these methods we start on the finer grid with some steps of
an iterative solver. Then the remaining error is mapped into a coarser space. On this
space, a lower dimensional system of linear equations results which we have to solve.
The right-hand side for this system results from the error which remained on the finer
grid. We solve this lower dimensional system of linear equations and map the solution
in the finer grid. As a last step, the mapped solution from the coarser grid is used to
modify the current iteration on the finer grid to obtain a closer approximation to the
solution on the finer grid.

The name of the method is inspired by the fact that there is a matrix representation for
this algorithm which shows that the method is based on the multiplication of different
solvers. We emphasize that as the remaining residuum on the finer grid is used as the
right side in the coarser grid, the coarser grid system needs some information from

current iteration on the finer system. This is obvious from the multiplicative represen-
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tation of the algorithm we mentioned above.

The other idea is to use an additive method. In these methods we solve the equation,
or a part of it, on different grids or different subspaces respectively. Thus we start
by decomposing the right-hand side f of the system of linear equations which results
in some subspaces. Then we use on each subspace an iterative method (or the exact
inverse) to obtain an approximation for the solution. Afterwards we add the solutions
of the subspaces to obtain a global solution. The name for these methods follows as
the solvers on the different subspaces are linked additively.

If we compare this to the multiplicative methods, two things are obvious:

As the multiplicative methods use more information on coarser grids, these methods
should need less iterations. As the additive methods on a grid need no information from
another grid, these methods can be parallelised in a better way on a parallel computer.

In this case, these methods should be faster.

The multigrid methods were first mentioned the 1960s in [Fed62], [Fed64], [KrD72],
[Brk60] and [Bak66]. In the 1970s, important progress for these methods was made. In
particular, the papers of A. Brandt [Brd73], [Brd77], [Brd82] and [McC87] have been

important for the development of this method.

A popular evolution of the multigrid methods is the introduction of the hierarchical
basis. The idea is to use on finer grids not the nodal basis but the basis of the coarser
grid and some nodal basis functions for the finer grid. One of the most interesting
aspects of this method is that the method can easily be formulated as a block iteration.
This idea was first mentioned in [ZKGB82] and as a similar concept in [McR83]. The
first analyses of this method were mainly influenced by H. Yserentant in [Yse83],
[Yse85], [Yse86] and [Yse86al.

In our thesis, the preconditioners are based on the algebraic concept of multigrid meth-
ods (AMG). In contrast to other (geometrical) multigrids, in these methods the coarser
grids are not defined by a geometrical structure. The coarser grids and coarser opera-
tors are simply calculated by the elements of A itself. Hence it is possible, but no longer
necessary, to have a geometrical stucture on which the problem is based. According to
this concept, the multigrid methods can be used as black box solvers.

This method was developed by Brandt, McCormick and Ruge in [BMR82a], [BMR&2b]
and [BMRS84]. Further evolutions of this idea are for example presented in [Brd86],

[Stu83] and [Bra95]. Up to now there are many modifications and applications for this
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1 Introduction

method. The presented dissertation is one of the modifications of this idea.

The smoothed aggregation (SA) is also one of the modifications of the AMG. As the
SA is similar to our modifications, we will briefly introduce this idea:
If there is a multiplicative multigrid method used to solve a system of linear equations,

then we obtain on each grid 7 =0,...,J a system of linear equations
Ajl’*J = f]

Hence we require a smoother on each grid. If the smoother follows from a splitting

method, then one iteration is defined as
l’k+1’j = gj(flﬁk’j) = Mj .flfk’j + Njfj
with an iteration matrix M;. The error after k iterations is defined as

ehd = p*xd _ kg

Components of the error which are not effectively removable by smoothing, i.e.
Mjek’j ~ ekJ’

are called smooth components (or the algebraic smooth error). The idea of the SA
method is to reduce the smooth components of an error we have on grid 7 on another
grid. Thus the modification handles a similar problem as the multigrid method itself.
In fact the modification should use the same property more effectively than the multi-
grid method itself.

The solution proposed in the SA-method is to modifiy the prolongator. Mostly P is
the common aggregation prolongator. Then P = § P is used where S is a smoother.
In the main idea of SA, the restriction operator follows from R = PT and the matrix
A is symmetric positive definite. As the method deals with the algebraic smooth error,
some knowledge about this is assumed. Hence we have a bit less the property of a
black box method. Mostly, the smoother S is a polynomial in A and the coefficients
of the polynomial are influenced by the eigenvalues of A. This makes it obvious that
some knowledge about the algebraic smooth error (or the matrix A) is used.

The method was introduced by Vanek in [Van92] and [Van95| and developed in [VBM96],
[VBMO1], [BrV90], [KrV96] and [VBT99].
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Now we want to highlight some aspects of the SA-method in relation to the present
dissertation. First of all, the S A-method generally uses P = RT, which is not necessary
for our modifications. Furthermore, the SA-method is only introduced for multiplica-
tive multigrid methods and it is based on the idea that iterative methods are used
instead of the exact inverse. In particular, it is pointless to use the exact inverse on
any other grid than the coarsest one in a multiplicative method. Our modifications are
introduced while we use the exact inverse on some subspaces. For additive methods,
this is a possibility to analyse the system and as for some subspaces iterative methods
converge fast this is a reasonable model system. Additionally, we have mentioned that
the most results in the SA-method are for symmetric matrices. However, we will con-

sider the unsymmetric case more in-depth.

At last we will present two modifications of the SA-method. The first one is called the
adaptive smoothed aggregation («SA) and is introduced in [BFLMRCO04]. The idea
of this method is to drop the knowledge of the algebraic smooth error. This error is
estimated by the algorithm itself. Hence we need less information on the linear system
of equations to obtain a fast solution. Based on this modification, the method is again
a bit more a black box solver.

The other evolution is introduced in [GJVO08]. In this paper we have R # PT because
the smoother is only used to modify the prolongation. Hence we have P = § P and
R = PT. Hence it is quite similar to our modification.

The difference, however, is that A is symmetric in [GJVO08| and that the idea of mod-
ification is still given by the algebraic smooth error. The main difference is that the
smoother S is a polynomial in A. Hence S and A commutate. Thus the method is

analysed based on the idea that we have

RASP=RS7?AS'?P.
Now we will outline how the presented thesis is organized.
In the second chapter we will briefly introduce a symmetric and an unsymmetric model
problem. These are both based on PDEs. Then we will introduce some operators which
are important for the algebraic multigrid method. In particular, we will give a matrix

representations of the abstract operators used in our theory. This is nothing new, but

it is rarely written down.

In the third chapter we will introduce the three preconditioners we will analyse in this
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1 Introduction

paper. In doing so we will present them as two grid methods. For all of them we will
prove some basic characterisations as for example a sufficient condition for their non
singularity. Two of them (Cppy, Cpr) will be analysed in more detail. We will reduce
the estimations to one parameter, which is based on the strengthened Cauchy-Schwarz
inequality. This is a common instrument to analyse multigrid methods. It is used for
example in [AxB84], [BaD81] and [Bra81]. Afterwards it is easily possible to consider
the behaviour of the operators concerning this constant. In particular, it is possible to
compare the operators to each other. Of course, the detailed analysis is more complex

if the number of grids is raised.

In the fourth chapter we will study some modifications of the prolongation (one sided
modification) or of both, the prolongation and the restriction (two sided modification).
The main result is that the results of the previous chapter still hold if we change the

projection or the spaces in which we decompose an element v € V.

The modifications are presented in the fifth chapter for the model problems we have
presented in the second chapter. Thus they are based on PDEs. Especially for those
systems which are only based on a convection, we obtain perfect results. This is par-
ticulary the case for the one dimensional convection. In the case of more than one
dimension, the theoretical results belong to a condition which is hard to control in a
numerical algorithm. Nevertheless, we will see that the results are also perfect in the

two dimensional situation.

In the sixth and the seventh chapter we will present some aspects for the multigrid
situation. In doing so the main interest is to obtain a condition concerning the non
singularity of the preconditioners. This is done for the unmodified preconditioners in

the sixth chapter and for the modifications in the seventh chapter.

In the eighth chapter we will consider the case of a symmetric matrix A for the unmod-
ified preconditioners in more detail. The analysis of the DT-method in this situation
will lead to the rule for aggregation we use in numerical examples. Furthermore, the
quality of the preconditioner for a given system will be expressed by a constant which

accentuates the black box character of the algebraic aggregation as used.

The ninth chapter is divided into two parts. In the first one we will briefly summarize

some properties of matrices which are useful for iterative methods. Afterwards we

20



consider the properties that are maintained for the coarser operators. In the unmodified
system, all properties remain true, but for the modified preconditioners, this is not
generally the case. In the second part of the ninth chapter we will present numerical
results for the different methods and modifications. The implementation is done in
FORTRAN 90.
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2 Definition of grids, function spaces
and operators

2.1 Basics of finite elements

Let Q C R? be a bounded domain. Then we assume that we can decompose Q) into

closed triangles or squares A so, that they hold

Q=0,=JA
and fulfil the following condition R.

Condition R: The intersection of two different triangles (squares) is empty, a common
edge or a common vertex. Each triangle (square) includes a circle of the radius cg - h

and is included in a circle of the radius cg - h~!, where cg does not depend on h.

As our finite elemente space we define
(2.1) V= Sop = {vn € C(Q) : vplais linear and vy|p0, = 0}
(2.2) or V= Sy, ={v, € C(Q) : vp|ais bilinear and vy, |gn, = 0}

In this case the nodal base of V' can be constructed as follows: Let N7,..., N, be the
vertices or nodes of the triangles (squares) {A} which are in the interior of €. Let then

¢ni € V be the linear or bilinear functions for ¢ = 1,...,n with
pi(NG) = 01,

where 0; ; is the Kronecker d. Thus, for v € V' we have the unique representation

n

v(a) = 3 o) gila).

i=1
Thus, the dimension of the space V' is given by the number of vertices. We set for

i =1,...,n the unit vectors e; for (p;);=1.. ., and represent v by the vector

.....

v=(v(N),...,v(N,)).

23



2 Definition of grids, function spaces and operators

2.2 Modell problems

In this section we will introduce some model problems given by partial differential
equations. Then we will denote the stencils we get by the finite element method or the
finite differences method for these problems. These stencils give us the structure of the

matrices we will use as examples for our preconditioners.

Symmetric modell problem: As a first example let us consider the equation

—div(a(z) grad u(x)) = f(x), VY eQ

u(z) = g(x), Ve oN.

Furthermore, we assume

(2.3) alz) = <“<$) 0 )

with a(z),b(x) € CY(Q), a(z),b(x) > 0 for all z € Q and f(z) € C(Q). The weak
solution of this problem for a given f € L?*(Q) is given by a function u € Hy*(Q)
which, for all ¢ € C3°(Q) fulfils the equation

/Qa(x) g—mul agif) + b(x) 88—;2 8?—;? dor = /Qf(x) o(z) d.

We get the finite problem if we set ¢; € V instead of ¢ € C3°(Q2). Since the matrix

a(z) in (2.3) is symmetric this also holds for the stiffness matrix we get. This matrix

is induced by the stencils

_5nw —En _5ne
(2'4) _gw m _66
_5sw —E&s _586

with m =ey + e +en + €5+ dnw + Ine + Ose + Osu
and ¢; >0, for i=w,e,n,s

0; >0, for i=nw,ne,se,sw.

Furthermore the coefficients ¢;, §; are functions of a(x), b(z).

24



2.3 Subspaces, prolongation and restriction

If a(x), b(x) are constant then we obtain for linear functions d§; = 0 for i = nw, ne, se, sw.
For bilinear elements, this is the case if we approximate the integrals on the quadratic

elements A of the area h? with the vetices x;, i = 1,...,4 by

4

[ ste)do~ 1n(g(a) =023 glz2)
A i=1
In general, the values depend on the approximation of the integral. For the purpose of

an example, it is sufficient to take the structure as given in the stencil (2.4).

Convections diffusion equation: As an unsymmetric example we consider the equa-
tion
ou ou

— +by(r) =— —clu(x)=f Vre
81’1

u(z) = g(x) V€ .

Thereby is b € C(2) and € € R,. In this case we use the upwind method for finite

differences for the discretization. Therewith we get for ¢ > 0 with
m = 4e + |by| h + |ba| b

the stencils

0 — 0 0 boh—¢ 0
—bih—c¢ m — —bih—c¢ m —
0 —boh—¢ 0 0 —c 0
for bl,bg >0 for by > 0, by <0
0 byh—c¢ 0 0 —e 0
—e m bih—c¢ —e m bih —¢
0 —€ 0 0 —byh—c¢ 0
for bl,bg <0 for b < 0, by >0

2.3 Subspaces, prolongation and restriction

For a linear vector space V of dimension n we will define some subspaces V; of the

dimension n; < n. We will do this by using restriction operators. That way we can
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2 Definition of grids, function spaces and operators

represent V; by a n;-dimensonal subspace of R™ or by R™. As we will reduce the dimen-
sion to solve linear equations, it is important for us to represent them by R". However,
to add elements of different subspaces, we need the representation for all of them as
an element of R™. Thus we define restriction operators by matrices of the dimension
n; X n. To represent an element v; € V; = R™ that is given as an element of R™ we

need prolongation operators of the dimension R™*":.

As we will also consider the preconditioners as black box methods for linear equation
systems, we will give a definition of the subspaces and operators that has nothing to
do with partial differential equations, finite elements, finite differences and so forth, we
will also introduce the subspaces and operators we consider only by matrices.

Some operators will be introduced twice: By a definition for the image of the basis
functions and by a matrix representation. If it is necessary, we will show that the given

matrix is the representation of the respective operator.

2.3.1 Definition of restriction, prolongation and subspaces V; C V.

For the space V' that is given by
V=< P15y Pp >

with the basis functions ;, 1 = 1,--- ,n weset V = V; and generate recursive subspaces
Vi,i=20,...,J —1 that fulfil

VioVy_i Do D W.

For the basis functions ¢;, i = 1,...,n of V, we set ¢;; = ¢;, forv =1,...,n; = n.
Assume now that for j < J and for all j < k < J, the spaces V}, are defined by the basis
functions ¢y, @ = 1,...,ni. Then we define a linear restriction operator Rg_l and so
Vj_1 is defined as

Vier = (Rj_1 050, R 194,

Alternatively we can define basis functions p;_;; for ¢ =1,...,n;_; by
g

(2.6) Pj—1i = Zﬁ,s%‘,s-
s=1

26



2.3 Subspaces, prolongation and restriction

Then we set Vi1 =< ; 11,...,@j-1n,_, >

If we associate V; with R™ and V;_; with R"-! we write ‘7; and ‘7}_1 respectively. In
this case, (2.6) gives a matrix representation for Rg_l, and it is R;:_l € R™-1%" Since
< Qj11,--Pj-1n,_, > is a basis of V;_y, it is obvious that we get rk(Rj:_l) =n;_1.
Further, we define for the prolongation also a linear operator Pj -L. Vi_1 — Vj by the
definition for the basis functions. Because of V;_; C V}, the identity is a quite common
choice for ij ~!. If we use the vector representation by an element of 17]-_1 = R™-! or
V; = R™ respectively for the elements 7,_; € V;_1,7; € V; we need the prolongation
operator as a matrix ij_l € R™>*"i-1. The simplest choice is to set ij_l = (R;:_l)T.
In this work we will only consider the situation

PITh= (R

J

Hence we define the prolongation this way. As already mentioned in the introduction
we will also consider situations in which we only modify the prolongation. But this
will be obvious by another notation. At least ij ~! should fulfil rk(ij ) =n;_,. For
PI7H = (R’_ )" this is obvious fulfilled.

If we have defined the operators R;:_l and ij “!for j=1,...,J then we can define the

following operators for an easier notation:

1. Based on the definition of R;:_l for j = 1,...,J we define R, : V; — V; for
0<k<l<Jhby

R =Rt o-..0Rl_|.
In particular, we set for j =0,...,J

Rj = R}I and RJ = [n

2. Based on the definition of ij_l for j = 1,...,J we define for PF : V, — V]
0<k<l<Jby

Pl = Pt oneio Pl
In particular, we set for j =0,...,J

P;:=Pj and P;=1I,.
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2 Definition of grids, function spaces and operators

At this point it is irrelevant whether the operators are identified by matrices or not. If
we have the representation by matrices and we have a linear operator A = A; : V — V|

we define coarser operators A; for j =0,...,J — 1 iteratively by
(2.7) Aj =R AL P
This immediately implies
A =R; AP
and, based on the assumption of P; = (R;)", this implies for v; = P;v; and w; = P; w;
(405, w;) = (AP 05, Pyw;) = (Avj, wy).

If we interpret P; as the identity and so v;, w; and v;, w; as representations of the same
elements in different spaces,the dot product is independent of the space in which we

consider the elements.

Furthermore, we define the operators @);, @j for j=0,...,J —1by

Qs Vi — Ply(Vy) with

(2.8) (T, PLyT) = (Q 0y, PLy 7)), forall Ty € Vigy, 05 €V

~

Q;:Vy;— 'V, with

(2.9) (vs, v;) = (Qj vy, v;), forall wv; € Vi v, €V

Remark: 2.3.1. With these definitions, it is obvious that Qj,@j are the orthogonal

projections with respect to the inner products (., .).

And at last we define the vector spaces W7, fVV] and Wj for j =1,..., J with the basis
Dris 7 = 1,...,7’LJ by

U <(@j - @j—l)%ﬂ’ T (@j B @j‘l)w’">
Wy = AT = Q) Ry s+ (1 = Qi) Ry 010)

Wi = (Pj(l; = Qj-1)Rj s, Pi(l; — Qj—1)Rj o) -
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2.3 Subspaces, prolongation and restriction

2.3.2 Basic results for matrices

First we define the i-th unitvector of R™ by eg for j=0,...,Jand ¢ =1,...,n; and

the identity matrix of the dimension n; x n; by I;.

With the definitions of the prolongation and restriction operators we will now assume

the following characteristics for their matrix representations :
R e Rt pk(RITY) =
Py = (R € RM%, rk(Plyy) =
Hence follows immediately that
R;:Jrk € R XMtk rk(R;:Jrk) =n;

P’

= (RITRT e RYwm | pk(PL ) = .

Further, we define the matrices S; € R™ ", §j € R"*" for j =0,....J by
Sj = (R;:—i—l F)]j+1)_1 and §j = (R] Pj)_l.
Therewith we obtain the follwing relation.

Remark: 2.3.2. By the definitions for ij+1’ R?Jrl,

(R;:-l-l P]

o
J+1)T:R;+ by

Jj+1

cmd (R] Pj)T = Rj P]
holds for all j =0, ..., J. Furthermore R;H ij+1 and R; P; are positive definite.

proof. First, just by the definition of ij = (R§+1)T we obtain P; = R]. This implies

(R;:-i-l ij+1)T _ (ij+1)T (R§+1)T _ R;:-i—l ij+1

and (R; ;)" = P/ Rl = R; P;.
Further, for a v; € R" we get

(R Pl 0, 7)) = (P

J Jj+1 Jj+1 5j7 ij-l-l fﬁj) = Hf)jj—i-l ;(7]'”2 Z 0.

And as ij+1 € R™+1*" has rank n;, we have HPJJH'@-HQ = 0 if and only if we have
v; = 0. This proves that R;Jrl ij 41 is positive definite. By the same arguments, the

propositions for R; P; holds. O
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2 Definition of grids, function spaces and operators

From Remark 2.3.2 follows in particular rk(R§+1 P]]H) = rk(R; P;) = n;. Hence the
operators Sj,gj,j = 0,...,J are well posed. Further, we get the following basic

propositions for them:

Remark: 2.3.3. From the definitions for S;, §j it follows that S;, §j are symmetric
and positive definite (s.p.d.) for j =0,...,J.

proof. With Remark 2.3.2, these characteristics hold for S Land S - ! respectivly. Hence

the proposed characteristics follow for the operators S}, §j. O
Lemma: 2.3.4. By the definitions of section 2.3
1. Q; =P, S;RI*" and Q; = P; S; Ry, holds for j =0,...,J — 1.

2. The operators (Ij 1 — Q) : Vi — (JDJJJFI({;'))l and (I —Q;):V — Vit are the

orthogonal projection concerning the inner product (.,.).

3. We have Q;—1v; = 0 for an v; € ‘7]-, if and only if we have R§—1 v; = 0. We have
@jv =0 for an v € V, if and only if we have R;v; = 0.

4- @j@kU:@k@jUIQJU holds for j < k.

proof. 1. Because of the uniqueness of the orthogonal projection with respect to a
given inner product, it is sufficient to prove that the operators @);, @j define each

an orthogonal projection. By the definition of S}, we have for j =0,...,J -1

(Q]) g+1 S RJH PJJ+1 S' Rf“
=Pl

=Pl S; R = Q.

(RJ-‘t-l P]

J+1

) R]-i-l PJ

j+1

j+1
Si R;

Hence (); is a projection. From the symmetry of S; follows with ij 1= (RgH)T
Q)" = (Pl 8 BT = (BRI ()" (PL)" = Pl S R = Q5.

This proves the orthogonality with respect to the inner product (.,.). The results

for @j follow by the same arguments.

2. As ; and @j are orthogonal projections this also holds for (/; —@Q);) and (I—@j).
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2.3 Subspaces, prolongation and restriction

3. From the definition of Q;_; as Q;_1 = ij_l Sia R;:_l it is obvious that Rg_lﬂj =0
implies Q] 1v; = 0. For the other implication we have that 5;_; is positive definite
and PJ has rank n;_;. For w; # 0, we therefore obatin also P’ Sj_1w; # 0.

So Q;_17; = 0 implies R’

*_10; = 0. The propositions for Q] and R; follow again

by the same arguments.
4. For 7 < k we get
0;0wv =P;S; R; P S Ry, v
= P;S;R¥ Ry P, Sy Ry, v
= P;S; RE Ryv = Q;v

By the same arguments follows @k @j v = @j v

The fourth proposition of Lemma 2.3.4 immediately implies that
(Qi=Qir) v, (Qi— Qi) v) = (i = Qin)v, ), for i=1,...,J
(Qov, Qov) = (Qov, v)
(Qi = Qi) v, (Q) — Qi) v) = for u,5=1,....J, 1#]
and ((@z - @z’—l) v, @0 v) =

These characteristics follow immediately as the operators are all orthogonal projections

with respect to the standard inner product.

The operators A; € R"%*™  j=0,...,J —1 as defined in (2.7) represent the operator
A on the subspaces V}, j =0,...,J —1. So as we want to use the operators A; to solve
for an given operator A € R™" and a given f € R" the equation Au = f we need that

the operators A; are non singular.

Lemma: 2.3.5. 1. Let A € R™" be a non singular matriz. Then it follows that A;
is non singular if and only if there is no v; € V; with Av; € VjL'

2. If Ais s.p.d then is A; for all j =0,...,J —1 s.p.d.

In particular this implies that A; is non singular.

3. If A is real positive then is A; for all j =0,...,J — 1 real positive.

In particular this implies that A; is non singular.

31



2 Definition of grids, function spaces and operators

proof. 1. For an arbitrary j =0,...,J—11is @j =P §j R; the orthogonal projection
V — V;. And as it is @jv = 0 if and only if it is Rjv = 0 we obtain R;v = 0 if
and only if it is v € V;*. As we have rk(P;) = n; for P; € R™*™ we obtain that

there is an v; € 17} with
Ajgj == RjAPjgj - 0

if and only if there is an v; = P;v; € V; that holds R; Av; = 0. And this is

equivalent to Av; € le'
2. If Aiss.p.d. then it follows
AT = (RjAP)" =Pl ATRI = R; AP; = A;.
and for an arbitrary v; € 17} with v; # 0

ﬁAjﬁj ::(\J/]TRjAijT\)/j = (f)]f’[jj)TA f)]f’[jj > 0.
20

This implies that A; is s.p.d. and therewith non singular.

3. If A is real positiv then it follows aik € R for all elements aik of Aj = R; AP;.

Again for an arbitrary v; € ‘7) with v; # 0 we obtain

ﬁAj’i)ij :@fRJAPj/ﬁj = (P]/'J])TA P]gj > 0.
20

This implies that A; is real positive and therewith non singular.
O

Corollary: 2.3.6. Let A € R™" be a non singular matriz. Then it follows that A; is

non singular if and only if there is no wji; € VjL that holds A~ w;1 € V.
proof. The proposition is equivalent to the first proposition of Lemma 2.3.5. O

The following technical aspect we will use frequently:

Lemma: 2.3.7. Forj=1,...,J—1 1t s

R ,(I; = Qj—1) = 0.
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2.3 Subspaces, prolongation and restriction

proof. Based on the definition of S;_; we obtain

RI_\(I; = Q1) = R} _,(I; = P/7" S; 1 R _))

=R _ - R_ PI7'S;.R_ =R

j—1

—RI

j—1
]

Now we will give an alternative representation for CA)]-, that applies under a certain

condition.

Lemma: 2.3.8. By the definitions ofP] Si—1, S and S] 1 we have forj =1,..., J—
1

Qj-1=P;S; Q1 R;
if and only if we have
S;PI7 S =PI S,
proof. By the definition of @j_l by @j_l = P §j_1 R;_1 and because of rk(P;) =
rk(R;) = n; we obtain
Qj1=P;S;Q 1Ry =P S P78, (Rl R,
& P8 1R =P8 PSR
& PITUS =S5, PI S
This is the proposition. O

The meaning of this lemma is that the operators @,Pj_l commutate and §J 1=
S 0S;_1 holds. If we consider the matrix representations of the operators, the equation
Sj 1= S o S;_1 is not well posed just by the dimensions of the matrices. But even if
we use the definitions of the operators just by their effect, the equation Sj_l = Sj 0S4

does not hold in all situations. Furthermore it is obvious that the equations
S\j_l = S\j o Sj—l and §j ij_l Sj_l = ij_l S\j_l

are the same if we interpret P]] ~! as the identity. Remember that we have done this as

we have associated the spaces R™, R™ with the spaces of linear or bilinear functions.
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2 Definition of grids, function spaces and operators

Lemma 2.3.8 immediately implies that if the assumption of this lemma is fulfilled
Py S (I; = Q1) Ry = Py S; (I; = P/ ™' S; . RI_)) R,
=Q;— P S;PI7' S, RI_| R,
= @j — @j_l follows.

Furthermore, it follows in this case that the matrices §j, 7 =20,...,J —1 are not
needed to get matrix representations for orthogonal projections @j. This results from

the following corollary.

Corollary: 2.3.9. If Sj.1 P, S; = P, S; holds for all j = 0,...,J — 1, it follows
forallveV
Pjgj :Pj_ISJ_lpj:fSJ_Q...Pf+1Sj

and @\j:PL}]_ISJ_lpL}]__fSJ_Q...P]-]+1SjRj.

proof. By the representation @j = P; §j Pj for j =0,...,J —1, the second proposition
follows immediately from the first one. The first proposition obviously holds for j =
J — 1 according to the assumption. Assume now that the equation holds for k > j.

Then we obtain
~ SRR
P;S; = P; Pl S,

_ pitl g, J
=P; Sin Pj+1

S;

:P:]]_ISJ—IP:]]__ESJ_Q...f)jj_i_lsj_

Further Lemma 2.3.8 directly implies the following representation of the norm:
Corollary: 2.3.10. ]f§,~ PSS, =Pt gi_l holds, then it follows for allv € V' that
1@ = Qima)ol* = (i (L = Qi) Riv, (I = Qica) Ry )

proof. By the assumption we obtain for an arbitrary v € V
(S (I = Qi—1) Riv, (I = Qi1) Riv)
= (Si (Ii = Qi—1) Riv, Ri P, S; (I; — Qi_1) Riv)
= (P, (Ii = Qi-1) Riv, P 5; (I = Qi-1) Riv)
= ((@z‘ - @i_l)v, (@z‘ - @i—l)v)-
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2.4 The aggregation method

2.4 The aggregation method

2.4.1 The general setting

Now we will introduce the aggregation method. Hence we set for the nodes N7 = {\;},
fori=1,...,n.If {/\/;-j}i:l n, and @;; are defined for j € {1,...,J}, then we define

7777 J
some kind of node-like sets

NJ_IC{NE,...,Ngj}, izl,...,nj_l

2

in such a way that we have

nj—1

AN = (W, A2} and MG AR =0 for K £
i=1

Furthermore, we define the following sets of indices

Y ={1e{1,... ,n;} IN] c N7}

So the aggregation method is defined as we set for i =1,...,n;4
pj-1i(T) = Z ©;j,k().
ker!

Vj_1 is defined as
Vi =<@j11,- Pj1n; 1 >

and we obtain dim(V,;_1) = nj_1. As v € V = V; has a unique representation v €
R"™, each v; € V;, 5 = 0,...,J has a unique representation v; € R". We get these
representations the same way. For j = 0,...,J and ¢ = 1,...,n;, we set the unit

vector e/ € R for ¢, ;. We obtain

ng

vi@) =D oM )psale) = (vNF), - o(ND))-

i=1

With the definition of the spaces Vg, ..., V;, we can also define the sets
IR —fre{1,.. . n} [NV c NI7F)
and in particular the sets

IF i {le {1, ng} [N C N}
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2 Definition of grids, function spaces and operators

Now we can define the following expressions: We say that two points (or sets) /\/Z-j , ,ﬁ N

k of level j are aggregated if and only if i,k € I"" holds forat = 1,.. ., nj_1. Further,

we say that N7 is isolated if and only if i € I7=% and |I7=%7| = 1 hold.

More generally, we say for 1 < j < J and 1 < k < j that the points ./\/;{1), e ,/\/;{l)

are aggregated to N7 if i(1),...,i(l) € I™™7 holds. Further, we say in this case
Ty Ny CNTTE

Now for 7 = 1,...,J the linear restriction operators Rg_l : V; — V;_1 which imply
these subspaces are given as follows:

. . ) i1
R;-_lgpj,i = Pj—1,k, with 7 € ],jf J.

For the linear prolongation operators P]] -1 Vi1 — V; we want to ensure that PJJ =
idy,_, holds. If we use R™~* for V;_;, we want to have Pj?_l = (R?_l)T. For that we
define ij_l :Vioi—Vjas

j—1 _ _
Pi7o 1= ) wik=pi1a
kel

In Figure 2.1 we have illustrated the set of nodes N2, ' and A° that describe the
decrease of the system’s dimension. For the one-dimensional case we have illustrate
the effect of R? and R3 = R} R? on a function v that is given as the sum of two basis

functions in Figure 2.2.

My ML ML M N
A
— —_—.— —
_— ® (- = A
AT T S g AP AY

Figure 2.1: Coarsing of the grids

So far the restriction and prolongation operators are defined for function spaces V;. The

same way we will introduce the operators 5}, §j. Hence we define the linear operator
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2.4 The aggregation method

2 2 2 2 2 2

Figure 2.2: Effect of R? and R} on v = (3 + 2
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2 Definition of grids, function spaces and operators

S;Vign— Vg forj=0,...,J —1by

1 o
(2.10) SjQjr1,i = W@j+17i, with ¢ € ],g’”l.
k

Analogously, we define the linear operator §j V= Viforj=0,...J —1by

N 1 :

(211) Sj LJi = WSOJ’Z" with ¢ € I]i
k
(2.12) and S, := Id.

The following lemma will show that one of the characteristics of these operators is
that .S; Rj:H and §j R; respectively are the identity on certain subspaces of V;,; and
V' respectively.

Lemma: 2.4.1. Forj=1,...,J
1. the operator S; as defined in (2.10) fulfils
S; R g = i = R Sjpa, Vi €V,
2. the operator §j as defind in (2.11) fulfils

o~

Sj Rijpji = pji = R; Sjpji, Vji €V}

proof. 1. Let ¢;; € V; be an arbitrary base function with
Z Pj+1k:
kerd it
Then we have

SR u= SR Y pinn =8 Y, BT oian =58 ) e

ke[g’j+1 ke[g’j+1 kelg7j+1

i1 it
= |]i”+ |- Sj s = |7 |Ij,j+1|<:0j,i = Pji
2

and

R;Jr Sj ‘Pj,i:R;Jr Sj Z Pj+1k = R;Jr Z S5 PitL

ke[j,j+1 kEIj’j+1
1 1
- 1
_ pitl E: . _ E:
= I |[j,j+1| i1k = |1 JJ+1 R (‘01"‘1 k
hi+1 154 +1
kerl”? kel“
1 -
J,J+1 _
1L i = w4

== .7. 1
77
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2.4 The aggregation method

2. The proposition for §j follows by exactly the same arguments.
O

In Section 2.3.2 we have seen in Lemma 2.3.4 that by the definition of P’ 41 as PJJJrl =

(RgH)T and S; as (R?rl P]] 1)~ we have a representation of the orthogonal projection
Q;jbyQ; = Pj 1S R;:Jrl. Analogously this also holds for @] Now we will see that by the
given definitions for the operators Pj’ 1 RJ AR ,S; and S and their characteristics, which
we have shown above, we get the same representations for the orthogonal projections

Q; and @j respectively.

Lemma: 2.4.2. With the operators S;, §j as defined in (2.10), (2.11), it holds for @),
and @j that

Q P]]-i-l Sj R;:—i—l and Q\j = P]:g\] Rj.

proof. Because of the definition of Qj,@j as orthogonal projections with respect to
the inner product (.,.) and the uniqueness of these operators we have to prove that

the operators P 1S R] i+ , P; S R; are orthogonal projections too. This will only be

shown for the operator (); because of the the proof follows by the same arguments for
Qj-
First we show that Q; is a projector, i.e. Q; = (Q;)?. For all v;,; € Vj;1 we obtain
]—I—l S R] Vi1 € ‘/]
Further, we obtain
Sj Rg—l—l’(]j = Uy VUj € ‘/]
and Pj 41 is the identity. So we get
1
]+1S RJJ’_ Vj = V; \V/’UjEV}'.
Considering these conlusions, we have for all v, € V)4

(Pg]+1 Sj R;:Jrl) g+1S R Uj+£ g+1S R Uj+1-

&v;

This means that (Q;)? = Q;.
Further, we need to prove that for the operator @, that for all v; € V; and all v;4; €

Vit1, we obtain

(Qjvjt1, v5) = (Vjs1, vj).
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2 Definition of grids, function spaces and operators

By the linearity of the operator, it is sufficient to prove this for the basis functions of

the spaces. Let 11, € Vi1 and ¢, € V; be two arbitrary base functions. Then there

exist unique n,m € {1,...,n;} with
S; RI* S; pjm =Pl L
]—I—l Pit1 g+1 Pjn j+1 |[j,j+1| Pjn
n
|]J,J+1 Z Pj+1t
tGIJ ,J+1
and @, = E ©jt1,s-
serji Tt

Now we remember that by the definition of the sets 77+ we obtain n = m or [79+1N

79+ = (). Then n = m is equivalent to i € [777!. Hence we get

(Qj wjr1i> Pik) = Z Pi+1,ts Z Pj+l,s

ter, it seli ™t

Zte[,{ﬁ“(‘PﬁLt, <Pj+1,t) if n=m

0 else
and  (©j114 @ik) = | Pit1n E ©j+1,s
serfp !

- e jj+1
Ztezgﬁﬁl(‘ﬂjﬂ,ta <Pj+1,t) it ey

0 else

This completes the poof of Lemma 2.4.2 O

2.4.2 Matrix representations

In this section we will give matrix representations of the linear operators R] e P] F "y
and § used for the aggregation method so far. With the unit-vectors et € ]R"J, we
define the matrix RMJ | € R"%-1X7 by its rows (RM] Vi, i =1,...,n;_1 with

(Rg\/[,j—l)i,.: Z (eg)T-

teri =1
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2.4 The aggregation method

Furthermore, we define the following matrices for j =1,...,Jand 1 <k < j:

J N _ XN j—k+1 i
Ry € R+ by RM] po=Ro Ry

n n; 1
PJ{JJ-i-l € R by P]]W]-i-l (Rg\;[’_])T
i~k iR X7 i~k i—1 i~k
Pk e Ro-xm by PgM =PIl PR
Lemma: 2.4.3. By the definitions of R’._,, P] * and ngj k,P]{Mk and the definition

of ei € R" as a representation of ¢;; € V] = ]R”J, we have for all j =1,...,J and all
1< k<j that

1. Rg\/[j_k is a matriz representation of R’
2. PI7% is a matriz representation of P! "

proof. It is sufficient to prove both propositions for £k = 1. The rest follows by the

iterative definition of the operators for k£ > 1.

1. For an arbitrary j € 1,...,J and an arbitrary base function ¢;; € V; with
Vi = eg € R, thereisaunique k € 1,...,n;_; with ¢ € I,g_l’j. By the definition

of R;_l, we obtain

j—1 _ _— Nj—1 M
Ry i =pje=e’ € RV

However, we have

R] M,j—1 7,' = ((ngj 1)1 (R] M,j— 1)713‘—1,- 63)
= > @e,.... > ()
ter] ™M teri
:ei_l.

The last equation follows from the uniqueness of k£ with 7 € I ,z_l’j . Therefore the

proof for R;:_l follows by the linearity of this operator.

2. Similary, for an arbitrary j € 1,...,J and an arbitrary base function ¢;_;; € V;_4
with ¢, 1; = /=" € R%- follows that there is a unique k € 1,...n; with
k € I”". By the definition of ij_l we now have

ij_lgpj—l,i = Z Soj,t = Z e'z Wlth €t an

teri =1 terd 17
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2 Definition of grids, function spaces and operators

Moreover we obtain (R}, ;_;)7, = 1 if and only if N7 C N/ ~! holds. Hence it
follows that

i , -
PJ{/LJ' e = <Rg\/[,j—1)Teg
' j—1 j -
— (((R%J7j—l)_71)Teg e ((Rg\/[,j—l).,nj)Teg )
= (g el ™ (el

Z e/ with e € R".

reri b

In this calculation, I(z) € N is the index with z € I lj(;)l’j . Again the equivalence

of the operators follows from the linearity.
As already mentioned iteration proves the proposition for k > 1. O

Since it is always obvious whether or not we use a matrix, we will write P/™", R} ;...

in both cases and drop the denotation with the index M.

Lemma: 2.4.4. By the definitions of R;_k, P]j_k, for the matriz representations of the
operators we have

1. (R;_k), = Zteﬂfk,j(e{)T, forallj=1,...;,J and 1 < k < j.
2. R, PI7" = diag(|11 ™), ..., |00, forallj=1,...,J and 1 <k <.
3. (Sj-1) "t = diag(|77 L [SYTY), forall j =1, .

4. ()7t = diag(|I{7 |74, 1|, forall j =0, J.

proof. 1. For an arbitrary j = 1,...,J and &k = 1, the proposition holds by the
definition of the matrix Rg_l. Assume that the proposition holds for a k—1 > 1.
Then we consider Rg_k = R;::],zﬂ Rg_kﬂ. By the assumption, we obtain for the
i-th row of R;::],zﬂ

j—k j—k
(R;_k—i_l)i,. _ Z ei +1’

telg*kyj*]*Fl
with

7RI — e (1, ey s NPT TR
1 J 1
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2.4 The aggregation method

Analogously, it follows for the z-th column of R’ that in the row s the entry

j—k+1
is one if and only if it is

NI NIk
z S

and zero otherwise. This implies for the element (Rg_k)i,s that

(R;:—’f)ivs - (R§:z+l)iv' (R;:—k+1).,s
1 if NI CNGTHE A NFTRRL o NTE
0 otherwise.
With 759 = {1 € {1,....n;} « Nf C NZH}.

. From the first result we obtain

(Rj_)s. - (P) ) = (Ri ). - ((R]_)e)”

@) e =

weli—hi yeri—h 0 otherwise.

|[[7k3|if s =t

The zero is given as we have I35 0 [77F = () for s # ¢.

. This proposition follows from the definition of S;_; := (R;:_1 P]] =1 and from

the second proposition of this lemma.

. This proposition follows from the definition of §j := (R; P;)~! and also from the
result of this lemma.
0

The Lemma 2.4.4 gives a matrix representation of the operators S, gj. As for the oper-

ators Rg_l, ..., we use the same symbol for the operator and its matrix representation.

Later on, we will need some characteristics of the cardinal number of the sets I7 "7,

Therefore, we will take a look at this now.

Lemma: 2.4.5. Forallj < J and 0 <k <jandalliec{l,... ,nj_},

=y 3 S R 1|

L . . o i 1
lk71€Ig k,j—k+1 lk—zeli:i+Lj k+2 l1€Ié 5J

43



2 Definition of grids, function spaces and operators

In particular, if for all z € {j —k+1,...,7}, we have
1177 = 5.,  forallt with NF™'c N7,

we also have

|Iij_k7j| =S5 Sj_k+1
proof. By the definition of the set ]ij_k’k we obtain

R = {l c{l,...,n;} : N} CMj_k}

= {l c{1,...,n;} : N/ C/\/?tl A ./\/'ljl'_l CMj_k}

:{ze{L...,nj} CNTCNTTEANTTE NI AL

AN NFTRL /\f.j"“}.

lk—1

Hence it follows for the cardinal number of the set 17"/ that

= > IR

Jj—k,j—k+1
lk,leli

o
= 2 >, I

[PRTS lk72elli:1;+1,j*k+2

(2.13) = ) > SRR YD V|

lkflelzjikyjikﬂ lk72€I{k7,k1+17j7k+2 l2CIljli2'j71
This completes the proof of this lemma. If we additionally have
|If_1’z| = s, forall t with N77! C V7,

it follows for all sets I;~"* which are used in (2.13) that their cardinal number only

depends on the index z. Thus, they are given by I7™"* = s.. This implies that

|Ig_k7‘7| e S] ..... s]—k‘-‘rl
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2.4 The aggregation method

2.4.3 The condition §j ij_l S = ij_l §j_1 :

In Lemma 2.3.8, we have assumed that §j Pf_l Si1 = Pf_l gj_l and as a result we have
arrived at a representation of the orthogonal projection @j_l by @j_l =P, gj Qj-1 R;j.
Furthermore, we have seen that by an iterative use of this condition we can drop the
operators S If we consider the assumption in the function space, PJJ is the iden-
tity. Hence, the assumption can be interpreted as S oS = SJ 1. By the matrix
representations used in the previous section it is obvious from the dimensions of the
matrices, that this term is not well-posed. That is why we consider the equation as

given in Lemma 2.3.8.

It will be the primary aim of this section to show an equivalent characterisation for
the assumption §j ij_l Si1 = ij_l §j_1, that will depend on the structure of the sets

Il-j ~19 Further, we will show additional characteristics that hold by this assumption.

We define the following condition for the restriction operators:
If we have N/, N;) C N for an k € {1,...,n;} and

J J ]+1
N Z] 1(2} : N '/\/; +1 )
as well as N c N/ N NJH
y i7—1(y) ij+1(y
then it follows that
(2.14) (IS = L, forall k=4, J—1.

In short, we denote this with condition (2.14).

The condition means that two grid points (or rows of A) N/ ,NyJ , that are at least in
the (J — j)-th step aggregated, have in all previous aggregation steps the same number
of grid points N7 (or rows of A) that are aggregated with them to one new grid point
N* (or new row of Ay) for k > j.

Now we show some technical lemmata that are coherent with this condition. The first
one will give us an easy sufficient condition for the condition (2.14). The other lemmata

will show characteristics of the condition.
Lemma: 2.4.6. If we assume for all j =0,...,J that S; € R™*" fulfils

Sj = Sj]j with Sj € R,
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2 Definition of grids, function spaces and operators

then the condition (2.14) is fulfiled.
proof. Based on the assumption that

S; =s;l; with s; €R
forall j=0,...,J —1, we obtain for all  =0,...,J —1

|]ij,j+1| _ |]tjvj+1| =s; forall i, te{l,...,n;}.

The situation given by the assumption of Lemma 2.4.6 is that in a single aggregation
step the number of aggregated points is always the same. Of course, this also holds
for the aggregation of two arbitrary points ./\/? ,/\/',Z : In all previous steps, they are

aggregated with the equal number of points to a new grid point.

Lemma: 2.4.7. Assume that ./\/;;],/\/'y‘] C Mj. Then the following three statements are

equivalent:
1. condition (2.14) holds for N/, N/ C N

2. the equation |Iz(':)r1| = \Iié:)ﬂ holds for all N/ € Nj with N/ ¢ N/~
N (@ and all k= j,...,J —1.

LN C

ij— 1(a a

3. the equation \]p’q| i) | holds for all j < p < q < J for [If;})| and |I};])| with

i(y)
C N/, CNJ

z(x z(y

proof. We prove the proposition by three implications:

1 = 2: If condition (2.14) holds, we get for an arbitrary N7 ¢ AN/™' and N that
NI N7 are at least aggregated in step j — 1. So the assumption of condition
(2.14) is fulfiled. Hence it follows for all k = j,...,J — 1 that

kk+1 kk+1
I | =10 |
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2.4 The aggregation method

2 = 3: By Lemma 2.4.5 the cardinal numbers of I ma o1 Z q) are given by

= S Y e Y

S N T e lg1€187397!

mal= > | > [ > |-

LEelR P lppa eIt P IPRYS)

As all used sets I"" ! represent a node N7 that is aggregated to N/ ~1all sets
have the same cardinal number by the assumption of the second characteristic.

Therefore, both sums have the same value. This proves the proposition.
3 = 1: This is obvious if we set k = 1.

O

On the next lemma, we will see in particular that the equation §j Pf_l Si_1 = ij_l §j_1
holds if and only if condition (2.14) is fulfilled. We can see this as the central charac-

teristic of this condition.
Lemma: 2.4.8. The condition (2.14) is equivalent to the following three statements:
1. forallt € {1,...,n;1} (@)kk is the same number for all k € I7™".
SiQj-1=Q;1 5,
3. S; P8, = P/7' S,y holds.

proof. 1. As it is (:9\])“ = ‘Ij—ljl we obtain from Lemma 2.4.7 that this is equal for
k

all k€ IJ7"7 if and only if condition (2.14) holds.

2. First we assume that condition (2.14) holds. Let ¢/ € R™ be a unit-vector. Then
it follows, that RJ el =e)7' € R%1 and that

i1a -1 _ pj-1_ 1 el Z
Pj Sj_1€t —P‘7 o T | ] 17j| ek

17
|[g ]| ke[] 1,5
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2 Definition of grids, function spaces and operators

Assuming that condition (2.14) holds, it follows for all k € I;™"/ that (@)kk is
the same number s. This implies that

|[J 1]| Z ek

keri =4I

PO , 1 .
R J J
and Q;15je =s5Q_1€ =85 ——— E ey..

—1,
|It] j‘ ke[gfl,j

S;Qj 1e] =

Assume now that condition (2.14) does not hold. Then there are two points

NI, NI € NP~ with N7 € NI, NI € N and
(Sjh = 1127 = ny #my = |I27| = (S)),1
It follows that

~ . 1 1 . - 1 1 i
Qj-155 (el +e))=Q;4 (n—e?c + n—eg,) =PI7ts; (— + —) el

x y Ny Ny

, 1 1 1 ,
_ pi-1 j—1
- e ()

i z Ty
11 1 . .

:W(n—Jrn—) Ze{ Epj (Vi-1)

t T e

and S Qi1 (el +¢€)) = |I] 1j| Z el

IJ 1,35

9 1. L~
Ve > |]?-,J|€? ¢ P/ (Vi)

ier] ™t

So it is obvious that the elements can not be the same.

3. As shown in the proof of Lemma 2.4.5, we can generally say that

(2.15) 2 = S |5

ter] ™

If and only if condition (2.14) holds, it follows that

(2.16) ST =117, witht e I,

terd =1
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2.4 The aggregation method

First we assume that condition (2.14) holds. Then we obtain for an arbitrary

unit-vector e/~ " € R%! that

~ . . 1 ~ .
Sij_lSj_leg_l = fS'P'_l

J
|IJ—17J| I
A

|J LJ‘ Z
erl~

R

el = Z el
REh ”| t

terl =4I

t

According to condition (2.14), is constant over ¢t € I’ for given 4, j. With

W 1777 o
equation (2.16), this implies for an arbitrary t € I~/ the equation

1 1 1 1 :
= J—1 J—1 _ J
T EE - e e 2

teri =1

On the other side we have

i—1a -1 1 j-1 j- Z
P SJ 16 - ‘]—j—l,J| PJ i ‘ j 1 J et
7

teI] L

This proves the proposition. Now we assume that condition (2.14) does not hold.
Then there is a t € {1,...,n;_1} and NZ, N7 with z,y € I}""/. By the first
proposition of this lemma we can assume that (S o = I #|127| = (S Dy
Hence it follows that

P P 1 . 1~ .
—1 1 1 1
S; ng Si-1 (ei ) = S; ij ‘]g—1,j| e = ‘]g_1,j| Sj Z eg

ier]) =t

Y
=T

o T 1 -
-1 -1 -1 -1
and P/ Sjae = Fj VRl e ] > €

b Ve

As in this case |I/™"| - |I37/] # |I}="7|, the proposition obviously follows if we
multiply both expressions with (e2)” ((e)"). It follows that

o~ , 1 1 . . 1 1
WSS ) G T G
. . 1
and (e))TPITPS_elt : Vel = —— .
( x) J J t |Ig 1J|( ) ? |[tj—1,J|
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2 Definition of grids, function spaces and operators

At the least, we get a result for the kernel of the operator R;:_l, which we will use as a

condition in estimations on the condition and proofs of the non singularity of operators.

Lemma: 2.4.9. Assume that condition (2.14) holds. Then k:er(R;:_l) = k:er(R;:_l R; P;)

holds as well.

proof. Consider an arbitrary v; € 17} with v; € k:er(Rg_l). By Lemma 2.3.4, this is

equivalent to v; € ker(Q)j_1). From the second proposition of Lemma 2.4.8 we obtain
0=Q 17 =Q; 15 R; P;5; = 5;Q; 1 R; P 3
— §j ij_l Sj—l Rg—l Rj Pj 5]'-
As we have §j ij_l Sj_1 € R™*™-1 with rk;(gj ij_l Sj_1) = n;_; this is equivalent to
Rg_l R; P;v; = 0. This completes the proof. O
2.4.4 The black box method

As we also want to treat the preconditioning operators as a black box preconditioner
for linear equation systems that has nothing to do with partial differential equations,

we will introduce them accordingly. So we set
V:=V,=R% and V,=R%, for j=0,...,J—1.

Then we choose arbitrary matrices ij_l € R™*"-1 with rk(Pj_l) = n;_ for j =

0,...,J—1. We define Rg_l by R;:_l = (ij_l)T and define the matrices R;:_k, Pf—k, P, R;
forj=1,...,J and 1 < k < j as done in section 2.3.1.
Further, we define the spaces V; for j =0,...,J —1 by
V= (Prel.... Pl
with the unit-vectors e, ..., eZLj e R = ‘7) Similar to section 2.3.1 we define the

operators
Sio=(R_, P Si=(RP)"!
Qi1 = Pii_l Sic1 Ri—l and @z =B §2 R;.

So they are just defined by the matrices. As shown in this section, this setting is
sufficient to obtain that Q,_; : R™ — P/"'(R"-1) and Q; : R* — P;(R™) are the

)
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2.5 The standard geometrical method (no aggregation)

orthogonal projections with respect to the inner product (.,.). Analogously, we can
define the spaces WJ, W; and W; by

<
i

j- <(@g - @j—l)%},h cee (@g - @j—l)@J,n>
Wj = <(IJ — Qj—l)Rj 25 SEREEE (IJ - Qj—l)Rj (PJ,n>

Wi = (Pi(I; = Qj—1)Rj @1, .., Pi(I; — Qj_1) R pyn) -

This leads to the same setting as the discussion of the finite elements. But here we

just choose arbitrary prolongations P’

.1~ They give the hole structure of the subspaces.

We get the structure of the aggregation method if we set PJJ 1= (Rg_l)T. We define

Rg_l by its rows (R’

S 1)i if we set

(R_i.= ) ()’

terd b

with sets I 7" that fulfil

Ulg_l’j:{l,...,nj} and L;inl;=0 for i#j.
k=1

In conjunction with the iterative definition of A; as A; := R;H Aj lej+1,
interpret N/ as the i-th row or column of A;. I77*" is the set of rows (or colums) that
will be added in A;,; to get the k-th row (or column) of A;. Hence, |I}7"'| is the

number of row or columns that are added.

we cal

2.5 The standard geometrical method (no aggregation)

For numerical results we will also use the standard geometrical method. Since we will
make some modifications to this method, we will give a short introduction to it. As
this method is mainly defined for grids with characteristic step widths, we introduce it
accordingly. Further we introduce the method for the two grid case. And as usual, the
multigrid situation follows if we use the setting iteratively.

Let V =V}, D Vg be spaces of bilinear functions over the grids 75, 7y. Assume that
they have the grid points V7", N' with i =1,...,ny and j =1,...,ng

Assume that the situation is given as shown in Figure 2.3. Then the prolongation
PH Vi — V, is given as follows. We distinguish three types of grid points.

o1



2 Definition of grids, function spaces and operators

B S N G N O e . .
A\ A\
yan) V4 yan) VY yan)
A\ N\ A\ N\ N\
—@ D @ D o— — —@ @ o—
h h h H H H
Nll 12 NlS 4 NS NG
N JanY N AN N
A\ A\ A\ \ A\
h h h
Ne | N7 N
AN AN
3 3
AL a2 N;T NEL A NH NQHT NH

Figure 2.3: Geometrical coarsing of the grid

1. For points NV}* = N that also belong to the coarser grid (as for example N"),
we define

(Pa'or)(NF) = v (V).

2. For points N* whose right and left neighbours N | = /\/;-H NP = /\/;If(H belong

to the coarser grid (as for example NJ'), we define
(Piloe)(NT) = (o (N]T) +ou(Nf1L)) /2.

The same definition holds for points A" whose upper and lower neighbours are

also points of the coarser grid (as for example N).

3. For points N* whose right and left neighbours and upper and lower neighbours

are no grid points of the coarser grid (as for example N'), we define

Pty ity = Cr DD o)+ o N o)

Hence, N/', N1, are the lower left and lower right neighbours of N7* and V', )1,

are the upper left and upper right neighbours.

This defines the prolongation P} and we define the restriction RY by RY = (PH)T.
For the one-dimensional situation, this defines basis functions as shown in Figure 2.4
on page 53 for the three grids 75, 7; and 7.
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2.5 The standard geometrical method (no aggregation)

o ¢ o ‘ o

N2 ONZ N2 N2 N2 N2 N2 A2 A

1

o @ X
1 1 1 1 1
N 5 Nj s N
0 0 0
M N N3

——— 3, R¥p3 and R? 3 respectively.

---- g, RZps and RZ pg respectively.

Figure 2.4: Restriction of two Basis functions
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2 Definition of grids, function spaces and operators

2.6 Decompositions and representations

At last, we will give some decompositions and representation of elements v € R™ and
the inner products (v, v) respectively, that we want to use. For an arbitrary v € V, we

have

(2.17)

M“

(Q Qj 1 ’U‘l‘Q()'U ZPS P] 1Sj 1R )RjU‘l‘P()S\()R()U.

v =
=1

<
Il

For this representation, no assumption on @Z for 7+ < J is needed. The only assumption
on @Z is given by @J = [. If we additionally have §j ij—15j_1 = ij_l §j_1, as for
example given for the aggregation method by condition (2.14), this implies that

(218) I —Qj 1)R ’U+P050R0’U

IIMk

So if we consider the two representations of v as given by (2.17) and (2.18), we get a

first idea of the meaning of condition (2.14).

By the calculations of section 2.3.2 we obtain for an arbitrary v € V

J J
(v, v) (Z Q] v+ QOU Z(@g - @j—l)v + @011)

Jj=1 Jj=1

(@j - @j—l)% (@g - @j—l)v) + (@0 v, @0 v)

I
Ejg

J
= (v Q= Qiav) + (v, Qov)
J o~ o~ . A~ . —~
(2.19) = (v, P 8;(I; = S;' PI™1 851 RI_,) Rjv) + (So Ry v, Row).
If additionally S P] 'S 1= P] 1S _1 holds this can be represented as

J
(2.20) = (v, P 8;(I; = Qj—1) Bjv) + (Sy Ry v, Ryv).
7=1
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2.6 Decompositions and representations

Further, we will use the following representation and estimation in the context of the
BPX method:

J J J
(Z @jv, v) = Z(@] v, V) = Z(@ R;v, R;v).
=0

j=0 7=0

As @j is the orthogonal projection with respect to the dot product (.,.), it follows for
all Q; that

(v, v) = (Qjv, v) + (I = Q) v, v) > (Qjv, v).

This obviously implies for all v € V' that

Z@]v v) < (J+ D)o, v).
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3 Introduction of the preconditioners

In this chapter we will introduce three different preconditioners to solve the linear

system of equations
Au=f

for a non singular A € R™*" and f € R" = V. As we only consider the linear system of
equations we set IV = R".

All preconditioners are additive methods. We will introduce the preconditioners as two
grid methods by using the vector spaces V,Vy C V and W = V. Our main interest is
the characteristic of the operators which follows from the subspaces that are used. So
we do not care about the quality of the solution on the different spaces. Hence we use

the exact inverse of the operators A and Aj.

If we use the preconditioners in the context of partial differential equations and grids,
the methods are defined by using two grids. But in general we will introduce them as a
kind of black box method, that means the subspace Vj is defined by Vo = Im(Py(Vp)),
with Vy = R (cf. section 2.4.4).

3.1 Common Setting

As we will introduce the preconditioners as two-grid methods, we can drop some of the

indices we have used in Chapter 2 to simplify the notation. We set
P=P =P, R=R)=R,
S=S8 =25, and Qy= Qo

The equations S;_; = §J_1 and Qj_1 = @J_l hold independently of J.

Furthermore we remember that Ay € R™*"0 is defined as

AO :RAP
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3 Introduction of the preconditioners

and we still assume P = RT.

Furthermore, we define two common constants ¢y, dq, to use for some estimations. We

define ¢; by

| Awgl|?
3.1 c1 = max ————
( ) ! vo€Vo\{0} HQOAUOH2
and d; by

A 2
(3.2) d = Al

min ———.
vo€Vo\{0} ||QO AU0||2

The constants ¢q, d; hence depend on the structure of the matrix A and the structure
of the subspace Vj. The last dependency is more obvious if we transform the equation
(3.1) (and (3.2) respectively) into

C1 = max 4||AP/50||2
Toevo\ {0} [|Qo A P ol[?

As Qo is the orthogonal projection concerning the dot product (.,.), we have
[ Avol* > [|Qo Avoll?

for all vy € V4. Consequently, one is a lower bound for d;. For ¢y, it is not as easy to
get an upper bound. For further estimations, we want to show the following simple but
useful results of these constants.

Lemma: 3.1.1. Let A € R™"™ P € R"™™ be given matrices. Assume that Ay is non

singular. Let ¢y, 071 be two constants that fulfil for allv € V
(3.3) d1(Quv, v) < (AP A  Rv, AP A;' Rv) < & (Qov, v).
Then it follows that

g <c¢ and dy > 671

If the inequality (3.3) for ¢ (ci) is also true by equality for an v* € V| then it follows
that

o8



3.1 Common Setting

proof. We start with the proposition for ¢;. As we have that R : R" — R™ is surjective

and Ay € R™*™0 is non singular, it follows that

c(PSRv,v)>(APA;' Rv, AP A;' Rv), YveR"
= (S’Uo, U()) Z (APAO Uo, APAO_I 50), %0 S R0
= (SA()AO Uo, AO 0 U()) (APAO Uo, APA(;lﬁQ), %0 e R™

= (SA() U9, Ap UQ) (APUQ, APUQ) W() € R™

& G(SRAPT, RAPH) > (AP, APT,), Vi, €R™
& G(PSRAPT,, AP%) > (AP%, APT,), Vi, € R™

= (Q()A’U(), Q()A’Uo) (APUQ, APUQ) W() € R™,

As this inequality is true for all v € V' this implies

€1 > max —HAP%HQ = max 7”14”0”2 =0
weto\{o} [|[Qo AP Tol*  voero\{0} [|Qo A voll?
This shows the inequality for ¢;. The proposition for d; follows by the same arguments.
Further, the proof shows that if there is a v* € V' that fulfils the inequality (3.3) for ¢;

by equality, and we define
=A;' Rv* and o) = Pu}

then the equality holds for v*, with

o lawe _
Qo AT

This shows the additional proposition for ¢;. The proposition for d; follows again by

the same arguments. O

We highlight that for explicit calculations respectively estimations of ¢, d; we use a
representation without a use of the inverse of A or Ay. The form as given in (3.3) is
the form we want to use in estimations for the condition of the preconditioned systems.

Further we remember that it is d; > 1. Hence we can estimate d; = 1.

Next, we will illustrate some characteristics of the operators R, ()y and the spaces W, Vj,

that are shown in Lemma 2.3.4, for the multigrid situation.
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3 Introduction of the preconditioners

Remark: 3.1.2. For the operators R, )y and the spaces W1, Vy as defined in chapter

2 the following characteristics hold in a two grid context:

1. For an arbitray v € V, there are unique vy € Vg, w € W so that we have
v==0Qv+ (I —Qo)v =19+ w.
Further, it follows that (vy, w) = 0.

2. For all w € W, it follows that Rw = 0. For v € V we have Rv = 0 if and only if
we have v € W = (I — Qo) (V).

proof. These propositions follow immediately from Lemma 2.3.4. O

3.2 Introduction of Cg}DX

Now we will introduce into this quite general setting a preconditioner Czpy for the
equation Au = f, which is in more special cases well-known as the BPX method. As
already mentioned we use the exact inverse of A and Aj respectively as we do not
consider the quality of the approximation for these operators. We only consider the
relation between the spaces and neglect the solutions in subspaces. Hence it is sufficient
for our results to use the inverse operators. As we assume that A is non singular, the
existence of the operator Ay is discussed in Lemma 2.3.5. In this section, its existence
is an assumption. For a non singular A € R™*" and a non singular Ay € R™*"™ we
define Cppy € R™" by

(3.4) spx = A"+ PAJ'R.

Our aim is to determine constants cgpyx,dgpyx > 0 that fulfil for all v € V' the inequal-

ities
(3.5) cppx(ACppx v, ACgpxv) < (v, v) < dppx(ACEpy v, ACEpy V).

More precisely, we will show on which characteristics the constants cgpx, dppx depend.
As the space V is finite-dimensional, the existence of a constant cgpx > 0 is always
given. The existence of the constant dgpx > 0 is equivalent to the non singularity of

the operator A CE}D - Therefore, we will first show the existence of dgpx > 0 and then

give an estimation for it.
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3.2 Introduction of Chpy

Lemma: 3.2.1. Let A € R"*", Ay € R™*™ be non singular. Then the matriz
ACgpx
15 also non singular.
proof. Suppose that ACypy is singular. Then there must be a v € V\{0} with
0=ACyzpyv
& 0=v+APA;' R

& —v=APA;'Rv

= —Ruv=RAP A;'Ruv
=Ag

& —Rov=Rw.
For the given v € V, we obtain Rv = 0. However, in the case of Rv = 0, we get
0=ACLpyv=v+APA;' Rv=nw.

And hence, this is in contradiction to the assumption. O

To determine the constants cgpx and dgpx, we further need the angle between the two

addends of A Cgpyv. We define v 5, Y5px a5

3.6 Vhpxy =min{t € R : (AP Ay Rv, v) < t|AP A Ro| |]v||, Yo € V}
BPX 0 0

(3.7)
and Ygpy =min{t €R, : (APA;' Rv, v) > —t||[APA;' Ro|| |jv|, Vv € V}.

So we get the following proposition:

Proposition: 3.2.2. For non singular matrices A € R"™" Ay € R™*" qnd a given
R € R"™*" the inequalities (3.5) hold with

1 1
and dBpX =

1+ 27—5PX\/071 +ta 1 - (VEPX)T

CBpPX =
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3 Introduction of the preconditioners

proof. According to the definitions of this chapter, the inequality of Young A.0.3 with
€ = ,/c; and Lemma 3.1.1 we have

(ACzpxv, ACgpyv) = (AA v, AAT W) +2(AA v, AP Ay Ro)
+(APA;' Rv, AP A;' Rv)
< (v,v)+ (APA;' Rv, AP A;' Rv)
+ 2v5px vl [|AP AG" Ro|

<(1+ VEPXE)(% v)

+
+ (1 + VB%) (AP A7 Ru, AP A;' Rv)

+
< (1 +v5pxe) (v, v) + (1 + WB%) c1(Qov, v)

= (1+ /) (0, v) + (1 - ”B%) a(Qov. v)

< (Ut fov@ (o o) + (14 ”TX) & (v, v)

= (1+ 295px V1 + 1) (v, v).

This proves the proposition for cgpx. For dgpy, it follows from the same arguments
according to the inequality of Young with ¢ = v5py

(ACLpxv, ACgpxv) > (v, v) + (AP Ay Rv, AP A" Ro)
— 25pxllvll |4 P 45" Ro

> (1 =ppxe) (v, v)

+(1- %B;X)(,aumo—1 Ruv, AP A;' Rv)

> (1= w0 0) + (1= 225 (@uor 0
YBPX

> (1- (7§PX)2)(U7 v).
Lastly we will show a simple restriction for v;p that will be useful later.
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3.3 Introduction of C’B%p

Corollary: 3.2.3. Let A € R™" Ay € R™*™ be non singular. Then it follows that
Yepx < 1.

proof. Assume that v5p = 1 holds. Then we have a v € V\{0} that fulfils

(APAS' Ru, v) = —[|AP A" Ro|l |[v]]
= v=-APA;'Rv
= 0=v+APA'Rv=A(A""v+ PA;' Rv)

= ACgpy 0.

Hence A Cppy is singular and that contradicts Lemma 3.2.1. O

3.3 Introduction of C};

In this section we will introduce the preconditioner C'[_xlp for the system of linear equa-
tions Au = f the same setting. By the same arguments as in section 3.2, we also use
the inverse A~1, Aj* for the definition of the preconditioner. For non singular matrices
A€ R™" Ay € R™X™ e define C1. by

(3.8) Cor=AI—-Qy)+PAJ'R.

Of course, our aim is again to determine constants cpr, dpr > 0 that fulfil the inequal-

ities
(3.9) epr(A CB%U, AC’B% v) < (v, v) < dpr(A CB%U, AC’B% v)

for all v € V. We will do the same steps as in section 3.2 and start with a proof of the

existence of dpp > 0.
Lemma: 3.3.1. Let A € R"*", Ay € R™*™ be non singular. Then the matriz
AChHy

15 also non singular.

63



3 Introduction of the preconditioners

proof. Assume that A Cp} is singular. Then there must be a v € V\{0} with
0= ACpv
& 0=I—-Q)v+APA;'Ro
& —(I-PSR)v=APA;'Rv

= —R(I-PSR)v=RAP A;'Rv
~—— —— S~

-0 =40
< 0= Ruw.

So it follows that Rv = 0. But in this case we obtain

0=AC,;v=(I—-PSR)v+APA;' Rv=v—PSRv=nu.

=0

And hence, this is in contradiction to the assumption. O

In analogy to the last section we need the angles between the addends of ACpr.

Therefore we define
(3.10) vk = min {t eR, : (AP A Ru, (I — Qo)v)

<t|AP A Ro|l (1 - Qoyoll, Yo e V'}
(3.11) and 7pp = min {t €R, : (APAT'Ru, (I — PSR))

> ~t[|AP 47" Ru| (I = Qo] wo e V],
Then we get the following estimations for the constants cpr and dpr :

Proposition: 3.3.2. For non singular matrices A € R Ay € R™*™ and a given
R € R™*" the inequalities (3.9) hold with

2 2

and dDT

Cpr

Clto+ V(e =12 +4dey(vhy)? S l+d— VI —d)? + 4dy(vpp)?
In particular, we can also estimate that

1
1_75T.

dDT =

64



3.3 Introduction of C’E%p

proof. According to the definition of C'51. and the inequality of Young A.0.3 with

¢ —1+ \/(1 —c1)? 4 der (V)2
€= —
29pr

we obtain for all v € V

(ACorv, ACHrv) = (I — Qo) v, (I —Qo)v) + (AP A Ru, AP Ay' Rv)
+2((I = Qo)v, AP A;* Rv)
< ((I—=Qo)v,(I —Qp)v)+(APA;' Rv, AP Ay Rv)
+ 2957 (1 = Qo) vl [|A P AG' Ro||

< ((I = Qo) v, (I = Qo) v) (1L + 7€)

+
4 (AP AT Ru, AP A" Rv) (1 + 7’%)

< (1= Qv o)1 +89) + Qoo o) (14228 )

o =14+ (1 =) +4e(75,)?
= (I — 1+~
(( Qo) v, v) < +pr 27§T
%J:F)T
c1=14y/(1=c1)?+He1 (v )2
Z'YBT

= (({ = Qo) v, v) (Cl + 1+ \/(1 _201)2 + 401(7DT)2>

+ (Qov, v) | 1+ 2Vbr c1
¢ —1+ \/(1 —¢1)? + 4oy (v )?

+ (QO v, U) 1 -+ (&1

(3.12) = (Cl UERRVAC _201)2 - 461(7DT)2> ((([ — Qo) v, v)+ (Qov, U))

B (cl +14++/(1—e)+ 401(7ET)2>
= 5 (v, v).
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3 Introduction of the preconditioners

The equation (3.12) follows from the calculation:

c+1+ \/(Cl —1)2+ 401(7257“)2 — (14 2(751“)2 ‘
= 1
2 ¢ — 14+ \/(1 —c1)?+4a(vhr)

—1+ V(1@ =) +4ea(vhe)? + 2(vhr)?
& Cl+1+\/(01_1)2+401(7ET)2: a Vi-a) Zl(vDT) = (JDT) 2¢;
e — 14+ /(1 —c)? +4ei(vhy)

(cr + 14+ (c1 — D2 +4dei(vh0)2) (er — 1+ /(1 — 1) + e (vhp)?)

=4
= (g -1+ \/ 24 der(vhr)? + 2(vhr)?)2¢
22 — 2¢; + 201\/ 2+ dei (V) + 4a(vhy)?
=4
= 2c3 = 2¢; + 2c1/(1 — ¢1)2 + 4es (7)) + der (V)2

This completes the proof for c¢pr. For dpr we get according to the inequality of Young
with

1—dy+ /(1 —d)?+4dy(7pp)?
271_)7“

E =

by the same arguments

(ACorv, ACH1v) > (I — Qo)v, (I —Qo)v) + (AP A Rv, AP Ay Rv)

= 29p7lI(7 = Qo) vl [AP A5 Ru||

> (I — Qo) v, v) (1 —ppe) + (Qov, v) <1 — 7LET) dq

9
_l=di+ /(1 —dy)? +4di(vpr)?
— (1= Qo). v) (MDT SV mm»)
Tpr
+(Qov, v) | 1 - Jor "
1—di++/(1=d1)*+4e1 (1)
2pr
1
= —w,v
7 v)
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3.4 Relations between the constants

The more simple expression for dpr follows if we estimate d; = 1. This implies

2 2
sup =
di>1 1 -+ d1 — \/(1 — d1)2 -+ 4d1(’}/BT)2 1 + d1 — \/(1 — d1)2 + 4d1(’}/BT)2
2 1

2—VAlpr)? - YT

di=1

This completes the proof of the proposition. O

Again, we will conclude this section with a simple restriction for -, that we will use

later.

Corollary: 3.3.3. Let A € R Ay € R™*™ be non singular. Then it follows that
Tpr < 1.

proof. Assume that
(AP A Rv, (I = Qo)v) = —[|AP A" Ro|l (I = Qo)v]
for a v € V\{0}. Then it follows that
(I —Qo)v=—-APA;'Rv
= 0=(I-Qyv+APA;'Rv=A(A"(I-Qo)v+ PA;'Rv)
= ACppv.

Hence ACE}D « is singular and that contradicts Lemma 3.3.1. O

3.4 Relations between the constants

In this section we will show the relations between the constants we have defined in the

last sections. We will see that we can reduce them to one constant.

Lemma: 3.4.1. For a non singular A € R"*" Ay € R"™*"0 the operator
APA'R:V — (APA; Rey,...,APA;' Re,)
s a projection and it follows

(3.13) QuAPA;' Ruv=CQyv forall veYV.

67



3 Introduction of the preconditioners

proof. The calculation

(APAJ' RY (AP A;'R) = APA;' A Ay R

Ao

=APA;'R
shows that A P Ay' R is a projection. The equation (3.13) follows from

QAPA;'Ru=PS RAP A;'Rv=PSRv=CQv.
Ao

0

From Lemma 3.4.1 we can conclude that the direction of the projection A P A;' R is
orthogonal to V. That means that for all vy € Vj aw € W exists so that for all wy, € W
follows that

(3.14) APAG'R (vo+wy) = AP AT Rug = vy + w.
This points out that in general it is not a projection in the space Vj. In other words:
Vo# (APAG'R)(V) = <APA51 Rey,...,APA;? Ren>.

This would only be the case if we additionally had w = 0 in (3.14). Furthermore, it is

obvious that if

(3.15) APA;' Ruy = vj +w,
holds for an v; € Vj then we obtain

(3.16) Qo AP A Ruy = v
(3.17) and (I — Qo) APA;' Rvj =w

This is illustrated in Figure 3.1 on page 69.
Now we can give a result for the constants v}, 75, The main aspect of this lemma is

given by the fact that the elments
Rv=1vy and (I —Qy)v=w

are elements of orthogonal subspaces. So for an v € V with v = vg+w, vg € Vo, w € W,

the addends vy, w can each be modified without a modification of the other one.
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3.4 Relations between the constants

woA (AP A R)(V)
AP A;' R,
APA;' Ruy :
. .’UQ
ap :
T °® "

o
Vo

Figure 3.1: Direction of the projection A P A;' R

Lemma: 3.4.2. According to the definitions (3.10), (3.11) for v Vor
Vbr = Vpr holds.
proof. We show that, for an arbitrary v € V with
(APAF' Ru, (I = Qo)v) =t AP A" Ro||[[(I = Qov]l, ¢=0
there is a v; € V that fulfils
(AP A Ry, (I = Qo)vr) = —t[[AP Ay" R [(1 = Qo).

Hence it follows that v, < v
We consider an arbitrary v € V. We can decompose this into v = vg+w, vy € Vg, w € W.

Then we have
(APAG' R, (I = Qo)v) =t [[APA;" Ro|l (I — Qo)v]|
with ¢ € [0,v5]. According to Lemma 3.4.1 there is a w; € W so that it follows

APAgle:APAaleozvojLwl.
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3 Introduction of the preconditioners

This implies that
(APAF' Ru, (I = Qo)v) =t|AP A" Rl (I — Qo)v]
& (vo+wi, w) =t vg + wi| f|w]
& (wy, w) = 1o+ wi fJw]].
It follows for
V] =0 — 2w
that
—(w1, w) = —tJvo + wr[ lw]]
& (vo+w, —w) =—t o+ wi ]| || —wl]
& (APA; Ruy, (I—Qo)vr) =—t|AP A" Rui| [ - Qo)urll.

This shows the inequality v}, < vpp-
Based on the same arguments, it follows for an arbitrary v € V' with

(APAG' R, (I - Qo)v) = ~t||[AP A7" R[|[|(I — Qo)0]|
for v; :=v — 2(I — Qo)v the equality
(AP A RU1, (I = Qo)0r) =t [APAF' RO || (1 = Qo)ti -
This shows V5 < V- O

From the result of Lemma 3.4.2 we drop the constants v}, 75, and only use ypr =
Yhr = Ypp in the following.
Next we will prove a technical estimation for the relation of (I — Qy) A P Ay* Rvg and

QuAPA, ' Ry that follows immediately from the angle vpr.

Lemma: 3.4.3. By the constant ypr it holds for all v € V' the inequality

2
11— Qo) AP A Roll* < —2L—|Qy AP AF' Rl
L =9pr
proof. By Remark 3.1.2, it is sufficient to prove the inequality for all vg € V. Therefore,
we consider an arbitrary vy € V5. Then we obtain again by Lemma 3.4.1 that

APAgleozvo+w
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3.4 Relations between the constants

with w € W. Furthermore, it follows that
vy = QOAPAEIRUO
w=(I—Qy) AP A;" Ruy.
From the definition of ypr, it follows for v = vy + w that
(AP A5 R, (I —Qo)v) < vorll AP A" Roll (1 — Qo) o]
& (vo+w, w) < yprllve + wl| ||w]]
& wl® < yprlvo +wl [lw]
& lwll < yprllvo + w]
& Jwl* < vhrllvo +wl* = vpr(lvol* + [lw]*)
& JwlP(1 = vbr) < vbrllvol?

72DT
(1- 712:)T)

2
& |(I-Qo) AP AT Rug|? < — 2T ||Qy A P Ay" Rup>.
(1 =vhr)

& uwl* < lvol?

This shows the proposition. O

The dependency between |(I — Qo) AP Ayt Rv|| and ||Qo AP Ay Rv is illustrated
in Figure 3.2. With cos(apr) = ypr, the figure also illustrates the angle between the
spaces (AP Ay' R)(V), W.

Remark: 3.4.4. If the inequality
(APAT R, (I —Qo)v) < yprl|AP AT Ro|| [[(I = Qo) ||
s also true by equality for a v* then Lemma 3.4.3 also holds for this v* by equality.

We go on and consider the constants c¢;, d;. As we have already noticed, we have d; > 1.
Hence we can estimate d; by its lower bound and set d; = 1. For ¢;, we can give an

estimation that depends only on vypr.

Lemma: 3.4.5. For the constants ypr and ci as defined in (3.1), we have

1

-
Yor

c <
1_1_
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3 Introduction of the preconditioners

w A (AP A;' R)(V)
AP A Ruy
APA;' Ry :
" .UQ
(2)
RN :
ap ) vy
V,

[ (1) -
(1) =[QAPA Rusll  (2)= (I = Qo) AP Ag' Rus|

Qo AP AS! Rual
[(I-Qo) AP Ay " Rus|

Figure 3.2: Illustration of the quotient
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3.4 Relations between the constants

proof. From the Lemmata 3.4.1 and 3.4.3 we obtain for an arbitrary v € V with
’U:’U()—le,’erVb, w, € W

APAJ'Rv=v+w

2
with we W, and |[w|?*< LI];H’UOHZ.
L=7pr

Hence it follows that
||APA61RU||2 = ||APA51RUOH2
=|Qu AP A  Rug + (I — Qo) AP A" Rugl?

= [lvo + wlf* = [[vo]|* + [[w]*

712)7“
< lluoll? (1 T ) Qoo

1
L=7pr br

1 - DT

This shows the proposition. O

Remark: 3.4.6. In particular, Lemma 3.4.5 shows the implication
YT = 0 = ¢ =1

As we consider finite-dimensional linear spaces, it is well posed to define vpr as the

minimum of the set
{t ER, : (AP A Ru, (I —Qo)v) <t|AP AT Ro| (I - Qo)v|, Yo € v}.
Hence there is a v* for which it follows that

APAgleozvo+w

with (AP A;' R vo, w) = ypr||[AP Ay R v ||w]|.

By Remark 3.4.4, this is the best estimation for ¢;.
At last we will consider the constants 73,y . The next lemma shows that there is no

case in which we have 75,y < 1 and that y5py, vpr are given by each other.

Lemma: 3.4.7. For the constants Vipx, Vpx s defined in (3.6), (3.7) we have

’YEPX =1 and vgpx = VDT
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3 Introduction of the preconditioners

proof. We start with the assertion for v} py. By Lemma 3.4.1, we obtain for an arbi-
trary, but fixed v = vy + w with vy € V), w € W, that there is a w; € W with

APA'Rv=APA;" R (vo+w) = vy + w;.
Then we set
V1 = Vg + Wy
and hence it follows that
(AP A Rvy, v1) = (vo + wy, vo + w1)
= |lvo + wal| lvo + w1l
= [[AP Ag" Ruu| [[oa]l.

This shows the proposition for v} p .

For the proposition concerning v5py and ypr we will show two inequalities.
Yepx < vpr: We assume that there is a ypr < 1 with
(APAF' Ru, (I —Qo)v) = —ypr[[AP AG' Roll (I - Qo) v
for all v € V. We prove that this vpr fulfils also
(APA;'Rv, v) > —ypr |[AP A Ro|| jv]| VveV
(3.18) & (vo+wy, vo+w) > —pr ||vo + wi]| [Jvo +w| Yuvg € Vy, Vw € W.

This implies v5px < VD7-

We consider an arbitray vy € Vy with A P A Y Rug = vg+wy. Then for all w € W
with ||w]|| = ||w1]|| the left side of (3.18) is minimized if we set w = —w; and the
right side of (3.18) is constant. Hence it is sufficient to consider w = —Aw; with
A € R;. We obtain that (3.18) is equivalent to

(3.19) (Uo + w1, Vg — )\wl) Z —YDT ||’U() + ’LU1|| ||'U() — )\w1||
= —ypr V/[vol2 + w2 v/ [[vol| + A2[Jwr |

With the shortcut ||wy|* = b and the scaling ||vo|| = 1 (for vy = 0, both sides of

all inequalities are zero) this is equivalent to

(3.20) 1 —Xb> —vprV1+bV1+ A2,
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3.4 Relations between the constants

If it is Ab < 1 then the inequality holds independent of ypr. Hence it is sufficient
to consider the situation Ab > 1. (3.20) is fulfiled if we have

(1= Ab)* < ypr(1+b+ Ab+ \*?)

o (1 — \b)?
9= (14 b+ A20+ \2b2)

< Ypr-

If we differentiate g with respect to A we obtain
0 Ab+Xb—A—1
99 _ op(1 4 1) i .
1)) (14 X202+ (14 A?)b)
From the assumption Ab > 1 follows

dg
o 2b(1 +b)

A+ 1)(Ab—1)
(14 X202+ (14 \2)b)* ~
So it is sufficient if the inequalities (3.20) and (3.19) respectively hold for the
limit A — oo. If we consider in (3.19) the limit with respect to A we obtain

lim ((vo + wi, vo — Awy) > —7pr |[vo + w1 | Aw])

A—00

& lim (flooll® = Mlwi[* = =vpr [lvo + wa| | Aw])
< lim (=AMl > =ypr flvg + wi ]| [[Awi )
& —lwil* > =vor [lvo + wi| lwi]))
< (vo +wi, —wi) > —ypr [[vg + wi] [wi
& (APAF Rv, (I- Qo)) >
— o1 [[AP AG" Ro[||(I = Qo)vll.
This inequality holds based on the assumptions.
Yor < Vppx : Now we assume that it holds
(3.21) (APAJ'Rv, v) > —y5px |AP AT Rl ||v]| Vv e V.
We prove that it follows

(3.22)
(AP A" Ro, (I = Qo)v) > ~vgpx AP A7 Ro|l (I = Qo) o]l Vo€ V.
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3 Introduction of the preconditioners

This implies ypr < Ygpx-

We consider the inequality (3.22) for an arbitrary but fix v € V with v = vy +w
and AP Ay YRv = vyg+ws. If it is vy = 0 then it follows w; = 0 and the inequality
(3.22) holds for all v5py € [0, 1]. Hence it is sufficient to consider vy # 0. Then
the inequality (3.21) holds also for

vy = Avg+w, X>0.
This implies A P Ay' Rvy = M(vg + w;) and we obtain
(3.23) (Avg + Awy, Avg +w) > —v5px [[A(ve +w1)|| || Ave + w]|.
Based on A > 0, this is equivalent to
(3.24) (vo + w1, Avg +w) = —vgpx [[vo + wi | [[Adve + wl].

Since the inequality (3.24) holds for all A > 0, this is also true for the limit A — 0.
We obtain

(vo + w1, w) = =Vppx [lvo +wn] |Jw]]
& (APA; Rv,v) > —7ppx [[AP Ag" Ru| o]

for v = vy + w. This proves the second inequality.

3.5 Introduction of C;,

In this section we will introduce the preconditioner 02_131 into the same setting as
Cpr, Cyby as a third possibility of a preconditioning. This preconditioner is motivated
by the idea that for a symmetric matrix A Cgpy is just the symmetric alternative to
Cphr So there is also a second possibility to modify Cp} to a symmetric precondi-
tioner. We use the same elements and define the preconditioner C,p for a non singular
A € R™™ and a non singular Ay by

(3.25) Cop = — Qo)A (I —Qy) + PA;' R.
Of course our aim is again to determine constants cop, dop > 0 that fulfil the inequalities

(3.26) cap||A Cop v||* < [[v]* < dop[|A Cop vl
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for all v € V. We will do the same steps as for the BPX and the DT method. Thus
we will start with a proposition about the existence of dyp. Therefore we get the same
condition as we have in the DT-method and the BPX-method.

Lemma: 3.5.1. Let A € R™" Ay € R"™*"™ be a non singular matrices. Then the
matriz
—1
ACyp
15 non singular.

proof. As A is non singular by the assumptions, the operator A C5, Pl is singular if and
only if Cyp is singular. This is given if and only if there is an v € V\{0} that fulfils

Cypv = 0. As we have for an arbitrary v € V

(I —Qo) A (I —Qo)v, PA;' Rv)

= (R(I = Qo) A~ (I = Qo)v, Ag' Rv) =0

the two addends are orthogonal to each other with respect to the inner procuct (.,.).
So for Cypv = 0 its a necessary condition that both addends are equal zero.

From the assumptions follows P Ay' € R™" and rk(P Ay') = ng. Thus we have
PA;'Rv=0

if and only if we have Rv = 0. This is equivalent to v € W = V;-. If we assume
v € W = V" then it holds for the other addend

(I — Qo) A_l (I — Qo) v = (I — Qo)A_IU

This is zero if and only if A='v € W+ =V} holds. By Corollary 2.3.6 this contradicts
the assumtion that Aj is non singular. O
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3 Introduction of the preconditioners

In this section we define the angles 755, 755 and y2p by

(3.27)
Yop =min {t € R : (AP Aj R0y, w) < t|AP Ay RG| ||w|, Yw € W, vy € Vy}

(3.28)
Yop=min{t eR : (A(I - Q)A™ (I - Q)w, v)
<A = Q) AT = Q) w| [|voll, Yw € W, v € Vo }

(3.29)
Yop =min{t €R : (A(I—Q)A™ (I —Q)v, AP Aj'Rv)

<t|AI-QAT (I -Q)v||AP Ay Roll, Yv e V}.

Based on these definitions, it is obvious that 73}31 is the same constant as ypr. Fur-
thermore, for a given matrix the constants 72}31 and 721}2 are easier to determine than
~vop. However, the constant we will use for estimations for the cop, dop is yop. We will
do that as in sections 3.3 and 3.2. Therefore, we will prove a relation between these

constants in the next lemma. This result is similar to the result of Lemma 3.4.3.

Lemma: 3.5.2. Let 19, van be as defined in (3.27), (3.28). If we assume that

73}31,721}9 < 1 holds then we have
0,1
|7 Qo) AP A Runl| < <=2 Qo AP A;' Ruo
1= (73p)?
forall vy € Vy and

1,0
1Qo AT — Qo) A7 (I — Qo) w|| < 72—1310II(I—Qo)A(I—Qo)A_1 (I = Qo) w|
1- (72}3)2

forall we W.

proof. As mentioned, the constant 78]’; is the same as ypp. For this constant we have
proved the propostion in section 3.4. For 7%}9 the proof follows by the same arguments:

for an arbitrary w € W we obtain
A(I—-Q) A (I —-Qo)w=w, +vy with w; € W, vy € V.
Hence it follows that

(I—Q)AI—-Q)A ' (I-Q)w=uw and QyA(I—Qy) A (I —Qy)w =1y
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3.5 Introduction of C,p

and by the definition of 7, we obtain for the selected w and for vg = A (I—Qq) A~! (I—
Qo) w that

(A(I = Qo) A" (I = Qo) w, vo) < YaplA (I = Qo) A~ (I = Qo) wl| [|voll Yvo € Vi
= (vo+wi, vo) < Yapllvo + wi| [|vol
& lwol® < 2gpllvo + will fleol
& ool < vppllvo + will
& lvoll* < (rap)?llvo + will® = () lwoll* + (o) 1w ||

1,0
< Yap

&l < =22
1 - (72?)2

[ ]

This proves the proposition for 721}3. O

By the result of Lemma 3.5.2 we can represent the result of AP Ay'Rv and (I —
Qo) A7 (I — Qo) v respectively for an arbitrary v € V' by

APASIRU:U(]"i_wO, with vy € Vo, wg € W
and Al —Qy)A (I —-Qy)v=uv+w with v, €V, w € W.

Then we can represent the dot products (vy,vg) and (wg,w;) as follows:

1,0
(3.30) (vo, v1) = gy ol Jwn |, with gy < ——22

1,0
1- (7213)2
0,1
Yap

(3.31) and  (wg, wy) = po ||w1] [|ve]]  with  po < )
0,1\9
\/ 1- (7213)

Now we will prove an estimation for v,p.

Lemma: 3.5.3. Let op, Yap, Yop be as defined in (3.27), (3.28) and (3.29). If we
assume that we have g, 17 < 1 then

1,0 0.1 0,1 1,0
Yop < Yop\/ 1 — (Vap)? + Yap\/ 1 — (V2p)?

holds.
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3 Introduction of the preconditioners

proof. Based on the definition of y5p we have to prove that the inequality

(3.32) (A(I-Q)A™ (I —Q)v,AP A7 Rv)
<yp|A(I=Q)ATH (I = Q)v|[|[A, P AT Ru||

holds for an arbitrary v € V. For an arbitrary v € V' we obtain

APAJ'Rv = vy +wy, with vy € Vg, wg € W

Al -Q)AT (I -Q)v=v1 4w, with v €V, wy e W.
Hence the Proposition (3.32) is equivalent to

('U() + Wp, U1 + wl) S ’)/QPH'U() + ’LUQH ||’Ul + 'LU1||

(3.33) & (vo, v1) + (wo, w1) < vap/[[voll? + lwoll? V/llwal|? + [Jwn[2.

By the result of Lemma 3.5.2 we get

0,1
lwol| = po |lv|  with po < ——12 —
1= (1p)?
L0
|v1]| = p [Jwy|| with g < 2P
1- iRy
2P

Hence the inequality (3.33) follows if we have

lwoll oIl + ol Hlwill < vapv/Tvoll® + llwol|* v/ or ]2 + uwn 2

Mool el + ) < v/ leoll2(1 + A3) o/ ln 121+ 22)

Ho H1 < P
> Vap-

(3.34) &

If we differentiate the left side with respect to u;, « = 0,1, we obtain

d (1o + pn)? _ (1 — popu)
dpo (14 pg)(L+p) (14 pg)*(L+ pi)?
d (o +m)* (1 — popu)

dpy (L+pd)(X+p3) (T4 pg)?(1+pi)?
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3.5 Introduction of C,p

By the assumption of pou; < 1 for all v € V' is (3.34) increasing in p, p1o. Hence we

can estimate them by their upper bound. This leads to the estimation

0,1 1,0 0,1 1,0

wzp Yop ’Y2P Top

Mo =+ 1 < ViI-(gp)2  V1-(mp)? \/1 (19p)2  V1-(np

Tt e/1r 2~ 022 (i) \/ ! \/ .
\/ 0\/ 1 1+ (1:/&% 1+ ﬁ 1—(73}31)2 1_(75}9)2

10

7
= \/1 - 72P \/ 7213 2P
\/1 - ”YQP \/1 - 72P
= 1ap /1= (12p)? + 720\ 1 = (120)%.

This shows the proposition. O

Thus Lemma 3.5.3 gives us an estimation for the angle vop if 73;31 and 721}9 are small
enough. We should mention that the special cases of 755 = 0 or 7,5 = 0 are included

in the estimation above. Furthermore, we get the following corollary:

Corollary: 3.5.4. Assume that vyp =0 (yop = 0) holds. Then we have

vor < Yop (o < 25p).

proof. As we have 72}31 = 0 it follows from Lemma 3.5.2 o = 0. Hence the proof follows

immediately from Lemma 3.5.3. O

Next we will give an estimation for the condition of A Cyp. For this estimation we have
to quantify the condition that A is non singular. This characteristic can be expressed

by the introduction of the following constant: There exist constants dy, ¢y > 0 which
fulfil

(3.35)  dal|(1 = Qo) vl* < JA(I = Qo) A7 (I = Q)v|]* < x| (1 = Qo) v?, Vv eV
& dflw|® < AU = Qo) A w|* < eofwlf’,  Ywe W

The existence of ¢y is always given as the operators are finite dimensional. The constant

dy exists if and only if there is no v € W that fulfils A= v € V4. And in Corollary 2.3.6

we have seen that this is equivalent to the non singularity of Ay. Further, we remember

that vgﬁ = vpr and thus we obtain from the results of sections 3.4 and 3.1 that

d1||Q()U||2 S ||APA61R’U||2 S Cl||Q()U||2 with dl = 1, L = —
L —vpr
holds for all v € V. By these assumptions we can give the following estimation for the

condition of A (), Pl.
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3 Introduction of the preconditioners

Proposition: 3.5.5. Let A € R"*" Ay € R™*™ be non singular matrices. Then
cap|[ACop v||* < [Jvf|* < dap|| A Cop v |?

holds for all v € V' with

2 2
Cop = and dgp =

(&) + C1 + \/(Cl — 02)2 + 40162’}/22]3 dl + d2 — \/(dl — d2)2 + 4’}/22Pd1d2
In particular, if Vi is invariant with respect to A, the inequality holds with

2 2
and dgp =

“r = 2 1,02 2 1,0 2‘
o+ 1+1/(c2a— 1)+ 4ea(Vop) L4 dy — /(1 —d2)? + 4(75p)

proof. For dap we obtain with the constants dy, d and ~9p from the inequality of Young
with

__ =+ (d = do)’ + ddydin,
292p

for an arbitrary v € V' that
IACop|I* > AP AG" Rol* +[|A (1 — Qo) A7 (I — Qo) v]”
— 29p[ AP A" Rl [|A(I — Qo) A™ (I — Qo) v

> [[APAG Ro|*(1 = yape) + |A(T = Qo) A~ (I — Qo) vlf? (1 - %P)

> Qo vl*(1 = y2pe)dr + [|(1 — Qo) v[[*(1 — 72?P)dz

_ dy +dy — \/(dy — d2)? + 4dads73p Qo0
2 oni

This proves the proposition for dyp. The proposition for cop follows similary with

Co — C1 + \/(Cl — 02)2 + 4’7%130201
292pCy .

If Vj is invariant with respect to A then we obtain 72}31 = ~vpr = 0. Hence we have

c < % = 1 and the result of Corollary 3.5.4 for v,p. This implies the additional

1=9pr
assertion. [l
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3.6 Estimations by angles

3.6 Estimations by angles

In the sections 3.2 and 3.3 we have introduced the two preconditioners Cpr. and Cpp
for the linear system Au = f and we have given estimations for the condition of ACp.
and AC;}DX in the Euclidean norm. In section 3.4 we have shown relations between
the constants that determine the estimations for the condition. Now we can reduce
those constants that are given by the stiffness matrix and the structure of the subspace
to vpr. First we will show some additional resutlts for the angle vpr. With that it will
also be possible to get the best possible estimation for the condition in the Euclidean
norm. Hence we can compare the methods and analyse the behaviour with respect to

this characteristic. As a short cut we set
YT

V31— 712)7“

The operators Cgflp, Cgpx are well-posed if A, Ay are non singular. By Corollary 3.3.3

(3.36) s = for ypr € [0,1).

we have in this case ypr < 1 and hence p.,,, is also well posed for the operators of our
interest .

Further, we define for an v € V the Operator ), : V —< v > as the orthogonal
projection with respect to the dot product (.,.).

3.6.1 Basics for angles

As we will need some basic results for the angles between spaces we will present them
first. In this process, we will also take a look at the situation that is given for the

operators defined in previous sections of this chapter.

Lemma: 3.6.1. Let V' be a vector space, W be a vector subspace and B :' V — V, a

linear operator. Then we have for an arbitrary but fix v € V with Bv # 0

B ~
Bomimf{t € R : (Bo,w) <t|Bo| u], vw e W)= sup B g
weW, w##0 ||B'U|| ||’LU||

proof. For an arbitrary v € V' we obtain from the definition of ?8

(Bv, w)

AP0 W 5 v e W0}
Bl [Jw]| = °

= (Bv, w) < [|Bo| w], VweW.
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3 Introduction of the preconditioners

This implies
o>t
The other inequality follows by the same argument. This completes the proof. O

Lemma: 3.6.2. Let V' be a finite dimensional vector space and Vo, W two wvector
subspaces that fulfil (vy, w) = 0 for all vy € Vo,w € W. Assume that [ —Q : V — W
is the orthogonal projection with respect to the inner product (.,.). Assume further that
B :V — V is a linear operator with ker(B) =W and Bv ¢ W for allv € V. Assume
that, for an v* € V,

(3.37) to =min{t € R : (Bv*, w) <t||Bv*| ||w|, Yw € W}
holds with a ty € [0,1). Then we can draw the following conclusions:
1. The inequality (3.37) holds if and only if we have
(3.38) (Bv*, (I = Q) Bv") =to [ Bv*|| (1 — Q) Bv"|.

2. In the case of v* ¢ W, we have

(I -=Q)Bv|* [Bv > 1
* |2 o 2 and |2 2°
1Q Bu*|| 1 —15 1Q Bv*[]*  1—13

3. If we have v* ¢ W and X\ € Ry is given then it follows for all w € W with
|w|| =1 that

* * M)— * to
(Bv*, \w) < (Bv , )\||(I—Q)BU*|| = ||Q Bv*|| (A\/q>

* * (]_Q)B,U* _ * to
and (Bv*, A\w) > (BU : —Am) = —[|Q B (Am>.

proof. 1. First we consider the case that the condition (3.37) holds with to = 0. As
we have (I — Q)Bv* € W, we obtain that the inequality

(Bv*, w) < tf| Bv*|| [w]
must also hold for w = (I — Q)B v*. This implies

0< (I =Q)Bv'|]* = (Bv",(I - Q)Bv") <0-[|Bv'| (I - Q)Bv*|| = 0.
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3.6 Estimations by angles

Hence it, follows that Bv* = 0 or (I — Q)Bv* = 0. In both cases, the equality
(3.38) holds with ¢, = 0. The other direction follows by the same argument.
Now we assume that we have t; > 0. Then we obtain B v* # 0. First, in this, we
assume that ¢y follows from (3.37). Based on Lemma 3.6.1 the definition of ¢y is
equivalent to
(Bv*, w)
"7 wavtn IBo Tl

As we have (I — Q) Bv* € W, it follows that

(Bv*, (I —Q)Buv") < sw (Bv*, w) _

[Bor||[[(1 = Q) Bv*|| ~ wewwzo [|Bo*| [Jw]|
However for a w € W, w # (I — )) Bv we obtain that there are w € W and
A € R that fulfil

to.

w=w+ (I —-Q)Bv*
and 0= (w, (I —Q)Bv").

It follows that
(Bv*, w) (Bv*, NI —Q)Bv*+w) (Bv*, MI — Q) Bv*)

[Bor|lwll — [Bv[[[IMI = Q) Bv* + @l || Bv|| /AT — Q) Bv*[[? + [@]?
(Bv', \I—Q)Bv*) _ (Bv', (I-Q)Bv")
B[ [AMI = Q) Bvr|| [|[But|[[|[(I = Q) Bvr||*
This implies

Lo (BvLw)  (Bv, (I-Q) Bv)
up = .
wewswzo |1 Bo[lwll ~ [Bo 1T — Q) Bv'|

Based on the same calculation we obtain (3.37) if we define ¢, by (3.38).

2. From the first result of this lemma it follows that
(Bv*, (I —Q)Bv") =to||Bv[|[[(I — Q) B’
& (I -Q)Bv||* =t | Bv| |1 - Q) Bv"|
& (I =Q) Bv*|| = to || Bv"||
& [I-Q) Bv|P = (IQ Bv'|* + (I - Q) Bv'|*)
& (I -Q)Bv|*(1—t) =t |Q Bv|?

I —Q)Bv*|* _ 3

2N —
|Q Bu*|” 1—13
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3 Introduction of the preconditioners

and also that

1Bl _NQBv P+ —@)Bvr|® & _ 1
1Q Bu*|? 1Q Bv*|? 1—tf  1-13

3. From the result of Lemma 3.6.1 and the first result of this lemma, as well as from
the definition of ¢, it follows for all w € W\{0} that

(BU*> ’LU) < (B'U*> (I B Q)B'U*)
[Bo*|[lw]] — [ Bv*|[ |(I = Q)Bv*||

Hence it follows for all w € W with ||w|| = 1 that

(e I=QB
(B, ’§<B ’||<I—Q>Bv*r|)‘

And from the second result of this lemma we obtain

(Bv*, An(l_ﬂ) _ ((1 _ Q) B, )\m)

(I = Q)Bv*|| I — Q)Buv*|
I(1 — Q)Bv*|” to
= A = \|Q Bv*|| .
(I — Q)Bv|| V1-12
However, by the same arguments we have
(I — Q)Bv* to
(Bv*, Aw) > =\ (Bv*, ) = —[|Q Bv*||A
10— Q)Bv] N

for all w € W with ||w| = 1.

Remark: 3.6.3. By Lemma 3.6.1 we obtain for v € V with Bv # 0 that

sup (Bv, w) _ (Bwv, (I —Q)Bv)
wew,wzo | Bull wll | Bu|l [[(I = Q)Bv|

As we have ker(B) = W, we get for the case of B = AP Ay' R by the definition of ypr
that

S (BU> ’LU) S (BU> (I - Q)BU)
IYoT = up oo up
vevawew; Buwo || Bl |wll vev; Bu,(1-q)Buso, | BY| [[(I — Q)Bu|
B I —-Q)B
_ sup ( Vo, ( Q) UO)

Vo€V Buo,(I-Q)Bv£o || Buol| [|(1 — Q)Bug||’
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3.6 Estimations by angles

As we consider finite dimensional spaces V, there is a v* € V' with

(Bv'; (I - Q)Bv) _
1B 1T = QB ~ "

Otherwise we could only conclude that there is a sequence (vV*F)en, for which

o (Bt (I - Q)Buh)
1m . ~en — DbT
koo | BusH[[[(T = Q) Bu™H|

holds.

3.6.2 Estimations for the preconditioners

In this section we will show estimations for the conditions of ACp,} and A Cpy in the
Euclidean norm. As already mentioned, we will also show that these estimations are
the best possible estimations. Further, we will compare the methods with each other

and analyse the behaviour of the condition if the constant vpr increases or decreases.

Before we can start with the estimations we have to highlight two simple propositions

for real numbers u:
Remark: 3.6.4. For all p € Ry we have

2+ p? — /4 + p2 1< 2+ p? + /4 + p?
2 - - 2 )

Furthermore,

247 — A 24 A
2 2

holds if and only if u = 0 holds as well.

proof. Based on p € R, it is obvious that

| < 2+ p? + /4 + p?

2
2 2 \/4 2
and 1= T H +g T H
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3 Introduction of the preconditioners

The other inequality follows from

24 12— /AT 2
>t g LTI P < a4+ p?

PEN M2§4+M2

2 4 1 — /At 12
and 1= e g Rl & pt =4+ R

The last equality holds if and only if i = 0 holds. O

Theorem: 3.6.5. Let A € R™™ Ay € R"*™ be non singular and Cp}. as defined in
(3.8). Then the inequalities

(3.39) corl|ACprl* < [v]l* < dprl| A Copolf?
hold for all v € V' with

2 / 2 /
2 _I_ /”L’yDT - ILL'YDT 4 _I_ /”L’2yDT and dDT = 2 _I_ /”L’yDT + ILL'YDT 4 + ILL%DT )

2 2

proof. We consider an arbitrary v € V. We can decompose this into v = vy + w, with
vy € Vo and w € W. If we have vy = 0, it follows that

Cpr ‘—

IACHrvll* = (I - Q)v[I* + [[AP A" Rul|?
+2(AP A Ro, (I —Q)v)
= (I = Q)v|I* = [lw]* = [lv]|*.
Hence the inequalities (3.39) hold with cpr = dpr = 1.
Now we assume that we have vy # 0. By Remark 3.6.4 we obtain for the given terms,
cor < 1,dpr > 1 and 1 = ¢pr = dpr if and only if we have p.,,, = 0. First we
consider the inequality concerning cpr. We can scale the inequality so that we can

assume w.l.o.g. ||vg]| = [[w| = 1 and v = vy + wA with A € R. For the given vy we
obtain by Corollary 3.3.3

(AP AG" Rug, (I — Q) AP Ay Rug)| =t |AP Ay Ruo|l ||[(I — Q) AP Ay" Ruy|

with a t € [0,7pr],vpr < 1. So the setting p? = ¢2/(1 — ¢?) is well posed. Further we

remember that

Q()APASIR’U:Q()U:U(].
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3.6 Estimations by angles

It follows that

~eorl| ACyvl]* + ol
= —cor (|1 = QoI + [A P A7 Ru|]? + 2(AP A7 Rv, (I - Q)v))

+ [lvoll + [Jwl|?
= —cpr (|Mw]? + |[AP A" Ro||> + 2(AP Ay Ru, Aw,))
+ [ Awl[* + w1
S <A2+||Q AP A Rolf? —Qy) AP A' Ru?
= —¢pr 0 o Roll"+[[(I = Qo) AP Ay Rull
2w, ([—QO)APAo‘le)) P24l
= —cpr (A + [lvoll* + p¢llvoll” + 2(Aw, (I — Qo) AP AF" Rv)) + A* +1
(340) > —cpr (N 41447+ 22 w) + X2 +1

(341) > —cpr N+ 1442, +2Mipp,) + A+ 1.

From the calculation above and Lemma 3.6.2 with B = AP A;' R we obtain the
inequality (3.40). By the algebraic signs it is sufficient to consider A € R,. Hence we
obtain the inequality (3.41) from the monotonie t < ypr = p < p,, (cf. (A.0.6)).
Further, we see that the inequality

(3.42) 0< —cpr (N2 + 1442, +2Myp,) + X+ 1

holds in the case of p,, = 0 with cpr = 1. Now we can go on and consider the case of
frypy > 0. Hence it follows cpr < 1 from remark 3.6.4. If we differentiate (3.42) with

respect to A, we get

d
a [_CDT ()\2 + 1+ /JEYDT + 2>\M7DT) + )\2 + 1] = 2)\(1 — CDT) — 2CDTIU”YDT'
From the assumption of cpr < 1 we obtain that (3.41) is minimized by A = %

From the minimizing value, it follows that

br —cor(24412,,) +1
1—cpr '

C
—cpr (N + 1412, 4 2Mippy) + A+ 1=

As the denominator is positive, we just consider the nominator. The proposition for

cpr follows as the roots of the nominator with respect to cpr are given by

2+'LL’2¥DT:EM“/DT\/4+ME/DT

Cpr =
2
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3 Introduction of the preconditioners

We have to set the negative algebraic sign for cpr, then we obtain for all v € V' with
v =1y + Aw, vy € Vo,w € W, A € R and ||vg|| = ||w|| =1 that

0 < ¢hr —cpr(2+2,,) +1

< —cprl|ACppvl* + vl

1-— CpT
Next, we consider the estimation concerning dpr. One more we decompose an arbitrary
v € Vinto v = v+ Aw, with vy € Vo, w € W, ||vg]| = |Jw|| = 1 and A € R. So we obtain

[(APAG  Rug, (I — Q) AP A" Rug)| =t|AP Ay Rug|| [|(I — Q) AP A" Ruy|

with a t € [0,vpr|. Similary to the calculation done for as ¢pr and Lemma 3.6.2

respectively we have
dpr||ACprol* —lv]*
= dpr (|Mw||* + |[AP Ag" Rv|> +2(Aw, AP A" Rv))
= (IIhwll* + flvoll)
(3.43) > dpr (N + 1+ p; — 20u) — (A2 +1).

The inequality (3.43) follows as it is again sufficient to consider A € R . Again, for

1 = 0 we have
0<dpr (N +1+pf —2 ) — (A +1)

with dpr = 1. So we can further assume that we have pu; > 0 and dpr > 1 for the
proposed dpr. We differentiate the term (3.43) with respect to A\. Then we get

d
7\ [dpr (N + 14 47 —20)) — (A +1)] = 2X\(dpr — 1) — 2dprpu.

Hence, (3.43) is minimized by A\ = %. It follows for dpy > 1 that
dpr (N + 1+ pf —22) — (A +1) = \2(dpr — 1) — 2X\dprp + (uf + 1)dpr — 1

pidhr  2dbep N (1 +1)dpr = 1)(dpr — 1)

~ (dpr—1) dpr—1 dpr — 1
_ dpr —dpr(2+ ) +1
dpr — 1
dpp — dpr(2+4i2,,) +1
44 > 10T .
(3.44) > pp—

90



3.6 Estimations by angles

The last inequality follows as the term is decreasing in p, and from ¢ € [0, ypr] follows
Hrypr = Mt As the denominator is positive for dpr > 1, we just consider the nominator.
We obtain that the roots of d,, — dpr(2 + p2 ) + 1 are given by

(3.45) Ao — 2 Mane E bome VAT I,
| > |

If we set the positive algebraic sign for dpp it follows for all v € V with v = vo+Aw, vy €
Vo,w € W, X € R and ||vg]| = ||w]|| =1 that

- dhy —dpr(2+p2,,) +1
- dpr — 1

< dprl|ACpp o] = [lv]*

This completes the proof. O

We can see immediately from the proof of Theorem 3.6.5 that the constants cpr, dpr
are best possible. We only have to construct the minimizing elements given in the

theorem.

Corollary: 3.6.6. With the constants cpr,dpr as defined in Theorem 5.6.5, there
is no ¢ > cpp and no d* < dpr so that the inequalities (3.39) hold with ¢* and d*
respectively for all v € V.

proof. As the space V is finite-dimensional, there is a v§ € V; with [Jvg]| = 1 so that

we have
(AP A Rug, (I —Q) AP Ag' Rug)
— o AP A7 R (1 = Q) AP A7 R
= (APAJ'Ruj, NI —Q)APA;"Rug) =\ Ypr

— [ Quu5II”
vV - 72DT

1

and  [[AP Ag" Rog|* = [1QovI* ——
DT

If we set

(I_Q)APAo_lRUS CDTHrpr

I( = Q) AP A Rug|| 1 — cpr]
A

we obtain that the inequality

cprl|ACprvs |I* < v [1”
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holds by equality. So there is no bigger ¢ € R that fulfils the inequality for all v € V.

The same follows for dpp if we set

(I -Q)APAS Ruy dpriiyy,
|([—Q)APA51RUSH dDT—l

,U;,d = ,UE)k - ’
0

Next, we will show that according to the Theorem, 3.6.5 the constants cpr,dpr are
given by a simple one-dimensional optimization problem or a two dimensional restricted

optimization problem respectively.

Corollary: 3.6.7. The constants cpr,dpr of Theorem 3.6.5 are equivalent to

, A2 +1 , A+
C = Imin = min
PT ™ NeR A2+ 1+ P2+ 2Aypy AR u€Oy ] A2+ 1+ p? + 20
A2+ 1 A2+ 1
dpr =

max = max :
AR N2+ 142 = 2Ny AR p€ ] A2 A1+ p? — 2\
proof. By inequality (3.41), we obtain cpr by

0<—cpr (N + 1442, +2Miyy,) +1+ X% VAER

N +1

& cepr < 2 , VA eR.
The proof of Theorem 3.6.5 shows that the minimum of the right side exists. From
Corollary 3.6.6 we obtain that the given constant is the biggest one, so it is given by
the minimum of the right side. From the inequality (3.40), the proposition for the
two-dimensional restricted system by the same arguments.

The proposition for dpr follows by the same arguments. O

At last, we will consider the behaviour of the constants with respect to vpr. The results

are quite easy to see.

Corollary: 3.6.8. For the constants cpr,dpr of Theorem 3.6.5 we have

[CDT] <0 and [dDT] > 0.

dvypr dvpr
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proof. By Lemma A.0.6, we have —%—[upr] > 0. Hence it follows that

dvypr
d d d
d = d .
dVDT[ DT] d,uDT[ DT] d~ypr [MDT]
2upr + /4 + 13 + %;% =
= : >0
9 dvor [,UDT]
>0
and
] = 2 fepr] -~ [ppr]
dvpr P d ppr Pr dypr HoT
2
2pr — m - /—:f/f% . d
= . < 0.
2 d~ypr [MDT]
>0

The last inequality thus follows by
2
Hpr
0> 2upr —\/4+ iy — —F——=
o VA+ by
_ 2ppry A+ phr — (4 + phr) — tihr
VA+ by

(V4 + 1y — ppr)®
Vi+ U

O

If we consider the two dimensional restricted system in Corollay 3.6.7, then the propo-
sition for the behaviour of cpr,dpr follows quite simple as an bigger ypr implies a

bigger ji,,,, and thus cpr (or dpr) is given as the minimum (maximum) for the same

function on a bigger set.

Next, we will consider the BP X-method and we will get similar results. So at first we

will again highlight a basic proposition on real numbers that will give the constants for

the BP X-method.
Remark: 3.6.9. For all p € Ry we have

5+u1—w9+1mﬂ+u4<1<5+¢ﬁ+\M+¢mﬂ+u4
- 8

8

54 p? 4+ /9 + 10p2 + pt
and 1= S

w=0.
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3 Introduction of the preconditioners

proof. For

54+ u?+ /9 + 10p2 + pt
8

the proposition is obvious from p € R,. We obtain the other inequality by

2 2 4
|5 Bm VO + 102 +

8
& W —3<V9+10p2 + pt
s pt—6u+9 <9+ 1007+ pt

5+p2—1/9+10p2+pt
" TR <. O

8

If we insert p = 0, this implies

Later we will see that we can conclude from CBPX|MDT:0 = 1/2 that 1/2 is an upper
bound for cgpx (cf. Corollary 3.6.13).
Now we will procead to the central result for the BPX-method.

Theorem: 3.6.10. Let A € R™™ A, € R™*™ be non singular and Cyzpy be as
defined in (3.4). Then the inequalities

(3.46) copx||ACspy vl < [[vl]* < dppx||AChpy vl

hold for all v € V with

B+ Hapr = VOIF L0, + 45,

(3.47) P 8
ol dapy o= Ao ® VO T IOy ¥

proof. We consider an arbitrary v € V. First we assume that we have v = w, with
w € W. As W = ker(R), it follows that

IACEpxII* = [0]* + |A P Ay Ro||* + 2(AP Ag' Rv, v) = [[v*].

Hence, the inequalities (3.46) hold with cgpx = dgpx = 1 and by Remark 3.6.9 this is
fulfil by the given constants.

Now we assume that we have v = vy + w, with vy € Vp, w € W and vy # 0. Further,
we highlight that we have cgxp < 1 and dgpx > 1. By the assumption of vy # 0,
we can scale the inequality that way that we have v = vy + Aw, with A € R, and

|vo|| = |Jw|| = 1. Further, we obtain from Corollary 3.2.3 for the given vy that

(APAG  Rug, (I = Q) AP A" Rug)| =t|AP Ay Rug|| [|[(I — Q) AP A" Ruy|
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3.6 Estimations by angles

with a ¢ € [0,vpr], vpr < 1. Thus the setting p? = /(1 — ¢*) is well posed. As we

have
Q()APASIR’U = Q()U = Vp.
it follows for cgpyx that

(3.48) cppx||ACEpxl

= coex (JU? + | AP AT Ro| + 2(AP 47" Ro, v))
= chX(||)\w||2 + llvoll® + [[Qo A P AGT Ro||> + |[(I — Qo) AP Ag* Rull?
+2(QuAP AT  Ru, v) +2((I — Qo) AP A7 Ru, v))
= capx (Il + [fool[> + ool + 2 o]
+2(Qov, v) +2((I — Qo) AP A;' Ru, )\w))
= copx ()\2 F 24 2+ 2(Qov, v) +2((I — Qo) AP AT Ru, Aw))
(3.49) < cnpx (v A+l +2AM)

< ¢ppx <)\2 A2+ 2)\IU'YDT)'

Based on the algebraic signs it is sufficient to consider A € R,. This implies the last

inequality above. As we have [|v[|? = ||vo]|? + [[Mw||* = 1 + A2, by the scaling of vy, w
we obtain
(3.50)  —cppxl|ACEpx|2+ U2 = X+ 1 — cppy (v At + 2AMA,DT).

We differentiate (3.50) with respect to A\, we obtain

% ()\2 +1—cppx (>‘2 A+, + 2)‘“7“))

=2\ — CBP)((Q)\ + Q,MA/DT).

HyprCBPX

n
pr——l d we get

Hence (3.50) is minimized by A =

5443 1
—cppx—- + 1

2
2 2 2 CBpPXx
AT+ 1 _CBPX()‘ +4+'U"YDT +2)\M7DT) > Tp—
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3 Introduction of the preconditioners

As the denominator is positive, we only take a closer look at the nominator. The roots

of the nominator with respect to cgpx are given by

5+ g, + /I 02, F i,
. |

CBpXx =

If we take the negative algebraic sign, it follows for all v € V with v = vy + A\w, vy €
Vo,w € W, XA € R and ||vg]| = ||w]|| = 1 that

0 < 5+'u’Y,23T B \/9+ 10'u%DT +'uf1YDT

< ||v||? - ACqHpyv|*
= 81— copx) < lvll® = espx[[ACppx vl

This proves the propostion for cgpx.

Next, we consider the proposition for dgpy. By the calculation above we can again
consider a v € V that fulfils v = vy + Aw with ||vg]| = ||w|| = 1 and A € R. Hence it
follows that

dpx||ACEpx |

= dpx (Il + ol +11Q0 A P AG Rl + (1 = Qo) AP A7 Ro?
+2(QoAP A Ru, v) +2((I — Qo) AP Ay R, v))
= dpex (V4 1+ 1Qovl + 221 Qo o]
+2(Qov, v) +2(( — Qo) AP Ay Ru, v))
— dppx (V + 2+ 12+ 2(Qov, v) +2((I — Qo) AP A7 Ru, v))
> dppx (v TRV 2Am).
So we obtain
(3.51) dpx||ACEL 12 = [0l2 = dapx (v T - mm) — (14 22).

In the case of y; = 0, this holds by dgpx = 1. This proofs the proposition for p; = 0.
Now we can assume that we have y; > 0 and dgpx > 1 for the proposed dgpyx. If we
differentiate (3.51) with respect to A, we get

d
ﬁ |:dBPX ()\2 + 4 + ,Ut2 — 2)\,Ut) — (1 + )\2)] = 2)\(dBPX — 1) — 2,UtdBPX-
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3.6 Estimations by angles

Hence, (3.51) is minimized with respect to A if we set A = %. From this value we
obtain

54-p2 1
—dppx—3++ 1

d2
dppyx (V A2 zAm) (14 %) = DX
dppx — 1

5442
2 - DT 1
dBPX dBPX 4 _I_ 4

dppx — 1
The denominator is positive, so we consider only the nominator. For this one, the roots
with respect to dgpyx are given by
5+ papy £ VO 10, + 15,
S )

As we take the positive algebraic sign, it follows for all v € V' with v = vy + Aw, vy €
Vo,w € W, XA € R and ||vg]| = ||w]|| =1 that

0< 5+M’Y12:)T+\/9+10M’2YDT+'U§DT
o S(dBpX - 1)

dBPX =

< dppx||ACzpxv|* — [Jv]*.
]

As the constants cpr, dpr defined in Theorem 3.6.5 are best possible estimations, this

is also the case for the constants cgpx, dgpx. In more formal words:

Corollary: 3.6.11. With the constants cgpx,dppx defined in Theorem 3.6.10, there
is no ¢* > cgpx and no d* < dgpx so that the inequalieties (3.46) hold with ¢* and d*
respectively for all v € V.

proof. As the space V' is finite-dimensional, there is a v§ € V, with ||vg]] = 1 for which

we obtain
(APAalRUS,(I— Q)APASIRUS)
= yor [AP A Rug|l [|I(I — Q) AP Ag' Rug

— * — * DT * |2
= (APAJ'Rvj,\NI—-Q)APA;' Rv}) = \—————||Qov]|
VA 712:)T
1

1_72DT

and |AP Ay Rug|l* = || Qovs |

If we set

([_Q)APAEIRUS CBPX MHypr

I(I-Q)APA; Ruj|| 1 —cppx
A
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3 Introduction of the preconditioners

the inequality
cppx[|ACppxvy [P < 03[

is true with equality. So there is no bigger ¢ € R that fulfils the inequality for all v € V.
The same follows for dgpx if we set

([ - Q>APA51RU8 dBPX Hypr
(I - Q) AP A Rug|| dppx — 17

* *
Und = Yo — |

O

Like we did for the DT-method, we also want to give a characterisation for cgpx, dpx
by a one-dimensional optimization problem (and a two-dimensional restricted optimiza-

tion problem, respectively).

Corollary: 3.6.12. The constants cgpx,dppx defined in Theorem 3.6.10 are equiva-
lent defined as
. A2 4+1 ) P |
min = min
MR N2+ 44 2+ 2Ny ASRUEO ] A2+ 4+ % 4 20

CBPX =

J A +1 A 4+1
= Imax = max .
BEX TNk N2+ 4 + P2 = 2Mhypy AR EE ey ] A2 A4 i — 2\

proof. From the inequality (3.50), we obtain cgpx by

0< —cppx (N +4+p2, +2M,,) F1+X, VAR

A2 +1
+ 4 + 'u’2YDT + 2)\'U'YDT

& cppx < 2 , VA eR.

The proof of Theorem 3.6.10 shows the existence of the minimum of the right side.
Hence, the minimum is the best estimation and by Corollary 3.6.11 we obtain that
cppx is given as the best estimation. The representation by a restricted problem
follows by the same arguments from (3.49).

0 < —cppx ()\2+4+,uf+2)\ut)—l—1+)\2, \V/)\GR,\V/,UtSILL.yDT.
The assertion for dgpy follows by the same arguments. O

At last we will consider the behaviour of the constants with respect to ypr. The results

are again quite easy to see.

98



3.6 Estimations by angles

Corollary: 3.6.13. For the constants cgpx,dppx of Theorem 3.6.10, we have

d
dypr

[CBPX] <0 and

d > 0.
TEP

proof. From Lemma A.0.6, it follows that M%[MDT] > (0. Hence we obtain that

d d d
[dppx] = [dppx] - pp- [ty ]

dryDT d/"L'\/DT
10/1"YDT +2H’2DT
B QN'yDT + OH10p2 o +ud d [ ] >0
B . Ao Hypr
S———
>0
and
rleon) = gese] o)
Cpr| = opxlt o
dvypr d ot e
B 10HWDT+2u§YDT
B 21pr OH1002 Hud . d [,UDT] <0
3 dvpr
>0

The last inequality follows from the consideration below:

10457 + 2485,
\/9 + IOM%DT _l_ MilYDT

= 4'“’2YDT(9+ 10”3DT _I_MilYDT) < (IO'U'YDT + 2/J§YDT)2

0> 2IU’YDT -

& 362, < 10043,
O

Again, as for the DT-method, we could also conclude from the restricted optimization
problem as given in Corollary 3.6.12, that a smaller angle ypr gives a lower constant
dppx and a bigger constant cgpx.

Remark: 3.6.14. In Corollaries 3.6.6 and 3.6.11, the space V and thus Vo C V' in
particular is finite-dimensional in each case. As we consider the case V- = R™ this is
sufficient. However, the assumption is not necessary as the proposition for the constants

would also follow for sequences (vf)ren so that

APAG'Rvt, (I —Q)AP A" Ru;
lim — " — 7 = VDT-
koo [[AP Ay Rl [(I = Q) AP Ay Rug|
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3 Introduction of the preconditioners

Now we have given estimations for the condition of A C;py and A Cp1. in the Euclidean
norm. As the estimations all depend only on the constant vpr and upr respectively,
and as we have shown in the Corollaries 3.6.6 and 3.6.11 that these are the best pos-
sible estimations, we can now compare the two methods. More exactly: As we have
exactly calculated (rather than just estimated) the condition with respect to the Eu-
clidean norm we can compare the methods with respect to this characteristic. As the

condition is given by ‘Z—z_’, 1= DT, BPX, we will take a look at the a relations between

1

orx” At last, we will calculate a relation for the

dpr and dgpyx, and between é and

quotient.

Theorem: 3.6.15. For the constants cpr,dpr,cgpx and dgpx as defined in this

section, it follows that

cepx < ¢pr, dppx <dpr

d d
and —bT < BPX & Ypr < W/ 1/2

CpT CBPX

proof. From the Corollaries 3.6.12 and 3.6.7 we obtain

p A2+
Bpx = MMax
A+

and dppr = max .
PT7 3R A2+ 1+ P20 = 2 ey

As for a given p,,, € Ry and for all A € R, we have

A +1 _ A2 +1
()‘2 - :u“/DT>2 +4 (>‘2 - IU"YDT)2 +1
A +1 A +1

< .
N+ dtp2 =20y, N2 =20,

It follows that

p AN +1 (M) +1
Bpx — max =
(A2 +1 A2+

= dpr.

< max
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3.7 First Summary

This implies dgpx < dpr. By the same arguments, we obtain for c¢pr, cgpx that

, PN (A2 +1
& = Imin =
U N 142, = 2t (V) 1 12, — 20 o,

(A2 +1 , A +1
)2 2 * 2 MUl ~ 2
(N2 Hd+p2 = 2Ny, AR N2+ 4 42— 2\,

= CBPX-

From the definition of y.,,, we obtain

Yor <V1/2 & ol <1

Hence we get the last proposition by

d d
pr _ 4BPX

CpT  CBPX

2+M3DT+M“/DT\/4+/”L’2YDT < 5+M3DT+\/9+10’LL3DT+M§YDT
2+M%DT_/J”YDT\/4+’U%DT a 5+M’2YDT_\/9+1OM’2YDT+'U§DT

At (5 + M?YDT)/“L’YDT \/ 4+ M%DT < <2 + M?YDT)\/g + 1()'LL’2YDT + ’uiDT

S B+, i, (i) < (24 15,,)7 O+ 1005, + 115,,,)

4 2
& 0=y, +2M'YDT =3
s 2 _
Foypr = L.

The proof is completed by the fact that we have yu.,, € Ry for ypp € [0,1). O

3.7 First Summary

We will close this section by a first summary of our results. We have introduced the
preconditioners Cppy, Cpr and Cyp by using the inverse of A, Ay. In this introduction
we have seen that the three operators are all well posed if A, Ay are non singular. For
all preconditioners, we have given an easy basic estimation for the condition of A C~!
in the Euclidean norm. For the preconditioners Cp and C'pL, we have seen that we
can give much better estimations. In particular, they depend only on the angle ypr
and the value p.,,,. respectively.

Further, we have seen in the Corollaries 3.6.8 and 3.6.13 that the constants dgpx, dpr

are increasing in ypr and cgpy, cpr are decreasing in ypr. This gives us a first idea to
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3 Introduction of the preconditioners

modify the system that way that we have ypr = 0. As the spaces Vy, W are orthogonal
to each other, it is easy to see that the condition of ypr = 0 is equivalent to the
condition that Vj is invariant with respect to the operator A. We will take a closer look
at this aspect in the next chapter. So far we will just consider what would happen in

the case of ypr = 0.

Corollary: 3.7.1. Assume thatwe have vypr = 0. Then it follows for the constants

CDTadDT and CBpx,dBpX Of section 3.6.2 that

d d

LT 1 and BEX =4

Cpr CBPX
proof. The proof follows as ypr = 0 implies p.,, = 0. Hence the proof follows from
the results of Theorems 3.6.5 and 3.6.10. O

As the exact calculation for the conditions only depends on the constant ypr, we can
compare the two methods. This is done in Theorem 3.6.15. By the quotients d/c, we
see that the BP X-method is better if the angle is bigger. More exactly this is the case
if we have ypr > \/m These are the more serious problems. If the angle is small,
the solution is quite exactly given by the addition of the solutions of the subspaces. In
this case, the DT-method has the lower condition. By the relations for dpr, dgpx and

¢pr,cppx as given in Theorem 3.6.15, we can interpret this as follows:

Interpretation of dpr,dgpx : As already mentioned, the constants dpr,dgpx are
the more serious problem. These constants exist if and only if the operators A C} and
AC5py respectively are non singular. So for a robust preconditioner it is important
that the constant d has an upper bound which is as small as possible. Hence, as we

have dgpx < dpr, we can conclude that the BP.X-method is more robust.

From the representation

ﬂ<di forall veV
|ACT ]2~
follows  Apin(AC;H) > dl, i=DT,BPX

with
Amin(ACTY) :=min{|A\| € Ry : AC; v = \v for an v € R"\{0}}.
1

Now we can see that + is a lower bound for absolute value of the eigenvalues of A C; .

d;
Thus, a bigger d; means a lower bound for the eigenvalue with the smallest absolute

value.
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3.7 First Summary

Interpretation of cpr,cepyx : The constants cpr, cppx determine how exact the so-
lution can be. In Corollary 3.7.1, we have seen that by the condition ypr = 0, the
BPX-method is not exact. We obtain this as we have cgpxy = i in this case. By
comparison, we get cpr = 1 in this case. Hence, the constant ¢;, + = DT, BPX can be

seen as a measure for how exact a method can be.

As done for the constants d from the representation
I?

[v
m Z C; for all v eV

1
follows Apax(AC; 1) < —i= DT, BPX

Ci
with
Amaz(ACTY) :=max{|A\| € Ry : AC; v = \vfor an v € R"\{0}}.

We can see Cl as an upper bound for the eigenvalues of A C;*. Thus, a smaller ¢; means

7

a lower bound for the biggest eigenvalue.
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4 Modification of the BPX and DT
Method

In chapter 3 we have introduced the preconditioners C’;}DX, C'[_xlp and C’Z_Pl. Then we
have given quite simple estimations for the condition of C;' A, i = BPX, DT,2P in
the Eulidian norm. In section 3.6 we have proved a better estimation for the BPX
and the DT-method with respect to the same norm. In particular we have seen that
we can estimate the condition just by one constant, the given estimations are best and
the behaviour of the condition with respect to the constant is quite easy to see.

So in this chapter we will modify the preconditioner. First, only by modifying the
prolongation (one sided), then by modifying the prolongation and the restriction (two
sided). As it is obvious that the constant ypr as defined in chapter 3 is zero if and
only if the subspace V; is invariant with respect to the operator A, the aim will be to
modify the prolongation in a way, that holds this invariance. Furthermore we high-

light that the restriction and prolongation must not be given by an aggregation method.

As in the last chapter, we will introduce the modification for the two grid methods.

Hence we drop the same indices as in the last chapter.

4.1 A one sided modification

First we will try to modify the DT" and the BP X-method by a one sided modification.
A modification matrix X € R"*" should have the property

rk(X P) = ny.
We define a modified prolongation Px € R™*" by

Py =XP.
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4 Modification of the BPX and DT Method

To get a consistence on the subspace Vi we define a modified lower dimensional operator
Ao x by

AO,X = RAPX

For the non singularity of Ay x we get by the analogy to Lemma 2.3.5 and Corollary
2.3.6 respectively the following result:

Lemma: 4.1.1. Let A € R™" be a non singular matriz. Then it follows that Ay x is
non singular if and only if there is no vy € Vi that holds A X vy € W = V5=

proof. The proof follows from the same arguments as in Lemma 2.3.5. 0J
Analogue to ypr we define the angles ypr x by

(4.1)  yprx = min {t ER, : (APy Ay Ru, (I — Qo))

<t APx Agk Rl (7 = Qoyoll, Yo € V.

So we get a first simple result for the operator A Px A _1X R v that we will use for both

methods. The result is the simple generalization of Lemma 3.4.1.

Lemma: 4.1.2. Let A € R™", R € R"*" be given matrics. Assume that Ay x is non

singular. Then the operator
APx Ajx R:V — (APx Ajx Rey, ..., APx Ajk Rey)
s a projection and
(4.2) QOAPXA(Iﬁ(Rv:QOU
holds for all v € V.

proof. The calculation

(APx Ay R)(APx Ajx R) = APx Ay Aox Ajx R
—

Ao, x
= APx Ajx R
shows that A Py Ay R is a projection. The equation (4.2) follows from

QuAPxAjx Ru=PS RAPx Ajx Rv=PSRv=Qv.

Ao, x
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4.1 A one sided modification

By Lemma 4.1.2 we can conclude that the direction of the projection A Py Ay _1X R is
orthogonal to Vj. That means that for an arbitrary v € V with v = vg+w, w € W, vy €
Vo it is

Qov =1y, (I—CQp)v=w

and APx Ajy Ruv=APx Ajk Rug=vg+wy, w €W

But the image space of A Py A; % R is also in this case in general not given by V;. We

will take a look at a condition for this. It is:

Lemma: 4.1.3. For given non singular A € R™*", Ay x € R™*" the following three

statements are equivalent:
1. It holds ypr x = 0.
2. Vi is invariant with respect to A X.
3. It holds (A Px Ay x R) (V) = V4.

proof. To prove the equivalences we will show three implications:

1 = 2: For an arbitrarily given vy € V; there is an w; € W that holds for all w € W

APXAO_’}XR(vOjLw) = vy + wy.
Hence we obtain for v = vy +wy by yprx =0

(APx Agx Ru, (I = Q)v) < vprx |APx Agx Rl [[(I — Q) vl
= (vo+w1, wl) SO
= (’LUl, wl) <0

= w; =0.
This implies A Px A(ilx R (vg + w) = vy € Vy. As we have
Vo = Im((P Ay x R)(Vo))

it follows that Vj is invariant with respect to A X.
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4 Modification of the BPX and DT Method

2 = 3: As it holds PAo_,_lx Rv eV for all v € V we obtain by the invariance of V with
respect to A X the inclusion A Px Ajx R(V) C Vo. As it is

RAPxAjxR=R
we obtain
rk(APx Agx R) > rk(RAPx Ajx R) = rk(R) = ng

This implies that A Px A, Y RV —Vj is surjective.

3=1: As we obtain A Py Ay x R € Vy =W+ for all v € V. It follows
(APXAO_}XRU, w)=0 YveV,YweW.
This implies the proposition.
O

The information given by the last two lemmata is similar to the conlusions we get in
section 3.4 for the unmodified method. In particular we have seen in the Lemmata
3.4.1 and 4.1.2 analogoues propositions for the operators A P A;' R and A Px Ag YR
This result will be the main aspect to get similar results for the modified method. The
effect of the modification is illustrated in Figure 4.1. Based on the mentioned analogy

the Figure 4.1 is the modification of Figure 3.1 at page 69.

4.1.1 The DT-method

For a non singular matrix A € R™*" and a non singular Ay x € R"*" we define the

modified preconditioner C’B; ¥ by
(4.3) Corx =A(I—Qo)+Px A x R.

First we will show that the operator C'Bflp’ + 1s non singular. This follows in the next
lemma based on the same assumption and arguments as used in Lemma 3.3.1 for the

unmodified operator.

Lemma: 4.1.4. Let A € R™", Ay € R™*" be non singular. Then the matrix
ACprx

1s non singular.
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4.1 A one sided modification

woA (AP A R)(V)
AP A Ry
APA;'Ru, ;
.02
: (AXPA X R)(V)
aprT.X E AX P Ak Ry
/QDT\ ? AX PASL Ry
I
o
Vo

Figure 4.1: Effect of the modified projection A X P AE}C R

proof. Suppose that ACpy y is singular. Then it must exist an v € V\{0} with
0=A4 CB%’XU
& 0= —-Qv+APx Ak Rv
& —(I—-Qo)v=APxAjk Ruv

= —R(I—Qy)v=RAPx Ajx Rv

=Ag x
& 0= Rw.
So the for the given v € V we obtain Rv = 0. But in the case of Rv = 0 we obtain
0=ACprxv=I—Qo)v+APxAjx Rv=v.
This is in contradiction to the assumption. O

As shown in Corollary 3.3.3 in the unmodified situation the proof of the non singularity
of ACpy x implies ypr,x < 1.
To get estimations for the condition of AC’B}R « that can be compared with the esti-

mations of section 3.6 we need similar results. So for the modified method we will give
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4 Modification of the BPX and DT Method

an estimation just depending on the constant ypr x. So we define for this chapter

Theorem: 4.1.5. Let A € R™*" Ay x € R"™*" be non singular and C’B%F’X as defined
in (4.3). Then the inequalities

(4.4) corx|ACorx vl” < [Jo)* < dprx|AChr x vl

hold for all v € V with

2+ ’uiDT,X ~ Haprx 4+ M%DT,X
(4.5)

Cpr.X ‘=

2
2+ 'UE/DT,X + 'u’YDT,X \/ 4+ 'ug/DT,X
and dDT,X = B .

proof. The proof follows exactly the same arguments as the proof of Theorem 3.6.5.

We use again Lemma 3.6.2. This time we set
B =APx AJ}(R instead of B=APA;'R
as done in the proof of Theorem 3.6.5. Then the proof follows as
Qo A Px A&k Rv = Qv
holds as Qo A P A;' Rv = Qv in the proof of Theorem 3.6.5. O

As the constants cpy x, dpr x that determine the condition of A C’Bi « have the same
structure as cpr, dpr in Theorem 3.6.5 it is obvious that we obtain for the constants
cpr.x, dpr x the same characteristics as for cpr, dpp. These are summarized in the next

proposition.
Proposition: 4.1.6. Let cpr x,dpr.x be as given in Theorem 4.1.5 then it follows:
1. CDT. X S 1 S dDT,X and it is Cpr,.X = 1= dDT,X Zf and OTLly Zf 1t 18 VDT, X = 0.

2. It s

d d
[CDT,X] <0 and
dWDT,X YDT, X

[dDT,X] > 0.

110



4.1 A one sided modification

3. There is no ¢ > cprx and no d* < dpr x that hold for allv € V
N Copx Av|)* < |ol|* < d*||Cppx Avlf®,

4. The constants cpr x,dpr.x are given by

, A+ . A2+ 1
min = min
XeR A2+ 1+ M?YDT,X F 2Ny AER EO ] AR L4 p?2 4 2Ap

Cpr,.X =

J N+l N +1
= Imax == max .

proof. The proof follows the same arguments as the proofs of Remark 3.6.4 and the
Corollaries 3.6.6, 3.6.7 and 3.6.8. O

Using these results we can compare the modified method with respect to different
modification matrices X, X, with each other.

Proposition: 4.1.7. Let A € R™" be non singular and Xy, Xy € R™*™ two modifica-

tions so that Ap x,, Ao x, € R"™*"™ are non singular. Assume further that it is
Ybrx, ‘= min {t ER, : (APy, Ayl Ru, (I — Qo))
< |4 Py, A7k, Roll I = Qo] Y e V'
VDT, X, = Min {t €Ry : (APx, Ay, Rv, (I = Qo)v)
< AP, Az, Roll (= Qooll, o e V]

and Yprx, < VDT.X,

then it holds

cpr.x, > ¢cprx, and dprx, <dprx,-
proof. The proposition is immediately followed by the second proposition of 4.1.6. [

Looking at the proposition 4.1.7 it is obvious that the aim of a modification should be

a low angle ypr x. At the same time there are two restrictions for practical causes:

1. As we will in general use iterative methods instead of to determine A, % the matrix
X should induce for Ay x good characteristics for common iterative methods (cf.
chapter 9).
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4 Modification of the BPX and DT Method

2. The effort to determine X, Px and to calculate X vy for, a vg € V or Pxvy for a
Ty € Vj should be limited.

We have assumed for the modification matrix only X € R™" with rk(X P) = ny.
In particular the DT-method do only use X vy for vy € V4. So it is obvious that the
modification matrix is not unique because for an arbitrary w € W the result of X w
does not matter. We will see this in an explicit example (cf section 5.1.1). We will

conclude this section with the example X = A~!. In this case we obtain:

(AXPASX Rv, (I—Q)v)=(PAjx Rv, (I —Q)v)

= (A% Rv, R(I - Q) v) =0.
7 —

=0

Hence it is ypr x = 0 in this case. Furthermore it is quite obvious that V; is invariant
with respect to A X = id. We have shown above that this implies the invariance, too.

This implies cpr x = dpr,x = 1. If we take a closer look at this example we get
Aox=RAXP=RP = Ag}( = 9.
This implies
AC’[)%X =AATI-Q) +4" PA&& R)
=[-Q)+PSR=1.

So the preconditioner is in this case the exact inverse of A.

4.1.2 The BPX-method

Now we will consider the effect on the BPX-method if we modify this method in the
same way as we have done it for the DT-method. For a non singular A € R"*" and

a non singular Ap x € R"*™ we define the one sided modified BPX-preconditioner

CE}DX,X by
(4.6) Cehxx =A+Px Ak R.

Again we will first show that the operator C5p x.x 18 non singular. The next lemma is

the modified version of Lemma 3.2.1.
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4.1 A one sided modification

Lemma: 4.1.8. Let A € R"*" Ay € R™*™ be non singular. Then the matriz
AChpx.x
15 non singular.
proof. Suppose that ACypy y is singular. Then there is an v € V\{0} with
0=A4 CE}DX,XU
& 0=v+APxAjxRv
& —v= APXAO_}XRU

= —Rv=RAPx Aj\ Rv
——

=Ao,x

& —Rv=Rw.
So the for the given v € V' we obtain Rv = 0. But in the case of Rv = 0 we obtain
0=ACppxxv=v+APxAjx Rv=v.
This gives the contradiction. O

So we obtain also for the modified BPX-method a central result that estimates the
condition of A C’;}D x.x in the Euclidean norm just by the angle vpr, x. So the result is
the generalization of Theorem 3.6.10.

Theorem: 4.1.9. Let A € R™", Ay x € R"*™ be non singular and CE}DX’X as defined
in (4.6). Then the inequalities

(4.7) cepx x||ACppx x vlI? < vlI? < dppx x|AChpx x vl

hold for all v € V' with

2
5+ 'u’YDT,X - \/9 + IO’U%DT,X + ’uiDT,X

(48) CBPX,X ‘= 3
5+ 1 9 1082
and dBPX,X = 3 .
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4 Modification of the BPX and DT Method

proof. The proof follows exactly the same arguments as the proof of Theorem 3.6.10.
We use again Lemma 3.6.2 and set

B =APx A(;}(R instead of B=APA;'R
as done in the proof of Theorem 3.6.10. O

As for the modification of the DT-method, the constants cppx x,dppx x that deter-
mine the condition of AC,;}D XX follow the same structure as cgpy,dgpx in Theorem
3.6.10. So it is obvious that we obtain for the constants cppx x,dppx x the same

properties as for cgpx,dgpx. These are summarized in the next proposition.
Proposition: 4.1.10. Let cgpx x,dppx,x be as given in Theorem 4.1.9 then it follows:
1. CBPX,X <1 S dBPX,X and it is dBPX,X =1 Zf and OTLly Zf 1t 18 VDT, X = 0.

2. It s

d
[CBPX,X] <0 and
dVDT,X YD1,X

[dBPX,X] > 0.
3. There is no ¢ > cppx.x and no d* < dgpx x that hold for allv € V
HNCopxx Avl? < |> < d*(IChpx x Avl*.

4. The constants cgpx,x,dppx,x are given by

. AP +1 . A2 41
min = min
AR AN+ 4+ 2+ 2N g AR €O pp ) A2 4+ % + 20

CBPX X =

J A 4+1 N +1
= max = max .
BPXX T Xk A2+ 4+ 120 = 2Myprx ACRAED Ry ] A2+ 4+ i + 2)p

proof. The proof follows the same arguments as the proofs of Remark 3.6.9 and the
Corollaries 3.6.11, 3.6.12 and 3.6.13. O

So as for the DT-method we can also compare the modified BP X-method for two
different modifications X7, Xy with each other.
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4.1 A one sided modification

Proposition: 4.1.11. Let A € R™™" be non singular and X, Xo € R™"™ two modifi-

cations so that Ay x,, Ao x, € R™*™ are non singular. Assume further that it is
Ypr.x, ‘= min {t eR, : (APyx, Aaj(l Ruv, (I —Qp)v)
< AP, Az, Rl = Qooll, o e V]
YpT.X, = Min {t eR, : (APy, Aa}b Ruv, (I —Qo)v)
< t]14 Py, Ay, Roll I = Qo)ull, Yo € V'
and Yprx, < VDT.X,
then we have
cBPX, X, > CBPX.X, and dppxx, < dppxx,-

proof. The proposition is immediately followed by the second proposition of 4.1.10. [

So as for the DT-method we can conclude that a lower angle ypr x implies a lower
condition of A Cg}g X.x- And as we have done for the DT-method we will conclude this
section with the example X = A~!. We have seen in section 4.1.1 that we obtain in

this case
Yorx =0 = =0 and Agx=5""
So this implies for the modified B P X-method:
ACppxx =AAT+AT'PAXR)=1+PSR=1+Q,.
It is therefore obvious that we get in this case

(A CE}DX,X v, ACE}DX,X v) = ((I + Qo) v, v)

= (v, v) <((I+Qo)v, v) <2(v, v).

Hence the BPX-method is not exact in this case. But the smallest eigenvalue is given

by Amin = 1 in this case.
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4 Modification of the BPX and DT Method

4.1.3 Summary

So we can summarize the results of section 4.1 as follows: As its possible to set X =
I,, for the modification matrix, it is obvious that the modified preconditioners are a
generalization of the non modified ones. Furthermore we have seen that based on the
fact that

APx Agx R

is a projection and Qo A Px A, % Rv = Qv holds for all v € V we get the same results
as for the unmodified method. The methods differ with regard to the assumption.
For a given matrix A and a given prolongation P (and therewith the structure of the
subspace V;) the matrices A;"' and Ay % respectively are well-posed if and only if the
operators Ay and Ay x respectively are non singular. And in both cases this implies
that the preconditioners are well posed too. We have pointed out that the conditions
for this are that there is no vy € V4 that holds Avy € W, and A X vy € W respectively.

So it depends on the modification whether the preconditioners are well posed.

If we compare the modified preconditioners C’B% + and C’;}D x.x then we can do this in
the same way as we have done in the unmodified situation in Theorem 3.6.15. So it is

obvious that we obtain

dpr x dppx,x
— < : & yprx < V/1/2.
CDT, X CBPX,X

If we compare the modified methods with the unmodified methods, then the result
is illustrated in Figure 4.1 at page 109. As already mentioned we can interpret the
unmodified method as a modification with X = I. Hence the modified methods can be
compared with the unmodified if we use the results of Propositions 4.1.7 and 4.1.11.

This points out that the modification makes the method better if and only if we have

Yo1,.x < VDT

However, there are some problems for the modification, too. First, as already men-
tioned, the problem of the effort concerns the preconditioners. For practical issues we
will not determine X but Px. Hence the number of multiplication in a iterative solution
method remains the same. But there can be the problem of a fill in for Px, Ay x. And

of course this raises the effort per multiplication.
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4.2 A two sided modification

Another problem is that if A is a symmetric matrix then this is also true for the coarse
grid operator Ay. In general this is not true for the modified operator Ag x. If we want
to use the preconditioner as a symmetric one this is a problem. To solve this problem
we will modify the preconditioner in a symmetric way. We will show this in the next

section.

4.2 A two sided modification

As mentioned before, the modification of the preconditioner by an operator X has the
side effect that for a symmetric operator A the operator A, y is in general not sym-
metric. In particular the hole operator Cp x.x 18 no more symmetric. The aim of this
section is therefore to keep for symmetric operators A the coarse grid operators and the

modified operator C';py symmetric. So we will concentrate on symmetric operators A.

Similarly to the one sided modification, we define for a non singular operator A € R™*"
and a modification X € R"™*" with rk(X P) = ng the modified prolongation Py €

R™ ™0 and restriction Ry € R™*" as follows
Pyx:=XP and Ry:=(Px)".
Furthermore, we define the coarse grid operator Ay xx € R™*" as follows
Ao xx = Rx APx.
Then we define the operators @y x € R"*" and Sx € R"™*" as follows
Sx = (Rx Px)™' and Qux := Px Sx Rx.

Based on this definition for Sy we can highlight two important characteristics that we

have also used for S in the unmodified, respectively one sided modified situation.

Remark: 4.2.1. Based on the definitions as given above it follows that Sx is symmetric

and positive definite.
proof. As it is
(SxH)T = (Rx Px)" = PL R% = Rx Px = Sy!
it holds that Sy' is symmetric. As we have for an arbitrary 7y € R™

(W0, Sx' ) = (Px 0o, Px ) = ||Px ol|* > 0.
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4 Modification of the BPX and DT Method

Based on the condition 7k(Px) = ng it follows || Px Up||* = 0 if and only if it is vy = 0.

So it is Sy' s.p.d. and hence also Sx. O

Furthermore we define in analogy to the spaces Vi, W the vector spaces Vj x and Wx

as follows

Vox == Im(Qo x (R"™))

Wx == Im((I — Qox)(R")).

Based on these definitions we get the following basics for the operators and vector

spaces:

Lemma: 4.2.2. Based on the definitions of this section it holds:

1.

5.

Proof.
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Qox :V — Vox and (I—Qox) : V — Wx are orthogonal projections with respect
to the inner product (.,.).
For a given v € V' the following three characteristics are equivalent:

a) It is Qo xv =0.

b) Itis Rxv = 0.

c) It isv e Wx.

For a non singular matric A € R™" the matriz Ay xx € R"*™ s non singular

if and only if there is no vo x € Vo x with Avy x € Wx.

If A is s.p.d. then this holds also for Ag xx. In particular Ay xx is in this case

non singular.

If A is real positive then Ay xx is also real positive.

1. Based on the calculation
Qi x = (Px Sx Rx)(Px Sx Rx) = Px Sx Rx = Qo x
=1

it follows that Qo x is a projection. Based on the symmetry
QaX = (PXSXRX>T:R§SXPX :PXSXRX

it follows that the projection is orthogonal with respect to (.,.). The proposition
of the image space follows the definition of Vj x.

The proposition for I — Qo x follows the same arguments.



4.2 A two sided modification

2. We prove three implications:

a) = b) Based on the definition of Qg x as Qo x = Px Sx Rx it follows from the non
singularity of Sx and the assumption rk(Px) = ng that (Px Sx) € R"*"°
has rank ny. Therewith Qo x v = 0 implies Ry v = 0.

b) = ¢) If it is Rx v = 0 then it follows
(I—QO’X)’U:U—P)(SXRXU:U.

This implies v € W.
c)=a) As (I — Qo x): V — Wx is a projection, it follows for v € Wy

([—Q07X)U:U = QO’XUIO.
3. We obtain that A, xy is singular if and only if there is a 75 € R™\{0} with
AQ’XX/’Z\}JS - RxAPXgS - 0

Based on the definition of V{ x and the assumption rk(Px) = ng we get Px vy # 0
for all vy € R™\{0}. This implies A Px vy # 0 for all vy € R™\{0}. Furthermore,
it is Px vy € Vp x based on the definition of Vj x. As we have ker(Rx) = Wy it

follows
Aoxxt5=0 < RxA(Pxv5)=0 <& A(Pxy;) e Wy.
This proves the proposition.
4. If Ais s.p.d. then we obtain that Ay xx is symmetric based on
Al xx = (Rx APx)" = PY AT R\ = Rx APx = Ay xx.
And we obtain that Ay xx is positive definite as follows
(Ao,xx To, o) = (A Px Ty, Px09) = ||[Px 0% > 0.

From the assumption rk(Px) = ng follows Px vy # 0 for vy # 0 and hence
||PX’170||?4 > 0 for 60 7é 0.

5. The fifth assertion of this Lemma follows immediately from the proof of the fourth
assertion.
]
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4 Modification of the BPX and DT Method

So we define an angle ypr xx € Ry as follows
(49) VDT, XX ‘= min {t c R+ : (A Px A(;,AIX'X Rx v, (I — QO’X)U)
< AP Agkx Rx vl (2 = Qox)ol, Yo € V.

Therewith we define for ypr xx <1 the constant i, , as

L VDT, XX

:u'YDT,XX T :
1— 2
\/ Yor,xx

Hence we obtain two results that are similar to the Lemmata 4.1.2 and 4.1.3.
Lemma: 4.2.3. For a non singular A € R"*" the operator
APy Ajkx Rx 1V — (APx Ak x Rxey, ..., APx Ay Rx ;)

= <APX62,...,APX620
s a projection and it holds for allv € V

(4.10) Qo,x A Px AO_,_lxx Rxv=CQoxv
proof. The calculation
(APx Ajxx Rx)(APx Ajkx Rx) = APx Ay x Aoxx Ay xx Bx
— Ao xx
= APx Ay, Yx Rx
shows that A Px A; }X v Rx is a projection. The equality of the two spaces is a result

of the non singularity of Ay xx. Hence the matrix AO_, }XX Rx € R™*™ has rank ny.
Therewith {ef, ..., e) } is a basis of Im(Ag xx Rx (R")). The equation (4.10) follows

rn

from

Qox APx Ay y Rxv = Px Sx Rx APx Ajxx Rxv = Px Sx Rxv=Quxv.

Ao, x x

O

Lemma: 4.2.4. For non singular A € R™", Ay xx € R"*" the following three

characteristics are equivalent:
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4.2 A two sided modification

1. It holds VDT, XX = 0.

2. Vo.x 1s invariant with respect to A.

3. It holds (A Px Ay xx Rx) (V) = Vo x.

proof. We show three implications:

1=2:

2=3:

3=1:

For an arbitrarily given vy x € Vp x and all wxy € Wx it is
A Px Ao_,_lxx Ry (vox +wx) = vo.x + w1 x
with w; x € Wx. Hence we obtain for v = vy x + wi x by vprxx =0
(APx Agxx Rxv, (I = Qox)v) < vprxx |APx Agxx Rl [(T = Qox) vl
& (vox +wix, wix) <0
& (wx, wix) <0

= Wpx = 0.
This implies that Vj x is invariant with respect to A.

As it holds Px A(; }X v Rxv e Vyx forall v e V it follows based on the invariance
of Vo x with respect to A the inclusion A Py AO_fXX Rx (V) C Vox. As it is

RXAPXA(I&XRX = Ry
we obtain
'rk;(A Px A(;}(X RX) > T]{?(RX A Px AO_,‘%(X Rx) = T/{?(Rx) = Ny.

This implies that A Px Ag }XX Rx V. — Vyx is surjective. Hence we have
(APx Agxx Rx) (V) = Vox.

As we obtain A Py AE&X Ry € Vox = Wx for all v € V. It follows
(APXAA(I}XX Rx v, wx) =0 We V. Ywyx € Wx.

This implies the proposition.
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So like the similar lemmata for the one sided modification the two lemmata above show
the structure of the modification as well as the aim of the modifications. The major
stake of the difference is that for the one sided modification we still consider the sub-
space Vj like in the unmodified situation. Then we try to create the situation in which
it holds that V; is invariant with respect to A X. So we modify the operator. As the
lemmata above suggested in the two sided modification, we will consider V; x, Wx. We
will try to create the modification in a way that the modified space Vj x is invariant
with respect to the operator A. This situation is illustrated in Figure 4.2 (cf. Figure
3.1 at page 69 and Figure 4.1 at page 109).

Before we take a look at the two sided modified preconditioners we will consider the
condition that Vj y is invariant with respect to A with respect to the aggregation

method. Hence we assume that we have two sets I, [s with
L:={ie{l,...,n} : N} is an isolated point}
L={(i,j) e{1,...,n} x{1,...,n} : N}, N} are aggregated. }
According to the definition of V{ this implies that
{ej ;i€ Il}U{eZl—i-e]l- : (4,74) € I}
is a basis of Vj. Therewith
(4.11) {X,:ieh}U{X ,+X,: (i,)) € L1}

is a basis of Vj x if we use the aggregation method to construct P and V| x, respectively.

We obtain the following result concerning the invariance of V{ x with respect to A.

Proposition: 4.2.5. Let A € R™*" be s.p.d. Then V; x is invariant with respect to A

if and only if there are z1, . .., z,, with

O/ﬂdAZZ':AZ‘ZZ‘ fOT’izl,...,no.

proof. We prove two implications. First we assume that {21, ..., 2,,} is a basis of V{ x
with Az; = A; z; fori = 1, ..., ng. Then it follows obviously A z; € Vy x fori =1,...,ne.

Hence it follows that V} x is invariant with respect to A based on the linearity of the
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w
WA
v (A Px Agxx Rx)(V)
®
o
.l |
|
|
|
|
(3) (1) :
: Vo,
@ -
Vox
Vo
2 (AP A7 V)
Vi
}« (4) »{ 0
(1) = |(I — Qo) AP A;* Ru|| (2) = [QuAP A" Rol| = [[vo]]
(3) = II(I — Qox) A Px Agxx Rx v (4) = |Qox A Px Aj xx Rx || = [lvo x|

Figure 4.2: Modification of spaces V x
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operator. Second we assume that Vj x is not given by ng eigenvectors of A. Then we

have that a basis of Vj x is given by
(21 4+ 2) U{ba, ..., by}

with Az, = Nz for e =1,...,k, k > 2 and there are ¢, 7 with \; # A;. Furthermore,

we have

zinj:O for i=1,...,k, and j =2,...,ng.
Hence we obtain

A(zr+ -+ z) =M 21+ + Mg 2

Based on

()\121+---+)\kzk)Tbj =0 for j=2,....n
and Ay 2y + -+ -+ A\ zp €< 21 + - -+ + 2, > we obtain

Mz + -+ Az € Vox.

This proves the second implication. O

Based on the Proposition 4.2.5 it follows from the representation (4.11) for a basis of
Vo,x that Vj x is invariant with respect to A if and only if the columns and the sum of
columns of X, respectively are given by ng linear independent eigenvectors of A. Our
ideas to modify this system will be based on this characteristic. We will carry out this

modification at the end of the section.

Based on the results above we can give estimations for the DT-method and the BPX-
method in the two sided modified situation that are analogue to the unmodified meth-
ods. The major stake will be that we use the angles vpr xx instead of ypr and

respectively the spaces Vj x, Wx instead of Vi, W.

4.2.1 The DT-method

We will start by the definition of a two sided modified preconditioner C’[)}’ xx- For a

non singular A and a non singular Ay xx we define C'Bfln xx as follows
(412) CB%“,XX = A_l(I_QO,X)+PXAa,§(XRX-

As usual we will start by proving the non singularity of A C’B; v x- This is based on the

same arguments as Lemma 4.1.4.
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4.2 A two sided modification

Lemma: 4.2.6. Let A € R"", Ay xx € R"*™ be non singular. Then the matrix
ACprxx
15 non singular.
proof. Suppose that A Cpj yx is singular. Then it must exist a v € V\{0} with
0=A C[_)%XXU
s 0=(U- Qo,X)U—i-AP)(Aaj(XRXv

= —Rx(I—qu)U:RxAPX A(;,}XXRX'U

=Ao,xx

< 0= Rxw.
So the for the given v € V we obtain Rx v = 0. But in the case of Rx v = 0 it follows
0=ACppxxv=(—Qox)v+APxAjxx Rxv=v.
This is in contradiction to the assumption. O

Again as mentioned after the proof of the non singularity of A CB%F’  the non singulariy
of AC’[)% vx immediately implies ypr xx < 1 for all non singular operators A, and all
prolongations P and modifications X that fulfil that Ay xx is non singular.

So we can prove for the two sided modified preconditioner the same characteristics as
for the one sided and the unmodified preconditioner.

Theorem: 4.2.7. Let A €¢ R™", Ay xx € R"™ ™ be non singular and C’B;XX as
defined in (4.12). Then the inequalities

(4.13) corxx|ACorxx vlI? < 0l < dprxx|ACpr xx vll?

holds for all v € V' with

2+ M?YDT,XX ~ Hapr xx 4+ 'U%DT,XX

CDT XX ‘= 9
2+ M?YDT,XX + HAypr xx \/ 4+ ’LL?YDT,XX
and dDT,XX = 5 .
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proof. We can set for the vector spaces V, W of Lemma 3.6.2 the spaces Vj x, Wx.
Moreover, we can set in this lemma B = A Px A %x Rx. Furthermore, we have shown
for all v € V' the equality

Qoxv = Qox APx AEE(X Rx v.

Hence we obtain the propositions based on the same arguments as the propositions of
Theorem 3.6.5. 0

Again the constants cpr xx,dpr xx that determine the condition of AC’B% xx have
the same structure as cpr,dpr in Theorem 3.6.5 and cpr x,dpr,x in Theorem 4.1.5,
respectively. It is obvious that we obtain for the constants the same characteristics as

before. These are summarised in the following proposition.
Proposition: 4.2.8. Let cpr xx,dprxx be as given in Theorem 4.2.7 then it follows:

1. CDT, XX S 1 S dDT,XX and it s CDT.XX — 1 = dDT,XX Zf and OTLly Zf 1t 1S
Ypr,xx = 0.
2. It is
d d

[CDT,XX] <0 and 7[dDT,XX] > 0.

dypr xx dypr.xx

3. There is no ¢ > cprxx and no d* < dpp xx that hold for allv € V

IChrxx Avll* < [Jol* < d[|Cpp xx Avl”

4. The constants cpr xx,dpr xx are given by

, N +1 , A +1
C = Imin = min
PIXX T 3R A2+ 1 + 13 prcx T 20 Mpr xx AR DM pr i) A + 14 12 4+ 2Ap

A +1 i AN +1

dDT XX = Inmax = .
’ MR N+ 142 = 20 e ACRpED Ly k] AT+ 14 p? = 20

proof. As the constants cpr xx, dpr x x have the same structure as cpr, dpr in Theorem
3.6.5 the proof follows again the same arguments as the proofs of Remark 3.6.4 and the
Corollaries 3.6.6, 3.6.7 and 3.6.8. O
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To conclude the section we will take a look at some examples for modification matrices.
These will be motivated for symmetric matrices. We therefore take into consideration
the result concerning the invariance of V4 x given in Proposition 4.2.5. If A is symmetric
then there is an orthogonal matrix O € R"*" that holds

A=0D,07,
with a diagonal matrix D 4. Then we set
A*=0D50" with D3 =diag((Da)iy,...,(Da),)

for s € R. For the modification we set X = A~Y2. Therewith X is in this case also

given as symmetric. This implies
Aoxx =RXTAXP=RP=S"
Sx=(RXT"XP)'=(RAP)"
Therewith it follows
ACprxx=(I—A"?P(RATP)"RATV?) 4+ AATVPPSRAT?
— AV (I —A"P(RAT'P)Y'R) A2 4 A2 Q, A™1/2
— A2 (I14+Qy—A'P(RA'P)"'R)A™Y2,

This is the exact inverse if and only if the term in brackets is the identity. This is

equivalent to
Quv=A"'"P(RA'P)"Rv YweV.

Based on this characteristic we see that such a modification is senseless. For the un-
modified system we have the problem that Vj is not invariant with respect to A. For
the two sided modification with X = A~Y? we obtain the problem that Vj is not in-
variant with respect to A~!. Furthermore we want to highlight that we obtain the same

problem if we use A~! to carry out the modification.

As mentioned above we will consider a modification that is based only on the eigenvec-
tors of A. We highlight that we modify the symmetric operator with an unsymmetric
X. We still assume that A = O D4 OT. Then it follows for X = O

Apxx =RXTAXP=RO"OD40"OP=RDaP

Sx=(RX"XP)'=(RP)"'=5.
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4 Modification of the BPX and DT Method

This implies
ACprxx =I—-XPSxRX")+0D,0" X PAx RX"
=(I-OPSRO")+0D,O"OP(RD,P)RO"
=0 —-Qy)O"+0DsP(RDyP) RO
=0 —~Qy+DsP(RDysP)"'R)O".

And again this is exact if the term in brackets is the identity. Again this is in general

not fulfilled as this is equivalent to
Qov=D4P(RDyP)" Rv YveV.
As it is Qouv € Vp and if N}, NV} are aggregated we obtain for
P(RDsP)'Rv=(1,1,0,...,,0)"
DsP(RD4sP) ™ Rv= (A, A2,0,...,0) & V.

Hence for this modification we have the problem that Vj is not invariant with respect
to D4. We take a closer look at the space Vj x follows from the use of X = O. Let
z; = X_; be the eigenvectors of A. With the sets [, I5 as used for the representation
(4.11) it follows that

{Zi . ZEIl}U{ZZ‘I‘Z] . (Z,j) EIQ}

is a basis of V{ x. Hence the assumptions of Proposition 4.2.5 are not fulfilled. To
construct a modification that fulfils the assumptions of Proposition 4.2.5 we define

T € R™™ as follows

I= diag(iy1,. .., inn)
1 if NV is an isolated point
I = or N, N} are aggregated and it is i < j
0 otherwise.
Based on the definition of 7 it follows for an arbitrary 7' € R™*"

T, if M! is an isolated point
(TI),; = or N}, N} are aggregated and it is i < j

(0,...,0)T  otherwise.
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4.2 A two sided modification

So the matrix I selects ng columns of 7. Based on the same argument I'T selects the
same ng rows of T'. Then we define the matrix X = O = O 1. Based on this modification

we obtain
Sy =(RIOTOIP)™ = I,
Qox = PxSxRx =0OTPRIOT =0T0"
Aoxx = Rx APx =RIOTAOTP=RIOTOD,O"OITP=RID,IP=:D,
with D, € Rmoxmo
Da = diag((Da)11, - (Da)ngmo)-

As it is Dy = diag(Mq, ..., \,) with the eigenvalues \;; i = 1,...,n of A it follows
that (Da);; = A; with j € {1,...,n}. Moreover, we obtain from the definiton of Qg x
that this operator is the projection V' — Vj x that is orthogonal with respect to the

Euclidean norm.

From the calculations above we obtain
ACB%“,XX =AA"! (I - QO,X) + A Px A(?é(X Rx

=] —-OIPRIOT"+0D,0TOTP(Dy)"RIOT

—I—OIPRIO"+0D4,IP(Dy)'RIO.
Therewith A C'Bflp’ x 1s the identity if and only if it is
(4.14) OIPRIOT=0D4sIP(Dy)'RIO".
We have the equality above if

IP=DsIP(Dy)"

holds. For the left side of this equation if e} is the k-th column of P we obtain that
(I P).x = e}. And if e} + ¢} with 4 < j is the k-column of P that (I P) j = e;. For the
right side we obtain if the e} is the k-column of P that

1
€;

(P(Da)").e =

1
€;

= 2=

= (IP(Da) "=

= (DAIP(DA) Y p=el
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4 Modification of the BPX and DT Method

And if ej + ¢; with i < j is the k-column of P that

| —

(P(Da)™" )k = 1 (el +¢))

&

= ([P(Da) "=

= (DAIP(Da)Y)p=el

Therewith the equation (4.14) holds and we obtain ACpp vy = I.

To conclude this example we want to highlight two characteristics of the modification:

1. For practical issues there is so far no rule which ng eigenvectors of A should be

chosen.

12 7

2. We obtain the same result if we modify with X = O D,/ I. In this case we scale

the eigenvectors with the associated eigenvalue. We get Ay xx = Iy in this case

and A CB%F’ vx = I follows from a similar calculation.

4.2.2 The BPX-method
Similarly to the two sided modified DT-method we define the two sided modified BPX

. . . -1
preconditioner. For a non singular A and a non singular Ay xx we define Cyp X.xx as

follows
(4.15) Copxxx =A™+ Px Ajxx Rx.

As already mentioned we obtain for the two sided modification that Ay xx is symmetric
if this holds for A. But in contrast to the DT-method we obtain for the BP X-method

the symmetry of the operator Cg}g x.xx- The result is
(Copxxx)" = (AT + Py Agix Rx)" = (A7) + (Rx)" (Agxx)" (Px)"
= At + Px A(?}(X Ry = CgllDX,XX‘

Then we will show that AC’;}DX, v x 1s also non singular based on the same condition

as used all the time.

Lemma: 4.2.9. Let A € R"" Ay xx € R™*"™ be non singular. Then the matriz

-1
A CBPX,XX

1s non singular.
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4.2 A two sided modification

proof. Suppose that ACgpy yx is singular. Then there is a v € V\{0} with
0=A4 CEIlDX,XX“
= O:U—FAP)(A&;—XR)(U

= —Rxl}:RxAPX A(;,}XXRX'U

=Ao,xx

< —Rxyv=Rxw.
So for the given v € V' we obtain Rx v = 0. But in the case of Rx v = 0 it follows
0=ACEpxxxv=v+APxAjky Rxv=v.
Hence this is in contradiction to the assumption. O

We have shown for the DT-method how we have to modify the assumptions and the
steps to get the same result as for the unmodified method, we obtain this also for the
modified BPX-method. This is obvious as we used the same arguments in section 3.6
for both methods.

Theorem: 4.2.10. Let A € R™*", Ay xx € R™*"™ be non singular and CE}DXXX as
defined in (4.15). Then the inequalities

(4.16) cerx xxlACspx xx VI < [vl* < dppx xx|AChpx xx vl

holds for all v € V' with

2
5+ Fyprxx — \/9 + 10’“’27DT,XX + MleDT,XX

(417) CBPX XX ‘= 3
5+ ’uiDT,XX + \/9 + 10’u’2YDT,XX + MilYDT,XX
(418) and dBPX,XX = 3 .

proof. As mentioned above the proposition follows the same arguments as the propo-
sitions of Theorem 3.6.10 if we modify the spaces for that and we use the arguments

as explained in the proof of Theorem 4.2.7. O
So it is obvious that we get the same characteristics as before. To sum up it is:

Proposition: 4.2.11. Let cgpx xx,dppx,xx be as giwen in Theorem 4.2.10 then it

follows:
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4 Modification of the BPX and DT Method

1. CBPX XX <1 S dBPX,XX and it is dBPX,XX =1 Zf and only Zf it 18 VDT, XX = 0.

2. It s

d d
[CBPX,XX] <0 and di[dBPX,XX] > 0.
VDT, X X

dWDT,XX
3. There is no ¢ > cppx,xx and no d* < dppx xx that hold for allv eV
C*||C§113X,XXAU||2 < Hv||2 < d*HCE}l?X,XXAUHQ‘

4. The constants cppx xx,dppx,xx are gien by

N +1 , N+l
c = min = min
BEXXX T NeR N2+ 4 + u%DT’XX F 2 Mhyprxx AR ED Ly ] A2+ 4+ P+ 20

A2 +1 A +1

dBPX,XX = Ina.

proof. The proof follows again based on the same structure as for the unmodified or
one sided modified BP X-method. O

To conclude this section we will also consider for the two sided BPX-method the same
modifications as done for the DT-method. For X = A~'/2 we obtain

ACppyxx =1+AAVPPSRAT?

:A1/2 (I+QO) A_1/2.

Hence this illustrates again that the BPX-method can not be exact. Furthermore we
see that this is as far from the identity as the unmodified method. As unsymmetric
example we consider for A = O D4 OT again X = O. Then it follows

ACE};X,XX =14+0Dy OTOP(RDAP)_IROT
=0 +DysP(RDyP)""R)O".
This is more senseful. In particular if it is Dy P (RD4 P)™' R = Qy. However, the

problems concerning this characteristic are explained for the DT-method. Finally we
will carry out the modification with X = O = O1. In this case we obtain from the

same calculation as done for the DT-method
ACphyxx =1+0D,0"0OIP(Dy) ' RIO"
=0T+ 0" =T+ Qy, .

Since Qy;  is the projection V' — V{ x that is orthogonal with respect to the Euclidean

norm we obtain the biggest (smallest) eigenvalue of AC5} x.xx : two (one).
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5 Examples for modifications

In the last chapter we have seen that we can modify the preconditioninig methods as
we modify the prolongation, or the prolongation and the restriction respectively. Now
we will consider the problems we have introduced as model problems in section 2.2. We
will motivate modifications by meaningful results for quite simple special cases of these
problems. Afterwards we will considere more general cases of the modell problems to
get an idea of what happens in these cases in relation to our modification. Of course
we will get in the more general cases not the meaningful results which we have for the
simple problems. Further we will use for all the examples the aggregation method to

get the coarser grids.

5.1 Convection diffusion equation

5.1.1 One dimensional convection

We will start with our unsymmetric model problem and consider the convection diffu-
sion equation defined in (2.5). As a more simple version we will consider the stiffness
matrices we get in the case of the one dimensional system with € = 0. The equation we

consider is given by
b(x) Dyu(z) = f(r) VreQCR
u(z) = c(x) Vo e .

Furthermore, we assume that it is b(z) > 0, for all z € Q. We use finite differences for

the discritisation and by appliying the upwind method we get in N the stencil
[_bi7 bi7 O]

with b; > 0. To set ¢ = 0 can be seen as the limit ¢ — 0. As the diffusion is often small
compared to the convection (that means ¢ << b(x)) a discritisation and a solution

method should at least confirm that the equation we get from the limit ¢ — 0 is as
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5 Examples for modifications

exact as possible. This can be seen as motivation for this problem. Furthermore, the
one dimensional situation can be seen as the situation of a one dimensional convection

in a two or three dimensional system.

For the most aspects it is sufficient to consider a small system given by the four grid
points N, ..., N}. Then we assume that we aggregate the grid points N3, N3 to the
new point N (cf. Figure 5.1 at page 135). So we obtain that the restriction R and
the prolongation P are give by

100
10 00
010
(5.1) P= and R=P'=]011 0
010
0 001
0 01
Therewith also follows that
RP =diag(1, 2, 1), S =diag(1, 1/2, 1),
1 0 0 0 0 0 0 0
0 1/2 1/2 0 0 —-1/2 1/2 0
PSR:Q(]: and (]_QO):
0 1/2 1/2 0 0 1/2 -1/2 0
0 0 0 1 0 0 0 0

So this also gives the structure of the subspaces Vg, W. It is
{(1,0,0,0), (0,1,1,0), (0,0,0,1)}
a basis of V) and

{(0,—-1,1,0)}
a basis of W and we obtain the stiffness matrix A as
by 0O 0 0
—by by 0 O
0 —=by b3 O
0 0 —by by

(5.2) A=
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5.1 Convection diffusion equation

We highlight, that this implies that the coarse gird operator Aq is follows as

bp 0 0
0 —by by

Therewith the coefficient b3 that represents the conjunction between the grid points

N2, N3 has no effect for the coarser operator. The hole system is illustrated in Figure
5.1.

bl bz b4

NY Ny Ny

Figure 5.1: Coarsing of the four point system

Unmodified method

First we will consider the result for the unmodified method. In particular we will
consider the angle ypr that determines the condition of ACE}DX and AC’,}}F in the
Euclidean norm. Based on the definition of vpr and the results of the previous chapters

the following equivalence is obvious:

~Ypr := min {t €ER, : (APA;' R, (I —Qo)v)
<t|AP AT Ro|| |(I - Qo)v], Vv € v}

< qpr = min {t eR, : (Avy, w) <t|[Av| ||w|, Yvo € Vi, Yw € W}
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5 Examples for modifications

To consider the inequality
(Avg, w) < vpr ||Avol| ||w] Ve € Vo, w € W

is more simple for explicit calculations. Thus we obtain in the simple situation the

following result:

Proposition: 5.1.1. Let A be given as in (5.2) and P, R as given in (5.1). Then
(Avg, w) < || Awo|l ||w]|, Yvo € Vo, weW

holds with v = \/m Furthermore this is the best possible estimation.

proof. As an arbitrary vy € Vy and an arbitrary w € W is given by

UOZ(f7u>u>g)a f,u,gE]R
w=(0,s,—5,0), s€R

we obtain
Avg = (bif, ba(u— [), 0,bs(g — u)).
And therewith follows
(AU07 w) :b2S(U—f)
[Awo||? = b1 f* + b3 (u— f)? + bi(g — u)?
||w||2 = 25
This implies

(v, w)? = B35 (u— [)? = 5 (25°) (B3(u — )

(25%) (B3(u — f)* + b1 f* + bi(g — w)?)

[ N [

= 5 Il [ Avol*.

It is obvious that this is the best possible estimation if we consider the case of f =0

and g = u. O
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5.1 Convection diffusion equation

Furthermore, it is obvious that this result does not depend on the low dimension of the
problem. For a matrix of the same structure and an arbitrary dimension we get the

same result.

We consider the situation of n grid points. Then we assume that the stencil in N}
is given by [—b;,b;,0]. By the choosen numeration of the grid points follows that the

stiffness matrix A € R™*" follows as

b; for j=1
(5.4) a;j =4 —b; for j=i—1
J

0 else.

For an illustration see Figure 5.2 at page 142. Furthermore we still assume that R €

R™0*™ follows from the aggregation method. Hence we have

(eHT if Vi' € N} is an isolated point

(55) ij =

(e))" + (el )" if ML N, are aggregated to N7

Then the result of Proposition 5.1.1 can be generalized as follows:

Proposition: 5.1.2. Let A, R be given as in (5.4), (5.5) and P = RT. Then
(Avg, w) < [|Avo|l [|wl]], Vvo € Vo, w e W.

holds with v = \/1/2. Furthermore this estimation is best possible.

proof. We distinguish two different situations for the grid points. First we consider a
point A}! that is isolated. Then it is w(i) = 0 and we have

(Awvo) (i) w(i) < 1/2 ((Avo)(d))* (w(i))*
& 0<o.

And of course this inequality is fulfilled.
Now we consider a point N that is aggregated with N!, to NV}. In this case we have

w(i) = —w(i+1)

and ’(J()(i) = Uo(’i + 1) = (AU())(’L + 1) = 0, VUQ c VE]
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Therewith follows that

([(Aw)), (Awo)(i+ 1)), (), wi+ 1)) = (Ave) ()w()

H [(Avo)() (Avg)(i + 1) } H = ((Aw)(4))?

H [ w(i+1 } H = 2w(q)?.

So the inequality holds with vpr = /1/2 for all one or two dimensional subsystem.
The proposition follows from Lemma A.0.4. That this is the best possible estimation

follows immediately from Proposition 5.1.1. O

An exact modification

Now we will construct for the simple system a modification X = (z;;) that realises
vpr.x = 0. We will do this for the low dimensional system. Then we will show that we
can generalise this to an arbitrary big system of the given structure. The main idea of

this approch is that we invert the flux that is described by A for aggregated points.

So our aim is to construct X such that 1} is invariant with respect to A X. On our four

point system this is equivalent to
(AX 19)(2) = (AX 1)(3) holds for all vy € Vp =R™:

Based on the basis of Vj as shown above the equality must hold for all basis vectors.

Hence we obtain that this is equivalent to

(5.6) (AX)o1=(AX)31, (AX)osa=(AX)34

and (A X)272 -+ (A X)2’3 = (A X)3,2 + (A X)373.

As N}, N} are isolated points (i.e. as e}, ej are basis elements of V5) the values of the
first and the fourth row of A X does not matter. As we will modify few elements this
motivates to set for the first and the fourth row of X the first and the fourth unit

vector of R*. That means
X, =(e1)" and X, = (e))".
Next we will consider the three equations given in (5.6). It is

(AX)o4=(AX)34
< A21T1 4+ A29T9 4 + A2 3T3 4 + U2 4T4 4 = A31T1 4 + A32T24 + A3 3T34 + A3 4T4 4

<  Q22T24 = 32T 4 + A33T34
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5.1 Convection diffusion equation

This is fulfilled if we set x94 = 234 = 0. Furthermore, we obtain
(AX)21 =(AX)31
< QA21T11 + A22T21 + A23T31 + A24%T41 = 431711 T A32T21 + 33731 + 34741
< Q21+ G29%21 = G32%T21 + A33731
We set in this equation x3; = 0. Therewith the last equality is equivalent to

—Q21 . by
azo —aszs by + b3

To1 =
So this equation is also fulfilled if we set x5, as given above. At least we consider
(AX)oo+ (AX)o3=(AX)32+ (AX)33
< A29T99 + A29To3 = A32T22 + A33T32 + A39T23 + A3 3733

We set for the consistence x99 = 1 = 233 and 235 = 0. Therewith the equality is

equivalent to

Q22 + A22T23 = 32 + A32%23 + A33

a33 — A22 + as 2
& Tz = .
Q22 — A3 2

For the matrix A this implies

byt by

T3 —T21-

Alltogether we get the matrices X, Px as follows:

1 0 0 0 1 0 0
by _ by b b3 O
(5 7) X — ba+b3 ba+b3 and  Po — bo+b3  ba+bs
' 0 1 * 0 1 0
0 0 0 0 1

Thus it it follows rk(Px) = ng = 3 as the rows 1, 3,4 of Py are linearly independent.

This property for a modification we have always assumed in the chapter 4.

And we can summarize the main properties of the matrix X as follows:
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Proposition: 5.1.3. Let A, P be as defined in (5.2), (5.1) and X as defined in (5.7).
Then 1t follows that Vy is invariant with respect to A X.

proof. The proof follows the calculation as done above in this section. O

Moreover, we will highlight some interesting characteristics of this modification that
we will prove later in a more general system. First it is obvious as the first row of X
is given by e that it follows (A X v)(1) = (Av)(1) for all v € V. As (X); and (X),
are also given by the unit vectors e}, ef we obtain analogue (A X v)(4) = (Av)(4) for
all v e V.

5

At least we highlight that it follows

by 0 0

_ _ 2bob3 2bo b3

AOvX o ba+bs  ba+bs
0 —by by

So if we compare the matrices Ay, Ay x (cf. (5.3)) we see that the modification maintains

a lot of useful characteristics.

1. We have (Ag);; #0 < (Ag x)i; # 0. So there is no fill in if we use the modifica-
tion. That means that the effort for the lower dimension grids does not increase

if we we compare the modified system with the non modified system.

2. Like A, Ay the matrix Aj x fulfils

n
Qi > O, Qj 5 <0 for ¢ 7&] and Z |am~| < Qj 5
J=1,j#i

So the matrix A, x is also an M-matrix. A more detailed analysis of this aspect

is done in section 9.1.

3. The link between AP and A} is in the modified system given by 228 In the

ba+b3
unmodified system this is just given by bs, so the link is modified by the factor
bf_lfb%. This makes sense as a small by should imply that the value on A} and N}

respectively does not depend so strong on the value on N} and NP, respectively.
In the unmodified system this is not realized. For an illustration see again Figure
5.1 at page 135.
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5.1 Convection diffusion equation

4. The modification holds
4
Y wy=1, forall i=1,.. 4
j=1

Because of this characteristic it follows X v = v for all constant vectors v. It
is easy to see that we obtain Av € V; for constant v € V. So in this case no
modification is necessary. Therewith it is a kind of consistence that the choosen

modification has no effect on such vectors.

Because of the inverse of A as defined in (5.2) is

H
ShS=S= o
S o ©
f= o o o

it is X # A7! for X given in (5.7). Together with the modification as given in (5.7)
this illustrates that for a modification it is not necessary to determine the inverse of A
to get the invariance of Vjy with respect to A X.

Exact modification for one dimensional convection systems of arbitrary size

In the last section we have seen that we can give a perfect modification for the matrix
A we get for the one dimensional convection on the small system given by four grid
points. Now we will show that we can generalize this to an arbitrary number of grid
points and an arbitray structure of grid points that are aggregated pairwise to new grid
points. This will explain some of the choices for the matrix X we have done in the last

section and they seem to be arbitrary.

We consider the situation as illustrated in Figure 5.2. That means the stencil in N} is
given by [—b;, b;, 0]. Based on the chosen numeration of the grid points follows that the
stiffness matrix A € R™*" is given as

(5.8) aij =14 —b; for j=i—1
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1 1 1 1 1 1
@23 @i1,-2 i1 Qi1 Givoir1  Qiy3i42
1 1 1 1 1 1 1
Nis Nty Nty N, i1 i+2 i+3
0 0 0
aj 1,52 ajj-1 @ji1,

0 0 0 0
NO., N, N 0

Figure 5.2: Coarsing of an arbitrary one dimensional system

with b; > 0,7 =1,...,n. For the restriction we define R € R"*" of the form

(eHT if Ni' € NV} is an isolated point

(e)" + (ejp )" i NN, are aggregated to N}

Then we highlight that by the structure of R given above
(5.10) {{eil : N} is isolated} U {e] +e; : N, N are aggregated}}

is a basis of V4.

Then for a restriction R € R™*" of the structure defined in (5.9), we define the
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5.1 Convection diffusion equation

modification matrix X € R"*" based on its rows X, as

(5.11)
X, = (e})T, if N} is an isolated point.

7

Xi. = (e)", if M}, N, are aggregated to N7 for an j € {1,...,no}.

7

bi : :
Xo, = ()7 + ()T — (h)), ford > 1 AR AL, are aggregated
b; + bit1
to N} for an j € {1,...,n0}.
b
X, = (e})! - ; ;b (e3)", if NI, N3 are aggregated to N for an j € {1,...,no}.
1+ bs

Therewith this modification matrix is a generalization of the matrix defined in (5.7).
We get the same meaningful result as in the situation of the small system with four

grid points:

Proposition: 5.1.4. Let A be as defined in (5.8). Let R be a restriction operator as
defined in (5.9), P = R and X be the modification defined in (5.11). Then it follows

that Vi is invariant with respect to A X.

proof. To prove that it is A X vy € Vj it is sufficient to prove that for two aggregated

points N}, N, we obtain
(AXv)(i) = (AXw)(i+1) Yy € Vp.

Because of the definition of A as given in (5.8) we can represent A through its rows A,

as

bi(eh) fori=1
A, =
bilel —el )T fori#1.

7

First we assume that it is ¢ > 1. Then it follows from the definitions

b
bi + bit1

Ai.=bil(ef)" = (eiy)”), and Apr, = bil(egey)” — (e)").

(i) = (ean)"), Xivr, = ()"
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Based on a;; = a;41; =0 for j ¢ {i —1,4,i+ 1} follows from the rows ¢ — 1,4,7 + 1 of

X as given above
(AX)L]:AZ, 'X_J:O:AH_:[ (AX)H-I_] fOI'j ¢ {Z—l,l,'l‘l‘l}
Hence it is sufficient to prove

(AX)iic1=(AX)it1,i1
and (AX);; +(AX)iit1=(AX)is1i + (AX)it1,i41-

Based on the definition of X the columns ¢ — 1,7,7 + 1 of X follow as
b;
Xi=¢, Xii1=€_ 1+ ———6€+Tig; 162

b + bz-i—l

X it1 = €ip1 — €; + Tiyoit1 €ita

by + bitq

In the equation above is z;_5; = 0 if N1, is not aggregated with A7' | and Tit2i+1 =0
it V; +2 is not aggreageted with N, +3 Independent of the values of x;_;, Z;12,41 follows
for the rows of (A X) that it is

(AX)i, = A (KXo (ein)" + X (e)" + X (ei0)")

b2
_ 1 \T | 3 (N _ i 1 \T
~ (i =) ) e = )
o b bl+1 b22 1 T
T bz+1( D bi(e)” m(ei+l)

and (A X)ip1, = A, (X1 ()" + X ()" + X (ei)")

bibii1 bibit1

by ) (el )T
b+ bit1 bi + big1 * +1) (¢i1)

()T e+
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5.1 Convection diffusion equation

Since for all vy € Vj holds vy(7) = vg(i 4+ 1) it follows for an arbitrary vy € Vj

(A X)) = (AX);. vo

ST R

and (A X vo)(i+1) = (AX)sr. v
— _blbfilbtrl vo(i — 1) + (_bi+1 + bibfi;;l + bi—l—l) vo(i)
_ _#glﬂ voli — 1) + bbfiglﬂ v (i),

This completes the proof for i > 1. The case of i = 1 we only have to consider if N7}, A2}
are aggregated. In this case follows, based on the same arguments as for ¢ > 1, that
bi T
— e
by + bg( 2)
b1by
by + b9

(AX)1, =bi(e)”

and (A X)y, = —byle])” + ( + bg) (e3)”.

Based on vg(1) = vy(2) for all vy € Vi we obtain for an arbitrary vy € V4

(AX v)(1) = (AX). v = <b1— bi >v0(1) bibs (1)

bl 62 bl—f—bgvo
b1b; b1by
d (AX 2)=(AX = —=by + b 1) = 1).
and 0)(2) = (AX)2, vo ( 2 b + 2) vo(1) by bQUO( )

O

From the Proposition 5.1.4 follows that with the matrix X as given in (5.11) Vj is
invariant with respect to A X. From Lemma 4.1.3 follows therewith that the angle
vpr.x is zero. We know from section 4.1 that this is the best possible result.

To conclude the discussion of this modification we will show that the structure of the
coarse grid operators Ay x is an operator of the same structure as Ay also for the
arbitrary big system. To show this we will show the structure of Ay and A x. W.lo.g.

we assume that we have for the prolongation matrix P the following order condition:

(5.13) pij #0 = p; =0, Vs>i Vt<y
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5 Examples for modifications

To illustrate this assumption we assume that the structure of P is given for example

as follows:

and P #

O O = = O O

I
O O O O O = =
O O O = = O O
o O = O O O O
=0 O O O O
O = Rk O O O O
_ O O O O O O
O O O O O =

0

This is always possible to reach by means of a permutation matrix II we use. This
transforms P to II PTIT = P with the assumed structure. So the permutation matrix
just represents another numeration on the coarse grid points. Furthermore, it is obvious
based on the structure of A that

(DT A=1bi(ef —el )" holds for all i > 2
and (e])T A =t (e])”.
We will use this property to prove the propositions concerning the structure of Ay, Ag x.

Lemma: 5.1.5. Let A be a matriz as defined in (5.8), R a restriction operator as
defined in (5.9) so that P = R" fulfils the condition (5.13). Let X be the modification

matriz as given in (5.11). Then it follows:

1. For Pe} =e! or Pe) = e} + e}, we obtain fori > 1

b; if t=k
by iof t=1
any =14 —b; if t+1=4k and af,=
0 otherwise
0 otherwise

fori=1.

2. For Pé€) = el we obtain fori > 1

b; if t=k
ox ox by if t=1
ay = -b if t+1=%k and ay; =
0  otherwise
0 otherwise.

fori=1.
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5.1 Convection diffusion equation

3. For Pe) = e} + e}, we obtain fori > 1

Dbty oo

bi+bi+1 b1b2 Zf t _ 1
0,.X _ i bip1 - B 0,x ) bitbe
TGy =~ if t+1=Fk and ay; = |
0 otherwise
0 otherwise.

fori=1.

proof. For all propositions we only prove the proposition for the case of Pe? = e} or

Pe) =e; + ey with i > 1. For i = 1 it follows k& = 1 from the condition (5.13). Then

the prove always follows the same arguments as for i > 1.

1. First we assume that we have Pe) = e!l. As it is generally
an, = (ep)" Age} = (e))" RAPe) = (e))" PT AP¢]
= (Pep)" A(Pe)) = (e;) A(Pe})
— (el — el )T (PeD)
we obtain for ¢t = k
ay = bile; —eiy)" ei = b
For t = k — 1 follows by the assumption (5.13) on the structure of P
Pe)=Pe) | =e , if Ni_;is isolated, or
Pe)=Pe) | =e; | +e 5 if Ni_1,N;_o are aggregated.
In both cases follows the propositon for ay ,_, that is
ag,k—l = bi(ez1 - 61'1—1)T (P 62—1) = bz’(eél - 6}—1)T 61'1—1 ==b
or apy_y = bi(e; —ei)T (Peh_y) = bilei —ei_1)" (eiy +ej_5) = —bi.
For t < k — 1 it follows from the condition (5.13)
PéY :ejl- or Pel= ejl- +e}_1 with 7 <7-—2.
This implies

an, =bile; —ej_1) e =bi(e} —e;_y)" (ej+e_4)=0 for t<k—1
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5 Examples for modifications

148

Similary it follows for ¢ > k from the condition (5.13)
Pe) = e} or Pel= e}+e}+1 with 7 >74+1.
And this implies
an, = bi(e; —ej_1)" e; = bi(e; — et )b (ej+ej,)=0 for t>k+1.

Then we assume that we have P e} = e} + e/ ;. Based on the same arguments as

above we obtain
A= ()T Aged = (bilel = el )T + bisa (el — e)T) (Ped)
we obtain for ¢t = k
s = (bilel = el + b (ely — eD)T) (eh + €is1) = by
For t = k — 1 follows again by the assumption (5.13) on the structure of P
Pe=Pe) | =el | if Nj_; is isolated, or
Pe)=Pe) | =e | +e o, if Ni_i,Ni_o are aggregated.

In both cases follows the propositon for af ,_, that is
@ = (Bilel = el )" + b (el — eD)T) (Pef)

bile} = el)" + bisi(elyy — e)T) ely = =

H

(8
or aly = (bilel = el )T+ bisalely — D) (Pey)
= (&

bilet = el1)” + b (el — e)T) (ely + ely) = =i

For t < k— 1 and t > k the assertion follows as in the case of Pe) = e!. This

shows the proposition about the structure of Ag.

. We assume again that we have Pe) = e! with i > 1. Again we will consider the

elements of the k-th row of Aj x. We obtain
ayy = ()" Agx el = (Ped)T AX (Pe]) = (e))T AX (Pe})

=bile; —eiy)" X (Pey).



5.1 Convection diffusion equation

Based on the assumption that N;' is an isolated point we obtain for the i-th and

the (i — 1)-th row of X
X, =(e;)" and X; , =(e; ;)" and therewith

7

(e; —ei)" X = (e — e )"

So it follows
apy =bilef —el )" (Pe})

and we have shown in the first part of the proof that this is b; for t = k, —b; for

t = k — 1 and zero otherwise.
. Now we assume that we have P e}, = e} +e},, with ¢ > 1. Then it follows for Ay x
apy = ()" Aox el = (PQ)TAX (Pe)) = (¢ + i) AX (Pe))
=bi(e; —e1)" X (Pe)) +bira (ejy —€))" X (Pe})
= (b = bir1) (e1)" X (P &) + (i1 (eir)” = bi(eiy)")0 X (Pey).
As N} N, are aggregated it follows for the rows of X
X1, = (eil—l)Tv Xiq, = (€}+1)T
and X; = (e})’ + ———

Hence we obtain

(63—1)TX =X, = (eil—l>T7 (€3+1)TX = Xip1, = (6}+1)T

bi
(ez‘l)TX = Xi,. = (ez‘l)T + m (621_1 ezl+1)T
Therewith we get for ag’j{
bi
apy = (bi = bis1) ((62'1>T + bt by (eiy = €§+1)T) (Pe})

+ (bi+1 (€%+1)T — b (6}—1)T) (P eg)

2 2
bi B bi+1

2b; b;
~ 4 bis ()" Pe; = (eiy)" Pey

' ! _bi+bi+1

_bZQ + b12+1 + Qbibi_;’_l

1 \T p 0
bi + bitq (eHl) Pei.
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5 Examples for modifications

In the case of t = k it follows Pe] = e} + e},; and therewith that

%X — M(el)T (61 + et ) — M(el )T (61 4! )
Kk bz + bi—i—l ! ! il bz + bi—i—l i-1 ¢ i+l

—b7 + b7y + 2bibiga
- = (63+1)T (e} + 61'14-1)

b; + biy1
_ b} — b?y 104+ =07 + b7y + 2bibig _ 2b;b; 11
bi + bit1 bi + bit1 bi+ b1

In the case of t = k — 1 we get
Pe) =e , or Pe) ,=e  +el,.
In both cases it follows
B2 — 12 2 by
0xX _ Y% i+l INT 1 Uil 1 NT 1
Qg k1 7bi+bi+1( i) e bi+bi+1( 1) e
—b7 + b7, 1 + 2b;bi 41
bi + biy1
~ 2bibigy
bi + biy1
For t < k — 2 it follows again

(6}+1)T 61'1—1

Pe?:ejl- or Pe?:e}—l—e]l-_l with 7 <¢—2
and fort > k+1
Pe)=ej or Pel=ej+e;,, with j>i+2
This proves again aZszfort%k‘,k‘—l.
]

To illustrate the assertion of Lemma 5.1.5 we give the following example: Assume that

the grids are structured as in Figure 5.3. Then it results Ay, Ay x as follows:

h e
—bz b3 —bs bs
Ao = by by Aox = _§b4b5 2 babs
4+b5 by+bs
—bg  bg __ 2bsbr  2bgby

be+br  be+br
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5.1 Convection diffusion equation

b1 b2 b3 b4 b5 bﬁ b?
I ® ® ® ® ® ® ® I
NEON Ny N N N M

unmodified
by b3 by be
| . |
| AT CIY AT |
2hity by 2babs 2bgbr
modified 1+b2 ba+bs be+b7

Figure 5.3: Unmodified and modified links in the coarse grid operator

To conclude this section we highlight that the modification again fulfils
rk(Px) = nog.
This is obtained as it follows
(Px)j. = (&))"
if N € NP is an isolated point or V', N! are aggregated to NV. This implies that ng
rows of Px are given by the ng unit basis vectors of R"0.
Modification based on the inverse of blocks

Next we will consider the idea to consider the aggregated points as blocks which are
independent of the rest of the system. So we are back in the situation as given in
section 5.1.1 and consider the system of four points. The stiffness matrix of our intrest
is still

(5.14) A=

0 0 —by by
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5 Examples for modifications

Based on the structure of R as defined in (5.9) we consider the blocks

by O
Bi=(b), By= , By = (ba).
—bs b3

Then we will set X as the inverse of blocks given by

Bt
(5.15) X = B!
B;?
As it is
1 1/by 0 1
e (d) e (1), ()
by 1/by 1/bs by
we obtain
1 0 0 0
1
—by/by 1 0 0
AX = and A07X = —bg/bl 2
0  —by/by, 1 0
0
0 0 —by/by 0

First we highlight that for this modification we obtain rk(X) =
T]{?(PX) = Nyo.

0 0
—by/by O
by /by 1

n. This implies

Compared with the modification we have done bevor its obvious that this idea is simpler

to implement in a numerical algorithm. But the problems of this modification are quite

obvious.

1. The matrix Ay x can be singular. This is for example the case if it is by = 2b,.

2. For bs > 2by the matrix Ap x is non singular but it is obvious
M-matrix in this case. (For a closer look at the characteristics of

M-matrices, cf. chapter 9.)

3. At last there is no local estimation for ypr y < 1 that fulfils

that A07X is no

Ap x concerning

(AX P Agx Ru, (I = Qo)v) < yprx [|[AX P Ayx Rl (1 — Qo) v
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5.1 Convection diffusion equation

for all v € V. This can be seen as follows: As already mentioned is Rv = RQqv.

Hence the inequality above is equivalent to
(A X vg, w) < yprx [[AX v [[w]]

for all vy € Vy and all w € W. Since we only want to consider the local situation

of the two aggregated points this is equivalent to

((AX 0)(2) w(2) + (A X v0)(3) w(3))"

<vprx ([(AX v)2) + [(AX v)(3)]%) (w(2)? +w(3)?).
For vo = (f,u,u,g), f,u,g € Rand w = (0,s,—s,0), s € R this is equivalent to

(5.16)

Then we see that for

b3\ by
— (222
/ ( bz) by
the inequality (5.16) is only fulfilled for ypr x = 1.

Of course there are some reasons for this modification. First of all the modification
is quite simple and we can use it for many systems. The only assumption we need is
that the blocks we get are not singular and that the modified coarser operator Ay x
is not singular. The second one is that the effort of this modification is quite small
since we modify for aggregated points A", V' only the values (P v)(i) and (P vg)(j).
Hence there is no additional effort to search other neighbours and modify the values
for them. At least there is the idea that the matrix A is mainly given by blocks and
other links are weak. Then B is a good approximation for A. We will see that this idea
better suits for the symmetric problems. In particular for the two sided modification
for symmetric problems. The problem of the modification for the convection system is
obvious as in the example above the value on A, is mainly given by the the value on
N. The interpretation as blocks implicates that the value on Nj mainly depends on

the value on N5
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5 Examples for modifications

5.1.2 Modifications for a two dimensional convection

Now we will consider a two dimensional convection system. As the block inversion
offers problems for the convection system already for the one dimensional case, we only
want to consider for this example the modification we have introduced as an exact
modification in section 5.1.1.

So we will consider a problem given as follows: The matrix A € R™*" is given as

(517) A= bi,j with bm > O, b@j < 0, for 1 #]

bZ,ZZZ|bZ,]| for izl,...,n
JFi

and b@j §£ 0 = bj,i =0 for i §£ j

The matrix in (5.17) represents a convection system of two dimensions (or higher).
This motivates the condition b; ; # 0 = b,, = 0. So there is neither a convection from

N} to /\fj1 nor vice versa, but both directions in one system are meaningless.

To define the modification X, we first define the set M, of indices as follows

Mo(i) :=={t € {1,...,n\{i} : by #0.}.

Based on the interpretation as a convection system, My(7) is the set of the indices of
the grid points N;! that have an influence on N}

Then we define our modification matrix X € R™*" also by its rows as
(eHT if V! is isolated or NV} is aggregated

s, with A and it is b;; # 0.
(el)" +aij(e))” + mipler)” if N, N} are aggregated, it is b;; = 0

and it is k € My(i).

\

If we aggregate two points Nj', N} with b; ; # 0 and it is M (i) = () then we set z;;, = 0.
If it is |My(i)| > 1 then we choose just one of the indices. Based on the idea to reduce
the influence of grid points which only influence one of the two points ', N}, it is a
feasible heuristic to choose an index k € My(i) that holds

‘bl,k‘ Z |bi,s‘ VS - Mo(Z>
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5.1 Convection diffusion equation

We want to consider examples for z; j, ;) that will give results similar to those we
had for the one dimensional situation and we want to show to what extent this is a
generalization of the modification given in this context. First we define for an arbitrary

grid point N} or row Ay of A respectively the set M(k) as follows

(5.19)
M(k) = {t e {1,...,n}\{k} : N}, NL, s #k, are aggregated and it is zy, # 0. }.

Based on this definition follows that it is ¢ € M (k) if it is 2, # 0. That implies N}
is aggregated with another grid point N} and it is b4 # 0. Further is this N}' used to
modify the situation for N}, N}. Based on the definitions of M(k), X, A we obtain

(5.20) te M(k) = ap =0.

This implication holds as we have z; # 0 if it is ¢ € M (k) from the definition of M (k).
The definition of X implies b, # 0 and therewith follows by ; = 0 from the definition
of A.

We obtain the following result:

Proposition: 5.1.6. Let A, X be matrices as defined in (5.17),(5.18). Let N}, N be
two aggregated points with b;; # 0. Let N} be a grid point with b, # 0.
1. If it is bj, = 0 and it is by = by = 0 for all t € M(k)\{i} and we define

_ bkl
Tik = 5ritibsa] then

bjilbi x|
AX)ir=(AX)r = 2" holds.
( ),k ( )]7k bi,i + |bj,i| oias
2. If it is bjy = 0 for all t with t € M(1), by = 0 for all t with t € M(j) and we

— big=biitbji
define z; ; = bt then

biibj

(AX)ii +(AX)i;=(AX);; +(AX)ji= B .
bl,l + |b‘]7l‘

holds.

proof. Based on the assumption of b;; # 0 and the definition of X it follows that we
have X; = (e})" and X; = (e)" + zik(ep)” + zi5(ef)"

1. We obtain that the k—th column of X follows as

n

X.JC = 6}6 + Z S(It’ketl = 6]1g + xi,ke} -+ Z S(It’ketl
t=M k) t=M (k)\{i}
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5 Examples for modifications

Hence we have based on the assumption b;; = b;, = 0 for all t € M (k)\{i}
(AX)ir=Ai X =0bi% )+ biy
(A X)j,k = Aj7_ qu = bj,izi,k~

The second equation thereby results from the condition b;; = 0. This implies

that they are equal if it is

bl

Tigp = ———.
T b+ (bl

And we obtain

bjilbix]
AX ; — 7]7 . — AXZ .
( )]Jf bi,i ‘l‘ |bj,i| ( ) k

2. Based on the assumption that J\/'Z-l,J\/'j1 are aggregated with b;, # 0 it follows for

the columns ¢, 7 of X

1 2 1
X.,i =€ + T i€y

te M (i)

_ 1 1 1
and X ; =e; + z; € + E Ty i€ -
teM(j)

Furthermore we obtain from the assumption b;, = 0 for all ¢t with t € M (1), b;; =
0 for all ¢ with ¢ € M(j) and the implication (5.20) that we have b;; = b;; = 0
for all ¢ with ¢t € M (i) U M(j). This implies

(AX)ii+(AX); =4, X, +A4 X ;

=by; +biwij=1+x;)bi;
(AX)ji+(AX)j;=A4;. X+ 4; X

=b,; + ;b +bj; = (1+z;)b;; +bj;.

So this is equal if we have
b + |byil

xivj =

And we obtain in this case
(AX)ii +(AX)ij=(1+zi;)bi

o bm’ (bj,j — bm’ + bjﬂ' + bi,i + |bj,z|) - bi,ibj,j
N bii + |bjl b+ byl
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5.1 Convection diffusion equation

O

First we will take a closer look on the assertion of the Proposition 5.1.6 then we will
consider the assumptions. To ensure that Vj is invariant with respect to A X we have

to prove for two aggregated points N;', N} that
(AXwv)(i) =(AX v)(j) Yo € V.
The result of Proposition 5.1.6 is that we have
(A X v) (i) = (AX v0)(j)
for vy =(ej +e;) and vy = ey,

Therewith we do not have the invariance of Vy with respect to A X, but we are a little

bit closer to this as in the unmodified method.

Further we obtain that the values for
(AX)ii (AX)ij (AX)ig and  (AX);4, (AX);5, (AX)jk,
respectively are as given in the one dimensional system. Hence we obtain a good mod-

ification if the system is mainly a one dimensional system.

So we will take a look at the assumptions we have in the last proposition and what
kind of convection system can be described by them. If we have a two dimensional

convection system then we assume the stencil in N} given as

0 0 0
_bi,m bi,x + b@y 0 with bi,xa bi,y Z 0.
0 b, O

This means that the convection locally has two directions, and this does not change its
direction. So we assume that after a permutation of rows and columns it is k =17 — 1

and j =i+ 1. Then the rows k,i,j of A are given as

_bk7y o _bk,(E bk7m + bk7y
A = e —bLy e —bi@ bi@ + b,’7y
—bjy ... —bjz  bjz+0bjy

)

So if we aggregate the points A} and ./\/'j1 and all other points are isolated it is obvious
that the assumtions of Proposition 5.1.6 are fulfilled. This is illustrated in Figure 5.4
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5 Examples for modifications

(a). Moreover, there is no restriction for the direction of the links, so the situation as
given in Figure 5.4 (b) also fulfils the condition. Furhtermore, the assumptions also
hold if N}! is aggregated with its left neighbour A} | and we use A} to modify this
aggregation. Then the assumptions of the Proposition 5.1.6 are fulfilled. This fol-
lows as we have by ,—1 7# 0 and so only the (k — 1)-th row of X is modified and it is
bik—1 =bj,—1 =0 (Figure 5.4 (c)). Based on the same arguments the assumtions hold
in a situation as shown in Figure 5.4 (d). The situation illustrated in (e) also does not
infringe the assumptions if Aj! is used to modifiy the aggregation between N}, N Tt
is by # 0 and b # 0, but the aggregation of N}, N}l implies a modification of the
t-th row of X. There are only the entries z;; and z; s that are modified. This changes
values in the i-th and the j-th row of (A X). But the entries (A X);;, (A X);;, (AX)ix
and (A X);,, (AX);;, (AX);x donot depend on this. In (f) V! is aggregated with A}!
and b,; # 0. So from the definition of X follows that the ¢-th row of X is modified.
In the situation of (f) it is z;, modified and ¢ € M (k). This infringes the assumptions
for the first assertion of Proposition 5.1.6. Obviously the situation (g) infringes the
assumption b;; = 0 and hence also a condition for the first assertion of the proposition.
At last we will consider an example that infringes the assumptions of the second asser-
tion, but this is not possible based on the given situation of a locally unique direction
of the convection. So we have to construct the example as shown in (h) (The direction
of the arrows give the direction of the convection in this case). N} is used to modifiy
the aggregation between N}, N}, This implies @, z;; # 0. Hence it follows from the
definition ¢ € M (7). As it is b, ; # 0 this infringes the assumptions.

We can summarize this as follows: The assumptions are weaker than they seem at first
sight. Especially for the second assertion they are always fulfilled if the directions of
the convection are locally unique. If the convection is only one dimensional in a two
(or three) dimensional system then it follows for example b;, =0 for all i = 1,...,n.
Also the assumptions for the first assertion of Proposition 5.1.6 are therefore always
fulfilled. Furthermore, we can see that in the one dimensional convection system as
given in section 5.1.1 with the modification as given in (5.11) has the same structure
as a modification given by the conditions of Proposition 5.1.6. We will prove this in

the next lemma.
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General direction of the convection

3N£

T
IJN,H rvk

N1

-/\[ll

E
E
E
E

3 l/\[} E
it i T
—@ /\/;1 L/\/’]l
NP TN TN,
(f)
T S
NP TN TN
A WL
NN
./\/’kl NV

Figure 5.4: Illustration of the assumptions of Proposition 5.1.6
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Lemma: 5.1.7. Let A, X be as given in (5.8), (5.11). Then for two aggregated points
N N the modification holds the structure as given in (5.18) with

b1
bii + |bis1l

bit1,iv1 — bii + big1
bii + |bis1l

Tii—1 = and Tii41 =

proof. The modification as given in (5.11) obviously has the same structure as the

modification given in (5.18). Furthermore, it is in the one dimensional system
bii=—bii—1="0; and biy141 = —biy1; = bipa.

Hence follows for z; ;1 and x; ;11

v |bii1] _ b
bt bii + |bix1il b + i
q bit1 —bi — biy bi
an i = = .
o bi + bit1 bi + bit1
This is the structure we have given in (5.11) for the modification. O

In the case of the one dimensional convection the modfication fulfils additionally z; ;1 +
x;i+1 = 0. For functions and vectors respectively this implies that the image of constant
function is a constant function. For the modified coarse grid operator Ay x this implies

that it is also a M-matrix. This we will discuss more detailed in chapter 9.

To conclude this section we will present two propositions which are similar to Propo-
sition 5.1.6. The first one has the same result as the first result of Proposition 5.1.6
for a slightly more general situation. The second porposition gives a perfect result in

a quite theoretical situation.

Proposition: 5.1.8. Let A, X be matrices as defined in (5.17),(5.18). Let N}, N be
two aggregated points with b;; # 0. Let N} be a grid point with b;j, # 0. If biy = b, = 0
for allt € M(k)\{i} and we define x; ) = Liwl bkl 4p ey

bii+bj il 7

bjilbi x| — biilbjxl
AX)ig = (AX); = 20 U0 o,
( ),k ( )]Jf b2’2+|b]7l‘ otas

proof. Similarly to the proof of Proposition 5.1.6, we obtain that the k—th column of

X follows as

X p= ey + Z xt,kei = e + xi,keil + Z xmke%.
t=M (k) t=M (k)\{i}
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5.1 Convection diffusion equation

Hence, based on the assumption b;; = b;; = 0 for all t € M (k)\{i}, we have
(AX)ip=Ai X k=075 +big
(A X)j,k = AJ} X.’k = bjﬂ'l’i,k + bj’k.

Thus we have (A X),;, = (A X), if we have

|bi k| — [bj1]
T = .
T b+ byl
And we obtain
bjilbik] — bialbjel

( )]Jf bz,z+ |b],z| ( )7k

O

If we compare the assumptions of the Propositions 5.1.6 and 5.1.8 then we see that
in Proposition 5.1.8 we drop the assumption of b, = 0. If we consider the cases as
illustrated in Figure 5.4 then we obtain that the situation as presented in (g) does
not infringe the assumptions of Proposition 5.1.8. But we have to determine one more
element of A for the modification. This implies a higher effort for the construction of

Py. The assertion of the two propositions is more or less the same.

Proposition: 5.1.9. Let A, X be matrices as defined in (5.17),(5.18). Let N}, N} be
two aggregated points with b;; # 0. Assume that we have xy; = x; = 0 for all k # 1, j
with b # 0 or b; . # 0. If we define

1 for k=1
bii—b; i4bi; .
T = 5,4 —Yi,i 05,4 —
bk bi,i+[bj.il for k=]
164,51 — b, .
bi,i+1bj.il for k#4i,j.

then we have
(AX)ig=(AX)jp for k#1i,j
CLTLd (AX)z,Z + (AX)Z,] = (AX)]'J' + (AX>y,z

proof. The second equality follows immediately from the second assertion of Proposition
5.1.6. The first equality follows like the first assertion of Propositon 5.1.6. The k-th

column of X is

X = ey + Z xt,kei = e + xi,keil + Z xmke%.
t=M (k) t=M (k)\{i}
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5 Examples for modifications

Hence we have, based on the assumption xj; = x; = 0 for k # ¢, 5 with b # 0 or
bj,k % 07

(AX)ip=Ai X =b% 5+ by

(A X)j,k = Aj7_ qu = bjﬂ'l’i,k + bj7k.
Thus we have (AX);, = (AX);y if we have

N U el UV
" b272 _l_ |b]72| ’

As already mentioned, the assumptions of Proposition 5.1.9 are quite restrictive. They
are for example fulfilled if only A/}, ./\/'j1 are aggregated and all other points are isolated
points.

5.1.3 Moadifications for a convection diffusion system

Finally we want to consider a convection diffusion system. To show the effect that oc-
curs compared with the convection system it is sufficient to consider the small system
given by four points. So we will do this first. Then we will show that the results of

Proposition 5.1.6 hold in a weaker sense.

So we will start by a system given by four grid points as illustrated in Figure 5.5.

The stencil in M! is given by

[—€ic1 — by, by + €521 + &4, —€4].
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5.1 Convection diffusion equation

Figure 5.5: Coarsing of the four point system

So the stiffness matrix for the small system is given by

(5.21)
bi +c0+e1
—by — &4
4= 0
0
by 0
by by
B -
0 0

e
by + 1+ &9
—bs — &9

0

0 0
0 0
bs 0O -

—by by

0

b3+€2+€3

by —

g0 +e€1
_—
0
0

g3 bitestey

_61
€1+ &9

0

0
0

0
—E&9
E9 + E3

0
0
—E3

€3+ €4

=B+ F.

To have an idea of what happens in this system if we use no modification we will first

consider the second and the third row of A. We remember that a basis of Vj is given as

{(1,0,0,0),(0,1,1,0),(0,0,0,1)}.

Hence Vj is invariant with respect to A if and only if

Q21 = as1,

A24 = A34

and a2 2 + Q23 = a3.3 + azz2.

163



5 Examples for modifications

As shown in section 5.1.1 we have for an arbitrary vy € Vj the representation vy =
(f,u,u,g)" with f,u,g € R and therewith

A’UO = BU(] + EUO
= (b1 [, ba(u — [), 0, ba(u — g))
+ (50f +51(f - u)v 51(“ - f)7 62(u - g>7 53(9 - u) +54g)’

So we can split the problem of the invariance into two subproblems. The first one
with respect to the matrix B and the other one with respect to E. So we will use the
modification as figured out in the last section and section 5.1.1 respectively and show
that the bias is only given by the the matrix . The idea is that the main influence for

the system is given by B as this represents the convection.

So we set
1 0 0 0
laz.1| ] ds—az2tasz
(5.22) X = az,2+|as,2| az2,2+|a3,2|
0 0 1 0
0 0 0 1

We therefore have the same structure of the modification. In particular this modifica-
tion is easily given by the elements of A since we do not differ for the calculation of X

between the symmetric and the antisymmetric part of the operator. Then we obtain

(AX)2,1 _ ‘a2,1|a2,2 +ay; = |a3,2‘a2,1
aszo + |asz] ass + |as ]
(AX)22+ (AX)23=az2+as3+ az2(s3 — 022 + a3) = 2208 a3
aso + |ass] aso + |assl
(A X)2’4 — 0
a3 2|a2 1‘
and (AX = 20 0
( Js aszo + |asz]
(AX)32+ (AX)33=ass +ass+ a3(asg — G2z + dg) — 8802
’ ’ ’ ’ aso + |ass] aso + |assl

(A X)3’4 = a374.

With these calculations we can summarize the results we get for this small system as

follows:
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5.1 Convection diffusion equation

Lemma: 5.1.10. Let A, X be matrices as given in (5.21), (5.22) then
1. (AX)QJ = (AX)371 holds.

2. (AX v9)(2) — (AX v9)(3) = —e2u0(3) + e3v0(4). In particular this difference is
independent of B for all vy € Vj.

3. follows if ¢; = € for alli = 0,...,4 then we have A X vy € Vy for all constant

vectors vg.

proof. 1. The first proposition follows immediately form the calculation above the
lemma.

2. For vy € Vy with vy = (f,u,u, g)* it follows
(A X v9)(2) = (AX 1)(3)
= [(AX)21 = (AX)s5a]f + [(AX)24 — (AX)354]g
+ [(AX)22 + (AX)os — (AX)32 — (AX)33]u
= Q23U — (349 = —E2U + £34.
The last equation follows thereby again from the calculations above the lemma.

3. If we have ¢;, = ¢ for i = 0,...,4 and it is vy constant then it follows from the

calculation done for the second proposition
(AX9)(2) — (AX 1)(3) = —equ+e39 = (g —u) = 0.
O

From the calculation above and the results of the Lemma 5.1.10 respectively it is
obvious that we can not transform the result as easily to a more general result as done
for the convection. We will see that if we try to do this we always get a dependency
on the elements of E. Let A = B + E € R™" be matrices which fulfil

(5.23) B =(bi;), with b;>0, b,;<0, for i#j
bii > |bigl and by A0 = b =0
JFi
(5.24) and E = (g;), with ¢,;>0, ;<0, for i#j
€ii > Z leij| and e =¢€j;.
JF#i
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5 Examples for modifications

To define the modification X we remember the definition of the set My(7) and define
the set M;(i) as

M) = {t € {1,... . n\{i} : |as,| > lars| £0.}.

Based on the interpretation as a convection system, M;(i) is the set of the indices of
the grid points A/} that have an influence by the convection on N}
Then we define X as done in (5.18) as

(5.25)
(eh)T if V! is isolated or N} is aggregated

with V' and it is |a; ;| > |-

(e + ;. 4(e ) + zip(ep)t if /\/;-1,/\/;-1 are aggregated, it is |a; ;| < |a;;|

and it is k € M, (i).

\

(Based on the modification it is implicit that we only aggregate ./\/;-1,./\/']-1 if it is a; ; #
aj;.) As in the definition (5.18), we choose one of the indices if it is |M;(i)| > 1. And
again it is a feasible heuristic to choose the index k with |b; x| > |b; | for all s € M, (i).

But if it is M, (i) = (), it can be also useful to choose an index k with a; ) = ay ;.

Then we get a result that can be seen as a generalization of Proposition 5.1.6.

Proposition: 5.1.11. Let A = B+ E and X be matrices as defined in (5.23),(5.24)
and (5.25). Let N}, N} be two aggregated points with |a;;| > |a;;|. Let further Ni| be
a grid point with b; ) # 0.

1. If it is bj, = 0 and it is by = by = 0 for all t € M(k)\{i} and we define

— la; k|
Tik = o tlar] then
a; k‘a 2|
(A X)i,k - E Eitlek = E 5] tTe ke = PR |Ja ‘
te M (k)\{i} teM (k 4,8 it
holds.

2. Ifitisbi, =bj, =0 for allt witht € M(i)UM(j) and we define x; ; = 4= %

ai,i+tla,il
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5.1 Convection diffusion equation

then
(A X)zz (AX 52,] Z Eitlti — Z Ei txt,]
teM (i) teM(5)
Q;iaj g
:(AX>j,j Z Ejtlti — Z Ejule = ——— 7
Qg 5 + |aj,i|
teM (i teM(5)
holds.

proof. Based on the assumption of |a;;| > |a; ;| and the definition of X it follows that
we have X; = (e})" and X; = (ef)" 4+ zip(er)” + xi5(ef)T.

1. We obtain that the k—th column of X is given as

k—ek+ Z ZL’tkﬁ’t —€k+Izke + Z ZL’t,kﬁ’g
t=M (k) k)\{i}

Hence we have based on the assumption b;; = b;, = 0 for all t € M (k)\{i}

(AX)ip=Ai X k=0T + Qi+ Z Tt kEit
=M (k)\{i}

(AX)jr=A4; X p=a;xip+ Z Tt kEjt-
t=M (k)\{i}
The second equation results thereby from the condition b;; = 0. So we obtain for

— |,k
Tisk = ay i tag ]

the following

| n

(AX)p=—"20 0 N ey
aiq + |ajl .
t=M(k)\{i}
A4k |Gy
and (AX);,= M + E Ty ki
aii+ laj;l .
’ ’ t=M (k)\{i}

2. Based on the assumption that J\/'Z-l,J\/'j1 are aggregated with b;, # 0 it follows for

the columns ¢, 7 of X

X'7i:€ + Z $t26t

teM (1)

_ 1 1 1
and X ;=e; + ;e + g Ty i€ -
teM(5)
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5 Examples for modifications

As it is by = b, = 0 for all ¢ with t € M (i) U M(j) this implies

= Qi+ Qi T 5 + Qi j + E €itTti + E it Tt j

teM(i)\ {k} teM(j)
=1 +zj)a,;+a;+ Z Eitlei + Z Eitlj
teM(i)\{k} teM(j)

(AX)ji+(AX)j;=A4; X+ A; X

= Gy + T 05 + G5 + E St E | €5t

teM(i)\{k} teM(j)
= (1 + xi,j)aj,i +a;,; + Z Ej Ty + Z €j.tLt,5-
teM(i)\{k} teM(j)

45§ =i itasi

—5t 2% then we obtain
a;,it+laj,il

If we have z; ; =

(AX)ii +(AX);;

=14z )a;+a;;+ E €Tt + § €itLt,j

te M (i)\{k} teM(j)
@i+ |ajq) +aj; — a;i + aj;
= ( it j| n |“‘ ’ J’) +ai; + Z EitTei + Z €itTtj
i T Qi te M (i)\{k} teM(j)
a”l 1
= +‘“ |+aw+ Z it + Z Eitlt,j
Ajq Qji te M (i)\{k} teEM (j
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5.2 Modifications for the symmetric model problem (one sided)

and
(AX)ji+ (AX);

= (L4 @ij)aji +a; + Z ity + Z it
te M (i)\{k} teM(j)

aji(aj; — aig+aj;+aii +agil)  ajja0 + ag gl

i + |al i + |aj
+ E il + E Ejtlt,j
te M (i)\{k} teM(5)
3,1%5,3 9,J Qi i 3,5 1450
- + + E €4%ti + E 5] 5
aig + |ajl aiq + |ajl e vt
_ 3,5 Wi } : } :
= 7@ + |a | + 5j,txtz EjtLt 5.
b P e M)\ {k} teM(j

This proves the proposition.
O

The main aspect of the Proposition 5.1.11 is that if we have a convection diffusion
system and we do the same modification as for a convection system then we get the
same result with a bias that only depends on the elements of £ and X. Based on the
given structure the idea is that the elements of B are much bigger than the elements of
E. 1f we assume that the elements of B have the size b and the elements of E the size ¢,
then based on the deﬁnition of X the elements x; ; which are used for the modification

also have the size 7 = 1. Therefore the bias is given by the size of ¢.

5.2 Modifications for the symmetric model problem
(one sided)

Now we will consider modifications for the symmetric problem as introduced in section

2.2. The continious problem is given by the equation

—div(a(z) grad u(x)) = f(x), Ve

u(z) = g(x), Ve 0.

169



5 Examples for modifications

with a symmetric a(z) € R?*2. So we obtain the stencils as

_5nw —En _5ne
—ECuw m —CEe

_5sw —Es _586

with m=¢, +cc+c5+cu+ One + 0se + dso + Onw
and ¢g; >0, for 7=mn,e,s,w
0; >0, for ©=ne,se,sw,nw.

As for the convection we will start from a one dimensional system. That means 2 C R
and a(r) € R,. The stencil follows in N} as

[—ai_l, a;—1 + a;, —ai], with Ai—1,q; > 0.

So again we will first consider the small system of four grid points that is given by
L ..., N}. Then we assume that we aggregate the grid points N3, N to the new
point NY. We obtain that the restriction R and the prolongation P are

100
1000
010
(5.26) P = and R=P'=]011 0
010
0001
001

The links and the system are illustrated in Figure 5.6.

And therewith A, Ay follow as

(5.27)
e+eyg —¢ 0 0
E+eg —€ 0
— a+e —a 0
A= and A, = — &40 =0
0 —a a4+ —o
0 —0 0+
0 0 -6 0+ do

A short discussion for an estimation of yp7 of the unmodified method will be presented
in the section 8.1. With regard to this we will only consider modifications and the

modified systems, respectively.
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5.2 Modifications for the symmetric model problem (one sided)

Figure 5.6: Coarsing of the symmetric four point system

5.2.1 An exact modification

First we will construct for the given small system of A, P, R a modification X that
holds

(5.28) AXwvyeVy forall vy eV

As for the unsymmetric example of the small system shown in (5.6) based on the basis

{el, el + €}, e} of V; the condition (5.28) is equivalent to

(5.29) (AX)o1=(AX)31, (AX)os=(AX)34

(530) and (A X)Q’Q + (A X)273 = (A X)372 -+ (A X)3,3.

Again to do as few modifications as possible we set the first and the fourth row of X
as follows

X, =(e1)" and X, = (e})".

Next we will consider the three conditions given in (5.29), (5.30) seperated. For

171



5 Examples for modifications

(A X)271 = (A X)371 we obtain

(A X)g,l — (A X)g,l

<~ —axrs3 + (a + 5)1'271 — &= (CL + 5)1’371 —arg;
N 20+ 0 n €
Toq = x )
1T o0+ e T 2042
Again as explained above we set x3; = 0 and the equation above implies x5, = Sacte
For the equation (A X)y4 = (A X )34 we obtain based on the same arguments
(AX)o4=(AX)34
o 2a+¢ n )
T34 =——2X )
T 20467 2046
We set again z94 = 0 and we obtain x34 = ﬁ. So far we should remark that the

values for the modification are easy to calculate based on the elements of the matrix
A. Tt is

: : as3 + aso
To1 = ———— and X34 = —.
A29 — A23 azs — as2

So we consider the condition (5.30). It follows
(AX)o2+ (AX)o3=(AX)32+ (AX)33
= (2a + 5) (1’372 + 1’373) = (20, + E)(ZL’QQ + 1’273).

This is fulfilled if we set

1 1

d =—.
2at+e ¢ BT 4%

Toz =0=1a32, oo =
Altogether this gives the modification matrix X in the form

1 0 0 0

£ 1
2a+¢ 2a+¢ 0 0

0 0 1 )

2a+6  2a+06

0 0 0 1

(5.31) X =

and we can summarize the result for this system and the so defined modification as

follows:
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5.2 Modifications for the symmetric model problem (one sided)

Proposition: 5.2.1. Let A, P, X be as defined in (5.27), (5.26) and (5.31). Then Vj

18 invariant with respect to A X.

proof. For the proof see the calculation above in this section. O

So far it seems that we could modify the symmetric problem as well as the problem
given by the one dimensional convection. In the next two sections we will first consider
a more general one dimensional problem that is not possible to modify that way. Then
we will consider a special case that can be solved in higher dimensions, too. But
because of the structure of the coarser operators we will see that this is more or less a
theoretical result.

5.2.2 Problems for exact modifications

The problem of the modification is obvious if we consider a system of the same structure
that belongs to six grid points N}, ..., AV and we assume that the points A}, N and
L N are aggregated to Ny and N2, respectively. This is illustrated in Figure 5.7.

Qo a1 a2 as Qy Qs Qg

I ® ° ° e o o I
NEON Ng NN N

Figure 5.7: Coarsing of the symmetric six point system
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5 Examples for modifications

We have the matrices as follows:

(5.32)
1 000 apt+ar —a 0 0 0 0
01 00 —a; a1+ ao —ao 0 0 0
01 00 0 —Qa9 as + as —asg 0 0

P = and A =
0010 0 0 —dads as + a4 —Aay 0
0010 0 0 0 —Qy a4 + as —as
0001 0 0 0 0 —as a5+ ag

Then we generalize the modification as given in (5.31) and define X € R®*¢ as follows

a 1
2a2—}-a1 2a2+a1 0 0 0 0
1 a
5.33 X = 0 0 2az+as3 m 0 0
(5.33) — . ) 1 O :
2a44a3  2as+as
1 a
0 0 0 (S

A basis of Vj is in this case given as follows
{(1,0,0,0,0,0),(0,1,1,0,0,0),(0,0,0,1,1,0), (0,0,0,0,0,1) }.
Hence to keep that result that V4 is invariant with respect to A X it must hold
AX vy eV

Hence it is necessary that the second and the third row of A X fulfil the following

equations:
(AX)2o1 = (AX)31, (AX)z6=(AX)36
(AX)oo+ (AX)o3=(AX)32+ (AX)33

(A X)274 -+ (A X)2’5 - (A X)374 + (A X)3,5.
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5.2 Modifications for the symmetric model problem (one sided)

If we calculate these two rows we obtain

(AX) _ —Qa1a9 ar + ag —Q9 —Qo03 0.0
2 a1—|—2a2’a1—|—2a2’a3+2a2’2a2—|—a3’ ’

—a1a —a as +a a’ as + az)a a
(AX)s — 182 2 G270 3 ’(2 3)3_ 5 0.0).
’ ay + 2&2 ay + 2&2 as + 2&2 as + 2&4 2&2 + as as + 2&4
So it is obvious that the meaningful result of the grid given by four points does not hold
in this situation. A closer look shows quite simply that there is no local estimation in

this case.

In the next section we will show that this problem results from the situation in which

there are neighbours of aggregated points that are not isolated points.

5.2.3 A solvable situation in arbitrary dimensions

Now we will show that we can generalize the modification to a quite general situation
having only the restriction that the neighbours of aggregated points are isolated points.
This assumption we will also consider in chapter 8. Based on this strict assumption we

obtain a meaningful result. This gives us the motivation for more general systems.

So the situation should be given as follows: Let A € R"*" be a s.p.d. matrix that fulfils
(534) Qi > 0, Vi=1,...,n

CLZ'J'SO, Vi,jzl,...,n, Z#]

n
Qi > Z | j]-

J=1i#j
Let N', N} be two points that will be aggregated to NV} for an t € {1,...,n¢} and all
points N}, k # 4,7 with a; # 0 or a;; # 0 are isolated points. This is illustrated
in Figure 5.8 at page 176 .Then we define the modification X € R"*" by its rows X
with

(5.35) X, = (e))" if A}!is an isolated point.

7

1 n
X, = ————— <(6})T + Z ‘ai,k|(€]1€)T) if Ni', N} are aggregated

a;; + |a; k=1, k+£i,j

to NP foran t € {1,...,mnp}.
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5 Examples for modifications

S NS N N—

T IO

Figure 5.8: Coarsing of a symmetric system for an exact modification

Proposition: 5.2.2. Assume the situation as given above in this section. Then for

two aggregated points N, N3 it holds

a1, |a1 2|
( )1,1 a171 —I— |a172|7 ( )1,2 a’272 + |a1’2|7
(AX)ip=— izl Jaadanl £1,2.

apy + laral  ags +|ais]

a2 2 |az 1|
AX)gg= —22 AX)g) = ——"1 2
( )22 asgo + |as|’ ( Jaa a1 + |ag|
(AX)op=— 02,1 2| 02,1 1] for k#1,2.

aso + |az| a arq + |agq|

proof. Based on the symmetry of the proposition it is sufficient to prove the propositions
for the entries in the first row of A X. We define the set

M:={te{l,....n} : X;. #ei}.

Based on the definition of X it is ¢ € M if and only if N} is not an isolated point.

Based on the assumptions we have

t e M\{l, 2} = Q1 = Qg1 = 0.
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5.2 Modifications for the symmetric model problem (one sided)

We start by the proposition for (A X); ;. Based on the definition above we obtain

X.71: + xtlel
TETELANP I

1

aiq + |ais|

= (A X)l,l =A - Xi=a,

Based on the same argument we obtain
1
Xog=———e+ Z Tt 0€;
a2 + |az,1] teM\{1,2}

|a1,2|

= (AX)a=A X ,= 2
( 2 e aso + |az|

At last we will consider an arbitrary k # 1,2. Then we will distinguish two situations.

First we will assume that N} is a isolated point. Then it is

1 1 1 1 1 1
X p=e,+ E Ty € = €5 + €T + €Ty + E Tt 1€y -
teM teM\{1,2}

As we have a1, = agy = 0 for t € M\{1,2} we obtain

1 1 1 1
(A X)l,k = Al’. . X.JC = Al’. : €L + €121k + €2k -+ E Ty k€y

teM\{1,2}
= a1k + T 01,1 + T2 k01,2
a1 | |ag k|
=a1p+ ———a; ]+ ——a
b apq +laia ass + |az| b2
_ ayklai ol |agklar o _ a1 ka1 2| _ |az ka1 2|
ajq + |lara]  aga+|aza] ajq + lara]  asa+|ag|

Secondly we will assume that N} is aggregated with Aj' to NP. As this implies a;;, =
as , = 0 we obtain from the definition of X that the k-th column is

This implies

|a1 ka1 2| |az,ka1,2|

( )Lk 1, ok a1 1+ |as, 2| az2 + |az,|

This proves the assertion. O
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5 Examples for modifications

Theorem: 5.2.3. Assume the situation as given above in this section. Then it follows
that Vi is invariant with respect to A X.

proof. From the results of proposition 5.2.2 we obtain

a1 ‘G1,2| a2 2 ‘G2,1|

a1+ |a s a aszo + |ay B ass + |ag| a a1+ |a s

ay1 G2 + a1 1lar | — (ar1]arq| + a%g) _ G11022 aszlay o] — (ag2|az1| + 0371)
(a1 + |ar2])(a12 + |a12]) (a2 + |az1])(a11 + |a12|)

This equation holds since it is based on the symmetry of A we have a; 2 = ag;. For an
arbitrary k # 1,2 we obtain

(AX)1p=(AX)op

_ |al,2 al,k| |al,2 az,k| |a2,1 a2,k| |a2,1 al,k|

a1 + a9l a asz + |ai B _02,2 + |ag | a aiq + |aga|

Again this holds considering the characteristic a; » = as1. Therewith we have (A X vp)(1) =
(A X vg)(2) for all vy € V4. O

We therefore obtain a result that seems to be the same as for the one dimensional
convection. The difference in the assumptions is given as follows. For the convection we
have only considered a one dimensional system but for the symmetric problem we have
the condition that the neighbours of aggregated points are isolated points. The problem
related to this condition is that the dimension of the matrix hardly changes if the
coarsing holds this condition. This can be seen in Figure 5.8 at page 176. Additionally,
in a numerical algorithm it takes a huge effort to control that the assumptions are
fulfilled in each step.

5.2.4 Maodification by the inverse of blocks

Again, as for the convection system it can be an idea to modify the system with the
inverse of small blocks. Therefore we consider again the system given by four grid

points as described at the beginning of this section. We remember that the matrix A
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5.2 Modifications for the symmetric model problem (one sided)

is given as
eE+ey —¢ 0 0
—& a+e —a 0
(5.36) A=
0 —a a4+ —0o
0 0 -6 0+ do

As the second and the third row and column are aggregated we define the blocks

a+e —a
Al = (5 + 50), A2 = and A3 = ((5 + 50)
—a a+0

From these definitions we obtain

1 a+d a
(a+e)(a+0d)—a a a-+e

ATt =(e+e0)™t, At =

and with these blocks we define the modification X by

ATt
(5.37) X = At
At
We obtain
_e(a+9) _ea
1 N N 0 1 _ e(2a+9)
N
—i 0 0
AX = ’ and Ay = | ——= 2
0 0 1 . ’ e+eo
5+d0 0 _ 5(2a+9)
Sa S(ate) N
0 ~ —=5 1
with N = !

(a+d)(a+e)—a*

So we see for the block inversion in the small symmetric system the following charac-

teristics:

1. The modification in general does not fulfil that V{ is invariant with respect to
AX.

2. If the links to the outside of MV}, N3 are all equal (that means € = § = g9 = &)

then we have A X vy € V| for constant vectors vy € Vj.
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5 Examples for modifications

3. If we take a look at the second row of Ay y and compare this with the second
row of Ay ((Ag)s, = (—&,e+ d,—09)) we can see that in the modified system the
diagonal element is bigger than the other elements of this row. This characteristic

is not so strong in the unmodified systems. More formally we obtain for €q, dg > 0:

ay., _e+6 _ 2 B agﬁ(
jaz 1] +lagsl e+ o tam lan |+ e |

In particular we obtain in the case of ¢ = g¢ and 0 = dg

0,X
Qg9 o

0,X 0,X
|a2,1 | + |a2,3
This motivates the idea that the system of linear equations
AO,XUO =Rf
is more simple to solve using an iterative method than the unmodified system

AO,XUO = f-

4. Furhtermore, in the case of ¢ = § the modified coarser system also has the fol-

lowing structure

Qi > 0, Qg j <0, for i 7£j

4
and a;; > Z la; ;|-

J=1,j#1

Unfortunately this characteristic does not hold in the case of € # ¢ for the first
or the fourth row.

5.3 Moadifications for the symmetric model problem
(two sided)

In this section we will consider the idea of a two sided modification. Again we will

consider the system that is given on the four grid points N}, ..., N}. So the situation

180



5.3 Modifications for the symmetric model problem (two sided)

is the same as the one at the beginning of section 5.2. The stiffness matrix is given by

eE+ey —¢ 0 0
—€ a+e —a 0
(5.38) A=
0 —a a+9d —0
0 0 —0 0+ 0o

and for the coarser grid we aggregate the points N3, A} to a new one. As shown in
section 4.2 for the condition of AC’[)% yx and ACE}I)X, xx in the Euclidean norm the

relevant constant ypr xx is given as
YDT, XX ‘= min {t - R+ : (APX A(;,AIX'X RX v, ([ — QO’X)’U)
<t APx Agkx Rx vl (2 = Qox)oll, Yo € V.

As we have concluded in section 4.2 the aim is to minimise ypr xx. The optimal
constant ypr xx = 0 is given if and only if V| x is invariant with respect to A. For the

given model problem
{(1,0,0,0)",(0,1,1,0)",(0,0,0,1)"}
is a basis of Vj. As we have the assumption 7k(X P) =ng =3
{X (1,0,0,0)", X (0,1,1,0)", X (0,0,0,1)"} = {X.1, (X2 + X 3), X 4}

is a basis of V) x.

5.3.1 Exact modification

We have seen in section 4.2 that an optimal two sided modification depends on the
knowledge and the use of the eigenvectors of the operator A. First of all if we know
them there are easier possibilities to solve Au = f than to use the presented precon-
ditioner. Furthermore, it will result a modification X with z;; # 0 for almost all i, j.
Hence the effort to use this modification is for big systems much higher than for the

iterative method itself.

Summary: The exact modification is theoretically well known but it is not interesting

for practical issues.
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5 Examples for modifications

5.3.2 Approximations

As done for the one sided modification with the inverse of blocks we will approximate
the operator A by three blocks which are motivated by the given restriction. For the

two sided modification the idea will belong to the eigenvectors of the system. We set

a+e —a

B1 = (5 + 50), Bg = and Bg = ((5 + 50)
—a a4+

Then we determine the eigenvectors of

B,

B = By
Bs

Based on the block structure of B it is obvious that we can determine the eigenvectors

for the separated blocks.

The blocks By, B, imply the eigenvectors (e})?, (e})?. For By the eigenvectors are follow

as
T

§— e+ +/4a®? + (6 — e)?
(5.39) (1 —( 5 , 1)
T
(5—6— 4a? + (6 —¢)? )

Vo = ,1
2a

with the eigenvalue

_2a+0+e—/4a* + (6 —¢)?
B 2

) 20+ 6 +e+/4a? + (0 —¢)?
2 = .
2

A1

To take a closer look at this part we will consider the basis vector X (e} + el) of Vj x.
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5.3 Modifications for the symmetric model problem (two sided)

We obtain the equation system

(AX (eh+e3))(2) ) (X (e5 +e3))(2)
= A23
(AX (eh+e3))(3) (X (e5 +¢3))(3)
(a+e)(zon + 23) — alzs2 + 733) T + T23
< = A2
(a4 0)(z33+ x32) — a(T22 + T23) T33 + T332

With the shortcuts yo = x99 + 223 and y3 = 233 + 32 we obtain the linear system of

equations
(a+e)y2 — ays Y2 (at+e) —a Y2 Y2
= Aoj3 Aad = o3
(a+9d)ys — ay) Y3 —a  (a+9) Y3 Y3

Hence we obtain that (y2,3)7 is an eigenvector of
(a+¢e) —a
—a  (a+9)

As there is no further condition on xs 9, x93, 232 and x33 we set
To 3 = 0= x3.2
and (299, 733)7 is an eigenvector of By. Therewith
{(1,0,0,0)", (0,22, 233,0), (0,0,0,1)7}

is a basis of V) x. Since there are two eigenvectors of By we have to choose one of them.
Therefore we consider the situation of € = . In that case we obtain for the eigenvectors

and eigenvalues
(5.40) vy =(1, D", with M\ =¢
vy = (=1, D", with Xy =2a+e.

Based on these vectors it is obvious that to choose v and (222, x33) = (1, 1), respec-

tively it means that the system will not be modified. This implies two characteristics:
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5 Examples for modifications

1. The use of vy is more influential than v;.

2. In the case of ¢ = § the unmodified system is equal to the system modified with

V1.

This modification is based on the general example we presented in section 4.2.1. In this
section we have mentioned that we do not know which eigenvectors we should choose.
By the block structure this problem is partly solved. The question is still open which
eigenvector we use for the block B;. Based on the example of section 4.2.1 it is obvious

that we have to choose one of them.

So far we have discussed only the structure of the subspace. For practical issues also
the scaling of the vectors we use as columns in X or Py play a role. To conclude this
section we will define this idea of modification for an arbitrary big system. Afterwards
we will discuss the aspect of the scaling of the columns of X. This discussion will lead

us to additional modifications.

For a given A € R™" s.p.d. we set X = diag(z11,...,%nn,). Furthermore, we set
z;; = 1 if N that is an isolated point. If N}, N} are aggregated then we define
Ald) e R®2 by

(i.5) Qg 5 ai,]
(5.41) AW =
Aji  Qjj
Then we set
Ljj

where v; ; is an eigenvector of A().

Now we will consider the problem of the scaling. This was already mentioned in section
4.2.1 and above, respectively. So far, for two aggregated points N}!, ./\/'j1 we have just set
(wi4, ;) = v;; with an eigenvector v; ;. To keep a consistence to x; with an isolated
point AV}! and to fulfil O OT = I it seems reasonable to set

UZ7-7

gl

(T4, 7j5)
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5.3 Modifications for the symmetric model problem (two sided)

As already presented in section 4.2.1 this implies Sy x = Iy. In general we have Sy x =
(RXT X P)~'. By the given block structure for X it is obvious that this implies

_ s 0,X 0,X
Sox = dzag(sL1 . ,sno’no)

with spy = 1if A is an isolated point with {k} = I,"* and 53 = (14, 7;5) (wi4, 25,5)"
if Ni', NV} are aggregated to NV} ({1, j} = 1%). Hence the scaling

(%%
(214, 03) = T
P gl
implies sg”f =1forall k =1,...,n9. We obtain that Sy x is easy to calculate indepen-

dent of the scaling. We will see in the section 7.2.2 that an advantage is given by this
scaling. However there is a numerical problem in this case. We consider the situation
of the matrix A given in (5.38). Additionally we assume € = 6. As we have already
highlighted (1,1) is in this case an eigenvector of Bs. If we use the scaling presented

above we obtain

Lo 00 e+e —= 0
x_ |0 viZoo of Sy
0 0 1/2 0 ’ oﬁ _ﬁi 5+€
0 0 0 1 V2 0

Therewith it is obvious that Ay xx does not hold

n

XX XX
a?,i > Z ‘a?,j .

=1,

Since we use iterative methods to solve
AO,XXUO = Rx f

we lose a useful characteristic for the methods (cf. chapter 9). This motivates to set
for two aggregated points N;', V! with the eigenvector v; ; of Al

U. .
(214, 255) = V2—2

||v,-7j||'

For € = ¢ this implies in our example that the modified method does not differ from the
unmodified one. However we will see in the multigrid setting that this will again imply

a problem. This one will be solved by the assumption that a condition is fulfilled.
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5 Examples for modifications

An additional idea is to set again X = diag(x11,...,%,n). Then we set
1
Lig =
Qy

)

if N is an isolated point. If N}, N are aggregated we set

l’. .
" L v

Ljj a Vi [|vi ]

where v; ; is an eigenvector of A9 and ), ; the associated eigenvalue. This is motivated

by the idea to set X = D:/ 201 as we have presented in section 4.2. However the

problem of such a setting is discussed above.

5.4 Summary

To conclude this chapter we will summarise the results we have shown based on some
simple characteristics. As in the last chapter we will mainly consider the one sided

modifications.

For the one sided modificatios we distinguish two kinds of modifications. The exact
modifications and the modification based on blocks. First it is quite obvious that if
N}, N} are aggregated then using x;;, z; j, ¢;; and z;; is not sufficient in any situation
for an exact modification. This results as the subsystem ./\/;-1,./\/']-1 is always influenced
from other points. So we always need the influence of other points for an exact mod-
ification. As we do not use any geometrical structure we have to determine the other
points by the entries of A. This can imply a much higher effort than modifications
which use no other points. However we have seen that such modifications can be sim-
ple and have useful characteristics if the influence for two aggregated points is only
given by one point. See therefore the example of the one dimensional convection. In
the case of the two (or higher) dimensional convection we have seen that if the influence
is given by different points we can control the bias based on one direction with a quite
simple modification. Moreover we have seen for the convection diffusion system that if
there is a main influence that has the structure of the convection than we get the same
result with a little bias based on the diffusion. But the terms which are used for the

modification are still easy to calculate.
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5.4 Summary

For the modification based on blocks we have also for quite simple problems not so
meaningful results concernig the invarianc of subspaces. However, this modification
is easy to define. In particular this holds if the structure of the system is complex.
Additionally the effort in an algorithm is low. This results as we need no NV}, k # 4, j
to modify the aggregation between A", N}

At least in the symmetric example we have seen that in such a situation we need a high
effort and strict assumptions to obtain similar results as for the exact modifications
in a convection system. The main aspect of this characteristic is that for aggregated
points ./\/;-1,./\/']-1 it has an influence whether the a neighbour is aggregated or not. In
addition, the modification of the neighbours also has an influence on the values for
/\fil,/\fjl. This is not the case in the convection system. Afterwards we have seen that
the modification by the inverse of blocks seems a good and simple idea for the sym-
metric system. However, as for a symmetric matrix A the one sided modified operator
Ap x is not symmetric we can use this only as a two grid method. Hence, this is more

or less only a theoretical result.

For the two sided modification of a symmetric system we know that the eigenvectors
of the operator play a role. Afterwards we have presented approximations which are
based on using eigenvectors of smaller subsystems. This idea based on the characteris-
tics that these eigenvectors are simpler to determine and as the subsystems are given
by a block matrix, the most entries of the eigenvectors are zero. Furthermore we have
seen that in particular we have a diagonal matrix for the modification matrix. As for

other methods based on blocks it follows that the effort is quite low.

There is an additional (positive) effect obtained by the modification. For example if we
use the modification by the inverse of blocks then it is possible that the modified coarse
grid operator Aj x has better numerical characteristics than the operator Ajy. As we
mainly consider the angles between the solutions and always assume the exact solution
in all subspaces this is a minor effect in this work. However, we should highlight that

for numerical experiments this could be the main effect.
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6 Multigrid aspects for the
preconditioners

So far we have introduced the preconditioning operators Cgflp, Cg}g ~ and Cj, Pl as two
grid algorithms. Now we want to generalize them to multigrid algorithems. Thereby
we generalize also the approximation that is used for the inverse on the different grids.
So far we have just set them as A~!, A;'. That means that we have used the exact
inverse on the differnt grids. Therewith we have obtained the estimations of our intrest.
Now we are more interested in the existence of these preconditioners. As in the chapter
3 it is in this chapter not necessary that the restriction is given by the aggregation
method. However there will some situations in which we use assumptions that are for

the aggregation method given by the condition (2.14).

6.1 Multigrid aspects for C5p

We will define the BPX preconditioner in the setting of J + 1 grids in a way that
for J = 1 it is the same as the two grid algorithm defined in section 3.2. So for non

singular BY) € R%*"_ j =0,...,.J we define the operator CE}D + as follows
J
(6.1) Cppx(BY,...,BY) =" P;(BY)"
7=0

First we will show a sufficient condition for the operators BY), j = 0,...,.J so that
the operator Cppy (B9, ..., BY) is non singular. We will proof this the same way as

done in the two grid case.

Lemma: 6.1.1. Assume that there is a matriz B € R™™ with

(6.2) (Ri B Py (BW) ™) (@) = 7650k, 7lgy >0

)

for all v, € Vi and all k =0,...,J. Then Cupx (BO ...  BY)) is non singular.
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6 Multigrid aspects for the preconditioners

proof. We will show that based on the assumptions there is no v € V\{0} that fulfils
Cyzpx v = 0. Assume that such an v € V\{0} exists. For an arbitrary j < J we have
Ry = R) R; and therewith follows

BPXU_ZP (BW)~

J
= ozROE<ZPj(B<j>)—1R ) ZR{) R; B P; (BY)™Y) (R, v)
J

J
:ZR% (RU ZT(RUROU—R0U<ZT(RU>.
§=0

Hence we obtain Ryv = 0. Assume now for an £ < J it is R;jv = 0 for all i < k — 1.
Then it follows

J J
0=> P(BY)"'Rjv=> P;(BY)" R;v
7=0 j=k
And this implies
J J _
0=> Ry BP;(BY)"' Rju=> R}(R; BP;(BY)™") (R;v)
Jj=k j=k \\:—/
€v;

= Z R T(JRJ_ (B v) = Z T(]Rj o (B v) = Ryv (Z T(JRJ_ U)> .

j=k j=k =k

Hence it is Ry v = 0. Based on the argument of the induction this implies Ryv =v =0

and this is in contradiction to the assumptions. O

The assumption of the existence of an operator B that fulfils the equation (6.2) seems
to be quite strong. The following lemma will show that this condition can be fulfilled

rather simply.

Lemma: 6.1.2. Let B € R™" be a non singular matriz so that the matrices BY) €
R™>*" defined as follows

S
(6.3) BY .= —R;BP;, j=0,....,J, ;>0

9j

are non singular. If we set B = B then the equation (6.2) holds for all j = 0,...,J
and all v; € ‘7] with T(J;ﬁj) =o0; for allv; € ‘7)
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6.1 Multigrid aspects for Cppy

proof. For an arbitrary j € {0,...,J} we obtain from the assumptions for an arbitrary
v €V

(R; BP; (BY)™)(0;) = 0; B; (BY) ™ (3) = 0, 1;.
]

With B = A and 0; = 1 for all j = 0,...,J this is the situation we have considered
for the two grid algorithms. This leads to a definition for the multigrid case that is, in
the case of J = 1 the same as considered in the chapter for the two grid method. We

define for a non singular B € R™*" the operator C'zpy as follows

J
(6.4) Cpbx(B):=> P;B;'R; with B;=R;BP;.

J=0

From the results above Cgpy is non singular if this holds for the matrices B;, j =

0,...,.J. The non singularity of the matrices BY) are discussed in Lemma 2.3.5.

If we use the BPX-method as a preconditioner to solve Au = f then the lemmata
above give us the idea that the quality of the preconditioner depends on some aspects.
The first one is that the coarse grid operators BY) should be good approximations of
A in certain subspaces. So it seems to be a good idea to set BY) as done in (6.3)
with B = A. If we do this the next aspect is that we need a good scaling operator o;.
At last we have to consider the structure of the used subspaces. As in the two grid
situation it is obvious that the angle between them has an influence on the quality of

the preconditioner. For v, € Vj, and B € R™*" we can decompose B v, as

Buy = Qu(Bug) + (I = Qi) (Bvg) = P Sk R (Bug) + (I = P Sk Ri) (Buy) .

—
€V evit

The idea we got from the two grid method that the quality depends on the bias of B

as given by

||(] _A@k)(B Uk)“
1Qrk(B vy

and that it is optimal if the spaces V} are invariant with respect to B.
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6 Multigrid aspects for the preconditioners

To specify this idea we consider a representation of A CE}D (B ©, ... BY)). We obtain
(6.5)
J
ACghy(BO,...BD) = 3" AP, (BY) " R,
5=0
J J R
=Y QAP (BY)Y R+ (I - Q) AP;(BY) " R
j=0 Jj=0
J R J R
=Y P8 A;(BY) R+ (1-Q;) AP (BY) ' Ry,
5=0 5=0

If we consider the special case that BU) = Aj for j =0,...,J then this is equivalent to

J
(6.6) ACGL(A) = i+ > (I—Q) AP A' R,
7=0

13- 217

Il
o

J
i+ > (I—Q;) AP A' R,
7=0

J

Therewith we furthermore see that we obtain
J A~
A CE}lDX (A) = Z QJ
j=0

if V; is invariant with respect to A.

6.2 Multigrid aspects for CB%

In this section we will introduce the DT-method in the context of J+ 1 grids. Similary
to for the BPX-method it should be done in a way that in the case J = 1 we get the
preconditioner as given in in section 3.3. However, for the DT-method there are two

possible generalisations that we will present.

6.2.1 Version 1

Again for non singular BY) € R%*" 5 =0,...,J we define the operator C’B}m
J
(6.7) Cpra(BY, ... = P (BY) ' (I; = Q1) R+ Py (B) ™" Ry.
7j=1
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6.2 Multigrid aspects for Cp}.

As we have done for the BPX-method we will show a sufficient condition for the non
singularity of C’E}J. Similary to the proof for the BPX-method this will depend on an
assumption concerning the operators BY), j =0,...,J.

Lemma: 6.2.1. Assume that there is a matriz B € R™" implying for allk =1,...,J
that

(6.8) Wi is invariant with respect to (R BP, (B®)~h

and rk(Ry, B Py (B®)™1) = ny, for k = 0,...,J. Then 05%71(3(0),...,B(J)) is non

singular.

proof. We will prove that based on the assumptions there is no v € V\{0} that fulfils
Cor(BY ... BY))y = 0. Assume that such an v € V\{0} exists. For an arbitrary
1< Jitis Ry = RO R;. Furthermore, we remember that we can represent an arbitrary
wy € Wk as

Wy, = (I, — Q1) Riyo™ = (I, = P Set RE_y) Rpo™ with an o®) € V.

Therewith follows

O—CDTlv—ZP (BYYN(I; — Qj_1) Rjv+ Py (B Ryw

= 0=RyB (ZP ]—Qj 1)R’U—|—P0(B )1R0U>

R} (R; BP; (BY)™) (I; — Qj—1) Rjv+(Ro BPy (BV)™") Rov
' e%j eV

|
.M“

J

J
Z Ri-1 R] _ Qj—l) R; o) + (ROBPO (B(O))—l) Rov
j=1 ;’o

= (Ry BPy (B Ryw.

Based on the assumption 7k(Ro B Py (B®)™) = ny we have Ryv = 0. Assume now
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6 Multigrid aspects for the preconditioners

that for an £ < J we have Rjv = 0 for all j < k. Then we obtain

Pj (B(j))_l ([] — Qj—l) Rj U+ Po (B(O))_l Ro’U

T
-

1

.
Il

Py (BDY ™ (I; = Qj-1) Rjv.

I
.M“

<
Il
ol

And this implies

J
0=> RiBP;(BY)™" (I; - Qj1) Rjv

=k
J . o~
= RL(R; BP;(B")™") (I; - Q;—1) R v
ik ~-
GW]‘

J
= (R BP.(BW)™) (It = Qer) Rev + Y Ri(Ij — Q1) RV

j=k+1

J
= (Re BP,(BW)™) (I, = Qx1) Rev+ Y RN R (I — Q1) Ry

A -
j=k+1 -0

— (R B Py (B®)™Y) (I, — Qx—1) Ry v.

Based on the assumption rk(Ry B P, (B¥))=1) = ny, this implies ([, — Qr—1) Rrv = 0.

Hence we obtain from the definition of @);_; and the assumption R;v =0 for j < k
0= (]k — Qk—l) Rkv = Rk’U — P,f_l Sk—l Rk_l’U = Rk V.
Iteratively we obtain R;v = 0. Hence the contradiction follows from Rj;v = v. O

To compare the two proofs of the non singularity for Cgflm and C’;}D + we will start by

comparing the sufficient conditions for the proofs.
Lemma: 6.2.2. If there is a non singular B € R™" which fulfils
(R B P, (B™) ™) (@) = 76,0k, 75,y > 0
forallk=0,...,J and all v, € Vi, then for the matriz B also holds
Wy s invariant with respect to  (Ry B P, (B*™)™)

forallk=1,...,J and rk‘(ngPk (BN~ =y, fork=0,...,.J.
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proof. If it is for a B
(B B Pe (B®)™)(@) = (5T, 75, > 0

then Wk C Vk is invariant with respect to this operator. Furthermore, the assumption
obviously implies the non singularity of Ry, B P, (BWN)~L, O

Remark: 6.2.3. Lemma 6.2.2 implies together with Lemma 6.1.2 that the technical
condition about the invariance of subspaces is easily fulfilled if there is an non singular
B € R™™ for that we have

b1
BY := —R;BP;, with 0;>0,j=0,...,J.

Oj

Additionally the assumption
rk(Ry, B P, (B¥)™) = n,
is equivalent to
rk(Ry B Py) = ny.

For a matrix B € R™ ™ this is discussed in Lemma 2.3.5.
So at the first view it seems that the sufficient condition for the DT-method is weaker

than the condition for BPX-method. But in the proof for C’B%m we additionally use
P]f_l Sk—l R]lz—l . ‘N/k — P]f_l(f/k_l)

is the orthogonal projection concerning the inner product (.,.). This is equivalent to
the condition Sy_; = (Rf_, PF~')~'. That means that we have to calculate for each
7=0,...,J—1 an inverse matrix. For the aggregation method this is possible without
an additional big effort as (Rf_, PF™') is a diagonal matrix. But this is not so easy
if we want to use other restriction operators as for example the standard geometrical
restriction. This is not necessary for the BP X-method.

As we have done for the BPX-method we have the analogy to the two grid method
also for the DT-method. We define Cpy., (B) by

J
(6.9) Cpra(B):=> P By (I; = Q1) Rj+ Py By ' Ry
=0
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6 Multigrid aspects for the preconditioners

Based on the results above this is a non singular matrix if the matrices B;, 7 =0,...,J
are non singular. This is the result if we set B = B in Lemma 6.2.1. Then By s well

posed and we have
(Ry BP, (BM)™) = (R, BP, B;") = I,.
Hence W is invariant with respect to (R, B P, (B®)~!) and we obtain

rk(Ry, B P, (B¥)™1) = n,

Thus the quality of the DT-method as a preconditioner for Au = f depends on the
aspects that have been important for the BPX-method. The first is that the matrices
BY) should be good approximations for A;. The second is again that if we decompose

an arbitrary v, € Vj,

Avp = Qu(Avy) + (I — Qr)(Avy) = P, Sy Ry, (Avg) + (I — By Sk Ry.)(Awy) .

~
eVy € Vk.l

Then the quality of the preconditioner depends on the bias given by

(1 :@k)(A ug) || .
1Qk(Ave)l

This is obvious if we take a look at the following representations of

AC’B%M(B(O), ... BY)) that will conclude this section and motivate modifications as
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6.2 Multigrid aspects for Cp}.

done in the two grid case. We have

(6.11)

ACHp,(BY, ... BY))

AP; (BOY (I, = Q;_1) Ry + APy (BY) ' Ry

I
=
- .=

1

.
Il

Qj AP (BY)™ (I; = Q1) Rj+ Qo A Py (B®) ™" Ry

I
Mk

1

.
Il

+ 2 (T= Q) AP (B) (I = Qj1) By + (I = Qo) A Py (BY)™" Ry

M-

1

J

Pjg A, (B(]) (Ij_Qj—l)Rj+PO§OAO (B(0)>_1 Ry

|
-M“

<
Il
—

J

+ (I = Q) AP (B (I — Q1) R+ (I = Q) APy (BO) ™' R,.

i=0

If we consider the special case that BU) = Aj for j =0,...,J then this is equivalent to

(6.12) ACH, (A Z P;S; (I, — Q;_1) R; + Py Sy Ry

J
+Y (1= Q) AP A7 (I; — Q1) Ry + (I — Qo) APy Aj' Ry,
§=0
If we have §j ij_l Si1 = ij_l gj_l for j =1,...,J we get based on Lemma 2.3.8 that
this is the same as
J

ACBilm(A) = Z(@] - @j—l) + Qo

J=1

J
+ Z (I—Q;)AP; (B (I, —Q;_1) Rj + (I — Qo) APy (BO)™! R,.
j=
Therewith we obtain that if V; is invariant with respect to A then
J

ACHr,(A) => Q= Q1) + Qo = 1.

j=1
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6 Multigrid aspects for the preconditioners

To conclude this we want to highlight that if the equation §j ij S = Pj - §j_1
does not hold we have another kind of bias because even if V; is invariant with respect
to A we only obtain

AC/:_)Clrl § (I; = Qj-1) R, + Py Sy Ry

M“ “M*

(Qj — P §j Qij—1 R;) + Qo

=1

<
Il

This leads to the idea of another kind of modification.

Remark: 6.2.4. Based on Lemma 2.4.8 we obtain that for the aggreagation method the
equation §j P SJ 1= P’ 'g Sj_1 holds if and only if the condition (2.14) is fulfilled.

6.2.2 Version 2

For the DT-methods we have seen that in the context of two grids it holds ACp}. = I
if Vj is A-invariant. In the last section we have seen that for the multigrid situation we
need an additional condition to obtain this property. Hence we will propose a second
generalisation for the two grid method. This one should hold that we only need the
assumption that V; is A-invariant to obtain A C’B}m =1

In other words we want to get a certain consistence without using the additional as-
sumption that §j ij_l Sj_1 = ij_l §j_1 holds or the condition (2.14) is fulfilled, re-
spectively.

For non singular BY) € R%*"_j =0,...,.J we define the operator 05%72 as follows
(6.13)

J ~ . ~ .
Cpra(BY, ... Z (BY)™ (I; = S; PI7' S, RI_) R; + Py (BY) ™" Ry.
Then we have a similar result for the non singularity of CBilr,z(B ©, ..., BY) as in the

last section for Cpp (B©, ... BY)).
Lemma: 6.2.5. Assume that there is a matriz B € R™" that implies

(6.14)
Im(((1 — §,€_1 Pl Sp_1 RF_DRW)(V)) is invariant with respect to  (Ry B Py (B®)™)

fork=1,...,J andrk(Ry B P, (B®)~) = ny fork =0,..., J. Then Cpy,(B©, ..., BY)

s mon singular.
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6.2 Multigrid aspects for Cp}.

proof. We will show that based on the assumption there is no v € V\{0} with
Cora(BY, ..., BY)v = 0. Assume that such an v € V\{0} exists. From the as-
sumption (6.14) on the invarianve follows that

(Ry BP;(BY)Y™)(I; = S;' PI' S,  RI_) Rjv=(I; - S;' P/ ;. RI_)) R/

for all j =1,...7 with an v € V. Hence we obtain

T
-

Py (BY)™N(I; = S:' PIT S;_ Ri_)) Rjv + Py (B”) ™ Ryw
1

<.
Il

\

T
-MK

Q)

0B P (BY) N (I; =87 PI7 5,y RI_) Rjv + Qo B By (B®) ™! Ryw

J

<
Il
—

I
B

Py Sy R (R; BP;(BY)Y™)(I; - S7'PI™' S,  RI_)) Rjv
1

.
Il

+ P(] §0 (R(] EPO (B(O))_l) R()U

I
B

Py So Ry (I; = S5 P71 S50 RI_y) Ry o7 + Py S (Ro B Py (B®)™") Ry

1

<.
Il

I
]~

(@o — Py Sy RY S PITNS; R§—1>Uj + Py So (Ro B Py (B)™!) Ryw
1

.
Il

I
B

(@0 — PSR R; PP S, R;i_l)vﬂ' + Py Sy (Ro B Py (B9)™Y) Ry
1

.
Il

I
B

(@0 = QoQs1 )7 + Py So (Ro B Py (BO) ™) Rov

1

<.
Il

)

P() 0 (R() g PQ (B(O))_l) R() V.

As we have
rk(Sy) = rk(Ry B Py (BO)™") = rk(Py) = ng

this implies Ryv = 0. Assume that we have R;v =0 for an k < J and all j < k. Then
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6 Multigrid aspects for the preconditioners

it follows
J
O:ij(B(J)) I _5.—113]4‘—1@_13 D R;v+ Py (BOY™ Ryw

j=1
J

=" P (BY)Y N1~ 57 P S RL) Ryw
=k
J

= 0= QuBP(BY) (I, -5 P/"' S, R]_))R
=k
J

= > QuBR(BY) N1~ 5 P S R Ry

j=k+1

~ ~

+Qy BP. (B") " (R, — S7' PF S,y Re_y) v

Z Py Sy R} (R; B P; (B ™) (I; — S PI7' S, RI_)) Ryv

J
j=k+1

J
=Y PSR, =S PITNS, L R Ry

j=k+1

J
= > | P SiRi— PScRLR; PP S, R Ry | o

j=k+1 g Y
Qr Qj-1

J

j=k+1
= P, Sy (R, B P, (B®)™) Ry v,
From the assumption
rk(Sy) = rk(Ry B P, (B")™Y) = rk(Py) = ny

follows R v = 0. Hence R;v = v = 0 follows based on the argument of induction.
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Of course it is again a good idea to set BY) = A; = R; A P;. We obtain in this situation

AP ATNL-S7 P S, R Ry
= Q; AP AN I; - STV PITY S, RIL) R,
+ (I = Q) AP AL, = 57" P71 S, R, Ry
= P 5 (1= 87 P S R ) Ry
+(I— Q) AP AN I; - STV PITY S RI_) R,
= (Q; — P;S;R; P, P! S;_1 Rj — 1)
+(I-Q) AP ATNI; - ST P15, RI_)) R,

+(I—Q;) AP, AN, — 5 P78, RI_ ) R;.

J

This implies

J
DT2 Z Q] 1) @

=1

<.

J
Z I—Q) AP AN = S; Pl S,  RI) Ry + (I — Qo)A Py Ay Ro.

And if we addltlonally have V; that is invariant with respect to A this implies
J
ACpr,(A) = Z(@j ~Qj1) + Qo =1
j=1
That means that if we take the operator C’B}m instead of Cgflm then we can drop the
assumption that the equation §j ij_l Sj_1= ij_l §j_1 holds or the condition (2.14) is
fulfilled to get an easy representation of A C’B}’2 v as the sum of the identity and a bias.
The bias is for this operator again induced by the non invariance of V; with respect to
A. However using C’,:_xln2 instead of C’,:_xln1 implicates a higher effort. The matrices S
have to be calculated and saved. For the aggregation method the effort is not so high

as the matrices §j, 7 =20,...,J are diagonal matrices too.

We will conclude the section with the proof that if the equation §j ij_l Si1 = ij_l §j_1

holds the two methods C’,:_xln1 and C’,:_xln2 are the same.
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6 Multigrid aspects for the preconditioners

Lemma: 6.2.6. Let C’B%DC’B%Q be as defined in (6.7),(6.7). If we assume that the
equation §j ij_l Si_1 = ij_l §j_1 holds then we have

-1 -1
CDT,l = CDT,2-
proof. Based on the assumptions we obtain

Qii=P/ 'S R =SS, PSR,

=S PSR

J J

This proves the assertion. O

6.3 Multigrid aspects for C,

Similarly to the DT-method we will present two modifications for the generalisation of
the 2P P-method. They will distinguish by the assumption of the equation §j ij ! Si_1 =
ij - §j_1 holds or the condition (2.14) is fulfilled respectively. If we consider the
aggregation method then we can sum this up to the assumption that the condition
(2.14) is fulfilled. Moreover, for the first version of this preconditioner, we will need
this condition for the non singularity of the preconditioner and not only for a good

estimation in a theoretical situation.

6.3.1 Version 1

We will introduce a generalisation of the the 2P-method in the context of J + 1 grids
that is similar to the generalisation done for Cz_)%u- So again for non singular BY) €
R™*™i 5 =0,...,J we define the operator C;Pl,l by

J
Copy(BY, ..., BY) =3 " P (1; = Q;1)(BY) ™ (I; = Qj-1) R+ Py (BY) ™' Ry,
j=1
First we have that for symmetric BY), j = 0,...,.J the operator 02_13171 is symmetric,

too. This follows from

(Pj (I; = Qj—1)(BY) ™ (I; = Q; — 1) Rj)

T

T

_ (([j — Q1) Rj>T<(B(j))—1)T (Pj (f; = Qj—1))

= P;(I; = Q;—1)(BY) " (I; = Qj—1) R;.
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6.3 Multigrid aspects for C,p

If we want to consider the non singularity of this preconditioner we need stronger
assumptions than for the DT or the BPX —method. First we need a simple result for

the decomposition of an v € V' by the operators

(Ij - P-j_l Sj—l R§—1> Rj v, R(] V.

J
Lemma: 6.3.1. Based on the definition of RY there is no v € V\{0} with
(I = P S, RI_)Rjo=0 forall j=1,...,J

and Rov = 0.

proof. Assume that such an v € V\{0} exists. Then it is in particular Ry v = 0. Assume

now that for an & < J we have R;v = 0 for all j < k. We obtain from the assumption
0= — P 'Sy 1R} ) Rpv=Ryv— P 'S 1 R_1v=Ryv.

Based on the argument of the induction it follows R;v = v = 0. This gives the

contradiction to the assumption. O

We should highlight two aspects of Lemma 6.3.1. The first is that this lemma does not
need any assumption concerning Si_;. The second is that the lemma does not give any

information whether

> Pi(I; = PI"'S; 1 Rl R;+ Py R

J
J=1

is singular or not. However, now we can give a proof for the non singularity of the

operator Cy, Pl,l.
Lemma: 6.3.2. Let BU) € R%*" be non singular, with

(6.15)
(L= Q) (BOY ™M —Q; 1)0;=0 = (I; —Q;1)0; =0 for j=1,...,J.

If we assume that
(6.16) ker(R._|) = ker(R._, R; P;)

holds, then the operator C’Q_Pl’l is mon singular.
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6 Multigrid aspects for the preconditioners

proof. Assume that there is an v € V\{0} with Cy, Pl71 v = 0. Then it follows by Lemma
6.3.1 that

([j_ij—ISj_le_l)ij fory=1,...,J and Ryv

are not all zero. Based on the assumption on the non singularity of (BY)~', j =0,....J
it follows that

(BN (IL; =PIV S, RI_) Rjv j=1,...,J and (BY)™ Ryv
does not all vanish. Briefly we write

(B(j))—l (I; — pi1 Si_1 Rﬁ_l) Riv=u; €¢R" forj=1,...,J

J

and (BOY 1 Ryv =uy € R™.

This implies

0= 2P1U_ZP Q] 1u3+P0u0

J
= O:Ro (Z ]—QJ 1U]+POU0>

(6.17) _ZRJ "RI_\R; Pj(I; — Qj_1)u; + Ry Pyug

j=1

Based on the definition of S;_; as S;_; = R;_l ij_l we obtain R;_l (I; —Qj—1)u; =0
for all u; € R™. From the assumption (6.16) follows that

Rj_y R; Py (Ij = Qj-1)u;

holds for all j = 1,..., J. Therewith it follows from (6.17) Ry Pyug = §0_1 uy = 0. Hence
we have ug = 0. Assume now that it is u; = 0 for an £ < J and all j < k. Then it
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6.3 Multigrid aspects for C,p

follows

J
=Ry P (It — Quet) u+ Y RUVRI Ry Py(I — Q1)

j=k+1

=Ry By (Ik - Qk—l) Up

Thereby follows the last equation again from the assumption (6.16) and Rg_l (L; —
Qj_1)u;=0forall j =k+1,...,J. By the definition of uj and rk(Ry P) = ny, this is

equivalent to
(T = Q1) (BW) ™" (I = Q1) Rev = 0.
Based on the assumption (6.15) this implies (I, — Qr_1) Rx v = 0. Hence we have also
uy = (B®)™ (I — Qp_1) Ryv = 0.

From the argument of the induction it follows u; = 0, 7 = 0,...,J. This is in contra-

diction to the assumption of v # 0. 0J

We want to highlight that the condition (6.16) follows for the aggregation method from
the condition (2.14). This is proved in Lemma 2.4.9.

To conclude this section we will take a look at the condition used in the proof of
Lemma 6.3.2. As above mentioned the second condition is for the main aspect of this
work equivalent to the assumption that condition (2.14) is fulfilled. This condition is
well-known from section 2.4.3. So we consider here only the other assumption given by
(6.15). If we set B® = A; = R; A P; then the condition is equivalent to the assumption
that A; is non singular. This we will show in the next lemma. Moreover we have shown
that if A is s.p.d. then we obtain that A; is also s.p.d. In particular this implies that

A; is not singular.
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6 Multigrid aspects for the preconditioners

Lemma: 6.3.3. If we set BY) = A; = R; AP; and A; is non singular for j =0,...,J

then the condition

(6.18)
([ —Q;_1) (B —Q; )0, =0 = (I; —Q;_1)0; =0 for j=1,...,J.

holds. In particular (6.18) holds if we set BY) = A; = R; AP; and A is symmetric

positive definite.
proof. If there is an v; € ‘7) with w; = (I; — Qj-1)v; # 0 and
(6.19) (I = Qj—1) A7 (I; = Q1) 7, =0
then it follows from the non singularity of A;
AT = Q1) T = 0] #0.
It follows from (6.19)
([;—Qj1)v;=0 & v, =Q; 17;.
We highlight that S;_; R;_l'ﬁ; # 0 follows from this equation. Hence we obtain
Ajy Sj R0 = RI_ A Pl S, Ry
= RI_|A;QjaT; = Ri_| A,
= Rj_ A A (L — Q)7
=Rl_, (I; = Q;_1)v; = 0.

This is in contradiction to the non singularity of A;_;.
The additional result follows because we obtain from Lemma 2.3.5 that A; is non

singular in this case. O

So in the case of a symmetric A the condition for the non singularity is given by condi-
tion (2.14). To conclude this section we want to summarize the result concerning the
non singularity of C\, Pl,l for the aggregation method and a symmetric positive definite

operator A.

Theorem: 6.3.4. Let A € R"™" be s.p.d. Assume that the aggregation method is
used to construct Vy_qi,..., Vo and the condition (2.14) is fulfilled. Then 02_131,1 with

BU) = Aj_l is non singular.

proof. The proof follows from the arguments presented in this section. O
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6.3 Multigrid aspects for C,p

6.3.2 Version 2

Again as done for the DT-method we will introduce a second version that is independent
of the condition (2.14). Hence we define for non singular B% € R™*" 4 =0,...,.J
the operator (5, Pl,z by

Copa(BO, ... BY)) =

J
> P —P S R ST BV (L - S PSR R,

j=1
+ Py (BO)™' Ry,

As a first result it is obvious that for symmetric BY), j =0,...,.J the operator Oy 13172

is symmetric, too. This follows from

. —~ . ~ . ~ . —~ . T
Py (I; = P/ 854 Ry S;) (B (I = S7 PS4 R)) Rj)

/~

~

(-5 2 S R0 R) (B9 (Bt - P8 R )
Pj

J

(L= P S R S;Y(BY) (I = S PSR Ry,
For a result concerning the non singularity of (5, Pl,z we need a technical result similar
to Lemma 6.3.1.

Lemma: 6.3.5. Based on the definition of Ry = I and R; = R§+1 Rji 1 there is no
v e V\{0} with

(L =S7' P/ S, R Rjv=0 forall j=1,...,J
and Rov = 0.
proof. The proof holds based on the same arguments as the proof of Lemma 6.3.1. [
Therewith, we obtain the result of our interest:

Lemma: 6.3.6. Let BY) € R™*" be non singular, with

(6.20) (I =PI S, RI_ S (BY)Y  (1; = S Pl S; L Ry = 0

SIS R =0 for j=1,.

Then the operator 02_13172 is non singular.
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proof. Assume that there is an v € V\{0} with C’z_Pl,zv = 0. Then it follows from
Lemma 6.3.5 that
(I, = S;'PIT' S, R_)Rjv j=1,...,J and Rgv

J

are not all zero. From the assumption on the non singularity of (BW)=™!, j =0,....J
it follows that

(B (1, — §J_1 ij_l §j_1 R;:_l) Rijv forj=1,...,J and (BY)™' Ryuv
does not all vanish. Briefly we write

(BOY (L= S PSR Rjv=u; € RY forj=1,...,J

and (B! Ryv = uy € R™.
This implies
J . o~ - ~
0=Coppv =Y Pj(l; =PI S RS, 87wy + Pyug
j=1

J
= 0=1Ro (Z Py (I; = P/ S5 R 57wy + Py U0>
=1

=N RI'RI Ry Py (L — PIT' S, RIS uy + Ro Poug

This implies ug = 0. The rest of the proof follows again the argument of induction

where the same calculation is used in each step. O

Next we will take a look at the conditions of Lemma 6.3.6. We will show that we get

for this generalisation a similar result as in Lemma 6.3.3.
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Lemma: 6.3.7. If we set BY) = A; = R; AP; and A; is non singular for j =0,...,J
then the condition
(6.21) (I — P78 R S (BY) ™ (1; = 87 PITY S, R ) = 0

= (Ij—gj_lpjj_lgj_lR;_l)gj:O for 7=1,...,J.

holds. In particular (6.21) holds if we set BY) = A; = R; AP; and A is symmetric

positive definite.

proof. If there is an v; € 17] with w; = (I; — §J_1 ij_l §j_1 Rg_l)@'j # 0 and

~

(I = PJ7 S, Ry ;) AT (I = S PU S, R ) =0

J J

then we obtain from the non singularity of A;

As we have (I; — P/ §j_1 R §J_1)5j = 0 we obtain

J
fT\)/;( - ij_l §j—1 R;:—l §]—1 f’(\J;k
We highlight that §j_1 R;_l §J_ ! v; # 0 follows. Hence we have

Aj ‘/S\j—l R 5719 = R;:_l A, pi—t §j_1 R;_l g1y

i-125 Yj j i i
=RI_ A7
— R A AN (L= S PSR
= Rg_l (L; — gj_l ij_l §j—1 R;_1)gj
= (Rj_, — Rj_, (R Py) P Sj-1 B3
= (R;:_l — :9\]__11 §j—1 R§_1)fﬁj =0

This is therefore in contradiction to the non singularity of A;_;.

The additional result follows as we obtain from Lemma 2.3.5 that A; is non singular

in this case. O

We will conclude the section by highlighting that we have C5, 13171 = C, Pl,z if we use the
aggregation method and the condition (2.14) holds. The proof for this follows the
same argument as the proof of Lemma 6.2.6 which gives the same result for the two

. . -1
generalisations of C57p.
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7 Multigrid aspects for the modified
preconditioners

As we have modified the two grid preconditioners we will also try to do this for the
multigrid preconditioners. In the context of two grids the aim was that Vj is invariant
with respect to A X (one sided) and V; x is invariant with respect to A (two sided),
respectively. So in this section we will formulate this in the context of J + 1 grids.

Hence we will use J different modifications.

To motivate this we will first consider a version of the one sided modified DT-method
and the BPX-method in the context of J 4 1 grids and J modifications, respectively.
These modifications will all have all the dimension n xn so it is obvious that this implies
a huge effort. Hence this is not based on practical issues but rather on motivation.
Afterwards we will present an idea to define the modifications iteratively by matrices
which have a reduced dimension. For the aggregation method we will see that the
condition (2.14) plays an important role, again. Furthermore, we will see that for the

two sided modified preconditioner this is not as easy as for the one sided modified one.

7.1 Full modifications: A motivation for modifications
on J + 1 grids.

To generalise the results of chapter 4 the aim is to have modifications )?i, with

AX;Po, €V, forall o€V,

& V; is invariant with respect to A)?Z-.

foralle=0,...,J —1.
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7 Multigrid aspects for the modified preconditioners

For operators )A(Z-, t=0,...,J —1 we define modified prolongations P, ¢ as

P¢:=XP for i=0,...J-1

and P;g:=1.
For A € R™*" we define the one sided modified coarse grid operators A, ¢ € R"*™ as
follows
(7.1) Az =RAX; P for i=0,...,J.

Lemma: 7.1.1. Let A € R™™ be non singular, let A; x € R™*" be non singular for
j=0,...,J and X; ER™™ i=0,...,J — 1. Then it follows for allv € V

1. We have
(AXiP AL Riv, AR, Py A7) Ry o)
— (i v, v) + ((1 — Q) AX, P AL Riv, AX; Py AL R, v).
fori,j=0,...,J, 1 <.
2. We have
(AR P AL (L= Qi) Riv, AR P AK (1= Qia) By o)

—5”< (L — Qi—1) Riv, ( i_Qi—l)Rivv)
+ (1= QAR P AY Ryv, AR P AL Ryv).
foralli,j = ,J with 1 < j and
(AXOPOAOXROU AR Py A (T = Qi) By
((1 Qo) AXo Py Ak Ryv, AX; Py ATK (I — Q1) R, u>
forallj=1,...,J

3. If we additionally have S; Pi™"S;_1 = PY S,y for alli = 1,...,J — 1 then it

follows

(AR P AL (L= Qi) Riv, AR P AK (1= Q1) By o)

= 527]((@2 — Q\i—l) v, U) + (([ — @\z) A)/(\VZPZA;;< Rz v, A)/(\V] P] A]_}( Rj U).

212



7.1 Full modifications: A motivation for modifications on J + 1 grids.

forallv,7=1,...,J witht <7 and
(A% R Agk Rov, AR, P AT (I = Q) By o)
= (1= Qo) AR Py AG Row, AR, Py A7 (1 = Q1) By )
forallj=1,... J.
proof. 1. Based on the definition of A; x we obtain
(AX, P A Riv, AX; P A7\ R;v)
= (QiAX; P, A7} Riv, AX; P; A7 R;v)
+((I-Q)AX, P Ay Riv, AX; P A7\ R;v)
= (S;R; AX, P, A Riv, Rl Rj AX; P; A7\ R;v)
+((I - Qi) AX; P Ay Ryv, AX; Py AT R v)
= (S;R;v, R R, v)
+((I - Q)AX, P Ay Riv, AX; P A7\ R;v)

= (Qiv, v) + (I - Q) AX; P, A7y Riv, AX; P; A7} Rjv).

2. For i < j we obtain with Q; = P; S, R; for all v € V
(AX; P A% (I = Qimy) Riv, AX; Py AT (I — Q1) Rjv)
= (P, S; Ry AX; P A7 (I — Qimy) Riv, AX; Py ATk (I — Qi) Ry v)
+((I = Q) AXi PATY (I — Qi) Riv, AX Py AT (I — Q1) Ryw)
= (Si (I = Qiz1) Riv, R (I — Q1) R;v)
+((I = Qi) AXi P AT (I — Qi) Riv, AX; Py AT (I — Q1) Ryv)
= 6.5 (Si (I = Qi—1) Riv, (I = Qit) Riv)
+((I = Q) AXi PATY (I — Qi) Riv, AX Py AT (I — Q1) Ryw)

The assertion for ¢+ = 0 follows the same arguments.
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3. Based on the assumption §, Pii_lS,-_l = PZ-"_1 gi_l foralli =1,...,J — 1 we
obtain from Corollary 2.3.10

||(@z - @i—1)UH2 = (§z (]i - Qi—l) R;v, ([i - Qi—l) RiU)-

Hence the equation follows from the second assertion of this Lemma. The asser-
tion for ¢ = 0 follows the same arguments.
U

Considering the results of Lemma 7.1.1 we highlight that if V; is invariant with respect
to A )A(Z then it follows (I—CA)Z-) A )A(, P,v; = 0forallv; € 17, We will use this assumption

later to motivate the modifications in the multigrid setting.

Based on the matrices )A(Z-, t =0,...,J we can define one sided modified DT-method

and BPX-method on J + 1 grids. Let BY), j = 0,...J be non singular matrices, then

we define CB;,X(B(O)’ .., BU), C;;X,X(B(O)’ ..., BY) as follows
J
Copg B BY) =3 Pyg (BY) (1= Qi) Ry + Py 3 (BO)™ Ro
=1
J
;DX,)?(B(O)’ ., BY) = Z Pz (BY)~! R+ P, 5 (B! Ry,
=1

Therewith we get the following proposition for the existence of both preconditioners:

Lemma: 7.1.2. Let A € R, BU) € R j =0,...J be non singular and Xj €
R™™ modifications with rk()A(j P;) =n;. If there is a matriz B € R™" with

(72) (Ry BPj,)A( (B(j)>_1>(;5]> = T(j%)j)fﬁj’ T(jﬂj) < R’ T(j%)j) >0

forallj=1,...,J then C};;Xj(B(O), ..., BY)) is non singular.

If there is a matrix B € R™™ with

(7.3) W; s invariant with respect to (R B P ¢ (BU)~h

and rk‘(Rngjf( (BN = n; for j =0,...,J. Then CB;,)?(B(O)’ ...,BY)) is non

singular.

proof. The proof follows by the same arguments as used in the proofs of the Lemmata
6.1.1 and 6.2.1 respectively. O
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We highlight that we can again define a second version of the modified preconditioner

-1 .
CDT,)? if we set

J
o (BO, B =3P o (BY) (I, - S7PIT S, R R,
j=1

DT, X2 j J j

+ P, (BY)' Ry.

We obtain the analogue result concerning the non singularity of

Core (BY, ..., BY)) as given in Lemma 6.2.5 for the unmodified version. Further-

more we want to highlight that as in the unmodified situation the assumptions on the

inivariance are fulfilled if we consider for 7 =0, ..., J the situation

A o= BU.

7, X

Similarly to the unmodified situation we can give representations for AC~! and

BPX,X

ACE; 2 respectively. We will see that based on the strong assumption that we have

~

matrices X, j = 1,...,J which fulfil that V; is invariant with respect to AX ; we ob-

tain a meaningful result for both preconditioners.

For the BPX-method we obtain from the assumption that V; is invariant with respect
to A X, for an arbitrary v € V
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7 Multigrid aspects for the modified preconditioners

Based on the same characteristic for X ; it follows for the DT-method

AX; P; (B (I, — Q;_1) Ryv+ A Xy Py (B)™ Ryw

B

Ac!

DT, X

<.
Il
—

P

J

> (BOY ™ (I, — Q1) R;v+ Qo A Xy Py (BD)™ Ryw

I
B
)

'

)

<.
Il
—

A5 (B I = Qi) Rjv+ Py Sy Ay 5 (BO) ™ Ryw.

Il
B
o
)

<.
Il
-

Again in the case of Aj7 =B () it follows

J
AC;CIF,XU - ZPij (Ij - Qj—1)ij + Py Sy Ryv
j=1

If additionally §j ij_l Si1 = ij_l §j_1 holds then it follows based on Corollary 2.3.9

(@j - @j—l)v +Qov =,

B

ACTE _v=

DT,X
1

<.
Il

Of course we have again that for the aggregation method the condition (2.14) is equiv-

alent to the characteristic that the equation §j ij-1 Si1 = ij-1 gj_l holds. And if the
-1

equation does not hold it is obvious that we can take the operator C' DT %"

The calculations above motivate the aim that Vj is invariant with respect to AX ; for

the multigrid situation. We can also motivate this based on the results of Lemma 7.1.1.
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7.1 Full modifications: A motivation for modifications on J + 1 grids.

For an arbitrary v € V this implies for B*) = A g

|ACE

2
DTX,U||

=Y (APix A = Q) Rjv, AP x A5 (1 — Qi-1)R; v)

i=1

+ (AP()’XA&AIX—R(]’U, APO’XA(I&R()U)

—|—2Z Q] 1)RU APO)(AOXRQ’U)
22 Z (APx A LI = Q1) Rjv, AP, x A L(Ii = Qi-1)Riv)
Jj=11i=5+1

:Z(@jAPj,XA; (I; — Qj—1)Rjv, AP]XA < = Qj-1)R;v)

+Z (I — QJ)AP]XA LU = Q)R v, APix ALl = Qj-1)R;v)

7j=1
+ (@oAP()’XAaj(R()U, AP()’XA&AIX—R(]’U)

+ ((I_@O)APO’XA&})(RO'U7 APQXAAS}XRQU)

+ QZ(@OAPJ',X AJ-JA((I]‘ — Qj—l)Rj v, APQX Aaj( RO U)

j=1
+2> (I - Qo) APix A, 5(I; — Qi—1)Rjv, APy x Agk Rov)
j=1
n J N
-+ 2 Z Z (Q] AF)]‘,X AJ_’;A{(IJ - Qj—l)Rj v, AP@',X A;;?(IZ - Qi—l)Ri U)
j=1i=j+1
n J N
+ 2 Z Z ((I — Q]> APj,X AJ_’)I?(I] - Qj—l)Rj v, AP@',X AZ_’)I?(IZ - Qi—l)Ri U)
7j=11i=75+1

If we assume that §j ij-1 Si—1 = ij_l §j_1 holds then it follows from the calculation
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7 Multigrid aspects for the modified preconditioners

above and the results of Lemma 7.1.1

1A

2
DTXUH

+ Z(([_QJ)APLXA;;?(IJ_Qj—l)RjU> APjx A (I — Q1) R;v)
+(([_@O)APO7XA(I§(RO'U7APO’XAO_}}{ROU)

+ 22(([ — @O)AF)]"X A]-J"((Ij - Qj—l)Rj v, APQX A(;,,lX' R(]’U)

j=1

n J
22 Z ((I - Q]> APj,X AJ_’;A{(I] - Qj—l)Rj v, AP@',X Az_,)l?(jl - Qi—l)Ri U)

j=1i=j+1

The last equation in the calculation above follows from Lemma 7.1.1. If we have
additionally that V; is invariant with respect to AX jforj =0,...,J—1 then it follows

from the calculation above

|AC

2 2

All the term
(I —Q;)AP;x ALl = Qi)Ryv, AP x AL (L= Qi) Riv) ij=1,....J
((I — Qo) APy x Ay Rov, APy x Ay Ryv)
(1= Qo) APyx A, x(I; = Qy1)Ryv, APy x Ajk Rov) j=1,...,J

represents a kind of bias that vanishes if the condition of the invariance holds.

Although the results above are meaningful, it is not a good idea to determine matrices
Xj e R%*" 5 = 0,...,J with the assumed characteristics. As they all have the
dimension (n x n) there is a huge effort to determine them, and also to apply them.
We should highlight that in an algorithm we have to use them twice. First for the
calculation X; P, ((B"D) R;v). The second time is for the approximation of Az
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7.2 Modification of reduced systems

So we use the basic idea of multigrid algorithms to determine modifications. This
means that we will construct modifications X; € R"*" for which we use only the
operator A; x and the space ‘7]-_1 and Im(]%j_l(‘z_l)), respectively. Hence they can

be constructed iteratively.

7.2 Modification of reduced systems

As motivated at the end of the last section we will consider modifications X; € R"*"
for j =1,...,J. Similarly to the two grid situation we require for P]] ~ e Rm*i-1 that
rk(X; ij_l) = n,_1. Then we define

(7.4) P =X; P17 for j=1,...,J
Piy=Pl o oPl y for ij=1,..J j>i
Pjx=Pjy forj=0,....J—land Pjy:=1.
For a two sided modification we define the operators

(7.5) =P for dj=1,...,J j<i
Rjx = (Pix)" for j=0,...,J
Six =Pl xRIO)™ Sjx=(PxRyx)™" for j=0,...,J—1
Qix =Pl Six Ry, Qj=PxSjxRjx for j=0,...,0—1
Then we define the spaces
(7.6) Vix = Px(V}) = Px(RY) for j=0,...,]
Wix = (I = Q1x)(V;) for j=1,..J

Furthermore, we set iteratively

_ it j _ pitl J
(7.7) Ajx =Ry Ajpx Pl xand - Ajxxoi= By Ajoxx Py x

for j=0,...,J —1and A;x = A = A; xx. Based on the definition of the operators it

follows immediately

(78) Aj,X = RjAf)j,X and Aj,XX = Rj,XAPj,X
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7 Multigrid aspects for the modified preconditioners

for j = 0,...,J — 1. Based on these definitions we define for non singular BY) &
R"*™i 5 =0,...,J the one or two sided precondition operators as follows
(7.9)

J
Cpbxx(BY,...,BY):=3 P x (BY)"R;
7=0
Cppax(BY, ... B :=>"P,x (BY)(I; - Q;—1) R; + Pox (BY) ' Ry

J
Corax(BO, ..., BV = "P;x (BY)™ (I; = S P/ "' S, R]

Cgll)X,XX(B(O)u---aB(J)> = Pj,X (B(j))_l ijX
Cﬁflr,l,XX(B(O)a ., BY) = Z Pix (BY)™(I; = Qj-1.x) Rjx + Pox (BY) ™ Ry x

J
CB%“Q,XX(B(O)? SRR B(J)) = Z X (B(j))_l (Ij - Sy_)l(' P]];(l Sj—l,X R;’—1,X) RJ}X

.~

+ Py x (B(O))_l Ry x

7.2.1 One sided modification

In this section we will first briefly consider a short assertion concerning the non sin-
gularity of the one sided modified precondition operators. Afterwards we will take a
look at the properties we get from the iterative modifiation as given from the iterative
definition of P; x. The main result will be that if we use the aggregation method, the
condition (2.14) is fulfilled and we have that I m(ij _1(17}_1)) is invariant with respect
to A; x X; then we obtain

APj,X - @jAF)j,X-

For the two grid situation this is equivalent to the characteristic that Vj is invariant
with respect to A X. Also for the multigrid situation we will see that this has the same

characteristic.
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7.2 Modification of reduced systems

Lemma: 7.2.1. Let A € R, BU) € R%*"% j =0,...J be non singular and X; €
Ii&/"jxnj,j = 1,...,J modifications that hold rk(X; Pf_l) = n;. If there is a matriz
B € R™™ with

(7.10) (R; BP,x (BY) ™) @) =75 05, 7

@) >0

forall j=1,....J then Cypy x (B, ..., BY)) is non singular.
If there is a matrix B € R™™ with

(7.11) fV[7] is invariant with respect to (R, EP]X (BY)™h
(7.12) ([m((([j — §J_1 ij_l gj_l R;:_I)Rj)(V)) is invariant with respect to
(R B Px (BY) 7))

and rk(R; BP;x (BY™Y) = n; for j = 0,...,J. Then Corix(BY,...,BY))

(Cﬁilr,z,x(B(O), NP BU))) is non singular.

proof. The proof follows the same arguments as used in the proofs of Lemmata 6.1.1,
6.2.1 and 6.2.5. O

Moreover, we highlight that like in the unmodified situation the conditions (7.10),
(7.11) and (7.12) are fulfilled if we set BY) = A; x. Now we consider the main aspect
of this section. Based on the characteristics for the two grid situation we obtain in the

following characteristic for the modifications on the reduced systems:

Lemma: 7.2.2. Let A € R™" be non singular. Let P; x be as defined in (7.4). If we

assume that Im(Py,,(V})) is invariant with respect to Aj1 x Xjp1 forj=0,...,J -1

then we have

(7.13) APjxT; €V, foral €V,

if and only if we have

(7.14) P S, Py Sy .. PLLT, €V, forall T €V

proof. Based on the invariance of Im(PfH(V})) with respect to A;41 x X;+1 we obtain

. Pl — 0. A. Pl —pl g o pitl g J o pJ
AJ+1,X XJ+1 P'+1 - Qy AJ+17X XJ+1 Pj+1 - Pj+1 SJ Rj AJ+17X P'+1 =P

J J Jj+1

Sj Aj,X
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7 Multigrid aspects for the modified preconditioners

for j =1,...,J. If we use this characteristic iteratively we obtain
AP x =AX;P/7' P
= Qi1 AX; P/ P«
=P/ S, R Asx X, P P}—l,X
= P{' S, Aix Pg—l,X
= Pf_l Syo1Qr-1Aj-1x P}—LX

_ pJ-1 J—2 J
- PJ SJ—l PJ_1 SJ—2 AJ—2,X PJ_Q’X

= P:J]_l Sy PJJ__12 Sjo ... ’ij-i-l Sj AJ}X-
This proves the proposition. -

It is obvious that in the multigrid situation the equation (7.13) is the generalisation
of the characteristic that Vj is invariant with respect to A X in the two grid situa-
tion. Based on Lemma 7.2.2 we obtain that if the invariance is given for the two grid
situations between the grids j and 7 — 1 for 7 = 1,...,J then the equation (7.13) is
equivalent to the condition (7.14). This condition does not depends on the operators
A; x but only on the structure of the aggregation and the spaces V;, respectively. Hence

for the aggregation method we can sum this up as follows:

Corollary: 7.2.3. Let A € R™™ be non singular and P;x be as defined in (7.4).
Assume that the aggregation method is used to construct the coarser grids and the
condition (2.14) holds. If Im(Plf_l(Vk_l)) is invariant with respect to Ay x Xy for
k=j3+1,...,J then we have

APjxT; €V, foral ¥€V,

proof. Based on Lemma 2.4.8 we have that for the aggregation method the condition
(2.14) is equivalent to the equation §k P,f_l Sp_1 = P,f_l gk_l for k = j+1,...,J.
Based on Corollary 2.3.9 we obtain that this implies

J—1 J—2 J N
P S, Py SJ_Q...,P]-HSJ-—QJ-.
Hence we have

Pj_lsJ_lpj:ESJ_g ""f)]j+1',(7j€‘/} for all @-EV}
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7.2 Modification of reduced systems

and the assertion follows from Lemma 7.2.2. O

Based on the results above and the calculations in chapter 6 it is obvious that if the
assumptions of Lemma 7.2.1 and Corollary 7.2.3, respectively are fulfilled then we

obtain
APjx = @j AP x

for 5 =0,...,J — 1. From this result it follows

B

ACprx(A) =) APixAjx (Ij = Q1) By + APy x Ay x Ro

1

.
Il

M“

@ ]XAJX( —Qj-1) Iy +Q0AP0XA0XR0
1

.
Il

(Q;— Qi 1)+ Qo=1.

M“

=1

<
Il

Based on the same assumptions we obtain for the BP X-method
J J J
ACphxx(A) =Y APix Ajx Rj =) Q;APx A;x R => Q.
5=0 §=0 §=0

7.2.2 Two sided modification

As done for the one sided modification in the multigrid setting at the beginning of this
section we will present a sufficient condition for the non singularity of the two sided
modifications. Afterwards we will consider the characteristics of the modifications on
the reduced systems. We will see that if we can fulfil the condition that I m(P]] }1(17]-_1))
is invariant with respect to A; x x then there are no additional problems for the multi-
grid situation. As already discussed in section 5.3 this assumption is only theoretically
interesting. If we consider the block matrices as done in section 5.3.2 we will see that

again the condition (2.14) plays a role in the multigrid situation.

Lemma: 7.2.4. Let A € RV BU € R%W*" j =0,....J be non singular and X; €
R 5 = ,J modifications that hold rk(X; P] 1) = n;. If there is a matric
B e R™" wzth

(7.15) (Rjx BPx (BO)Y @) =735, 75, >0
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7 Multigrid aspects for the modified preconditioners

forallj=1,...,J then Cgzpx xx(BY, ..., BY)) is non singular.
If there is a matrix B € R™" with

(7.16) fV[7j7X is invariant with respect to  (R; x EP]X (BY)™h

~

(7.17) (Im(((lj - Sk Pj’;;{l §j—1,X Rj:_LX)Rj,X)(V)) is invariant with respect to
(Ryx B Pix (BY)™)

and rk(Rjx B Pjx (BY)™") = n; for j = 0,...,J. Then Cph, xx(B©,...,BY)

(C’B%,ZXX(B(O), Cee B(J))) is non singular.

proof. As for the one sided modification the proof follows by the same arguments as
used in the proofs of Lemmata 6.1.1, 6.2.1 and 6.2.5, respectively. O

Furthermore, we highlight as in the unmodified and one sided modified situation, re-
spectively that the conditions (7.15), (7.16) and (7.17) are fulfilled if we set BU) =

Now we consider the main aspect of this section. For the one sided modification the

aim is to use only a two grid situation to determine one modification. This is given as
Aj,XX f)]]’;(—l f’(?j_l c ]m(P;’)_(l({/;_l)) for all ,17j_1 c ‘7}_1
& Im(Pj];;(l(Vj_l)) is invariant with respect to A; xx

for y =1,...,J. It is obvious that for J = 1 this condition is equivalent to the charac-
teristic that Vj x is invariant with respect to A. Hence we can give a first result that is

the generalisation of Proposition 4.2.5.

Proposition: 7.2.5. Let A; xx € R"*™ be s.p.d. Then Im(]%{}l(‘z_l)) is invariant

with respect to A; xx if and only if there are zy, ..., zn,_, with

Im(PIR (Vi) = (21,2 )
and Aj,XX Zi = )\z Zi fOT’é = 1, A (e
proof. The proof follows the same arguments as the proof of Proposition 4.2.5. O

Based on the Propositon 7.2.5 we have a characteristic for the modifications X; that
imply for all two gird situations (V;_q, Im(Pf;;(l(Vj_l)) for j =1,...,J) the same result
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7.2 Modification of reduced systems

as we have in the situation given by only two grids. Hence we consider the result we

obtain for A P x. Based on the charactersitics mentioned so far the aim is
(7.18) AP xT;€V,x foralld, eV,

forall j=0,...,J — 1.

Similarly to Lemma 7.2.2 for the one sided modification we obtain the following result.

Lemma: 7.2.6. Let A € R™" be non singular. Let Pj x be as defined in (7.4). If we

assume that Im(P{,, x(V})) is invariant with respect to Aji1 xx for j =0,...,J —1

then we have
(7.19) AP, x0;€V,x forall T;€V,
if and only if we have
(7.20) P Syoix PIty Sy—ax - Pl x T, € Vix  forall U €V
proof. Based on the invariance of Im(ijH,X(Vj)) with respect to A; 1 xx we obtain
) ) . - )
Ajixx Pl x = Qix Ajixx Xj Pl = Pl Six RIS Ajxx Pl
=P, Six Ajx
If we use this characteristic iteratively we obtain
APjx=AX;P/7'P]_ «
= ijil Syo1x Ay xx Pj_LX

_ pJ-1 j
- PJ,X Sro1x Qro1.x As-1,xx PJ_LX

o J—1 J—2 J
=Py Sjm1x Pi=i x Si—ax Aj—axx Py_g x

_ pJ-1 J—2 J , _
= Pix Sicix PiZix Si-2x - Py x Six Ajxx.
This proves the proposition. O

Based on Lemma 7.2.6 we need to fulfil the condition (7.20). Based on the Propositon
7.2.5 it is obvious that to fulfil Im(Pj;}l(f;}_l)) invariant with respect to A, xx it is

necessary that V;_; x is given by n;_; eigenvectors of A; xx. Since we have done it for
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7 Multigrid aspects for the modified preconditioners

the one sided modification we will concentrate on the aggregation method. Theirfore

we can given the following sufficient condition for the invariance given in (7.20).

As a generalisation of the setting used in section 4.2 for the two grid situation we set
I :={ie{l,...,n} : N/ is an isolated point}
= {(i,k) e {1,...,n} x{1,...,n} : N7 N7 are aggregated to Mj_l.}

We mark again with X]Z the i-th colum of X;. Hence

(X7

e DY U{XY + X it (4,k) € I}
is a basis of Im(]%{}l(‘z_l)) if we use the aggreagation method.

Lemma: 7.2.7. Let ij_l be given by the aggregation method. Assume that X; €

R™*" 45 given based on its columns as
Xy=2z for kel and X’ + X’ =2z for (ik)el]
with Az = M2y
Assume further
(X)X, =1 for kel
(X + X)) (XI, + X7) =1 for (ik) e}
and
(X7,) X0, =0 for kikse L], ki # ko
(X7 + X)) (X0, + X9 =0 for (kiir), (kayin) € 14, (kiyin) # (Ko, ia)
(X, +X7) X[ =0 for (kyi)elj tel]
then it 1s
Sio1x =1Ly

proof. Based on the definitions the columns of Pj ;(1 are given from n;_; orthonormal

eigenvectors. This implies the assertion. O
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7.2 Modification of reduced systems

Corollary: 7.2.8. Assume that the assumptions of Lemma 7.2.7 are fulfilled for j =
0,...,J —1, then it follows that

J—1 J—2 J ~ ~ o1
PJ,X SJ_LX PJ—l,X SJ_Q’X ""Pj—i-l,XUj c ‘/j,X fOT all % S V}

proof. Based on the assumptions of Lemma 7.2.7 we obtain S; x = I; for j =0,...,J—

1. This implies for an arbitrary 7; € V;

1 J—2 J .
Piy Sioix PJ—l,X Sj-2.x - ’Pj+1,X Y

_pJ-1 pJ-2 J N — P.o7. .
=Pjx Pioix - P xvj=Pjxv; € Vix

O

To sum up the results above we can maintain that if we have the modifications X, that
hold Aj,XX([m(ij;gl(f;}_l))) € Im(P]?;;(l(Vj_l)) then there is no problem concerning
the multigrid aspects. As already discussed in section 5.3 this is only a theoretical
result even for the most simple problems. Also as discussed in section 5.3 we consider
that we use the eigenvectors of a block matrix that should approximate A. Then we

will consider two situations presented in section 5.3:

1. If we set for two aggregated points J\/;-j N, ,g with the eigenvector vfk of Ag-i'k) the

modification
J
. . v; k
(xg,iv x?c,k) = ;‘7
17
then it is ||(«’ T4, ] )|l = 1. Based on the same arguments used in Lemma 7.2.7

this implies S;_1 x = I;_;. Hence we have in this case also

J—1 J—2 =1~
PJ,X Sy-1,x PJ—I,X Syj_2x - P]X Uj

_pJ—1 pJ-2 j—1~
=Pix Piix - Pix v € Vi

However the problem is mentioned in section 5.3. Based on this modification X
we obtain that A;_; xx is in general no M-matrix because it is possible to lose

the property

.7 1XX> § |a] lXX
k=1, k#i
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7 Multigrid aspects for the modified preconditioners

2.

228

If we set for two aggregated points Mj N ,g with the eigenvector vfk of Ay'k) the

modification
L vl
(xg,ia xi,k) = \/E ;'7
o7
then it is ||(:Bfl, xik)H = /2. As already mentioned, this is the same situation as

in the unmodified situation. Hence we obtain the same characteristic. It is

. X X
Sjx = diag(sty ... 857,

with siy = 1if [T = 1and spy = (i, 25) (2i,2,5)7 = 23 77 =

{N', N]'}. Therewith the

(721) P:]]’)_(l SJ_LX P:]]—_lz,X SJ_27X .. .,ij;gl’lﬁ}ij S V} for all ’Uj S ‘7}

does not hold in general. Based on the arguments above we need the property

Pj_lSJ_le:fSJ_g...,ij_lﬂjEV}- for all ’17]'6173'.

It is obvious that we also obtain for the modified situation that (7.21) holds if
the condition (2.14) is fulfilled.



8 Symmetric Problems

In this chapter we will consider the preconditioners C'; and Cyzpy for a symmetric
stiffness matrix A. As already mentioned in chapter 2 the problem will be motivated

by the partial differential equation

(8.1) div(a(x) gradu(z)) = f(z) VzeQ

u(z) =0 Vzed

as discussed in the section 2. We only take the general structure of these matrices and
so we do not distinguish whether the matrix is the result of a finite element method
or by finite differences. So it will be our aim in this chapter to give properties of the

preconditioners C’;}DX, Cgflp for s.p.d. matrices A that fulfil additional

(8.2) a;; >0, foralli=1,....n

ai; <0, foralld,j=1,...,n withi#j
Z la; ;| <lai;|, foralli=1,... n.

=1, j#i

We will take a look at the angle ypr that determines our estimations for the condition
as done in chapter 3. We will determine the constant ~vpr for two special situations.

Our main aspect will be to consider the condition of the preconditioner in the norm
that is induced by A. We will take a closer (quite technical) view of the constants that
appear by this estimations. As the motivation is given by the problem (8.1) this is also

the situation in which we will give estimations for the constants.

As we have done before, we will first consider the two grid situation. In this case we
will drop the indices on the prolongation and restriction operators. Furthermore, if
we want to determine a constant we assume that the aggregation method is used to

construct Vy_q,..., V.
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8 Symmetric Problems

8.1 Introduction and problem

In this section we will consider a matrix A that results from the discritisation of (8.1)
on a small sector 2, C R. In this sector we will see the structure of the stiffness matrices
we consider, the structure of the coarser operators and the problems which arise. The
problem will be that if we only consider the local situation it is in general not possible

to determine a constant ypr that fulfils for all v € V' the inequality
(8.3) ((I = Qo)v, AP AF' Rv) < ypr |AP AF" Ro|| [[(I = Qo)v]
< (w, Avg) < vpr [[Aw|| [Jw|| Yvg € Vi, Vw € W.

Hence we will consider two special situations in which we can give estimations for the
constant. From the results of chapter 3 we know that by assuming that A is s.p.d. it
follows that Ag is non singular. Hence there must be a ypr < 1 because otherwise
ACpr would be singular. But this is a contradiction to Lemma 3.3.1. As a sector of

the hole system we consider the situation as given in Figure 8.1.

---------- o—9o 9o o 9o o
1 1 1 1 1 1
'/\/-1'72 N—l '/V’z i+1 i+2 143

Figure 8.1: Small sector €2, C €2

We will consider the inequality (8.3) for the sector €25 as shown in the Figure 8.1. We
assume that for the coarser grid the points N;', N}, | are aggregated and ¢,a,d > 0 are
constants that are given by the used material. So we will consider the stiffness matrix
A € R4 given by

e+x —¢ 0 0

—€ a-+e —a 0
(8.4) A=

0 —a a+d —0

0 0 -5 O+«

As there is no conjunction to the boundary, the matrix A as given above is singular

in the case of x = 0. It is in this case ker(A) = (1,1,1,1)T. That means that we can
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8.1 Introduction and problem

switch the boundary to an arbitrary value. As we will do the estimations independet
of the link that is given to points which does not belong to Q2 we set x = 0 (We could
consider the case of a sequence that converges to zero). Then we obtain for an arbitrary
veV

PA;' Rv = (up,u,u,ug)’, with ug,u,ug € R

(I —Qo)v = (s,w,—w,t) with s,w,t € R.

We obtain

it N, (N

1 5) is an isolated point. Otherwise s, ¢ depend on values given by ', (Ni,)
and left (right) neighbours M',, (ML) So if we do not assume that A'; and NV},

are isolated points we can consider the situation as follows:

ce=d=a=w=t=ur=1

ur,=s=—1 and u=0

In this case follows

((I - Q0>U7 APA(;lRU> == (_1, 1,—1,1) =4
1
(I = Qo)vll = | AP AG! Roll = [|(=1,1, -1, 1)[| = 2.

So we can not determine a vpr < 1 for the local situation. We have to consider in this
case a bigger sector of {2 to get an estimation for ypr. Otherwise this implies that we
can not use the estimations of chapter 3 to obtain an estimation for the condition of

ACpr and ACypy respectively.

In the next two sections we will consider special cases in which we can give estimation

for ypr based on the small sector.
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8 Symmetric Problems

8.1.1 Both neighbours are isolated points

First we assume that both neighbours of the points we aggregate are isolated points.
Therewith it is in the sector €2, C 2

APA' Rv = (e(ug —u),e(u—ur),6(u —ug),6(ug — u))*
(I = Qo)v = (0,w, —w,0).
And we obtain
|AP A Ro||* = 2% (up — u)? + 26%(ug — u)?
1T = Qo)vll* = 2w
[(APAG" Ro, (1= Qo))" = [we(u—up) — wd(u —ug)]”
< 2w (e*(u — up)? + 6*(u — ug)?).
The estimation above is based on the inequality of Young (A.0.3). So it is obvious that
(AP AT Ru, (I = Qo)v) < pr[|AP A Rol| [[(1 = Qo)vl|

holds with ypr = 1/1/2. So the estimation is independent of the elements of the matrix

A. However, the assumption is quite restrictive.

8.1.2 One neighbour is an isolated point

Now we assume that one of the neighbours is an isolated point. W.l.o.g. we consider
the case that N} | is isolated. As already mentioned, this implies s = 0. Furthermore,
we assume that ,6 < 1, so we avoid having to distinguish many cases. As we have
Ypr = \/m in the situation that both neighbours are isolated points, it is obvious
that vpr = \/m is a lower bound for the case that only one neighbour is an isolated
point. We obtain

|AP A Ro||* = 2e%(ug, — u)® + 26%(ug — u)?
I(Z = Qo)vl* = 2w* +¢*
[(AP A" R, (I - Qo)v)}2 = [we(u—ug) — wé(u—ug) + t6(ug — u)]2

We transform the variables in x := u;, — u and y := ug — u. Therewith we have to

determine an ypr < 1 that holds

g = Vo (26227 + 26%7) - (2w? + 1) — [wex — wy + tdy]* > 0.
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8.2 Two grid estimations for C,}. A in the A-norm

To minimize g with respect to t we differentiate g with respect to t. We obtain that
the minimizing ¢ is given by

w(er — oy)dy

t= .
Yhr(2e2? + 20y%) — 02y?

We highlight, that the denominator is positive if it is 2v%, > ¢. By assuming that § < 1
this is always fulfiled if it is 75 > 1/2. If we insert the value for ¢ in g it follows

_ 29hw? (22 + 0%y?) (€3 (—1 + dyhr)a? + 20exy + 6% (=3 + 4vhr)yP)
. (27D (222 + 8%y?) — 0%y?

As the denominator is positive it is sufficient to consider the numerator. We obtain
that this is positive if it is
go = (*(—=1+ 4y} ) 2? + 20exy + 62(—3 + 475 ) y°)

= 4y} (2%e® + y?6%) — 26%y* — (ex — dy)? > 0.

Then is gp minimized with respect to x if it is

oy

T =—-——2" -
5(_1+4712)T)

And again by assuming that ¢ < 1 we get for 7%, > 1/1/4 that the denominator is

positive. It follows by this value for z

_20%(1 = 8vhp + 8y
—1+4v3;

90

As the denominator is positive for 7%, > 1/1/4 we consider again only the numerator.

This is positive if it is

A5

-
2

(1=8pr+81pr 20 & Ypr >
8.2 Two grid estimations for C},;. A in the A-norm

For other estimations of the eigenvalues of C'5}. A we consider the condition of O A
that is given by the norm induced by A. That means for A € R"*" s.p.d. we consider

the inner product and the induced norm follow as:

(8.5) a(u, v):i=u" Av and ||ull4 = Va(u, u).
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8 Symmetric Problems

For A € R"™"™ and f € R" we define u* € R" by

(8.6) Au*:=f and u*:=A"'f respectively.

For the same A, f we define uy,ug € R" by

(8.7) up = AT (I = Qo) f

(8.8) ug = PA;' Rf.

Based on these definitions it is obvious that we obtain from the definition (3.9) that
ug +uy; = Cpr f.

We therefore get a relation between the solution u* and the vectors ug, u; we get by

using the preconditioner C'57.. Since the solution u* of Au = f is given by
a(u®,v) = (f,v) YwveV

we will see in the next lemma that the vectors ug, u; can be interpreted as solutions in

a subspace of V' = R". For u; this is quite obvious. For ug we take it as a result.

Lemma: 8.2.1. Let A € R™™ be s.p.d. For uy,uy as defined in (8.7), (8.8) it holds
(89> a(uh U) = CL(U*, v = QO U) = (f7 U= QO U)7 YVoeV
(8.10) a(ug, vo) = a(u”, vo) = (f, vo) Vo € V.

proof. As Qo, (I — Q) are orthogonal projection with respect to the inner product (., .)
they hold Qf = Qo and (I — Q)" = (I — Qo). Hence we get for the equation (8.9) that
it is for all v € V'

a(uy,v) = a(A NI — Qo) f, v) = (I — Qo) f, v)
=(f, [ = Qo)v) = (AA_l [y (I = Qo) v) = a(u®, (I —Qo)v).

The second equation of this lemma is obtained as it is Qpvg = P .S Rvy = vy for all
vo € Vp and P = R”. Therewith we obtain for all vy € V

CL(U(), U()) :CL(U(], Qo’Uo) :a(PAglRf, PSRU(]) = (APAalRf, PSRU())

=(RAP AJ'Rf, SRvy) = (Ao Ay R f, S Ruwy)
Ao

= (Rf? SR'UO) = (.fa QO UO) = a(u*> UO)~
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8.2 Two grid estimations for C,}. A in the A-norm

As we will use for estimations the norm || . || 4 for the single additional terms uq, ug we

get by using the preconditioning operator Cp}., we will need a relation between
[ur][a; [luolla and  [ur + ol 4.
We will provide this in the next lemma.
Lemma: 8.2.2. Let A be a s.p.d. matriz. For uy,ug as defined in (8.7), (8.8) it is
a(ug,uy) = 0.
proof. By using the definitions of ug, u; we get

a(ug, u1) :a(A_l (I — Qo) f, PAalRf)
=((I =Qu) f, PA'Rf)=(R(I - PSR)f, A;' R f)

=((R-R)f, A;"Rf)=0.
The last equality follows as S is defined by S = (R P)~'. O

To get the estimation between uq, ug and u* we define the constant ¢, by

(8.11) Cq = SUp { 190 vlla NS V\{O}} :

][4

Based on the definiton of ¢, it is obvious that with the constant ¢, the inequality

(8.12) 1Qovl[a < callv]la

holds for all v € V. Moreover, it is obvious that ¢, depends on the structure of the matrix

A. As Qo : V — Vj is the orthogonal projection the definition (8.11) is equivalent to
ca:sup{M : UOGVO,wGVV,UO—I—w%O.}.

Therewith it is obvious that ¢, depends on the structure of the matrix A and the sub-
spaces Vo, W C V.

As the inequality (8.12) holds for v € V4, it follows ¢, > 1 from Qguvg = vy for all

vy € Vp. If we take the constant ¢, as given then this implies the following result:
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8 Symmetric Problems

Lemma: 8.2.3. Let A € R"" s.p.d. For uy,uy and u* as defined in (8.7), (8.8) and

(8.6) then

(8.13) [uolla < [Ju"]]a

(8.14) [ua]la < (T + ca)llu™]la
(8.15) [u"]la < callluolla + [Juall4)-
holds.

proof. For uy based on the equation (8.10) of Lemma 8.2.1 and the inequality of Cauchy-
Schwarz (A.0.1)

luoll% = aluo, uo) = alu”, up) < [[u*||a l|uol a-
This implies
luolla < flu”]la.

Based on the equation (8.9) of Lemma 8.2.1 and the inequality of Cauchy-Schwarz
(A.0.1) we get for uy

[ur|l% = a(ur,wi) = a(u’, uy = Qour) = a(u®, w) — a(u®, Qour)
< [Ju[[a(lfurlla + Qo urlla) < (1 + ca)l[w[|a [[urlla-
This implies
[urla < (1 + ca)[[u] a-

The inequality (8.15) is also obtained by using the results of Lemma 8.2.1 and the
inequality of Cauch-Schwarz (A.0.1). We obtain

lu*[% = a(u’, w*) = a(u”, u* = Qou”) + a(u”, Qou")
= a(uy, u) + a(ug, Qou”) < flualla [[u™lla + lluolla l[Qou|l 4
< [w{|a fJual[a + ca lluolla [Ju"[la < ca llu™[la ([lualla + [[uolla).
In the last inequality we use ¢, > 1. O

From these results we can give an estimation for the condition of C}. A that only

depends on the constant c,.
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8.3 Technical view of the constant c,. (Neighours are isolated points)

Theorem: 8.2.4. Let A be a non singular s.p.d. matriz. With c, as defined in (8.11)
then

cor|[vlla < ICpr Avlla < dprllvlla

holds for all v € V' with

and dpr =2+ c,.

1
C =
DT . NG

proof. To prove
corl|vlla < 1Cpr Avlla < dprllv]a
for all v € V it is equivalent to set v = A~ f and prove

cor|AT flla < |IChr flla < dprl| A7 flla

& cprl|ula < Juo +uilla < dprlju|a.

The second equivalence follows the defintion of u*, uy and u;. From the equations (8.13)
and (8.14) of Lemma 8.2.3 it follows

[uo + walla < [luolla + [lurlla < (2 4 ca)[[u™] 4.

This proves the proposition for dpr. As ug, u; are orthogonal with respect to the inner

product a(.,.) we obtain from equation 8.15 and Lemma A.0.5
lu*la < ca (luolla + lurlla) < v2¢lluo + ua a-

This complets the proof for cpr. O

8.3 Technical view of the constant ¢,. (Neigbours are

isolated points)

In section 8.2 we have proved an estimation for the condition of the operator C'51. A in

the norm || . || 4. The estimation depends on a constant ¢, that fulfils the inequality

1Qovlla < callvfla.
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8 Symmetric Problems

We have already highlighted that this constant depends on the elements of the matrix

A and the structure of the subspaces. In particular we have seen that it is

1
v|[a < ||Cpr Av||a.
NS [vlla < 1Cpr Av]la
Therewith —1— is our lower bound for the absolute value of the eigenvalue A of Cp}. A.

\/ica
So if we can estimate an upper bound for ¢, that only depends on the elements of the

matrix A we get a lower bound for the constant cpr with the same dependency. That
is what we will do in this section for problems that result from the discretisation of the
problem (8.1) and for matrices that have the structure as given in (8.2) respectively.
The restriction we assume in this section is that we only aggregate two points into
a new one and the neighbours of the aggregated points are all isolated points. That
means the sets 1" all have the cardinal number one or two. And if N}, N} are aggre-
gated to M and it is ajy, # 0 or agy, # 0 for an k € {3,...,n} then AV}! is an isolated
point. So this is a strict assumption concerning the aggregations that are done. These
assumtions are also used in section 5.2.1 for an exact one sided modification for this
problem. For it we will have no restriction concerning the geometrical structure of the

grid points or the dimension of the system the stiffness matrix is based on.

We start with a simple one dimensional situation and consider the local situation as
illustrated in Figure 8.2. Furthermore we assume that the two grid points N}', NV}L;

will be aggregated

ulL ul u2 uR
€ a 1)
--------- ° ® ® ®
1 1
N;—l M z'l—i-l i1+2

Figure 8.2: One dimensional situation

If we only consider the sector Qs = [N;_1,N;12] then we locally get the stiffness matrix
A as

€ —€
A —€ a+¢e —a
—a a+d —0
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8.3 Technical view of the constant c,. (Neighours are isolated points)

As a result of arguments from section 8.1 the matrix A in the sector is singular. There-

with in this sector for a function v € V'
U = (UL, Uy, Uz, UR)
we obtain the values

Julld = e(ur — ) + a(ug — ua)? + 0(us — ug)?

2 2
up +u U+ u
HQOTLHEX:(?( ! 2—UL) —|—5( 12 2—uR) .

2

Therefore, we can give an estimation for ¢, that only depends on the elements of the

matrix.

Lemma: 8.3.1. Assume that the situation is given as above and N}, N7y, are isolated

points then the inequality
[Qoulla < callulla
holds for all w € V with

e+0
da

Co =11+

proof. We just have to prove this for the restricted area as mentioned in the setting.

So we can set u = (ur, Ui, us, ug) € R* and show the inequality g > 0 with
9= callull; = 1Qoull;

=2 (e(ur — w1)® + a(ur — u2)® + 6(uz — ug)?)

2 2
()

To minimize g with respect to uy,ug we differentiatethe function g with respect to uy

and ugp. It follows

d
(8.16) 49 _ 2636(’&[, —uy) —2e (up — UL T U
duL 2
d Uy + u
(8.17) ﬁ =226 (up — up) — 20 <uR —_— 5 2)
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and we obtain by the first order condition for a minimum

czul — (Ul -+ UQ)/2
2 -1

C?LUQ — (Ul + UQ)/2
2 -1

With the g minimizing values for uy,ur we get for the function g :

2 2
£ U1 — U ) Uy — Uz
9203[@2—1)2( )+ (M )*“(“1‘“2’2]

_ 3 Ul — U 2+ 0 C2U1—U2 2
(@—12\“ 2 (@—12\ 2

__Mé? (ul_u2)2 C?L alc® = D% (uy — uo)?
=T C T el — D —w)
(@ -D)c(ur—u)? [ e+0 )

- (2 —1)2 {_ 4 + (cz — 1)4

Since we have ¢, > 1 last term is non negative if and only if it holds

e+0
da

e+
4

(2 —1)a > & > 1+
This shows the proposition. O

Moreover, the proof of the last lemma implies that the chosen constant ¢, is the smallest

possible constant.

Remark: 8.3.2. Assume the situation is given as in Lemma 8.53.1. Then there is no
Ca < 11+ =2 that holds the inequality ||Qoulla < callulla for allu e V.

proof. We take the system of Figure 8.2 and set
w =1 and wuy = ci.

The equalities (8.18) and (8.19) motivate to set

2_1 2 2 2_2_1 2 2
E04e2 |y gy G ()2
2—1 2 -1

a

urp =

240



8.3 Technical view of the constant c,. (Neighours are isolated points)

In this case we get

le + 0|
(@~ (@& ully - [Quul) = cha+ (—3a e

vt (30 +|5+6| L _a_|5+5|
2 ¢ 4 '

The expression on the right side is zero if we set ¢2 = 1 + (¢ + §)/4a. O

Moreover, we highlight that the minimizing values for uy,ug as given in (8.18) and
(8.19) do not depend on the couplings represented by ,0 and a. This characteristic

will be usefull for generalizations.

We generalise the considered system in a two dimensional grid. The matrix A and the
two points we will aggregate respectively fulfil the following condition:

Let N}, NV} two grid points that will be aggregated and the stiffness matrix A satisfies
aro # 0. Moreover, N} is an isolated point if it is & € {3,...,n} and a4 # 0 or
as 7 0. And there is no k € {3,...,n} with

arr 70 and agy # 0.

We call such a situation an open system. The structure is as shown in Figure 8.3.
Furthermore, we assume that the grid points N}, N are interior points of Q. That
means that it holds for i = 1,2

Qi = Z ‘ai,k‘-

k=1, ki

The following definitions are for an easier notation:

Z\a1k| and a” Z\a2k|

1= {1,2}U11U12
with kel & al,k#O N ag,kzo

and kely e ay, #0 A ary =0.

Based on this setting we can generalize the result of Lemma 8.3.1 in the following way:
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Ur,1

€1

U
£y R,2

€3 UR,3

ur. 3

Figure 8.3: Open system

Lemma: 8.3.3. Let A € R™" s.p.d. be a matriz as defined in (8.2). Let N, N3 be
two aggregatet interior points with ay o # 0. If we assume that all neighbours of N, N3

are isolated points and the setting as given above then the inequality

(8.20) Ca |lulla = [[Qoulla
holds for allw € V with ¢, = \/1+ (a’ + a'?) /4]a o

proof. As in the proof of Lemma 8.3.1 it is sufficient to prove the inequality of the
restricted area that is connected to uq,us. Similary to the proof of Lemma 8.3.1 we

prove that it is

9= callulli — 1Qoul% >0

for all u € R"™. For u = (uq,...,u,) it follows
(8.21) [ull% = laral(ur — u2)* + ) lavs|(ur — w)® + ) |ags] (uz — ug)’
kel kels
+ ( Z @i (u;i — Uj)2>
i,j€1Ul2
U + Us 2 Uy + U 2

822 Q=3 leuad (M5 )+ Xl (5 - )

kel kel

+< > \ai,j|(uz'—“j)2>-

i,jel1Ul2
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8.3 Technical view of the constant c,. (Neighours are isolated points)

So we consider again the weighted difference by ¢, of these expressions. As the proposed

constant ¢, holds ¢, > 1 we can estimate as follows:

g=c <|a172\(u1 — ug)? + Z |ay | (w1 — ug)® + Z |as | (u2 — Uk)z)

kel kel

+(ci—-1) < > i (w — UJ)Q)

i,jEL UL,
Uy + Usg 2 U + Usg 2
- (Z |a,k] ( 9 —Uk) + Z |kl ( 5 —Uk) )
kel kels
> ¢l (‘a1,2|(u1 — uz)” + Z |y gl (w1 — w)® + Z |ag, k| (ug — Uk)2>
kel kel
U+ u 2 U+ u 2
_<Z‘a1,k‘<l2 Q—Uk> +Z\@2,k\<12 2—Uk>>
kel k€l

=!4o-

Now we minimize the function gq in the variables uy, k € I; U I5. We get

d
d—tgﬁz = ca2urar | — (ur +uo)lars| — 2up(cg — Dlars| for kel
dgo _ 2 2
and R c2uslaz k| — (ur + u2)laz| — 2uk(c, — 1)[asy| for k€ L.
k

And we get as the first order condition for the gy minimizing values

2
- 2
(8.23) = ot (2“1 T“Q)/ for kel
Ca —

ug — (ug +ug)/2
2 —1

(8.24) and  wug = for ke Is.

As in the proof of Lemma 8.3.1 we use the minimizing values for uy, k& € I; U I, then
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we obtain
|a1k| U1—U2 ‘a2k‘ Uy — Uz ?
go>C [|a12|(U1—U2 —I—Z a 1) +Z a 9
kEh kels
|al,k| o U1 — U2 |CL2 k| Ul — U2 ?
S e R :
kel * @ kel a
(1—c2)c? U —ug\> (2 —1)2 )
= (|ar k| + [azl) + 5 lara| (w1 — ug)
CESvp Yy 2 (2 =17
_ (1_03)03 L Ry [ W1 — U2 ? (C _1> 2
= (CZ — 1)2 (CL +a ) 5 ‘l‘ (CZ 1) |CL1 2|(U1 Ug)
As we have (u; —ug)? > 0 and (¢ — 1) > 0 it is go > 0 if and only if it is
L R
0 (2~ 1asa] -
As in the proof of Lemma 8.3.1 we obtain
L R
4|a172|
as sufficient condition for g > go > 0. This shows the proposition. O

Remark: 8.3.4. If we take a look at the two conditions (8.23) and (8.24) then we see
that the minimizing situation for the neighbours of uy,us does not depend on the number
of neighbours or a structure of the grid. This property implies the same structure for the
constant c, independently of the structure of the grid or the number of neighbours. The
constant only depends on the relation of the link between the points N, N3 compared
with the sum of the links to other points, no matter how the sum a® + a® of links is

partitioned among neighbours.

The Remark 8.3.2 shows for the simple one dimensional problem that the constant ¢,
can not be estimated in a better way than in Lemma 8.3.1. As the Lemma 8.3.3 is
a generalisation of this, we get the same result for the constant ¢, defined in Lemma
8.3.3.

This holds based on the property that the constant ¢, in Lemma 8.3.3 is the same as
in Lemma 8.3.1, if we only have the one dimensional situation. We have seen that the
worst values for the neighbours of the aggregated points do not depend on the dimen-

sion or the structure of the links.
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Now we will estimate the constant ¢, for the aggregation of two arbitrary interior points.
The generelisation in this step is that there may be indices k € I; N I5. That means the
sets I, Iy are now defined as

IL={ke{3,...,n} : a1x #0} and L:={ke{3,...,n} : asyr #0}.

Moreover, it still holds the definitions of a”, a* as

a = Z lap k] and o = Z lag. k.
kel kel
We assume a;5 # 0 and if a; # 0 or asy # 0 for an k € {3,...,n} then /\fk1 is an
isolated point. Then we define the sets
I = Ilmfg, ]ik = Il\I* and ]; = IQ\I*

Lemma: 8.3.5. Let A s.p.d. be a matriz as defined in (8.2). Let N}, N} be two
aggregated interior points with a; o # 0. If we assume the setting given above then the

inequality

Ca |lulla = [|Qo ull4

holds for all w € V with ¢, = \/1+ (a’ + a'*) /4]a o

proof. We consider the following expressions:

(8.25) [ll% = laval (w1 = u2)® + > avel(ur — ue) + > lavsl (ur — ugy)?
kel kel
+ Z |as | (us — ug)® + Z |as 1| (12 — up2)?
kel kel
+ ( Z @i, (u;i — Uj)2>
i,j€I1UI5
Uy + U 2 U + Usg 2

626) 1t = X o (M5 -w) + 3l (M5 = )

U + U 2 U + Usg 2
+ Z |as k| ( 5 - Uk) + Z las. k| < 5 - Uk,2)

kels kel*

+< > \@i,j|(ui—uj)2>-

i,jel1Ul2
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8 Symmetric Problems

Then we obtain in the case of uj; = uy o for all k € I*
[all% = llul’ and [|Qoull = 1Qoull%.

From the result of Lemma 8.3.3 and the given constant ¢, we obtain

2 e
p 100 _
a0 ||ull%
Thus the proposition follows from
2 112 112
apl@uls Q0 IQ0ul
w0 ulld o ua=mwmovker Ul T wzo flulld

O

The central point of the proof of Lemma 8.3.5 is that the open system we have con-
sidered in Lemma 8.3.3 is more general than the system we consider in Lemma 8.3.5.
Therewith the system in Lemma 8.3.5 is a special case of Lemma 8.3.3. The system we
have considered in this lemma and the structure of the proof are illustrated in Figure
8.4 at page 247. We start from a general system and then we cut it open to get the
situation as considered before in Lemma 8.3.3 Figure 8.3 on page 242. The sets of

indices as used in the proof are
I ={(L,2),(L,3),(G,1),(G,2)} ©Ir={(R,2),(R,3),(R,4),(GC,1),(G,2)}
I'={(G.1),(G.2)} I} ={(L,2),(L,3)}
and I} = {(R,2),(R.3),(R,4)}.

The last generalisation is to consider points that can be coupled to the boundary, too.

We consider s.p.d. matrices A € R™" for their elements holding

a;; >0, forall i=1,...n, a;; <0, forall i#j
and Z la; ;| <lai;| forall i=1,... n
J=1,#i
If it is

0<r = Qi — Z |Cl,z'7j|

=1, j#i
then r; is the couple of the boundary. We still assume that if a; ; # 0 or asy, # 0 for
an k € {3,...,n} then A}! is an isolated point. Hence we get the same structure as in

the estimation above.

246



8.3 Technical view of the constant c,. (Neigbours are isolated points)

UR,2

UR,3

€1

U a UR,2

€4 UR,3

Ur .4 Ups UR, 4

Figure 8.4: General system and the system to that it is cut open.
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Lemma: 8.3.6. Let A s.p.d. be a matriz as defined above. Let N\, N3 be two aggre-
gated points with a1 2 # 0. If we assume that all neighbours are isolated points and the

setting is as above then the inequality

Ca |lull 4 = [|Qo ull4

4|ay,2|

holds for all uw € V with ¢, = \/1 + aurtaze-—Zois|

proof. For the situation based on the above mentioned sets we define

(8.27) [ll% = laval (w1 — u2)® + ) larkl(us — we)® + ) lagl (uz — ui)?

kel kel

+r1(uy — )+ ro(uy — ) + < D laigl(ui— UJ)Q)

i,j€N1UI5

9 2
__ U +u ur +u
(8.28) Qo ull = Z |las k| < 1 . 2 _Uk) + Z | a2, ( 1 . 2 _Uk)

kel kel
2
Uy +u
(r1 +72) < : 5 2 —SC) + ( > |ai,j\(ui—uj)2> :
i,j€l1Ul2

with

n

Ti = Qi — Z la; ;| i=1,2.

=157
As we have for z = 0
[ulla = llulla and [|Qoulla = [Qoula
it follows

[Qoulla [Qoul| [Qoulla
p = sup < sup

w0 |[ulla wzow=o [[ulla T w0 lulla

— a-

The last equation is obtained by the proposition of Lemma 8.3.5 as for an interior point

it is by the symmetry of A

L

a” =ayq —|a1z] and all

= Q22 — |al,2|
and for the points of this lemma we obtain

CLL +r = ay1 — |a172\ and CLR + 19 = A9 — |a172\.
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In the proof of Lemma 8.3.5 we have the system cut open and so induced new points
and therewith degrees of freedom. In the proof of Lemma 8.3.6 we introduce a free
point (and therewith one more degree of freedom) as we drop the condition u = 0 for

points that belong to the boundary.

So we can summarize the results of this section in one central and global theorem. For
this we assume that there is an arbitrary number of grid points that are aggregated in

the coarser grid. We set for each pair ./\/'2-1,./\/;-1 of aggregated points

- ) abi + aii
i g — la s d o=
a a;; — la;j| and ¢ T

And for a given restriction operator R we set
Ind ={(i,j) : N, N are aggregated}.

Then Ind is the set of the aggregated points. So we can summarize the results as
follows:

Theorem: 8.3.7. Let A s.p.d. be a matrix as defined in 8.2 and the given grid. We
assume that it is a; ; # 0 for all (i,7) € Ind and all the neighbours of aggregated points
are isolated points. Then

Ca flulla = [|Qoulla
holds for all w € V with ¢, = max{c%’ : (i,7) € Ind}.
proof. Let Ni', N} be two aggregated points. Then the inequality

Ca [lull 4 = [|Qo ull4

holds locally for Nj', N} with ¢, > ¢;7. The proof is completed by the fact that NV;', N}

are arbitrary points. O

At least we mention that a coupling between two aggregated points is necessary to
obtain a locall estimation for ¢,. That means the condition a; ; # 0 for two aggregated
points is necessary. This is obvious if we set a = 0 in the most simple considered system

of Lemma 8.3.1. Then it follows in the considered small sector

lull = e(f — w1)® + (g — ua)?

2 2
UL+ u UL+ u
!IQou!|,24=€<f— = ) +6(g— = )
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8 Symmetric Problems

If we set u; = f =1 and up = g = —1 then for £,0 > 0 is no estimation for ¢,
possible. In a two dimensional system that is non irreducible a proof could be obtained
by using a link that is constructed with some points between the two aggregated points.
Nevertheless the condition is in general not necessary therefore the preconditioner is
well posed (non singular). This holds as we have proved the non singularity of the

operator Cp1. in chapter 3 only by the condition that A, Ay are non singular.

8.4 Technical view on the constant ¢,. (One

Dimension)

In section 8.3 we have given estimations for the constant ¢, for a quite general geomet-
rical situation. But therefore we had a strict restriction for the aggregation and for the
neighbours of aggregated points, respectively. Now we will drop this assumption. For

the sake of simplicity, we consider a one dimensional system.

€ aq a9 as Ap—1 )
------ ° ® o ® ® @ o .
1 1 1 1 1 1 1 1
NO Nl N2 3 N4 anl Nn n+1
0 0 0
No M N Ny i1

Figure 8.5: One dimensional system with an arbitrary situation for neighbours

We assume that the situation is given as in Figure 8.5. That means we have n = 2k with
k € N points N}, ..., N that are pairwise aggregated to k new points N7, ... NP
Moreover, these n points have a left and a right neighbour Ny, N1, or N, N,
respectively, that are isolated or belong to the boundary of 2. Furthermore, the values

of u are given by
u(Ny) =ug, u(N))=ur and uN}!)=w,; for i=1,...,n

Then we obtain

QOU = <UL,

UL + Uy Uy + Ug U+ Uy Up—1 + Uy "
2 ) 2 2 9 e 2 ) R |-
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8.4 Technical view on the constant c¢,. (One Dimension)

Furhermore, for the sector of €2 the stiffness matrix is

€ —€
—& e+ a; —aq

—a1 aq + o —a-

—Qp_1 Op_1+0 —0
—0 )

with €,9,a; > 0. Therewith the expressions of our interest in the sector of {2 follow as

[y

HUH,%l :5(UL _U1)2‘|‘ (Uz —Ui+1)2ai—|—5(uR—un)2

i=1

2 2
ot (= 2 5 - 2225)

k—1 2
Z Ugi—1 + Ui Uiyl + Ugiy2
+ - a9;.
: 2 2

=1

As we have done in the previous section we define a function g := 2 ||ul|} — ||Qou|/%.
We have to determine a ¢, that fulfils ¢ > 0 for all u € V. We begin by minimizing the
function g(ur,us, ..., u,, ug) with respect to the values up,ur given on the isolated
points. As already known it follows that the g minimizing values for uy,ugr are given
by

Auy — (ug +ug) /2 Ay — (Up_1 +uy)/2
up = -2 cgil 2)/ and wup = (tn— )/

If we insert these values in g then we obtain

2 e )
(8.29) 9= "@-11 (w1 — up)® — @-1)1 (tn — 1)

n—1 k—1 2
9 9 Ugi—1 + Ui U1 + Ugiqo
+ C, E (ul — ui+1) a; — E 5 — B a9;.
i=1

i=1

For an easier notation we transform the variables u; in y; with
y,-::(u,-—uiﬂ), for Z:]_,,n—l

Yp ‘= Up
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8 Symmetric Problems

(As the values only depends on the differences the setting y,, = w, is just for complete-

ness. This will be obvious in some steps). Then we obtain
(ugi—1 + Ui — Ugiyr — Uziya)® = ((uaic1 — ugis1) + (Uzi — Unita))”
= ((2i1 + y2i) + (y2i + y2ir1))?
(8.30) < 4?/32‘—1 + 8?/32‘ + 4y§i+1~

With g as given in (8.29) and the representation and estimation as given in (8.30)

e 0 =
(8.31) 9= —mi?ﬁ - m1y3_1 — (a2y? + an-2ys_,) +ci Zyzzai
a a i=1

k—1 k—2
-9 2 — 2 . .
a2;Ya; y2i—1(a2l + a2z—2)
i=1 =2

holds. This inequality must hold for all y;, ¢ = 1,...,n — 1. We consider the variables

Y, 1 =1,...,n — 1 separated:

1. y; : For y; we obatin

C2

2 > a -
c,ay = (03—1)4 + a9

a;+az+e/4+ \/(a1 +as +¢/4)? — dajas

2
<= cc >
- 2&1

a

2. Yp_1 : Similary to y; it is sufficient

C2

2 a
Coln— Z -+ n—
afn—l =2 _1)q " "2

a

2 > Gp—1+ Qp—o + 5/4 + \/(a'n—l + an—2+ 5/4)2 - 4a'n—1a'n—2
2a'n—1 '

= C
3. ¥i, 2<1<n—2,and 7 even: Then we obtain
2 2
caai22ai <:Ca22.
Hence

0322

is sufficient for ¢ > 0 for all y;, 2 < i <n — 2, and 7 even.
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8.4 Technical view on the constant c¢,. (One Dimension)

4. y;, 2 <1 <n—2, and 7 odd: For these constants we have

a;—1 + a;
2 2 i—1 i+1
Co; 2 i1+ Qi1 = Cp > ————.
Qa;
Hence
Ai—1 + Qg1
Cz > bt S ern
a;

is sufficient for g > 0 for all y;, 2 <7 <n — 2, and 7 odd.
Therewith we can summarize the result for this situation in the following theorem:

Theorem: 8.4.1. Let A be the matriz given by the structure of (8.4). We assume
that there are n points N{, ..., N} that are pairwise aggregated in Vy and that the left
and the right neighbours Ny, Ny, of this system are isolated points or belong to the

boundary of Q2. The links are given as described above. Then the inequality

1Qoulla < callulla

holds with

= max{ max{ (a1 + a;41)/a; : 2<i<n-—1,i odd},?2,

ar + as +e/4+ /(a1 + as + €/4)? — dayay
2&1

Y

oy + Gps + 6/4 + \/(Gn_1 + tnz + 0/4)% — day_1p s }
2an—1 .

proof. See the calculation above in this section. O

So as in the situation in section 8.3 the estimation depends on the ratio of the links
between the points that are aggregated to the links they have with their neighbours.

The easiest way to see this, is the restriction ¢ > “Haiﬂ”“

3

. In this equation a; is the
link between the points N, N/} | and they are aggregated. a;_1,a;1 are the links to
their neighbours N, N, ,.
At least we should highlight that the estimation given in Theorem 8.4.1 does not depend
on the number £ of aggregated pairs.
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8 Symmetric Problems

8.5 Two grid estimation for C},, A in the A-norm

We also want to estimate the condition of C5py A in the norm induced by A. So we

remember the definition of CE}D < by
Cppx f=AT"f+PA'RY.

By the definition of u* and u, as

u'=A"1f and wuy=PA;'Rf
defined in (8.6), (8.8) we can write this for a given f € V as
(8.32) Cppx [ =u" + uo.
We also remember that it still holds

[uolla < [Ju"[|4

as proved in Lemma 8.2.3. For further estimations we need an estimation for a(u*, uy).

This is given in the next lemma.

Lemma: 8.5.1. Let A be a s.p.d. matriz. For u*,ug as defined in (8.6), (8.8) then
a(u*,ug) = |[uo||y  holds.
proof. By using the definitions of ug, u* we get
a(u’,up) = (AAT f, PAGRf) = (Rf, A;" Rf) = IR fll 4>
and |luglla = (APAG'Rf, PAG'Rf)
=(A;"RAPAJ'Rf, RY)
— (AR RS = R fla
This proves the proposition. O

This result is sufficient to prove a strong proposition for the condition of CE}D < A if we

consider the operator in the norm induced by A.

Theorem: 8.5.2. Let A be a non singular s.p.d. matrixz. Then

cppx||vlla < |Cppx Avlla < dppx]v]|a

holds for all v € V' with

CBpx = 1 and dBpX = 2.
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8.6 Multigrid estimation for Czpy A in the A-norm

proof. To prove

copx||vlla < |[Cppx Avlla < dppx|lv]la
for all v € V it is equivalent to set v = A~ f and prove
capx||A7 flla < IChpx flla < dppx||A™" flla
< cppx|lut]|a < ||ut 4 wlla < dppxljut||a.

The second equivalence follows from the definition of u*,uy and the representation
(8.32). From the result of Lemma 8.5.1 follows

et lla < o/l + Blluoly = /llur 3 + 2a(uo, ) + [fuoll}

=/l +uolly = [lu” + wol|a-

This proves the proposition for cgpx. On the other side, follows the assertion for dgpx

as we obtain from the same arguments

lu” + uolla = \/HU*IIi +3lluoll < /4llurllh = 2llua-
O

So we see by using the || . || 4 norm that we can give for the BPX-preconditioner a strong

estimation for the eigenvalues.

8.6 Multigrid estimation for C;;, A in the A-norm

We will give an estimation for the condition of Czpy A in the multigrid case. So we
consider again the condition concerning the norm induced by A. We remember the

multigrid definition of C';py by

J
Coba f =S PAT Ry .

Jj=0

We keep the definition of u* as u* = A~! f and define for the same f € R™ the vectors
u; by

(8.33) u; ::P]-Aj_lef for j=0,...,J.
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8 Symmetric Problems

Therewith we obtain
J
1
Cppx [ = Z U
§=0

and further follows u; = u*. For further estimations we need an estimation for a(u;, u;),

for 7,7 =0,...,J. These are given in the next lemma.

Lemma: 8.6.1. Let A be a s.p.d. matriz. For u; as defined in (8.33) we have
1. a(uj, vj) = a(u*, vj), Vj=0,...,J, Yu; €V
2. lujlla < ||u*||a, for j=0,...,J
3. alug, uj) = alug, u;) = ||willy,  for i <j.

proof. 1. For an arbitrary j € {0, ..., J} and an arbitrary v; € V; we obtain @j v =

P; §j Rjv; = vj. So it follows for an arbitrary v; € V;
a(uj, v;) = a(u;, P; §j R;v;) = a(P; A;l R; f, P §j R;v;)
= (R; AP A; Ry f, S; Rjv;) = (R f, S Rjvy)
= (f, Qjvy) = a(u", vy).
This shows the first proposition.
2. The second assertion follows the first one and the inequalitiy of Cauchy-Schwarz
sl = aluy, u;) = alu’, uj) < Ju|la [luy]
= fluglla < flu]a
3. The third proposition is obtained by the following two representations:
a(us, uj) = (AP AT R, f, PEAT'R; f) = (A7 R f, Ri AP AT R; f)
= (A7'R; f, RIR; AP, A7 R, f) = (AT' Ri f, R R; f)
= (A7 R f, Ri f)
and a(u;, w;) = (ARAT R f, AT R f) = (A7 R f,Ri AP, A7 R, f)

— (A7'R, f, R f).
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8.6 Multigrid estimation for Czpy A in the A-norm

Therewith we can give the central result for the condition concerning the norm induced

by A of the preconditiond system in the multilevel situation.
Theorem: 8.6.2. Let A € R™"™ be s.p.d. Then
cppx|[vlla < |Chpx Avlla < dppxlv]la
holds for all v € V' with
cgpx =1 and dppx = J+ 1.
proof. To prove
cppx|[vlla < [|Cxpx Avlla < dppxlv]la

for all v € V it is equivalent to set v = A~ f and prove

copx||AT flla < Chpx flla < dppx||A7" flla

J

2w

J=0

<dgpx||u*|| 4.
A

& cppx|lut]a <

From the results of Lemma 8.6.1 follows

7 2

2w

J J
% = llus | <D gl <> (25 + Dlluglli =
j=0 j=0 j=0

A

This proves the proposition for cgpx. On the other side, we obtain the proposition for
dppx based on the same arguments and the estimation

lluilla < ||u*[|a for all i =0, ..., J. This implies

J J
s + w4 A uolla <Y lluglla <D utfla = (J + 1)l|u|a.
§=0 §=0

O

Therefore, by using the || .||4 norm we see that we can give for the BPX-preconditioner
a strong estimation for the eigenvalues of Cpy A. In particular the estimations are
independent of the elements of the matrix A. We should highlight that these results

are as strong as the assumption included to use the inverse of A.
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To understand better the structure of the BPX-method that is used in the Theorem

8.6.2 we can show the following calculation:

[ufla < \/IIU*IIZ + 3w lld + 5llus 2l A+ -+ (27 + Dol

sl + (-l + 20, ws)) + (sl + 200, wsms) + 2a(u1, uss))

1/2
4+t (HUOHZ + 2a(u0, uJ) 4+ 2a(u0, u1)>

= Vlhus - wsoa 4o wallf = g 4 g -+ gl

We can do the same for the other estimation if we wuse additional

|luilla < ||u*||a. This shows that the estimations of Theorem 8.6.2 are exact if
wr=uy == g

holds. This is more or less the problem for the BPX-method.

However to conclude this section we highlight that the result for the condition of

Cyzpx A in the norm ||. |4 is in general the same as in the optimal situation if we
use the Euclidean norm.

258



8.7 Multigrid estimations for Cpy A in the A-norm

8.7 Multigrid estimations for C',. A in the A-norm

We will consider the multigrid situation for the estimation of the condition of CB%A
concerning the norm induced by A. In chapter 6 we have already seen that there are
two possible multigrid preconditioners which are generalisations of Cp}. as defined for
two grids. We will see that both have their own problems. We will present them both
and point out the problems. Then we will show that if we use the aggregation method
and we assume that the condition (2.14) holds the generalisations are equal and the
additional problems we get for the multigrid situation are solved. As the definition
of the constants is simpler in this case we will present the preconditioner we have

introduced in chapter 6 as second version in this chapter first.

8.7.1 Generalisation of (.. Version 2.

For a given f € R" we define u* € R" by
(8.34) Au* = f, respectively u*:= A"'f.
For the same f we define uy ; € R" by

(8.35) sy = Py AT — STV P S, RIDR; f, for j=1,...,J

(8.36) and  wugg = Py Ayt Ry f.

As it always holds S ;7 =1, and S 7_1 = Sj_1 we obtain by these definitions that in the

case of J = 1 this is the operator as used in section 8.2 as two grid operator. So we

write
J
—1
CDT,2 = Z Uz, j
§=0
J
= PATNI;— 57PN RI)R; + Py Ay Ry,
j=1
With these definitions we can show some properties of the elements uy;, j = 0,...,J

as done in the two gird situation. Similary to the two grid situation, the elements us

can by interpreted as solutions of Au = f in subspaces.
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Lemma: 8.7.1. Let A € R™" be s.p.d. Forusj, j =0,...,J as defined in (8.35),
(8.36) we have

(8.37) a(uz, vj) = a(u’, (Q; — Qj—1)v;) = (f, (Q; — Qj—1) vy)
Vo eV andall Vj=1,...,J
(8.38) and  a(uzg, vo) = a(u”, vo) = (f, vo), Vovg € V.

proof. As it holds @jvj = v; for all v; € V} it follows from the definitions for an arbitrary
vj €Vj

a(usj, v;) = a(ua, P; S; Ry v;)
= (AP AN (I; = S;' Pl S, RI_)R, f. Py S; Ry vy)
= (RyAP; AN (I; - S7' P S, RI_)R; f, Sj Rjv;)
= ((I; = 87" PI"' S, 1 RI_)R; f, S; R;v))
= (f, P(I; = P/7" S,  RI_,5;1)S; Ry vy)
= (f, (P S; R — Pj1 851 Rj1) vy)
= (f, (@] - @j—l)v) = a(u”, (@] - @j—l) v).

This shows the first assertion. For the second we go through the same steps and we

obtain
a(us, vo) = (APy A" Ry f, Py S Ro vo)
— (Ro f, S Rowy)
= (f, Qovo) = (f, vo) = a(u*, vy).

Remark: 8.7.2. Unfortunately

a(ug, uz;) =0 fori#j

does not hold in this setting. This can be seen if we consider for i < j the following

calculation:

a(us,j, uz;) = (AP A7 (I; = ST P S RI_)R; f, PAT (I, — STV P S, RI_)R; f)

J

= (Ri(I; = S;' PI7" S,  RI_)R; f, A7 (I — S7P P Sjo  RI)R; f)
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8.7 Multigrid estimations for Cpy A in the A-norm

As it is not necessarily (1; — §J_1 ij_l §j_1 R‘;_l)R‘j fe /ij = ker(R;:_l). So the inner

product above is in general unequal zero.

For further estimation between g+ - - -4 ug ; and u* we define the constants ¢, 2 ;, cq ;

as follows

(8.39) Ca2,j "= SUP {W D € VJ\{O}} , for j=1,....J
illa

(8.40) g j = Sup {M DV E V\{O}} , for j=0,...,J

[0]4
By the definiton of ¢, 2 ; it is obvious that these constants hold the inequality
1Q5-1vjlla < caj sl
for all v; € V;. Moreover, we can represent the expressions as follows:
(8.41) 1Qj-1 0513 = (AP;1 81 Rj-yvj, Py 81 Ryavy)
= (4 P/ S5 Ry, P78, Ry wy)
losl = 1Q; vill = (AP, 8; Byv;, P; 8 Ryuy)
= (4,5, R;vj, 8; R ;).

Similary to the constant ¢, in the two grid situation, the constant ¢,2; depends on
the matrix A; and the relation of the subspaces ij_l §j_1 Rg_l(Vj), V; to each other.

Based on these constants we get the following estimations:

Lemma: 8.7.3. Let A € R™" be s.p.d. Foruy,;, j=0,...,J and u* we have

(8.42) luslla < llull
(8.43) sl < (Cagy + Dl llay forj=1,...,J.
J
(8.44) lella < 3 calluzylla.

j=0

proof. As it is ug € Vj it follows from Lemma 8.7.1

Jusoll% = aluzp, use) = a(u®, usg) < |Ju*]|a fluzolla

= [luzolla < flu]a-
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The second proposition also results from Lemma 8.7.1. As we have us ; € V; it follows

with the definition of ¢, 9 ;
Jusjl|% = aluay, usy) = a(u*, (Q; — Qj—1)ua;)
< lu*fla Q5 — Qj-1)uajlla
< lu|a(l|Qjualla + |Qj-1uz;l4)
< [Ju|a flug lla(l + caz2;y)

= luglla < (ca2y + 1)[Ju"| 4

This shows the second proposition. For the third we decompose u* as

(@j - @j—l)U* + @OU*-

IS
*
I
(]~

1

<.
Il

Then we obtain

Q= Qj—)v=(Q; — Q;-1)Q;v, WweV
and @jv eV

for all v € V. This implies with Lemma 8.7.1

J
Jw* % = a(u*, u*) = a (a S@ - Q) + @w)

j=1

CL(U*, (@J — @j—l)u*) + Q(U*a @OU*)

I
B

1

<.
Il

a(u®, (@j - @j—l) @j u) +a(u’, @0“*)

I
B

1

.
Il

J J
aug, Qu™) <Y uaglla Qi ulla < cajlluzlallurla
j=0

=0

<
Il
o

I
.M“

J
= Ju'lla <) cayllusslla
j=0
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8.7 Multigrid estimations for Cpy A in the A-norm

Furthermore we define a constant K5 that holds

J
E Uz,j
j=0 A

The problem for further estimations is that until there is no knowlege about the angles
7i; < 1 that holds

J
(8.45) Z |uajlla < Ko
=0

a(uz,, ;) < Vi lluzllalluz;lla
we can not give any estimation for K.

If such an K, existed, then we could give an estimation for the condition of C’B%QA

that only depends on the constants ¢, ;, cq; and Ko.

Proposition: 8.7.4. Let A be a s.p.d. matriz and assume that the inequality (8.45)
holds with K. With cq2.j,cqj as defined in (8.39) and (8.40)

corallvlla < ICprp Avlla < dprollvlla

holds for all v € V' with
J
and dDT,2 = (J + 1) + Zcmg’j.

j=1

1
max;—o,....J CG,jK2

Cpr2 =

proof. To prove

cprallvlla < Chrp Avlla < dpralvlla

for all v € V it is equivalent to set v = A~ f and prove
cor2| A7 flla < 1Cpra flla < dpral| A7 flla

& cprpl|ut]|a < lugo + - Fugslla < dprallut|a
From the estimations of Lemma 8.7.3 we obtain
J
[ugo + -+ +uaslla < Jlugolla+ -+ llugslla < ((J+ 1)+ an,m) [
j=1
This proves the propostion for dpr 2. Again from Lemma 8.7.3 by assuming that there
is a K, that fulfils the inequality (8.45) it follows

J J

[u lla < ) cajllug;lla < max cg; w25 4

i=0,...,J

~ ~
< Jpax cailo|lugp + - - -+ ug g 4

This proves the estimation for cpr . OJ
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8 Symmetric Problems

A short discussion on the constants: In section 8.2 we have highlighted that the
constant ¢, does only depend on the elements of the matrix A and the structure of the
subspace Vj. The calculation (8.41) shows that the constants ¢, 2 ; only depend on the
elements of A; and the structure of ij - §j_1 Rg_l(\z-), 17] in relation to each other.

One of the problems is that in general we do not have
- - L~
f)j] Sj_l R;_l’Uj c P; (‘/j_l).

If we use the aggregation method, then the inclusion above only holds if the condition
(2.14) is fulfilled. The constant c¢ ; depends on the elements of A and the structure of

V; in relation to V. Hence cg ; is not as easy to handle as c,.

Moreover, the definitions imply immediately
(8.46) Ca2.g =Cq=Cgy—1 and cgj=1.

Now we can compare the result of Proposition 8.7.4 with the result of Theorem 8.2.4
that holds in the two grid situation:

In Proposition 8.7.4 we obtain from equation (8.46) in the case of J =1

Cpr2 = and dDT’Q =2+ Cq-

Ca K2

And in the two gird situation considered in Theorem 8.2.4 we obtain

and dpr =2+ c,.

1
Cpr = — =
Ca \/§
From Lemma A.0.5 follows Ky = /2 if we add two orthogonal vectors. Thus the
estimations for dpy, dpr2 and cpr, cpr2 are the same.
This shows that the results of this section are a generalisation of the results we have in

the two grid situation.

8.7.2 Generalisation of (.. Version 1.

For f € R™ we take over the definition of u* € R™ by

(8.47) Au*:=f and u*:=A"'f respectively.

For the same f € R" we define u; ; € R" by

(8.48) uyy =Py AT — Q;)R; f, for j=1,...,J

(849) and Ur,0 = P(] Aal R(] f
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8.7 Multigrid estimations for Cpy A in the A-norm

Based on these definitions it is obvious that in the case of J = 1 this is also the operator

as used in section 8.2. Furthermore, it is obvious that we obtain u; o = ug. We write

:ZPjA»l([j—Qj_1>Rj+POAalR0.

S

In this case we obtain the following characteristics that are similar to the properties

proved in Lemma 8.7.1 for the situation of Cz_)%“,z-

Lemma: 8.7.5. Let A € R™" be s.p.d. Foruy;, j =0,...,J as defined in (8.48),

(8.49) we have:

(8.50) a(uj, v;) = a(u*, Py(I — Q;-1)S; R; v))

:(.fa Pj([_Qj—l)ijj'Uj) \V/'UjEV}', j=1,...

(8.51) Cl(ul,o, vg) = a(u®, vo) = (f, vo), Vv €Wy

(852) and a(uu, ul,j) = 0, A4 % j

proof. For an arbitrary j € {1,...,J} we have Q;_; = Q]T_l and also [; — Q1 =

(I; — Q;—1)". Furthermore, for an arbitrary v; € V; it is @j v; = P, §j Rjv;
first assertion follows from
a(urj, vj) = alur, Q;vy)

= (AP A7 (I; = Q-)R; f, Py S, Ry vy)

= (R AP A7 (I; — Q;-1)R; f, Sj R;jv;)

= ((I; = Q;-1)R; [, S; Rjvy)

= (f, (I = Qj-1) S, R;vy)

= a(u, P;(I; — Qj-1) S R; v)).

= v;. The

The second assertion follows as it holds u; o = u2 and the is the same as the equation

(8.38) in Lemma 8.7.1. For the third proposition we consider first 7,5 > 1 with w.l.o.g.
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8 Symmetric Problems

1 < 7. Then we obtain
a(urg, wyy) = (P A7 (I —Qj_1)Ri f, AP AN (I —Q-1)R; f)
= (A7 (I = Qj-)Ri f, RIR; AP A7 (I — PI7'S; 1 R]_))R; f)
= (A7 (I = Q)Ri f, RI(I=P]7" 8. R} _))R; f)
= (AT (I = Q) Ri f, RN R) .y — R P S0 R )R, )
= (A7 (I = Q) Ri f, BTN (R) ., — R _)R; [) =0.
If it is « < 7 and 7 = 0 then the proposition follows the same way by
a(uro, ury) = (PoAg' Ro f, AP A7 (I = Q1) Ry f)
= (Ay" Ro f, Ro AP A7 (I = Q;1)R; f)
= (A" Ro f, Ry(I = Q;-1)R; f) = 0.
This proves the third proposition. O
Remark: 8.7.6. For the equation (8.50) we can also write
a(urg, v;) = au, Py(I; — Q;-1)S; R vy)
= a(u”, @j — P Q1 §j R;v;), Yv;€V; andall j=1,...,J
This Tepjesentation clearly shows the problem of the operator. In general we have
P;Q;_15; Rj # Q;_1. Therewith it is
u;AZP —Q;_1)S; R;v+ Py Sy Ry v

and we can not decompose u as done in the two grid case or by using Cpy .

We define again some constants that are for this generalisation of the two grid case the

generalisation of ¢,. So we define for j = 1,...,J the constants ¢, ;, K by
A -

(8.53) Cq1, 1= sup {M LT € vj\{()}}
1051] a;

a(v, v)

( Zj 1P( Q] 1)5 R U—I—P()SQRo’l})

(8.54) K; :=sup cv e V\{0}
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8.7 Multigrid estimations for Cpy A in the A-norm

From the definiton of ¢, ; it is again given that these constants hold the inequality
1Qj-1jll4; < a0l 4,
for all v; € 17} Furthermore we obtain
1P Q-1 S Ry vjllh = (AP Q-1 S Ry vy, PyQj1 Sj Ryvy)
= (A;Qj1 gj Rjvj, Q1 §j R;v;)
loll% = 1Q; ;1% = (AP; S, Rjvj, P; S R vy)
= (4,5 R;vj, 8; Rjvj).
As §j R;:V, — 17] is bijective we obtain for a constant ¢, ;
1Qi-17 114, < cars [Tilla, VT €V,
& 1P Qi1 S Ryvilla < cansllvslla Vo €V
Furthermore we highlight that for ¢,;; the same situation as for ¢, in the two grid

situation remains. We will discuss this more in-depth in section 8.7.3.

By these characteristics we can show some estimations for isolated elements u ; :

Lemma: 8.7.7. Let A be a s.p.d. matriz. Foru,j, j=0,...,J and u* we have
(8.55) [urolla < [Ju]la

(8.56) Jurjlla < (L4 capg)llut|a

(8.57) lulla < Ko max coi V' T+ Tuo + oo+ ugla.

proof. As the first proposition is proved for uso in Lemma 8.7.3 the first propostion
holds again by wu; ¢ = u29. The second proposition follows by u;; € V; and Lemma
8.7.5 with

lurlly = aluy, ury) = a(u’, P{(I — P S;1 RI_))S; Ry uay)
= a(uw’, (Q; — Pjo1 Sj1 RI_, S Ry) ury)
< N llaQrurlla + 1Pis Sjm1 R}y 85 Ry g].a)
< lwflallluaglla + capllvaglla)

= furglla < (1 + capg)llu’|a
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For the third proposition we use the definition of K;. The third proposition of this
lemma follows from the calculation

lu[l% = a(u”, u”)
J ~ ~
S K1 a (u*, Z Pj (Ij — Qj—l)Sj Rj u* + Po So RO u*>
j=1

=K1 Y a(u’, P (I; — Q;-1)S; Rju*) + a(u”, Py Sy Ryu”)
j=1

= K1 Za(u*, f)] (I] - Qj_l)gj Rj f)] §j Rj u*) + a(u*, Po §0 RO u*)

Jj=1 =1
=K1 Y a(u’, P;(I; — Q;-1)8; R; P; S; Ryu*) + a(u*, Py Sy Ry u*)
]:1 e‘/j

J J
= K1 Y a(uny, Qut) < Ky Y flunslla Q) ula
j=0 j=0
J
<K1Y cgllungllallutla
j=0

J
= Jula < K2 cayllula-
=0

From the orthogonality of u; ;, uy ; for ¢ # j as shown in Lemma 8.7.5, we obtain with
Lemma A.0.5

J
K1Y cagluglla < VI+1E ji%achG,jnum + -+ uggla-

j=0 T

In this setting we can give an estimation for the condition of C’B;JA.

Proposition: 8.7.8. Let A € R™" be s.p.d. With c,1j,cq,; and K, as defined in
(8.53),(8.40) and (8.54) then

corallvlla < 1Chpy Avlla < dprallvfla
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8.7 Multigrid estimations for Cpy A in the A-norm

holds for all v € V' with

1
VJ+ 1K, max;_,.jca,;

Cpr1 =

J
and dDT,l = (J + 1) + an’l’j'
j=1

proof. We prove again that it is
cprallul|a < Jluro + -+ urglla < dpral|ut]a.

From the estimations of Lemma &8.7.7 we obtain

J
Juro 4+ +uiglla < flurolla+ -+ lurslla < ((J+ 1)+ an,Lj) [Zaipe

j=1
This proves the assertion for dpy ;. The proposition for cpr; is still proved by the proof
of (8.57) in Lemma 8.7.7. O

A short discussion on the constants: As already mentioned, the constant ¢, of sec-
tion 8.2 only depends on the elements of A and the structure of V4. As shown in section
8.7.1 the constants ¢, ;, cq; do also depend on the elements of A; and on a relation
of spaces that is not as easy to handle as the relation of V; to V. For ¢, ; it is obvious
that this constant depends on the elemets of A; and the structure of ‘N/j, ij_l(vj_l).

Hence we have for ¢, ; the same relation of spaces as for c,.
Furthermore, we also obtain

Ca1,0 = Cq = Cq,J—1 and Ccq,g = 1.

As the equation Q;_; = @ J—1 holds independently of the number J of levels, it follows
that

K =1
for the two grid situation. Now we can again compare the result of Proposition 8.7.8

with the result of Theorem 8.2.4 that holds in the two grid situation:

For J = 1, we obtain ¢,11 = ¢, from the relations above. Thus it follows that

dpr = dpr;1.
For J = 1, the estimation for cpr and cpr 1, is also the same. Therefore, the estima-

tions we gave for Cp1. A are the same as in the two grid situation.
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Furthermore, the characteristics S; =1I; and Q1= @ J—1 imply that both multigrid
versions are the same in the two grid situation. So they are both generalisations of the

same two grid structure.

In addition we should highlight that in general it is not possible to replace the global
constant K by constants k; ; that would fulfil

(8.58) a(v, (Q; = Qj-1)v) < kyja(v, Pi(l; = Qj1) 8 Ry v).
This is impossible as in general we have
ker(R;_1) # ker(R;:_l gj R))
= ker(@j_l) # ker(P; Q1 §j R;)
= ker(Q; — Q1) # ker(Py(I; — Q1) S Ry).

So the existence of a constant K is not sufficient for the existence of constants k; ; for
all j =1,...,J that would fulfil the inequalities (8.58).

8.7.3 Technical view of the constants

We will now take a look at the constants that determine the condition of Cl_)’}“,l A and
C’B%Z A in the A-norm. As we have considered the constant ¢, for the two grid case
quite in-depth we can now use this knowlegde. So we with regard to the estimations
for the constants we will refer to the estimations we have done for ¢,. Again we will

only consider the case in which two points are aggregated to a new one.

The constant ¢, ; j : First we remember that the constant ¢, for the two grid method

in section 8.2 was given by the inequality
(AQov, Qov) <c(Av, v), forall veV.
And so as already mentioned, we obtain for the multigrid setting
(AQ _q1vy, Qyqvy) < Ci,LJ (Avy, vy), forall v;eV;

with ¢,1.7 = ¢,. And by the Theorem 8.3.7 or local Lemma 8.3.6 we can estimate this

for two aggregated points N/, N}/ as follows

e =1+ Qi+ Qe — 2|ai,k|'
4|ai7k|
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8.7 Multigrid estimations for Cpy A in the A-norm

For j =1,...,J the constant ¢, ; follows from the inequality
1Qj-175l1%, < ey llvjlla, forall o, €V

Then we have for each 7 =1,...,J — 1 the same situation as in the two grid situation
if we use the entries of A; instead of A. Therewith we can estimate ¢, ; locally for two
points N7, N7 that are aggregated by

ag,i + aiz,k - 2|ag,k|

4|ag,k|

Caj = 4|1

Thereby ai . 1s the element (7, k) of A;. So the constants ¢, ; are the generalisation of ¢,.

So we can summarize the results for ¢, ; in a theorem that is the generalisation of the
Theorem 8.3.7. We set for each pair N7, N/ of aggregated points

ik ag,i + ai,k - 2|ag,k|

Carj = :
o 4‘a§,k|

And for a Restriction R;:_l operator we set
Ind; = {(z,k) ci kel forante {1,... ,nj_l}}.

Then Ind; is the set of points that are aggregated from level j to j — 1. Therefore we

obtain the following result:

Theorem: 8.7.9. Let A s.p.d. be a matrix as defined for Theorem 8.3.7. We assume
that the neighbours of aggregated points are isolated points and that it is af,k # 0 for all
(i,k) € Ind;. Then

Q)19 a; < caj 1V5lla,
holds for all ; € V; with cq1; = max{c® = (i,k) € Ind;}.

a717j

proof. See the calculation above and the proof of Theorem 8.3.7. O

The constant c,,; : Also for the constant c,»; we refer to the situation and esti-

mation we had for ¢, and the two grid case. Here we have with @j v; = v; for all
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% € V}
1951 vylI% < oy llvllh,  forall v; €V
<~ (AP]P;_I gj—l Rj_l Vj, P]P]_l gj—l Rj_l Uj)
GQJ(APS R;vj, PS R;v;), forall v; eV

= (AJ f)jj_l §j_1 Rj_l vj, P-j_l §j—1 Rj—l Uj)

J

o (A S;R;v;, S;Rjv;), forall v €V,

i - L
& |IPITUS R GA, < e 185U, forall @ €V

And again the last equivalence foollows as R; : V; — \7j is bijective.
If we consider at level j the local situation as shown in Figure 8.6 we assume that the

points N7 and N7, are aggregated to N '

ul ul u2 uR
® £ a;j 0; ®
N, N/ o o
ul T uR
......... ‘ E] 5]' ‘
i—1 i—1
N’g—l ng Nk+1

Figure 8.6: Coarsing between the j-th and the (j — 1)-th grid

Based on the definition of S ;-1 and the result of Lemma 2.4.4 showing that the structure
of §j—1 is
(S;0)™" = diag(|H~"), .. 175D,

nj—1

We obtain for v; € ‘7] that is locally given by

Uj - (UL, Uy, Uz, U‘R)

j—1q J o
Pj Sj—l Rj—l V; = (UL,

Ny + Naly MU + Nols
u
)
ny + No ny + No

with ny = |I77| and ny:= \I+1|
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And by the definitions of n, ny we obtain

(Sj-1)ix = 75| = n1 +ma.

With
F —€; 0 0
A= €j a;+¢; a; 0
0 7 Q; + 5]' (Sj
0 0 —0; 0;

and the shortcut @ = M431242 the inequality
1+n2

0< ey IolA = I1P S5m0 RO o515
is locally equivalent to
0 < choy (gi(ur —wa)® + aj(ur — uz)* + 8j(uz — up)?)
— (€j (ﬂ — UL)2 + 5j (ﬂ — UR)2) =.d.

We differentiate the function g with respect to ur,ug to minimize g concerning these
variables. We get

9,

WQL = g 65 (ur — ) — 2¢;(ur, — )
dg _
Sun 02727j5j(uR — uy) — 20;(up — ).

So g is minimized with respect to ur, ug if we set them

2 = 2 =
C ‘U1 — U C Uy — U
(1,27 1 a727 2
(859) urp = —s 1 / and Ur — —s 1 J .
Cazg — 1 Cazg — 1

If we put these values in the function g based on the same calculation as done in Lemma
8.3.1 it follows

_ C¢21,2,j(1 - Cg,zj) . na(ug — uy) ? s ny(ug — us) ?
(03,2,]' —1)? Lo+ Tl onet+m

03,2,9'(1 - Cg,z,j)Z

(=1 )
a7 7.]
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So g > 0 holds for all uq,us € R if it is

N2 5. 2 2 5.2
(25, — D)y > iﬁkai_ig; o sy = 1+.Eﬁﬁz;t_iﬁ%.
o (n1+n2) aj(nl +n2)

We see that in the case of n; = ny this is the same situation as for ¢, and ¢, ; re-
spectively. This will be obvious in the next section as we will see that by assuming
that the condition (2.14) holds both generalisations of the two grid method are the
same and therewith ¢, 1 j = c42; obviously holds. And the condition n; = ny is locally
for the given level the same assumtions as that the condition (2.14) holds. Generally
we can not state wether the estimation for ¢, ; ; is smaller or bigger as the estimation
for ¢,,2,;. This happens because this depends on ¢;,0;. If we assume ¢; = ¢; it follows
Ca1,j < Cq2,; and the constants are equal if and only if it is ny = n,. Furthermore,

Ca2,j = Cq1,; holds if we have e; > ¢; and ny > ny or 0; > ¢; and n; > ns.
As the minimizing values for uy, ug indicated in (8.59) do not depend on ¢;,d; we can
go through all the generalisation steps we did for the constant c,.

So we define

— , —
(@3; — lai (DI + (g — lag, DL

Alal | (11| + 1177])2

ik
Canj = 1+

and we can summarize the results for ¢, 2 ; as follows:

Theorem: 8.7.10. Let A s.p.d. be a matrixz as defined in Theorem 8.3.7. We assume
that the neighbours of aggregated points are isolated points and that it is af,k # 0 for all
(i,k) € Ind;. Then

a2, [|villa = |@Qj-1v)l| 4
holds for all v; € V; with
Canj = max{ci’gj : (1, k) € Ind,}.

proof. See the calculation above. O

The constant ¢ :  To give an estimation for the constant cg ; we have to determine

an cg,; so that

1Q; vll% < cgllvlls
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8.7 Multigrid estimations for Cpy A in the A-norm

holds for all v € V. We therefore need a relation between an element v € V; and an
element @j v € V. This is more difficult to control since the constants ¢, ; ; we regarded
before. That is why we need quite strong assumptions to show quite a weaker result

as for the constants c,;;, ¢ = 1, 2.

j J J
1 N; i+1

2

Figure 8.7: Coarsing between the grids J, j

We assume that the situation is given as shown in Figure 8.7. That means the stiffness

matrix is given by a one dimensional problem. We have
g 3,J 7,
[[7[=n and [[X]=[[[5] =1

So at j level two points N, N .1 are isolated points in all previous steps and there are
n points Ny, ..., N that are aggregated at j level to the point N7. Then for u € V

the values for ||[u]|3 and ||Q; u||? with T := L 30 u; are given as follows:

[asry

||“||?4 =¢e(ug —U1)2+ a; (Wit —ui)2+5(uR—un)2

i=1

||@\] ull} = e(up, —0)? + 6(ug —w)*

2 2 2 ~ - :
As done before we set g = cg ;||lull% — [|Q;u% and differentiate g with respect to
ur,ugr. This implies as minimizing expressions
2 - 2 —_
Co U — U Cor jln — T
up=—2——— and ugp=—2——
cz.—1 |
G.j G.j

If we insert the minimizing values and go through the same calculation steps as done

for cq,cq1,5 OF Cqp2,; it follows that g > 0 is implied by

n—1
(8.60) (¢t ; — Z ai(tipr — u;)* > e(ug — ) + §(u, —u)%
1=1
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We transform the variables into

yr:=(uz —wr), Y2:=(uz —Ua), -, Yn-1:= (Up —Up—1) and y,:=wu

then we obtain based on a simple calculation

n—1 n—1
1 1
ﬂ—u1:gg y;(n—1i) and H_Un:_gg Yl
=1 i=1

Therewith it is (8.60) equivalent to

n—1 2 n—1 2
(8.61) (&, —1) Zalyz <Z yi(n—i ) + % (Z i z)
i=1 1=1
Then we use on the right side pairwise the inequality of Young. So we obtain
2(yi i) (y; §) <wi > +yi i
and 2 (y; (n—14)) (y; (n—7)) <yf (n—j)* +y; (n—1i)°.

Furthermore, we use the result

n—1

i=1

Therewith we get

As we get the same result for 5 (ZT:I yi(n — z))2 the inequality (8.61) is fulfilled if

n—1 n—1
O0+e)n—1)2n -1
(C2G,j -1) E ay; > ( ) on ) ) E y;
i=1 i=1

holds. This is fulfiled if we have

ca; > \/1+(5+5)(”_1)(2”_1), Vi=1,...,n—1.

6na;

Therefore, we can give an estimation for cg ;. However, we have to limit the result as
we assumed |[77] = |I +1| = 1 and the estimation depends on the number of points

that are aggregated.
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8.7.4 Generalisation of (.. Common Version.

In this section we will assume that we use the aggregation method to construct the
spaces Vj_1,...,Vy and the condition (2.14) holds. We will see that in this case the
two generalisations of Cgflp we have presented are the same. So we have two different
representations for the same operator. Hence, we can use the good properties of both
and prove a stronger proposition for the constants cpr,dpr as we have done in the
sections 8.7.1 or 8.7.2. More precisely, we will see that based on this assumption we

can drop the constant K, Ks.

Based on Lemma 2.4.9 the condition (2.14) is equivalent to the equation
S;PIt S =PI S
Therewith we obtain for j =1,...,J
sy =P AT (I — SV PITVS, L R R f
=P AT (I - SV S, PSR R, f
=P A7 (I — Pl S, RI_) R f

=P A7 (L = Qi) Ry f

= U17j.

Based on the definitions u;9 = ugo the both preconditioners are the same. We set
uj = uy,, for 5 = 0,...,J. So assuming that the condition (2.14) holds we have two

representations of the same preconditioner

J
Copf=> PiANI; =S Pl S, R\ R f+ Py Ay Ro, f

J=1

J
=Y PATNI;— Q) R f + Py Ay Ro, f

J=0

So far it is obvious that we have two representations of the same operator. Hence we

can always use the more useful representation. In one case, this means we use version
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1 to obtain the orthogonality of u;,u; for i # j with respect to the dotproduct af(.,.),
while in the other case we use version 2 to obtain a decomposition of f by orthogonal
projections @j.

The result for K; we will prove as an example (this results from the decomposition
of f). Therefore we remember that in the Lemmata 2.3.8, 2.4.8 we proved that if the
condition (2.14) holds, it follows

@j—l = Pj S\j Qj—l Rj and §j Qj—l = Qj—l gj—l-
Hence we get for the constants K;
(8.62)

a(v, v)

a (’U, Zj:l f)](fj — Qj—l) ‘/S\j Rj’U + P(] §0 RQ’U)

= sup { a(v, v) s v e V\{0}

Ky = sup s v e V\{0}

a (02 (P S5 By = Py Qs S5 Ry) v+ Py So Fo)

a(v, v)

a (’07 ijl(@j — @j—1)v N @0 v) cv e V\{0}

a(v, v)
sup {a(v, o) v E \{O}}
So we can drop the constant K. On the other side, we can set v/J + 1 for the constant

K, as used for the estimations concerning C’B}m (this results form the orthogonality of

u;, uj). As already mentioned, in this situation we obtain a result for the condition of
Cpp A that combines the good characteristics of both versions. This is what we meant

when we mentioned that we can drop these constants.

Theorem: 8.7.11. Let A € R™™ be s.p.d. and assume that it holds the condition
(2.14). With c,14,cc; as defined in (8.53) and (8.40)

cprllvlla < ICpr Avlla < dprlv]la
holds for all v € V' with

1
Cpr =
VJ +1maxj—g  jca;

J
and dDT,Z = (J + 1) + Z Ca1,5-

J=1
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8.7 Multigrid estimations for Cp;. A in the A-norm

proof. The proof follows from Proposition 8.7.8 and the characteristic that K; = 1

holds in the assumed situation as shown in (8.62). O
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9 Numerical results

In this chapter we will first sum up properties of matrices which are useful for iterative
methods. Then we will consider for j = 0,...,J the matrices A;, A; x of our model
problems with respect to these characteristics. To conclude the chapter we will present
some numerical results for the model problems, highlighting that the numerical results
for the modification which is presented in section 5.1.3 and motivated as the exact
modification in section 5.1.1 are correct. For other modifications we have to take a

closer look at the individual situations.

9.1 Characteristics of matrices

In chapter 3 we have used the operators A~!, A;' to define the preconditioners
Cypxs Cpp, Cyp and the associated modified options. We have mentioned that we
do not want to use the exact inverse. In the multigrid situation we have defined the
same preconditioners with non singular matrices BY) for j = 0,...,.J and we have
recognized BY) = A; only as an example. For the numerical experiments we will carry
out in the next section we set for (B7)~! some iterations of an iterative method. In
paricular we will use the Jacobi method and the SSOR method.

0.1.1 Basics for iterative methods

In this section we want to introduce some splitting methods. Afterwards we will sum
up some results for these methods presented in [GrR94], [Hac85]. As usual we define

for a matrix A the spectrum o(A) and the spectral radius p(A) as follows

o(A) = {\ € C : det(A— ) =0}

p(A) :=max{|A| : A€ o(A)}.
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A linear iteration method to solve Az = b can be presented as
o= Ma* + Nb 2o e R®
with M, N € R™".
The matrix M is said to be the iteration matriz. Moreover we define for a A € R™*"

A=D—-L—R, with D =diag(ai,...,ann)

0 0 0 ayro - a1.n
as 1
—L = and —U =
Ap—1n
ap1 - Apn—1 0 0 0

Then the Jacobi method is defined as follows

" =D N L+ U)2" + Db

=l —-D" A 2"+ Db
The Gauss-Seidel method is defined as follows
"= (D - L)' Ra"+ (D - L) "b.
Hence we have the iteration matrices
My =(I—-D"1'A) and Mgs:=(D—-L)"'R

The main aspect of these methods is given by the following result:

Proposition: 9.1.1. A linear iteration method, with the iteration matrix M converges
if and only if it is p(M) < 1.

proof. Cf. [GrR94] Lemma 5.2 or [Hac85] Proposition 3.2.7. O

Furthermore we define the residual error e* as follows
ek =b— Ak

For a linar iteration method we obtain for an arbitrary matrix norm ||.| that the

sequence of z* converges if we have || M|| < 1. Additionally we obtain in this case

e[ < A" [|€°]]-
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0.1.2 Basics for matrices

In this section we will define some basic characteristics for matrices. Afterwards we
will consider the relation to the property p(M;), p(Mgs) < 1. For the characterisation

of matrices we follow the definition given in [Hac85]. Hence we define for A € R™*"
A>0 (A>0) ifitis ay; >0 (a,; >0) ¥ij.
Based on this notation we define the following matrices:
Definition: 9.1.2. A matriz A € R™™" is said to be
1. a Lo-matriz, if it is a;, j; < 0 for i # j.
2. a L-matriz, if it is a,; <0 fori # j and a;; > 0
3. a M-matriz, if A is a non singular L-matriz and it is A~* > 0.
Furthermore we define the graph G(A) of a matrix A € R"*" as
G(A) :={(i,j) : a;ij # 0}.

The elements (i,j) € G(A) are also called edges, and the rows (or columns) of the
matrix are also called verteces in this case. Then we say that ¢ is adjacent to j if it it
(1,7) € G(A). We say that i, j are connected, if there are kg, k1, ..., k; with

1= ]{70, ]{71, Ce kt—la ]{Zt :j with (1{33_1, ]{ZS) € G(A) for all s= 1, C ,t.

Otherwise we say that i, j are disconnected. Furthermore we say that G(A) is connected
if all (i,7) € {1,...,n} x {1,...,n} are connected. Otherwise we say that G(A) is

disconnected.
Definition: 9.1.3. A matriz A € R™*" s said to be
1. weakly (strictly) diagonally dominant, if it is

n n
laisl > > il <|am\> > |az‘,j\>

J=1,j#i G=1,j#i
forallt=1,... ,n.

2. irreducible if G(A) is connected. Otherwise A is said to be reducible.
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3. irreducible diagonal dominant, if A is irreducible, weakly diagonally dominant

and there is one iy € {1,...,n} with

n

|ai0,i0‘ > Z ‘ai07j|‘

J=1,j#i0

Remark: 9.1.4. A matriz A € R™*" is reducible, if and only if there is a permutation

matriz I1 that holds
AL A402)
T _
TAII = ( 0 A22)

with ALY € REFAR2) ¢ R=k)x(0=k) gpng A0 ¢ RF*0=K) forqkel,...,n—1.
Basesd on these definitions we obtain the following results:

Proposition: 9.1.5. Let A € R™*™ be a strict diagonal dominant or irreducible diag-

onal dominant, then we have
p(My) = p(I = D3' A) < 1.
proof. Cf. [Hac85] Proposition 6.4.10. O

Based on a similar condition we obtain that A is a M-matrix if we additionally use the

condition of the algebraic signs of the elements of A :

Proposition: 9.1.6. Let A € R™™" be a L-matriz. If A is strict diagonal dominant

or irreducible diagonal dominant then A is a M-matrix.
proof. S. [GrR94] Proposition 1.6 or [Ost]. O

If A e R"™™ iss.p.d. we can give a simple sufficient condition to ensure that A is an
M-matrix. It holds:

Proposition: 9.1.7. Let A € R™" be s.p.d. If it is a;; <0 for all i # j then A is an
M-matrix.

proof. Cf. [Hac85] Proposition 6.4.18. O

The relation between the Propositions 9.1.5, 9.1.6 are obvious based on the following

result:

Proposition: 9.1.8. Let A € R™"™ be a Ly-matriz.
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a) The following two assertions are equivalent:

1) A is non singular and it is A~ >0
2) Itisa;; >0 fori=1,....,n, M; >0 and p(M;) < 1.

b) Additionally it follows that if the condition in a) is fulfilled then A is an M-matriz.
Vice versa it holds My > 0 and p(My) < 1 if A is an M-matriz.

proof. Cf. [Hac85] Proposition 6.4.4. O

As mentioned before the definition follows the definition given in [Hac85]. The propo-
sition 9.1.8 proves that we can drop the condition a;; > 0 in the definition of the
M-matrix. This is the principle we followed in [GrR94]. It is less well-known that we
can also drop the assumption A~' > 0 if we assume, instead of this that A is weak

diagonal dominant.

Proposition: 9.1.9. Let A € R™"™ be a non singular, irreducible diagonal dominant
L-matriz. Then it follows A= > 0.

proof. It is obvious that A=! > 0 is equivalent to
Ar=0b with b6>0 = 2>0.

Hence we assume that it is Az = b with b > 0 and z;, < 0. W.l.o.g. we assume z;, < x;

for all 7 =1,...,n. Then we obtain
0 S bi() = ZaiOij ~ L Z Z —a'lo"j Xj.
=1 j=Li#io 0"
Based on z;, < z; it follows a;, ; # 0 = z; = z;, for all j = 1,...,n. Hence we obtain

that there are m > 2 elementes z; € x with z; = z;,. With a permutation matrix II

AGD
* T

we obtain

with A0D € R™*™  As A is non singular this also holds for A* and AV, We obtain

by operations with the rows of A* a non singular matrix

(1,1)
e (A 0 )
0 A2

But for v = e;+- - -+e¢,, we obtain A** v = 0. This is in contradiction to the assumption.
O
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Finally we will present a relation between M; and Mgg.

Proposition: 9.1.10. Let A € R™™" be an M-matriz. Then it follows

p(Mes) < p(My) < L.
proof. Cf. [Hac85] Proposition 6.6.3. O

Hence we can summarize the result for the matrices with a look at the splitting methods:
If the matrices we use are M-matrices or irreducible (strict) diagonal dominants then

the splitting methods converge.

9.1.3 Results for A;, A; x

Based on the definition of our model problems in chapter 2, we obtain that A is a
weak diagonal dominant L-matrix for these problems. The symmetric problem implies
always an irreducible matrix A. For the convection system this is the case if there is a
diffusion, too (¢ # 0). Hence it is obvious that if we assume that the stiffness matrix
is based on the discretisation of one of the partial differential equations presented in
chapter 2, then the irreducibility depends on the diffusion. Based on proposition 9.1.6
we obtain that A is an M-matrix in this case. Now we discuss if the coarser matrices
A;, A, x are M-matrices, too. Again, we only consider the situation of two grids and
drop the indices for P, R. It is obvious that this contains all the information as the
coarser operators are defined iteratively. Hence we can use all the arguments iteratively.
We remember that if we use the operators P, R given by the aggregation method then
R = (e})" implies (RA). = A;.

- j
and Ry, = (e; +ej)" implies (RA), =A; + A .

Furthermore we obtain that
Pr=c¢; implies (AP),=A
and Py =el + ejl- implies (AP),=A,+A,.

Based on these characteristics we obtain the following result:

Proposition: 9.1.11. Let A € R™" be an irreducible diagonal dominant L-matriz. If
we assume that P, R are based on the aggregation method then Aqg is also a irreducible

diagonal dominant L-matriz.
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proof. 1t is sufficient to consider the situation we obtain if we aggregate two points.

W.lo.g. we assume that we aggregate the points N}, NI to NV ;. Then it follows

I,
R = 2 00}
0 11

We consider two different kinds of rows of Aj.

For k < n — 1 the rows of Ay are follows as

(Ao)k, = (ak, .-\ Qpn—2, Qpn—1 + G p)-

Hence it holds for these rows

ar,; <0, for j # k,n
ag,j = Q-1+ app <0, forj=n-—1
Ak > 0 for j = k.
Furthermore we obtain
n n—1
0o _ _ 0
Qg = Ak = Z |ag | = Z |ak,j"
J=1,5#k J=1,5#k

Now we consider the (n — 1)-th row of Ay. We obtain
(AO)n—l,. - (a'n—l,l + Ap 1y -5 Ap—1,n—2 + Apn—25 An—1,n—1 + An—1,n + Ap n—1 + an,n)~
Based on the characteristics for a,_1;,a,; for j =1,...,n we obtain

ag—l,k =ap_1p+ane <0 for E#n—1

0
an—l,n—l = Gp—1n-1 + An—1,n =+ An,n—1 + Ap.n > 0.
A - 2 S,

' g

>0 >0

The last inequality above is follows from the weak diagonal dominance of A. To prove

that Ay is an L-matrix we have to prove a’

0 _
n_1n_1 > 0. Assume that we have a, ,, | =

0. From the weak diagonal dominance of A it follows in this case

Gpp = —Apn—1, Apn—1n—-1 = —an—1n

and a,1p=a,,=0 for k<n-—1
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This implies

AL 412
A=
0 A®2
with A € R=2x(=2) and A22) ¢ R?*2, This is in contradiction to the irreducibility

of A. Hence we have a)_,, ; > 0.

Concerning the weak diagonal dominance of Ay we obtain

Ap 1p—1 = An-1mn—1 + p—1n T App—1 + App

n

> Y (a1l + lang))
j=1,j#n-1n
n n
<  Op_1p-1T Apn > Z ‘an,j‘ + Z ‘an—l,j‘)
j=Lj#n j=1,j7n—1

n
~ Gp—1,n—1 Z Z ‘an—l,j‘ and Gnn Z Z ‘an,j‘-

j=1,j#n~1 j=1,j7#n
In the calculations above we have proved that Ay is a weak diagonal dominant. So far

we have proved that and Aj is a weak diagonal dominant L-matrix.
The irreducibility of Ag follows as it is

|a'?,j| > |a'i7j| for (Z>]) 7é (n - 1,71 - 1)

Based on the assumption that A is irreducible diagonal dominant, there is a k& €
{1,...,n} with

n

Z |ak7i\ < Qg k-

i=1, ik
Based on this property the calculations above prove that for £ < n — 2 it follows that

n—1

Z ‘ag,i| < ag,k

i=1,i#k

and for k =n — 1 or k = n it follows that

n—2
Z |a2—1,i| < ag—l,n—l‘
i=1

Hence Aj is also irreducible diagonal dominant. O
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Based on the Proposition above for the aggregation method much of the structure of
the matrix A is maintained if we consider the coarser operator Ag. In section 5.1.1 we
have seen that also for the simple one dimensional convection this is not true for Ay x
if we use the modification based on the inverse of blocks. In particular we have seen
that the matrix Ay x can be singular in this case.

In section 5.1.1 we have also seen that if we use the exact modification for the one di-
mensional convection (without diffusion, i.e. ¢ = 0) then Ay x has the same structure as
Ap and A, respectively. In particular they are all weak diagonal dominant L-matrices.
We have to highlight that for this example neither A nor Ay, (Ao x) are irreducible.

We will take a closer look at the matrices Ay x we obtain from the modifications pre-
sented in Lemma 5.1.10 or more generally in proposition 5.1.11. We remember that

these are the generalisations of the exact modification presented in section 5.1.1.

We consider the convection diffusion system composed of four grid points. We remem-
ber that the matrices A, R are defined as

(9.1)
b1+€0—|—81 —&1 0 0

1 000
—b2—€1 b2+€1+52 —E&9 0

A= R=10 110
0 —bg — &9 bg + &2+ €3 —E3

00 01

0 0 —b4—53 b4+€3—|—€4

(cf. (5.21)). As a generalisation of X defined in (5.22) we set

10 0 O
p 1 —q 0O )
9.2 X = with p,q € R,.
( ) 0 0 0 b, q +
00 0 1

Then we obtain the following proposition for the modified operator Ay x :

Lemma: 9.1.12. Assume that A, R are as defined in (9.1) and it is e; = € for i =
0,...,4. If X is defined in (9.2) then we have

1. (A07x)272 >0 Zf it 18 q < 1 or bg > bg +e.

2. (Aox)2; <0 forj=1,3ifitisp <1 orbs>by+e.
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3. that Ao x is a L-matriz if it is p,q < 1.
4. (a%% )0 > (0% )0 4 ("X o] if we havep = q <1 or1 > q>p andbs > by +e.
5. Ao x 15 a weak diagonal dominant if we have g =p < 1.

proof. Based on the definitions for A, R, X we obtain

bi +¢e(1—p) —£(1—q) 0
AO,X: —bg—€+(b2—bg+€)p bg+2€—(bg—bg+€)q —&
0 —b4 — & b4—|—2€

1. The first assertion follows from
(A07x)272 = b2 + 2e — (bg +e— bg)q = b2(1 — Q) + bg + 5(2 — q)

2. Similar to the first one, the second assertion follows from

(Aox)2g = —by —e+ (b —bs +e)p = —by(1 —p) — bsp — (1 —p)

(AO,X)2,3 = —€

3. If we consider the first row of Ay x then we obtain (Ag x);1 > 0 for p < 1 and
(Apx)13 < 0 for ¢ < 1. Together with the two results above this implies that

Ap x is an L-matrix in this case.
4. Based on the second row of Ay x we obtain
(Ao,x)22 > [(Ao,x)21 + [(Ao,x)2,3]
<~ bg+2€—(bg—bg+€)q2b2+€—(b2—bg+5)p+€

= (p—q)(bg+€—b3)20.

5. For p = ¢ < 1 the first row of Agx holds (Agx)i11 > |(Aox)12| + [(Aox)13]-

Hence the last assertion follows from previous assertion.
O

We can sum up the technical results before in a simple proposition that follows imme-

diately:
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Corollary: 9.1.13. Assume that A, R are as defined in (9.1) and it is ¢; = ¢ for
i =0,...,4. If X is defined in (9.2) with p = q < 1 then Ay x is a weak diagonal
dominant L-matriz. If we have p = q < 1 then Ay x is irreducible diagonal dominant.

proof. The first assertion follows immediately from Lemma 9.1.12. If we have addi-
tionally p,q < 1 then we obatin (Ag x)12 < 0. Hence Ay x is irreducible in this case.
Furthermore, for the first row of Ay x we have
0,X 0,X 0,X
apy > layy | +lays |-
Thus Ap x is irreducible diagonal dominant. O

Proposition: 9.1.14. Assume that A, R are as defined in (9.1) and it is ; = € for
i =0,....4. If X is defined in (9.2) with p,q as defined in (5.22) then Ay x is an

wrreducible diagonal dominant L-matriz.

proof. Based on the Corollary 9.1.13 it is sufficient to prove p = g < 1. For the defined

values we have

p= |a271| _ b2—|—€
aza +lazp| by + b3+ 3¢
_azgz—agptazs  by+2e—by—2e—b3—¢
2.2 + |a372\ bg + b3 + 3¢
n b2+bg+3€ =P

0

Thus the presented exact modification has for the coarser operators characteristics
which are useful from a numerical point of view. But as the invariance does not hold

for more complex systems this is also true for these characteristics.

If we drop the condition of ¢; = ¢ for ¢ = 0,...,4 and consider the matrix X as
presented in (5.22) then it follows

p= |a2,1| _ bg +€1
ago + |asal b+ &1+ 269 + by
aszz — Qg9 + a332 by +e9+¢e3—by—e1 —e3— b3 — &9
and ¢g=— = —
aszo + |asz] by + €1 + 269 + b3

o b2+€1+(€2—€3)
by + 1+ 269 + b3
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Hence it follows obviously p # ¢ for €5 # €3. But if we assume that it is b; >> ¢; then
it is p & ¢. A similar problem we obtain in the case of a two dimensional convection

system also without any kind of diffusion. If the stencil in N} is given as

0 0 0
_bi@ bi,x —+ bLy 0 with bi@, b,’7y c R+
0 b, O

and we assume that the points M, VL fulfill a;;11 = 0, a;41; = biy1,,. That means

that there is a flow from N} to NV} in the z-direction. Furthermore we assume that
N} N, are aggregated and we follow the modification as presented in section 5.1.2.
Then the entries of the modification matrix are
_ bi,x

biz +biy + bi14

biv1e +bit1y —bie —biy —biy1o  bio+ (biy — bit1y)

bl}l‘ + bi,y + bi-l-l,x bi,:c + bi,y + bi—i—l,:c '

p

Hence in this situation the convection in the y-direction has an influence that terminates

the structure. As long as we have b, , ~ b;;1, or more precise

bi,y B bi—i—l,y < bi,x
bl}l‘ + bi,y + bi-i-l,:c bi,:c + bi,y + bi—i—l,:c

we are still close to p = q.

The characteristics as mentioned above motivate two ideas:

1. If we consider the results of Lemma 9.1.12, then b3 > by seems a feasible heuristic.
Additionally this implies the same rule for the aggregation as the results of section
8.3.

2. Another numerical idea is to determine only p € [0,1] and to set ¢ = p. It is
obvious that if the modification must hold p # ¢ to fulfill the invariance, we lose

this characteristic.

We want to look briefly at the structure of the matrices we get from the second idea
mentioned above. W.l.o.g. we consider only the situation that two points are aggre-
gated to a new one. More general results are obtained by the iterative use of the

arguments.
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We consider a matrix A € R™"™ that is an irreducible diagonal dominant L-matrix.
Based on proposition 9.1.6 A is an M-matrix. We will show that if certain conditions
are fulfilled then the assumed characteristics of the matrix are also true for Ay x and
hence Ay x is an M-matrix based on the same proposition. It is Ay € R=Dx(n=1) and
w.l.o.g. we assume that N}, N} are aggregated to N_,. Moreover, we assume that
N! , is used to modify the prolongation. The structure of R, Px follows as

(9.3)

I, I,

I, 1 1
R = ? , X = and Py =
1 p 1 —p p 1—p

1 1

To prove that Ay x has the same structure as A we consider three types of rows:

j<n-—3: Forj<n—3 therow j-th row of Ay x is

(A )‘ o 0,X 0,X 0,X 0,X
0,X)j,, = \Aj1 s+ jpn_3,Q5n 09,05, 1

= (aj,lv ey Qjn—3, P jp—1 + Qjp_2, (1— p)@j,n—1 + Clj,n>

It follows for p € [0, 1]

aj; = a;; >0, ayy <0 for k+#j
n—1 n—3
and Z ‘G?,’ix\ = ( Z |aj7i‘> + pajn1+ ajno| + (1 —p)aj,_1+ a;,|
i=1,i#] i=1,i#j

n—3
= ( > |aj,z'\> + P ajn-1| + ajn—2| + (1 = p)|ajn-1] + [ajnl
i=1,itj

n

= > laal < a5 =af;.
i=1,i#j

j=n—2: The (n—2)-th row of Ay x is

(Ao x)n—2, = (%—2,1, s Q293P A2 1+ An_2n—2, (1 — D)ay_2,—1 + an—z,n>

0,X

n_o; < 0for j #n—2and p € [0,1]. Moreover we obtain from

It follows obviously a

the weak diagonal dominance of A the inequality

p‘an—Zn—1|f;an—Zn—2
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for p € [0,1]. This implies ag’fg,n_z > 0 for p € [0,1). Furthermore we obtain from the
weak diagonal dominance of A for p € [0, 1]

n—1 n—3
Z ‘QSL’_XQ’Z“ = <Z ‘an—2,i‘) + ‘(1 - p)an—2,n—1 + an—2,n|

i=1,i#n—2 i=1

n

= Z |an—2,i|_p|an—2,n—1‘

i=1,i#n—1

< _0,X
=~ an—2,n—2 - P |an—2,n—1| - an_Q,n_Q-

Hence the (n — 2)-th row of A x holds the condition for the weak diagonal dominance.

j=n—1: The (n—1)-th row of Ay x is
(AO,X>n—1,. = (an—l,l + Ap1y -5 An-1,n—3 + Up n—3,
Ap—1,n—2 + Qp n—2 + p (an—l,n—l + an,n—1>7

a'n—l,n + an,n + (]- - p) (an—l,n—l + an,n—l)) .
The inequality

ag’i(l’j <0 for 7<n-3

follows immediately from the representation above.

Furthermore we obtain

(94) a27§17n—2 < 0 = a'n—l,n—2 + an,n—2 +p(an—1,n—1 + a'n,n—l) S O

As we have assumed that N;!_, is used to modify the prolongation it follows a, 1,2 <

0. Therewith the inequality (9.4) holds if p is small enough. As an example we consider

_ lan—1,n—2]
p o anfl,nfl'i“an,nfll

as done for the invariance in chapter 5 then it follows
0> apn1n-2+ @nno+0(an-1n-1+ ann-1)
S an—1n-2| + |ann—2| > p(an—1n-1+ ann-1)
& (lan-1pn-2| + |ann—2])(@n-10-1 + |ann-1]) = [@n-1n-2[(@n-10-1 = [@nn-1])
< apn—o|(@n—1n-1+ |ann-1]) >0

and ‘an—l,n—2|(an—1,n—1 + ‘an,n—l‘) Z |an—1,n—2|(an—1,n—1 - ‘an,n—l‘)-
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9.1 Characteristics of matrices

Hence we have a, ", ,,_, < 0 in this case.

For the diagonal element ag’ﬁ,n_l of Ay x we obtain

0,X
n—1n—1

0<a
& 0<ap1n+an,+ (1 —p)an-1n-1+ Gnn-1).
This inequality is fulfilled by several assumptions, too. If it is A = AT then we obtain
Anpn > |ann—1| = |an-1n] and  ap_1n-1 > |@n_1n| = |ann-1|-
And for n > 3 it follows from the irreducibility of A

Apn > |a'n,n—1| or dp—1,n—1 > |a'n—l,n|~

0,X
n—1,n—1

Hence the inequality 0 < a is true for p € [0, 1].

For a matrix A which is not necessarily symmetric we consider the situation again for
p= a2l We obtain

anfl,nfl‘l"an,nfﬂ :

(an—l,n—l + |an,n—1 ‘ )CLSL’—Xl,n—l

:<an—1,n—1 + ‘an,n—1|>(an—1,n—1 - |an,n—1|>

|an—1,n—2|

- (an—l,n—l + ‘an,n—l‘) (an—l,n—l - an,n—l)

An—1n-1 + |ann1]
+ (@n-1,0-1 + |ann-1])(@n-1,n-1 — ann-1)

=(n-1,0-1 F |@nn-1] = [@n-1n—2])(@n-1,n-1 = |an,n-1])
+ (@nn — |an—1,n)(@n-1,n-1 + [@nn-1])

=0n—1,n—1 (an—l,n—l — |an—1n—2| — |an—1,n|) + |ann-1] (an,n - |an,n—1|)
+ (@nnn-1,0-1 = |an—1,0l|@nn-1)-

Based on the weak diagonal dominance the first and second bracket are non negative.
For the third bracket we obtain

an,nan—l,n—l - |an—1,n‘|an,n—1‘ >0
because

Apn = ‘an,n—l‘ and Ap—1n—-1 = ‘an—l,n|
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9 Numerical results

contradicts again the irreducibility of A.

For the condition concerning the weak diagonal dominance of Ay x we only consider

) i . 0,X
the assumption p = lan—1n-2l Ty this case we have a e < 0for kB <n—2. Thus
anfl,nfl‘l"an,nfﬂ n 5
we obtain
n—2 n—2
| 0,X | - _ . 0,X
a’n—l,i - a’n—l,i
i=1 i=1
n—3
- _(an—l,i + an,i) - (an—l,n—2 + An,p—2 +p (an—l,n—l + an,n—l))
i=1
n—2

_(a'n—l,i + an,i) —Papn—1n—1 — PAnn-1

S Ap—1n—1 — |an—1,n| + Qpp — |an,n—1‘ —POpn—1n—1 — PAnn-1
S (1 - p)an—l,n—l + Qp—1n + Ap.n + (1 - p)an,n—l = ag’i(l,n_l-

|an71,n72‘
anfl,n71+‘an,yn71‘
ducible diagonal dominant from the same arguments as in Proposition 9.1.11. We sum

Finally we want to highlight that for p =

it follows that Ay x is irre-

up this result in the following proposition.

Theorem: 9.1.15. Assume that A € R"™™ is an irreducible diagonal dominant L-

matriz. Assume that R, Px are as defined in (9.3) and we set p = - 71‘“":1117;2‘ -

Then Ao x is also an irreducible diagonal dominant L-matriz.

proof. See the calculations above the proposition. O

9.2 Numerical experiments

In this section we want to present and discuss some numerical results. We will com-
pare the preconditioner C’;}D x5 CB%F, Oy Pl and the associated modified options. As in the
analytical consideration we will concentrate on the operators Czpy, Cpt. To compare
the methods we will consider the number of iterations needed to solve the equation
(Itter), the time for one iteration (¢, msec.), the time for the setup (ts., sec.) and the
time for the total algorithm (¢, sec.). In doing so we have to highlight the following:
The main aspect of this paper is to make theoretical assertions on numerical methods

and not to give the best possible implementation method. It is possible to get a good
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9.2 Numerical experiments

idea of which modifiactions or algorithms imply more effort. Furthermore we only use
the GM Res-method preconditioned with the different operators. That means that for
symmetric stiffness matrics we drop the possibility to use the CG-method if the pre-
conditioner is symmetric, too. We will discuss this more in-depth in the section for
symmetic problems.

Furthermore we highlight that there are possibilities to parallelize some steps. We will

discuss the possibilities therefore at the end of the section.

For all experiments we set Q2 = [0, 1] x [0,1]. & is the step width and n, =n, =+ — 1

the number of grid points in the direction of z,y. We use n, = n, = 2® — 1. Thus we

obtain n = 255% = 65025 grid points. Moreover we stop the iteration if the condition
|[AzF — fI| <6 =10"% is fulfilled.

Furthermore we only aggregate only two grid points to a new one as done in all cal-
culations. The rule concerning which points are aggregated follows the arguments of
chapter 8. Hence we classify the possible aggregations by the relative size of the links
to the neighbours. We set J = 15. Hence we use 16 different grids.

9.2.1 The unsymmetric model problem

In this section we will consider three different problems based on the convection diffu-

sion equation

05 bile) g +halen) g — Buley) = fa) Vi) €0

u(z,y) = g(z,y) V(v,y) € 0.

In all problems we set ¢ = const, f = 1 and g = 0. To obtain the stiffness matrix we

use the method of the finite differences and the upwind method.
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To obtain the different problems we define the functions b, b, on the grid points as

follows:
PS1:
— 1)/2+1
bl(l’, l) — (ny + )/ +
Ty
—k «+1)/2
and  by(k,y) = (et 1)/
Ny
forl =1,...,ny and k = 1,...,n,.
(Hence the constant solutions are
given by circles. Cf. Figure 9.1)

PS2: bl = 1, b2 =0.

PS3: by(k,y) = 2=, for k = 1,...n, and

Figure 9.1:
k
b2 = 0.

For the modifications we set

: No modification. X; =1, for j =1,...,J.
X = DZJ_l for j =1,...,J. (The main diagonal.)

: Modification by the inverse of blocks. We only invert the blocks of the dimension

2 x 2. (Cf. section 5.1.1)

: Modification by the inverse of blocks. We invert the blocks of the dimension 2 x 2

and of the dimension 1 x 1. (Cf. section 5.1.1)

. yexact” modification as presented in Proposition 5.1.11 for the arbitrary situation.

For ¢ = 0 and the one dimensional problem this is proved as a perfect choice

concerning the angle (Cf. section 5.1.1.)

. Modification for symmetric matrices. The modification is introduced for sym-

metric matrices but it can be used for other matrices as well (Cf. section 5.2).

: Modification as motivated in section 9.1 based on M-matrix properties.

For the matrices BY) that should approximate A; we set v iterations of the Jacobi-
method (meth. = Jac) or the symmetric Gauss-Seidel-method (meth. = SSOR).
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9.2 Numerical experiments

We start with the tables 9.1 and 9.2. In these tables we present the results for the

problem PS1 for all the three preconditioners and the six different kinds of modification.

Problem: PS1 with b=1,& =271°
meth = Jac, v =1, = 107%
Chpx Chra Capa
teer || Itter | tp t Itter | t t Itter | tp t
708 290 | 120 | 843 || 435 | 244 | 1024 || 454 | 280 | 1082

807 || 321 | 132 | 970 | 454 | 204 | 1147 || 450 | 308 | 1183
808 || 302 | 124 | 953 | 397 | 200 | 1078 || 404 | 284 | 1119
809 || 306 | 120 | 958 | 400 | 204 | 1081 || 382 | 284 | 1092
935 || 152 | 148 | 984 | 130 | 228 | 985 || 127 | 352 | 996
1046 | 116 | 172 | 1081 || 103 | 256 | 1085 || 110 | 364 | 1100
935 || 137 | 144 | 977 | 130 | 240 | 987 | 136 | 304 | 935

cmmchow}—lok‘

Table 9.1:

First we consider the unmodified methods. It is obvious to see that for this complex
problem the BPX-method is more effective than the other methods. This is is not

suprising as we have proved in section 3.6 hat

(96) d’l < dBPX & Ypr < v/ 1/2

Cpr CBPX

Hence the BP X-method is more robust than the D7T-method. Furthermore, we see
that the effort for the 2P-method is higher than for the DT-method and this one is
higher than the effort for the BPX-method. This is based on the projections that are
needed. Moreover we see that in this example the modifications X = 1,2,3 almost
have no influence on the number of iterations. The modifications X = 4,5, 6 work well
on all preconditioners. This is obvious by the number of the iterations in both tables
9.1, 9.2. Unfortuantly we also see that the effort to determine the modification is to
high to obtain a faster method than the unmodified one. Moreover, we highlight that
the effect of the modifications X = 4,5,6 is much higher for the DT-method and the
2P-method than for the BPX-method. This result suggests that the DT-method is
more sensitive with respect to the angle. In the figures 9.2 and 9.3 we consider the
derivation of d/c with respect to p.,,,. for the DT and the BPX-method. In the figures
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Problem: PS1 with b =1, =271°
meth = SSOR, v =1, =107
Chpx Chra Capa
teer || Itter | tp t Itter | tp t Itter | tp t
706 || 137 | 156 | 749 | 180 | 240 | 787 | 406 | 332 | 1032

807 || 138 | 152 | 831 | 179 | 236 | 887 | 390 | 316 | 1111
808 || 142 | 152 | 853 | 206 | 236 | 907 || 375 | 316 | 1095
808 || 141 | 156 | 853 | 201 | 240 | 904 || 364 | 316 | 1083
935 96 | 192 | 965 84 | 276 | 966 | 119 | 352 | 993
1046 | 89 | 232 | 1076 || 68 | 316 | 1073 | 103 | 396 | 1104
934 96 | 188 | 963 84 | 276 | 966 | 126 | 352 | 998

cmmchowr—lok‘

Table 9.2:

9.4 and 9.5 we do the same for the deviation with respect to ypr. The result is
d d d d
( DT) - ( BPX) Vi, > 0
dptypr \ CDT ditypr \ CBPX

d d
& (dDT> > (dBPX) Yypr € (0,1).

dypr \ cpr dypr \ cepx

The equivalence follows from

dypr \ cpr dMWDT CpT dypr Hoa | -
—_———

>0

The result of this consideration is obvious. The DT method is more sensitive with

respect to the angle than the BPX method. And the bigger ypr is, the bigger is the

difference between the methods.

If we compare the three modifications X = 4,5,6 more in-depth then we see that

X = 5 always has the lowest number of iterations, but also the highest effort. The

higher effort results as we have to determine two directions in which a modification is

done. And the lower number of iterations result as information of two directions are

used to modify the system. The methods X =4 and X = 6 are more or less equal for

this example. At last we want to highlight that the relations are the same if we raise
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V.
d <dD_T _ dBPX>
dﬂ'yDT cpT CBPX
30 ‘
15
0 0 1 2
Figure 9.2:
d (dD_T . dBPX)
dypr \ ¢pT CBPX
4
) //
O L
0 0.25 0.5

Figure 9.3:

:LL'YDT

YDT

d (dpi _ dBPX)
dﬂvDT cDT CBPX
3500 |
1500 ¢
00 5 10 Hor
Figure 9.4:
d (dD_T . dBPX)
dypr \ c¢pr CBPX
700
300t
0 |
0 0.5 1 Pt
Figure 9.5:

Next we consider the results in the tables 9.3 and 9.4 for the problem PS2. It is again

the case that the modifications X = 1,2, 3 have no effect on the number of iterations.

Again the methods X = 4,5,6 work in a way that the number of iterations reduces.

We highlight that especially the modification X = 4 is more or less constructed for

exactly this situation. If we now take a closer look at the modifications X = 4,5,6

then we see that the method X = 5 does not have the lowest number of iterations

anymore. Probably this is based on the fact that X = 5 uses two directions for each
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302

Problem: PS2 with b =1, =271°

meth = Jac, v =1, = 1078

Chpx Chra Capa
X | teer || Itter | tp t Itter | tp t Itter | tp t
0 719 78 | 128 | 737 || 101 | 204 | 752 | 114 | 276 | 766
1 819 || 108 | 128 | 819 | 109 | 200 | 855 || 113 | 320 | 869
2 819 || 118 | 120 | 850 | 111 | 208 | 858 || 112 | 316 | 868
3 818 || 118 | 120 | 849 | 112 | 200 | 856 || 117 | 273 | 868
4 950 45 | 144 | 959 33 | 220 | 956 40 | 296 | 961
5 || 1064 | 42 | 168 | 1073 || 38 | 248 | 1075 | 40 | 324 | 1079
6 947 43 | 140 | 956 45 | 224 | 960 59 | 304 | 969
Table 9.3:
Problem: PS2 with b=1,6 =271
meth = SSOR, v =1, = 1078
Chpx Cor. Cyp,
X || teer || Itter | tp t Itter | tp t Itter | ¢y t
0 718 36 | 152 | 725 44 | 264 | 732 89 | 308 | 755
1 819 46 | 168 | 830 43 | 228 | 831 93 | 308 | 858
2 819 39 | 152 | 827 35 232 829 || 110 | 348 | 869
3 819 41 | 152 | 827 32 | 228 | 827 || 118 | 336 | 877
4 948 31 | 184 | 955 20 | 276 | 953 41 | 348 | 964
5 || 1064 || 34 | 228 | 1073 | 19 | 308 | 1070 | 40 | 424 | 1083
6 948 28 | 188 | 954 35 | 312 | 960 58 | 344 | 927
Table 9.4:




9.2 Numerical experiments

grid point that is modified. But in this example the causality is mainly given by one
direction (the second direction has only an influence based on the diffusion). Hence
the second direction in the modification makes effort and has no important causality.
Furthermore we see in particular in table 9.4 that X = 6 is no longer equal to X = 4.
Thus for the DT-method X = 4 is a better choice. We remember that X = 6 is based
on numerical ideas for the iterative methods used on subspaces. We can assume that
in this example and in particular for meth = SSOR the solutions are good. Also for

X = 4. Hence the effect of the right angle is more important.

Now we consider in the table 9.5 and 9.6 results for PS3. We remember that PS3

represents is a one dimensional flux without the condition of a constant b.

Problem: PS3 with b =1, =271°
meth = Jac, v =1, = 107°
Chpx Cor. Cyp,
teer | Itter | tp t Itter | tp t Itter | ¢y t
752 120 | 132 | 785 124 | 216 | 799 507 | 292 | 1212

861 || 125 | 136 | 896 | 108 | 212 | 898 | 116 | 292 | 911
858 || 104 | 132 | 884 90 | 212 | 887 | 372 | 320 | 1140
858 || 106 | 144 | 886 91 | 216 | 887 92 | 324 | 897
971 69 | 148 | 987 92 | 232 | 986 76 | 332 | 1003
1083 || 78 | 172 | 1103 || 60 | 256 | 1102 | 215 | 332 | 1212
972 70 | 148 | 988 61 | 232 | 990 | 484 | 308 | 1405

G)CﬂﬂkC«OI\DI—‘OX

Table 9.5:

For the modifications X = 4,5, 6 there is nothing new. But for this problem the modifi-
cations X = 1,2, 3 also have a positive effect on the number of iterations. In particular
if we consider the methods DT and 2P which are more sensitive with respect to the
angle than the BPX method we see that the number of iterations reduces for X = 3.
This is more obvious for meth = SSOR. This may result from the fact that the solu-
tion on the subspace is in this case better than for meth = Jac. Hence the effect of the

angle is more important.

Now we are going to take a look at the methods C’B%Z, C5; Pl,z~ We remember that these
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Problem: PS3 with b =1, =271°
meth = SSOR, v =1,6 =107%
Chpx Chra Capa
teer || Itter | tp t Itter | tp t Itter | tp t
752 44 1168 | 762 64 | 256 | 774 || 417 | 336 | 1102

861 48 | 172 | 872 95 | 252 | 878 || 100 | 328 | 906
858 42 | 168 | 867 41 | 252 | 871 | 190 | 324 | 965
858 42 | 168 | 868 34 | 256 | 868 91 | 356 | 901
971 37 | 200 | 980 34 | 284 | 982 83 1392 | 1012
1083 || 39 | 236 | 1094 || 27 | 320 | 1093 | 110 | 396 | 1141
971 36 | 200 | 980 41 | 284 | 986 | 447 | 400 | 1375

@W%CO[\D)—‘ON

Table 9.6:

methods are based on the idea to obtain an orthogonality in the multigrid situation
independent of the condition (2.14).

In the tables 9.7 and 9.8 we see that the results are always worse than for C'Bflm, C5; Pl’1.
Worse means that we have a higher effort and a higher number of iterations. Perhaps
this will be better if we use the matrices §k, S N ! also to construct the coarser operators
Ay, and not only for the projections (Cf. the scaled tentative prolongator in [GJV08] ).

This idea will not be outlined in the current work.

We will conclude this section with two remarks. First is that if the stop criterion
becomes harder then the modifications X = 4,5, 6 should become better if we consider
the total time of the algorithm. This is because the number of iterations raises for all
methods and the setting time is fixed independent of the number of iterations. We
present this for the problem PS3. We set

|Az" — f| <6=10"2 or |[Az"—f|<d=10""
instead of |[|A2* — f|| <6 =10""

as used befor. In the tables 9.9 and 9.11 we present the results for meth = Jac. Hence
this tables should be compared with the table 9.5. In the tables 9.10 and 9.12 we
present the results for meth = SSOR. Thus this tables should be compared with the
table 9.6.
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Problem: PS1 with b=1,e =271

meth = Jac, v =1, = 1078

1 1 1
Cppx CDT,Z Czp,z

teer || Itter | tp t Itter | tp t Itter | tp t

705 || 290 | 120 | 840 | 436 | 228 | 1034 || 450 | 324 | 1091

805 || 321 | 128 | 970 | 462 | 212 | 1160 | 474 | 296 | 1223

806 || 302 | 124 | 952 | 402 | 236 | 1087 || 424 | 332 | 1158

806 || 306 | 124 | 956 | 401 | 224 | 1090 | 409 | 316 | 1136

984 || 152 | 164 | 932 | 133 | 260 | 987 || 133 | 328 | 998

1044 || 116 | 172 | 1080 || 104 | 304 | 1088 || 112 | 340 | 1097

CT:OTH&OJI\D}—‘OX

932 || 137 | 152 | 975 | 130 | 260 | 986 || 133 | 316 | 996

Table 9.7:

Problem: PS1 with b=1,6 =271

meth = SSOR, v =1, = 1078

1 1 1
Cppx CDT,Q C2P,2

tset Itter t[t t Itter t[t t Itter t[t t

704 || 137 | 168 | 749 | 180 | 268 | 792 | 405 | 348 | 1043

805 || 138 | 152 | 848 | 182 | 240 | 889 | 409 | 328 | 1138

806 || 142 | 152 | 831 | 218 | 280 | 922 | 396 | 392 | 1137

806 | 141 | 164 | 853 || 209 | 244 | 909 | 382 | 324 | 1104

932 96 | 188 | 961 87 13321 969 | 124 | 392 | 1000

1044 || 89 | 256 | 1076 || 68 | 320 | 1071 | 106 | 436 | 1105

CT:OTHkOJl\DD—‘OX

932 96 | 188 | 961 86 | 320 | 969 || 124 | 392 | 999

Table 9.8:

305



9 Numerical results

In both cases we see that § = 107!2 has no large influence on the total time the
algorithm needs. Hence there is no difference to 6 = 1078, For § = 107'° we see that
a good modification makes the preconditioner more robust. (Additionally we should

highlight that we stop all methods if we have done 1000 iterations.)

Problem: PS3 with b= 1, =271°
meth = Jac, v =1,06 = 1072
Cpx Cora Cops
teer || Itter | tps t Itter | tp t Itter | ¢y t
752 || 173 | 132 | 810 | 178 | 248 | 841 | 726 | 316 | 1611

858 || 187 | 152 | 926 | 165 | 212 | 926 || 176 | 292 | 946
856 || 154 | 140 | 905 | 141 | 212 | 909 | 558 | 300 | 1407
856 || 155 | 144 | 906 || 142 | 212 | 909 | 144 | 316 | 926
968 || 104 | 160 | 998 81 252 996 | 115 | 336 | 1022
1080 || 121 | 184 | 1119 || 94 | 276 | 1117 || 335 | 352 | 1332
968 || 107 | 156 | 999 95 | 268 | 1005 | 685 | 332 | 1761

cr:cn%oow»—nok

Table 9.9:

The second aspect is the behaviour of the modifications if the convection shrinks com-

pared to the diffusion. For this aspect we have to differ between the problems.

In the tables 9.13, 9.14 we consider the problem PS1 for meth = Jac, b = 1 and
e =278 275 Hence these tables should be compared with the table 9.1. If we consider
the unmodified operators we see that the problem becomes easier if € grows. If we con-
sider the modified methods with X = 4,5,6 then we see that this effect is weaker for
these methods. This implies that the effect of the modification is smaller for a bigger ¢.
Hence the modified preconditioners are more robust concerning a small diffusion as the
unmomdified methods. In particular for X = 4,6 the number of iterations is almost
constant. For X = 5 it occurs the effect that with the bigger diffusion there is more
than one direction that has an influence on the behaviour of the system. Hence for a

bigger ¢ we have for X = 5 again a lower number of iterations as needed for X = 4, 6.

In the tables 9.15, 9.16 we consider the problem PS3 for meth = Jac, b = 1 and
e = 278,27% Hence this tables should be compared to the table 9.5. Considering the
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Problem: PS3 with b =1, =271°

meth = SSOR, v =1,06 = 1072

Chpx Chra Capa
X || teer || Itter | tp t Itter | tp t Itter | tp t
0 | 752 67 | 184 | 770 99 | 272 ] 790 | 591 | 356 | 1383
1 858 73 | 172 | 877 84 | 260 | 888 | 152 | 356 | 939
2 856 62 | 172 | 871 63 | 260 | 877 | 267 | 344 | 1032
3 | 856 61 | 172 | 871 52 | 260 | 872 | 141 | 340 | 927
4 1 968 56 | 200 | 983 49 1288 | 985 || 124 | 372 | 1032
5 || 1080 || 60 | 248 | 1098 || 40 | 328 | 1095 || 159 | 408 | 1175
6 | 968 56 | 200 | 984 62 | 296 | 991 | 632 | 376 | 1684

Table 9.10:
Problem: PS3 with b=1,6 =271 ‘
meth = Jac, v =1,6 = 1071 ‘

Ciobx Cora Coi |
X | ter [ Ttter | ¢ | ¢ | Teter | tr |t [ Ttter | ¢ [ ]
0 || 752 || 1000 | 132 | 2087 || 1000 | 236 | 2193 || 1000 | 288 | 2240 ‘
1 858 || 231 | 132 951 | 208 | 232 | 959 || 231 | 288 | 993
2 855 || 1000 | 128 | 2189 || 1000 | 252 | 2290 || 1000 | 324 | 2350
3 | 855 || 1000 | 132 | 2192 || 1000 | 212 | 2277 || 1000 | 288 | 2345
4 1 968 || 131 | 168 | 1009 || 102 | 232 | 1003 || 1000 | 308 | 2484
5 || 1080 || 158 | 176 | 1138 || 1000 | 272 | 2537 || 1000 | 332 | 2621
6 || 968 || 1000 | 148 | 2324 || 1000 | 232 | 2397 || 1000 | 304 | 2479

Table 9.11:
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308

Problem: PS3 with b=1,e =271

meth = SSOR, v =1,6 =101

Chpx Chra Copa
X || teer || Itter | tp t Itter | tp t Itter | tp t
0 752 || 1000 | 172 | 2125 || 1000 | 268 | 2224 || 1000 | 356 | 2310
1 858 93 | 168 | 884 | 105 | 260 | 899 | 193 | 344 | 968
2 855 || 1000 | 172 | 2225 || 1000 | 260 | 2320 || 1000 | 344 | 2399
3 855 || 1000 | 172 | 2226 || 1000 | 260 | 2318 || 1000 | 340 | 2397
4 967 71 | 200 | 987 61 | 288 | 990 | 1000 | 372 | 2539
5 || 1079 || 1000 | 236 | 2517 || 1000 | 328 | 2611 || 1000 | 408 | 2693
6 969 70 | 220 | 990 81 | 288 | 1000 || 1000 | 368 | 2545

Table 9.12:
Problem: PS1 withb=1,¢ =278
meth = Jac, v =1, = 107°

Chpx Cor. Cyp,
X || teer || Itter | tp t Itter | tp t Itter | ¢y t
0 708 || 278 | 124 | 834 | 320 | 204 | 895 | 320 | 276 | 921
1 808 || 295 | 120 | 948 | 333 | 204 | 1008 || 332 | 280 | 1032
2 808 || 264 | 128 | 925 | 294 | 204 | 971 || 318 | 288 | 1018
3 809 || 264 | 128 | 920 | 289 | 200 | 967 || 290 | 280 | 990
4 934 || 140 | 144 | 978 || 129 | 224 | 983 || 129 | 304 | 993
5 || 1027 || 83 | 160 | 1048 || 69 | 248 | 1050 || 92 | 324 | 1067
6 935 || 144 | 144 | 980 | 141 | 224 | 989 || 157 | 304 | 1012

Table 9.13:
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Problem: PS1 withb=1,e =27°
meth = Jac, v =1,6 = 107%
Chpx Chra Capa
teer || Itter | tp t Itter | tp t Itter | tp t
707 || 196 | 128 | 777 || 204 | 204 | 798 | 211 | 280 | 818

807 || 198 | 128 | 880 | 202 | 204 | 897 || 202 | 284 | 913
808 || 201 | 120 | 882 | 204 | 204 | 899 || 220 | 288 | 929
808 || 206 | 120 | 884 | 210 | 204 | 903 || 209 | 280 | 920
936 || 114 | 144 | 967 | 112 | 224 | 976 | 116 | 304 | 987
1026 | 72 | 160 | 1044 || 63 | 244 | 1046 | 73 | 324 | 1056
936 || 122 | 144 | 971 | 129 | 232 | 985 || 137 | 312 | 999

cmmchowr—lok‘

Table 9.14:

unmodified methods we see that in this case the problem becomes more comlex if
grows. But also in this case we see that this effect is smaller for the modified methods
and in particular for the modifications X = 4,5,6. Based on the same arguments as
for PS1 we observe the lowest effect for X = 5. This is probably again based on the
causality of a second direction.

Remarks on parallelisation

As the three preconditioners Cypy, Cpr and Cyp are all additive methods we can
parallelize the multiplication
C o

(2

in that way that we calculate
(BD) ™ Ryv,..., (B)™ Riv,(B®)™" Ry
or  (BYNYN(I;—Qs 1) Ryv,...,(BY)Y (I — Qo) Ry, (BY)™ Ryw

at the same time. It is obvious that this makes all preconditioners faster.

As mentioned at the beginning of this section we set for BY) v iterations of the Jacobi
method or the SSOR method. In doing so it is obvious that for the Jacobi method
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9 Numerical results

Problem: PS3 with b =1, =278
meth = Jac, v =1, = 1078

Chpx Chra Capa
X | teer || Itter | tp t Itter | tp t Itter | tp t
0 752 || 172 | 156 | 814 | 265 | 216 | 894 | 404 | 296 | 1066
1 859 || 174 | 160 | 923 | 226 | 212 | 968 | 228 | 292 | 988
2 856 | 152 | 140 | 904 || 175 | 212 | 930 | 437 | 292 | 1213
3 856 || 151 | 136 | 903 | 173 | 216 | 929 | 172 | 292 | 942
4 | 967 75 | 152 | 985 64 | 232 | 987 68 | 308 | 994
5 || 1075 || 67 | 176 | 1092 || 52 | 256 | 1091 || 128 | 328 | 1137
6 967 80 | 152 | 987 80 [232] 994 | 246 | 304 | 1115

Table 9.15:
Problem: PS3 with b =1, =277
meth = Jac, v =1, = 107°

Chpx Cor. Cyp,
X || teer || Itter | tp t Itter | tp t Itter | ¢y t
0 754 || 267 | 136 | 875 | 342 | 212 | 963 || 350 | 316 | 999
1 853 || 257 | 128 | 966 | 297 | 212 | 1022 | 297 | 328 | 1046
2 855 || 231 | 128 | 949 | 258 | 212 | 989 | 331 | 292 | 1082
3 853 || 214 | 132 935 | 235 | 212 | 969 | 235 | 292 | 987
4 968 || 121 | 148 | 1003 || 115 | 232 | 1006 | 124 | 312 | 1019
5 || 1065 || 82 | 168 | 1087 || 68 | 260 | 1085 || 84 | 328 | 1099
6 968 || 125 | 148 | 1005 || 133 | 232 | 1014 || 193 | 300 | 1066

Table 9.16:
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9.2 Numerical experiments

we can parallize the calculation for the different grid points. If we have enough kernels
then its also possible to use for each grid point its own kernel. For the SSO R-method
this is not possible. Additionally as concerns it is difficult to check the relation between
the numeration of the grid points on coarser grids and the geometrical structure. This

would result in an additional effort.

9.2.2 The symmetric model problem

In this section we are going to consider the problem based on the equation

(9.7) —div(a(x,y) grad u(z,y)) = f(z,y), V(r,y) €

u(z,y) = g(z,y), Y(z,y) € N

~ falz,y) 0

We set f =1 and g = 0. To obtain the associated stiffness matrix we use the method

with

of the finite elements.

a(z,y) = "/e
\
v
In our example the functions
a(x,y) = b(x,y) are set constant
on the single elements. Further-
more the constants for the function
a(x,y) are increasing in the diago- a(z,y) = Ve
nal through the unit square. More a(z,y) = ¥z
exactly we set a(zy) —e
Figure 9.6:

a(z,y)=e for z<y and (k—1)h<x<kh
or y<z and (k—1)h<y<kh (Cf figure9.6).
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9 Numerical results

For the modification we use the idea as presented in section 5.3. Hence we calculate
the eigenvectors of the blocks of the dimension 2 x 2. In section 5.3 we have also seen
that they have for £, — 0 the limits

vy =(1, D" and vy = (=1, 1)".

If we use vy in the modification then we say that the modification is based on the long
waves. If we use vy then we say that the modification is based on the short waves. And

for the modifications we set

X =0: No modification. X; =1I; for j=1,...,J.

= 7 : modification with the long waves. ||v|| = 1.
X = 8: modification with the long waves. ||v;| = v/2.

X =9 : modification with the long waves, scaled with the eigenvalues. |lvi| = \/2/\;.

X = 10 : modification with the short waves. ||vs]| = 1.

X =11 : modification with the short waves. ||vs = v/2.

X = 12: modification with the short waves, scaled with the eigenvalues. ||va| = 1/2/\s.

Unfortunately we see in the tables 9.17 and 9.18 that the modification cause an addi-
tional effort and raise the number of iterations. Only if the solutions on the subspaces
are very good as in the case of meth = SSOR and v = 10 then we see that the modi-
fications X = 10, 11 have a positive influence on the number of iterations. But as the
idea is to use the C'G-method instead of the GM Res-method for symmetric problems
this result is quite worse because for a symmetric preconditioner we need symmet-
ric matrices BY). Hence we may only do one iteration of the Jacobi - method or the

Symmetric Gauss-Seidel method. We will sum this up to the following two aspects:
1. The idea to scale the modification with the eigenvalues not a good idea.

2. If we use the two sided modification then the modification must use an approxi-

mation on the waves with short frequences.

To conclude the consideration of a two sided modification, we highlight that there
are methods for which we obtain better results for the two sided modification. For

the stiffness matrix as defined above we consider the BP X-method with prolongation
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9.2 Numerical experiments

meth = Jac, v =1,0 =1078,e =271

Chpx Chr. Cip,
X || Itter | tp t Itter | tp t Itter | tp t
0 198 | 124 | 791 || 211 | 264 | 819 | 264 | 372 | 902
7 328 | 124 | 1134 || 327 | 256 | 1186 || 315 | 448 | 1254
8 460 | 128 | 1277 || 397 | 224 | 1248 || 382 | 404 | 1325
9 442 | 128 | 1255 || 1000 | 212 | 2391 || 1000 | 400 | 2628
10 || 1000 | 128 | 2294 || 649 | 244 | 1631 || 641 | 376 | 1726
11 ] 1000 | 128 | 2302 || 650 | 212 | 1612 || 641 | 332 | 1690
12 || 1000 | 128 | 2294 | 1000 | 216 | 2392 || 1000 | 308 | 2479

Table 9.17:

meth = SSOR, v =10, =108, e =271

Cupx Cora Copy
X || Itter | tp t Itter | tp t Itter | tp t
0 90 | 884 | 809 | 107 | 956 | 835 | 261 | 1032 | 1071
7 160 | 884 | 1137 || 146 | 980 | 1135 || 311 | 1072 | 1417
8 178 | 880 | 1161 || 154 | 956 | 1141 || 368 | 1036 | 1512
9 183 | 872 | 1167 || 1000 | 976 | 3143 | 1000 | 1052 | 3252
10 || 216 | 868 | 1208 | 92 | 992 | 1066 || 224 | 1096 | 1326
11 || 213 | 880 | 1205 || 91 |960 | 1062 || 225 | 1136 | 1330
12 || 216 | 868 | 1208 || 1000 | 956 | 3129 || 1000 | 1480 | 3553

Table 9.18:
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9 Numerical results

and restriction operators which are based on the geometrical method (cf section 2.5).
Modifications for this are presented in [Tic06]. The results are presented in table 9.19.
We see that for this example the modified preconditioners need less iterations to solve
the system of linear equations. In contrast to the algebraic methods, the setup time
does not rise if we use the modification. This results as for geometrical methods the
modification follows mainly from the geometrical structure. Hence there is no further

effort to determine neighbours for the modification from the elements of the matrix.

We emphasize that we do not consider the DT or the 2P method as it is not as easy
to determine the operator Sy = (Rx Px)~! for the geometrical methods. This would

induce effects we do not want to discuss in this thesis.

Cppx-1 with J =7
v=10=10%ec=2"1
meth = Jac meth = SSOR
X toer || Itter | trp | tges || Itter | tr | Zges
unmodified || 841 || 44 | 76 | 847 | 35 | 100 | 845
modified 805 | 26 |76 |808 | 22 | 96 | 808

Table 9.19:
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A Basics

We will sum up some elemantary definitions and results which do not fit to any chapter.
For this section we assume the following setting:

Let V' be a linear vector space and U, W linear subspaces. Let (.,.) be a dotproduct
and [[v]| := /(v,v) be the associated vectornorm.

Proposition: A.0.1. For all vi,vy € V it s
[ (w1, v2) | < Jon| [oz]]-
Definition: A.0.2. If there is a vy € [0,1) with
(u, w) < vllull wl] Yuel weW
then we say that U, W hold a strengthened Cauchy-Schwarz Inequality.
Proposition: A.0.3. Fora,b € R and ¢ € R, we have
a’  elb?

p< L L0
)

Lemma: A.0.4. For j=1,...,m let a’,b’ be in R". Let further v; <1 be constants
that fulfil

(@, V) < 5 lla|[ V7]

then we obtain for a := (a',;a?, ...,a™) € RMT=Fmm gnd b = (b1, 0%,...,0™) €

R™*-Fm the inequality
(a, b) < |l [|b]

with v = maxj—1__.{v}.

proof. We show the proposition by induction over m. For m = 1 the proposition follows
by the assumption. So we show the induction step. Assume that the assertion is fulfilled
for m — 1. With

a:=(a',...,a™") and b:=(',..., ")
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A Basics

it follows
(a, b)* = ((@,a™), (b,b™)* = (@, b2 + (a™, b™)* + 2(a, b)(a™, b'™)
< A2 @l JBl1% 52 lla™ 1 6™ 17 + 22 [l 16]] lla™ | f16™
<P [ IR + 2 e o2 + 2 (P 0sm 2 + 1512 fla )
= 7@ a™)I* (5, 6™) 1% = ~* llal|* (5]
This shows the proposition for m.

Lemma: A.0.5. Let vy,...,v, €V be orthogonal by pairs. That means

(vi, vj) =0 for i#0.

<%ann> > s(ann)

proof. Based on the orthogonality of the elements we obtain

Then we obtain

2

Thus it follows for the first inequality by using the inequality of Young (A.0.3)

(% (Z ||v,-||>> =SSl 23T Sl o

i=1 j=it+1
1 — 2 o w— [|vill? + ||v;||?

< IS e 2Y S [[vil ' [[v]]
N e -

n 2

=1

= - Zn luel* = Z luil* =

This implies the first inequality. The second inquality is obtained as follows:

n 2 n n
ol =Sl < S el + 2 Z Z vl sl = (Z HvzH)
i=1 i=1 i=1

zl] i+1
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Lemma: A.0.6. For~ € (0,1) we obtain that

mcereases in 7.

proof. We differentiate p with respect to v. Hence we have

dp 1 v (=29)
dry 1—72  2(\/1—92)3
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