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Abstract: In the following dissertation we consider three preconditioners of alge-

braic multigrid type, though they are defined for arbitrary prolongation and restriction

operators, we consider them in more detail for the aggregation method. The strength-

ened Cauchy-Schwarz inequality and the resulting angle between the spaces will be

our main interests. For the problem of the one-dimensional convection we obtain per-

fect theoretical results. Although this is not the case for more complex problems, the

numerical results we present will show that the modifications are also useful in these

situation. Additionally, we will consider a symmetric problem in the energy norm and

present a simple rule for algebraic aggregation.
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1 Introduction

It is a quite old and simple, but even still interesting question how we can practically

solve the system of linear equations

A u = f.

Since scientists from different disciplines use computers to solve mathematical models,

the dimension of the systems of linear equations that can be solved exactly and in ac-

ceptable time is one of the limits for the complexity of the models and the precision of

the conclusions they get. In particular, if the number of equations represents a number

of gridpoints then the dependency of the precision on the size of the matrix is obvious.

As the memory of computers grows and the processors become faster there is also a

need for fast and robust solutions for systems of linear equations.

In the following section we will briefly sum up the popular methods to solve a system

of linear equations. All the presented methods are based on the idea that we consider

a partial differential equation (PDE) on a domain Ω ⊂ R2 (R3) and that the system of

linear equations results from the discretisation of the PDE. For some of the methods

this is a necessary condition. For other methods this is only a motivation (black box

solvers). The following dissertation belongs to the second kind of methods.

We will consider the papers [Van92], [Van95], [VBM96], [VBM01] and [VBT99] in more

detail. These papers introduce and develop the smoothed aggregation method. This

method has a similarity to this thesis. Of course we will present the differences of the

ideas, too. Afterwards we will give a brief outline of this thesis.

The first idea we present is called the domain decomposition method. The idea is based

on the notion that there is a domain Ω on which the continuous problem is defined.

Thus the domain is simply decomposed in n subdomains Ωi ⊂ Ω, i = 1, . . . n. On each

of these, a smaller system of linear equations results. It is obvious that these problems

are easier to solve. But now the problem occurs that the right-hand side for several
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1 Introduction

of the smaller problems is influenced by the solution on the whole domain itself. Fur-

thermore we have to compose the solutions on the different subdomains to a global

solution. For both problems it is obvious that the more the solutions on the subdo-

mains are influenced by each other, the bigger the problem is. Hence this is particularly

problematic for elliptic problems.

In fact this is a quite old idea. The first time the idea was mentioned was in the 19th

century in [Sch70]. Since that time there have been many evolutions and modifications

for this method. Here we just mention the papers [BPS86], [BPS87], [BPS88] and

[BPS89] as examples.

The first applications for the domain decomposition method on big domains are consid-

ered in [VAR60] in the 1960s. The first applications for elliptic problems are considered

twenty years later in [BjH88], [BjW84], [Rou89], [Smi92] and [TRV91].

Another concept is what we call the multigrid method. It is basically motivated as

follows: If we use an iterative solver for the system of linear equations (for example the

Jacobi-method), and we consider the residual error ek = A uk − f after k iterations,

then we can decompose ek into frequences. Even if the iterative method converges,

there are frequences in which the error is reduced quite slowly by the iterative method.

The idea is that on different grids, the error in different frequences shrinks fast. Hence

we use the different grids and solve a linear system of equations on each of them. Again

the problem occurs that we have to build a solution from the solutions on different grids.

In fact these methods can be split into two different types. First there are the mul-

tiplicative methods. In these methods we start on the finer grid with some steps of

an iterative solver. Then the remaining error is mapped into a coarser space. On this

space, a lower dimensional system of linear equations results which we have to solve.

The right-hand side for this system results from the error which remained on the finer

grid. We solve this lower dimensional system of linear equations and map the solution

in the finer grid. As a last step, the mapped solution from the coarser grid is used to

modify the current iteration on the finer grid to obtain a closer approximation to the

solution on the finer grid.

The name of the method is inspired by the fact that there is a matrix representation for

this algorithm which shows that the method is based on the multiplication of different

solvers. We emphasize that as the remaining residuum on the finer grid is used as the

right side in the coarser grid, the coarser grid system needs some information from

current iteration on the finer system. This is obvious from the multiplicative represen-

16



tation of the algorithm we mentioned above.

The other idea is to use an additive method. In these methods we solve the equation,

or a part of it, on different grids or different subspaces respectively. Thus we start

by decomposing the right-hand side f of the system of linear equations which results

in some subspaces. Then we use on each subspace an iterative method (or the exact

inverse) to obtain an approximation for the solution. Afterwards we add the solutions

of the subspaces to obtain a global solution. The name for these methods follows as

the solvers on the different subspaces are linked additively.

If we compare this to the multiplicative methods, two things are obvious:

As the multiplicative methods use more information on coarser grids, these methods

should need less iterations. As the additive methods on a grid need no information from

another grid, these methods can be parallelised in a better way on a parallel computer.

In this case, these methods should be faster.

The multigrid methods were first mentioned the 1960s in [Fed62], [Fed64], [KrD72],

[Brk60] and [Bak66]. In the 1970s, important progress for these methods was made. In

particular, the papers of A. Brandt [Brd73], [Brd77], [Brd82] and [McC87] have been

important for the development of this method.

A popular evolution of the multigrid methods is the introduction of the hierarchical

basis. The idea is to use on finer grids not the nodal basis but the basis of the coarser

grid and some nodal basis functions for the finer grid. One of the most interesting

aspects of this method is that the method can easily be formulated as a block iteration.

This idea was first mentioned in [ZKGB82] and as a similar concept in [McR83]. The

first analyses of this method were mainly influenced by H. Yserentant in [Yse83],

[Yse85], [Yse86] and [Yse86a].

In our thesis, the preconditioners are based on the algebraic concept of multigrid meth-

ods (AMG). In contrast to other (geometrical) multigrids, in these methods the coarser

grids are not defined by a geometrical structure. The coarser grids and coarser opera-

tors are simply calculated by the elements of A itself. Hence it is possible, but no longer

necessary, to have a geometrical stucture on which the problem is based. According to

this concept, the multigrid methods can be used as black box solvers.

This method was developed by Brandt, McCormick and Ruge in [BMR82a], [BMR82b]

and [BMR84]. Further evolutions of this idea are for example presented in [Brd86],

[Stu83] and [Bra95]. Up to now there are many modifications and applications for this

17



1 Introduction

method. The presented dissertation is one of the modifications of this idea.

The smoothed aggregation (SA) is also one of the modifications of the AMG. As the

SA is similar to our modifications, we will briefly introduce this idea:

If there is a multiplicative multigrid method used to solve a system of linear equations,

then we obtain on each grid j = 0, . . . , J a system of linear equations

Ajx
∗,j = f j.

Hence we require a smoother on each grid. If the smoother follows from a splitting

method, then one iteration is defined as

xk+1,j := S̃j(x
k,j) = Mj xk,j + Njf

j

with an iteration matrix Mj . The error after k iterations is defined as

ek,j = x∗,j − xk,j.

Components of the error which are not effectively removable by smoothing, i.e.

Mje
k,j ≈ ek,j,

are called smooth components (or the algebraic smooth error). The idea of the SA

method is to reduce the smooth components of an error we have on grid j on another

grid. Thus the modification handles a similar problem as the multigrid method itself.

In fact the modification should use the same property more effectively than the multi-

grid method itself.

The solution proposed in the SA-method is to modifiy the prolongator. Mostly P̂ is

the common aggregation prolongator. Then P = S P̂ is used where S is a smoother.

In the main idea of SA, the restriction operator follows from R = P T and the matrix

A is symmetric positive definite. As the method deals with the algebraic smooth error,

some knowledge about this is assumed. Hence we have a bit less the property of a

black box method. Mostly, the smoother S is a polynomial in A and the coefficients

of the polynomial are influenced by the eigenvalues of A. This makes it obvious that

some knowledge about the algebraic smooth error (or the matrix A) is used.

The method was introduced by Vanek in [Van92] and [Van95] and developed in [VBM96],

[VBM01], [BrV90], [KrV96] and [VBT99].
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Now we want to highlight some aspects of the SA-method in relation to the present

dissertation. First of all, the SA-method generally uses P = RT , which is not necessary

for our modifications. Furthermore, the SA-method is only introduced for multiplica-

tive multigrid methods and it is based on the idea that iterative methods are used

instead of the exact inverse. In particular, it is pointless to use the exact inverse on

any other grid than the coarsest one in a multiplicative method. Our modifications are

introduced while we use the exact inverse on some subspaces. For additive methods,

this is a possibility to analyse the system and as for some subspaces iterative methods

converge fast this is a reasonable model system. Additionally, we have mentioned that

the most results in the SA-method are for symmetric matrices. However, we will con-

sider the unsymmetric case more in-depth.

At last we will present two modifications of the SA-method. The first one is called the

adaptive smoothed aggregation (αSA) and is introduced in [BFLMRC04]. The idea

of this method is to drop the knowledge of the algebraic smooth error. This error is

estimated by the algorithm itself. Hence we need less information on the linear system

of equations to obtain a fast solution. Based on this modification, the method is again

a bit more a black box solver.

The other evolution is introduced in [GJV08]. In this paper we have R 6= P T because

the smoother is only used to modify the prolongation. Hence we have P = S P̂ and

R = P̂ T . Hence it is quite similar to our modification.

The difference, however, is that A is symmetric in [GJV08] and that the idea of mod-

ification is still given by the algebraic smooth error. The main difference is that the

smoother S is a polynomial in A. Hence S and A commutate. Thus the method is

analysed based on the idea that we have

R A S P = R S1/2 A S1/2 P.

Now we will outline how the presented thesis is organized.

In the second chapter we will briefly introduce a symmetric and an unsymmetric model

problem. These are both based on PDEs. Then we will introduce some operators which

are important for the algebraic multigrid method. In particular, we will give a matrix

representations of the abstract operators used in our theory. This is nothing new, but

it is rarely written down.

In the third chapter we will introduce the three preconditioners we will analyse in this
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1 Introduction

paper. In doing so we will present them as two grid methods. For all of them we will

prove some basic characterisations as for example a sufficient condition for their non

singularity. Two of them (C−1
BPX , C−1

DT ) will be analysed in more detail. We will reduce

the estimations to one parameter, which is based on the strengthened Cauchy-Schwarz

inequality. This is a common instrument to analyse multigrid methods. It is used for

example in [AxB84], [BaD81] and [Bra81]. Afterwards it is easily possible to consider

the behaviour of the operators concerning this constant. In particular, it is possible to

compare the operators to each other. Of course, the detailed analysis is more complex

if the number of grids is raised.

In the fourth chapter we will study some modifications of the prolongation (one sided

modification) or of both, the prolongation and the restriction (two sided modification).

The main result is that the results of the previous chapter still hold if we change the

projection or the spaces in which we decompose an element v ∈ V.

The modifications are presented in the fifth chapter for the model problems we have

presented in the second chapter. Thus they are based on PDEs. Especially for those

systems which are only based on a convection, we obtain perfect results. This is par-

ticulary the case for the one dimensional convection. In the case of more than one

dimension, the theoretical results belong to a condition which is hard to control in a

numerical algorithm. Nevertheless, we will see that the results are also perfect in the

two dimensional situation.

In the sixth and the seventh chapter we will present some aspects for the multigrid

situation. In doing so the main interest is to obtain a condition concerning the non

singularity of the preconditioners. This is done for the unmodified preconditioners in

the sixth chapter and for the modifications in the seventh chapter.

In the eighth chapter we will consider the case of a symmetric matrix A for the unmod-

ified preconditioners in more detail. The analysis of the DT -method in this situation

will lead to the rule for aggregation we use in numerical examples. Furthermore, the

quality of the preconditioner for a given system will be expressed by a constant which

accentuates the black box character of the algebraic aggregation as used.

The ninth chapter is divided into two parts. In the first one we will briefly summarize

some properties of matrices which are useful for iterative methods. Afterwards we

20



consider the properties that are maintained for the coarser operators. In the unmodified

system, all properties remain true, but for the modified preconditioners, this is not

generally the case. In the second part of the ninth chapter we will present numerical

results for the different methods and modifications. The implementation is done in

FORTRAN 90.
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2 Definition of grids, function spaces

and operators

2.1 Basics of finite elements

Let Ω ⊂ R2 be a bounded domain. Then we assume that we can decompose Ω into

closed triangles or squares Λ so, that they hold

Ω = Ωh =
⋃

Λ

and fulfil the following condition R.

Condition R: The intersection of two different triangles (squares) is empty, a common

edge or a common vertex. Each triangle (square) includes a circle of the radius cR · h
and is included in a circle of the radius cR · h−1, where cR does not depend on h.

As our finite elemente space we define

V := S0,h = {vh ∈ C(Ωh) : vh|Λ is linear and vh|∂Ωh
= 0}(2.1)

or V := S0,h = {vh ∈ C(Ωh) : vh|Λ is bilinear and vh|∂Ωh
= 0}(2.2)

In this case the nodal base of V can be constructed as follows: Let N1, . . . ,Nn be the

vertices or nodes of the triangles (squares) {Λ} which are in the interior of Ω. Let then

ϕh,i ∈ V be the linear or bilinear functions for i = 1, . . . , n with

ϕi(Nj) = δi,j,

where δi,j is the Kronecker δ. Thus, for v ∈ V we have the unique representation

v(x) =
n∑

i=1

v(Ni) ϕi(x).

Thus, the dimension of the space V is given by the number of vertices. We set for

i = 1, . . . , n the unit vectors ei for (ϕi)i=1,...,n and represent v by the vector

v = (v(N1), . . . , v(Nn)) .

23



2 Definition of grids, function spaces and operators

2.2 Modell problems

In this section we will introduce some model problems given by partial differential

equations. Then we will denote the stencils we get by the finite element method or the

finite differences method for these problems. These stencils give us the structure of the

matrices we will use as examples for our preconditioners.

Symmetric modell problem: As a first example let us consider the equation

−div(α(x) grad u(x)) = f(x), ∀x ∈ Ω

u(x) = g(x), ∀x ∈ ∂Ω.

Furthermore, we assume

α(x) =

(
a(x) 0

0 b(x)

)
(2.3)

with a(x), b(x) ∈ C1(Ω), a(x), b(x) > 0 for all x ∈ Ω and f(x) ∈ C(Ω). The weak

solution of this problem for a given f ∈ L2(Ω) is given by a function u ∈ H1,2
0 (Ω)

which, for all φ ∈ C∞
0 (Ω) fulfils the equation

∫

Ω

a(x)
∂u

∂x1

∂φ(x)

∂x1
+ b(x)

∂u

∂x2

∂φ(x)

∂x2
dx =

∫

Ω

f(x) φ(x) dx.

We get the finite problem if we set φi ∈ V instead of φ ∈ C∞
0 (Ω). Since the matrix

α(x) in (2.3) is symmetric this also holds for the stiffness matrix we get. This matrix

is induced by the stencils



−δnw −εn −δne

−εw m −εe

−δsw −εs −δse


(2.4)

with m = εw + εe + εn + εs + δnw + δne + δse + δsw

and εi > 0, for i = w, e, n, s

δi > 0, for i = nw, ne, se, sw.

Furthermore the coefficients εi, δi are functions of a(x), b(x).
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2.3 Subspaces, prolongation and restriction

If a(x), b(x) are constant then we obtain for linear functions δi = 0 for i = nw, ne, se, sw.

For bilinear elements, this is the case if we approximate the integrals on the quadratic

elements Λ of the area h2 with the vetices xi, i = 1, . . . , 4 by

∫

Λ

g(x) dx ≈ IΛ(g(x)) := h2

4∑

i=1

g(xi).

In general, the values depend on the approximation of the integral. For the purpose of

an example, it is sufficient to take the structure as given in the stencil (2.4).

Convections diffusion equation: As an unsymmetric example we consider the equa-

tion

b1(x)
∂u

∂x1

+ b2(x)
∂u

∂x2

− ε△u(x) = f ∀x ∈ Ω(2.5)

u(x) = g(x) ∀x ∈ ∂Ω.

Thereby is b ∈ C(Ω) and ε ∈ R+. In this case we use the upwind method for finite

differences for the discretization. Therewith we get for ε > 0 with

m = 4ε + |b1| h + |b2| h

the stencils




0 −ε 0

−b1 h − ε m −ε

0 −b2 h − ε 0




for b1, b2 ≥ 0




0 b2 h − ε 0

−ε m b1 h − ε

0 −ε 0




for b1, b2 < 0




0 b2 h − ε 0

−b1 h − ε m −ε

0 −ε 0




for b1 ≥ 0, b2 < 0




0 −ε 0

−ε m b1h − ε

0 −b2 h − ε 0




for b1 < 0, b2 ≥ 0

2.3 Subspaces, prolongation and restriction

For a linear vector space V of dimension n we will define some subspaces Vi of the

dimension ni < n. We will do this by using restriction operators. That way we can
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2 Definition of grids, function spaces and operators

represent Vi by a ni-dimensonal subspace of Rn or by Rni. As we will reduce the dimen-

sion to solve linear equations, it is important for us to represent them by Rni. However,

to add elements of different subspaces, we need the representation for all of them as

an element of Rn. Thus we define restriction operators by matrices of the dimension

ni × n. To represent an element vi ∈ Vi ≡ Rni that is given as an element of Rni we

need prolongation operators of the dimension R
n×ni.

As we will also consider the preconditioners as black box methods for linear equation

systems, we will give a definition of the subspaces and operators that has nothing to

do with partial differential equations, finite elements, finite differences and so forth, we

will also introduce the subspaces and operators we consider only by matrices.

Some operators will be introduced twice: By a definition for the image of the basis

functions and by a matrix representation. If it is necessary, we will show that the given

matrix is the representation of the respective operator.

2.3.1 Definition of restriction, prolongation and subspaces Vi ⊂ V.

For the space V that is given by

V =< ϕ1, . . . , ϕn >

with the basis functions ϕi, i = 1, · · · , n we set V = VJ and generate recursive subspaces

Vi, i = 0, . . . , J − 1 that fulfil

VJ ⊃ VJ−1 ⊃ · · · ⊃ V0.

For the basis functions ϕi, i = 1, . . . , n of V, we set ϕJ,i = ϕi, for i = 1, . . . , nJ = n.

Assume now that for j ≤ J and for all j ≤ k ≤ J, the spaces Vk are defined by the basis

functions ϕk,i, i = 1, . . . , nk. Then we define a linear restriction operator Rj
j−1 and so

Vj−1 is defined as

Vj−1 =
〈
Rj

j−1ϕj,1, . . . , R
j
j−1ϕj,nj

〉
.

Alternatively we can define basis functions ϕj−1,i for i = 1, . . . , nj−1 by

ϕj−1,i :=

nj∑

s=1

ri,sϕj,s.(2.6)
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2.3 Subspaces, prolongation and restriction

Then we set Vj−1 =< ϕj−1,1, . . . , ϕj−1,nj−1
. >

If we associate Vj with Rnj and Vj−1 with Rnj−1 we write Ṽj and Ṽj−1 respectively. In

this case, (2.6) gives a matrix representation for Rj
j−1, and it is Rj

j−1 ∈ Rnj−1×nj . Since

< ϕj−1,1, . . . , ϕj−1,nj−1
> is a basis of Vj−1, it is obvious that we get rk(Rj

j−1) = nj−1.

Further, we define for the prolongation also a linear operator P j−1
j : Vj−1 → Vj by the

definition for the basis functions. Because of Vj−1 ⊂ Vj, the identity is a quite common

choice for P j−1
j . If we use the vector representation by an element of Ṽj−1 ≡ R

nj−1 or

Ṽj ≡ Rnj respectively for the elements ṽj−1 ∈ Ṽj−1, ṽj ∈ Ṽj we need the prolongation

operator as a matrix P j−1
j ∈ Rnj×nj−1 . The simplest choice is to set P j−1

j = (Rj
j−1)

T .

In this work we will only consider the situation

P j−1
j := (Rj

j−1)
T .

Hence we define the prolongation this way. As already mentioned in the introduction

we will also consider situations in which we only modify the prolongation. But this

will be obvious by another notation. At least P j−1
j should fulfil rk(P j−1

j ) = nj−1. For

P j−1
j = (Rj

j−1)
T this is obvious fulfilled.

If we have defined the operators Rj
j−1 and P j−1

j for j = 1, . . . , J then we can define the

following operators for an easier notation:

1. Based on the definition of Rj
j−1 for j = 1, . . . , J we define Rl

k : Vl → Vk for

0 ≤ k < l ≤ J by

Rl
k := Rk+1

k ◦ · · · ◦ Rl
l−1.

In particular, we set for j = 0, . . . , J

Rj := RJ
j and RJ = In.

2. Based on the definition of P j−1
j for j = 1, . . . , J we define for P k

l : Vk → Vl

0 ≤ k < l ≤ J by

P k
l := P l−1

l ◦ · · · ◦ P k
k+1.

In particular, we set for j = 0, . . . , J

Pj := P j
J and PJ = In.
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2 Definition of grids, function spaces and operators

At this point it is irrelevant whether the operators are identified by matrices or not. If

we have the representation by matrices and we have a linear operator A = AJ : V → V,

we define coarser operators Aj for j = 0, . . . , J − 1 iteratively by

Aj = Rj+1
j Aj+1 P j

j+1.(2.7)

This immediately implies

Aj = Rj A Pj

and, based on the assumption of Pj = (Rj)
T , this implies for vj = Pj ṽj and wj = Pj w̃j

(Aj ṽj, w̃j) = (A Pj ṽj, Pj w̃j) = (A vj , wj).

If we interpret Pj as the identity and so ṽj, w̃j and vj, wj as representations of the same

elements in different spaces,the dot product is independent of the space in which we

consider the elements.

Furthermore, we define the operators Qj , Q̂j for j = 0, . . . , J − 1 by

Qj : Ṽj+1 → P j
j+1(Ṽj) with

(ṽj+1, P j
j+1 ṽj) = (Qj ṽj+1, P j

j+1 ṽj), for all ṽj+1 ∈ Ṽj+1, ṽj ∈ Ṽj(2.8)

Q̂j : VJ → Vj with

(vJ , vj) = (Q̂j vJ , vj), for all vj ∈ Vj , vJ ∈ VJ .(2.9)

Remark: 2.3.1. With these definitions, it is obvious that Qj , Q̂j are the orthogonal

projections with respect to the inner products (., .).

And at last we define the vector spaces W t
j , W̃j and Wj for j = 1, . . . , J with the basis

ϕJ,i, i = 1, . . . , nJ by

W t
j :=

〈
(Q̂j − Q̂j−1)ϕJ,1, . . . , (Q̂j − Q̂j−1)ϕJ,n

〉

W̃j := 〈(Ij − Qj−1)Rj ϕJ,1, . . . , (Ij − Qj−1)Rj ϕJ,n〉

Wj := 〈Pj(Ij − Qj−1)Rj ϕJ,1, . . . , Pj(Ij − Qj−1)Rj ϕJ,n〉 .
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2.3 Subspaces, prolongation and restriction

2.3.2 Basic results for matrices

First we define the i-th unitvector of Rnj by ej
i for j = 0, . . . , J and i = 1, . . . , nj and

the identity matrix of the dimension nj × nj by Ij .

With the definitions of the prolongation and restriction operators we will now assume

the following characteristics for their matrix representations :

Rj+1
j ∈ R

nj×nj+1, rk(Rj+1
j ) = nj

P j
j+1 = (Rj+1

j )T ∈ R
nj+1×nj , rk(P j

j+1) = nj.

Hence follows immediately that

Rj+k
j ∈ R

nj×nj+k, rk(Rj+k
j ) = nj

P j
j+k = (Rj+k

j )T ∈ R
nj+k×nj , rk(P j

j+k) = nj .

Further, we define the matrices Sj ∈ Rnj×nj , Ŝj ∈ Rnj×nj for j = 0, . . . J by

Sj := (Rj+1
j P j

j+1)
−1 and Ŝj := (Rj Pj)

−1.

Therewith we obtain the follwing relation.

Remark: 2.3.2. By the definitions for P j
j+1, Rj+1

j ,

(Rj+1
j P j

j+1)
T = Rj+1

j P j
j+1 and (Rj Pj)

T = Rj Pj.

holds for all j = 0, . . . , J. Furthermore Rj+1
j P j

j+1 and Rj Pj are positive definite.

proof. First, just by the definition of P j
j+1 = (Rj+1

j )T we obtain Pj = RT
j . This implies

(Rj+1
j P j

j+1)
T = (P j

j+1)
T (Rj+1

j )T = Rj+1
j P j

j+1

and (Rj Pj)
T = P T

j RT
j = Rj Pj .

Further, for a ṽj ∈ Rnj we get

(Rj+1
j P j

j+1 ṽj, ṽj) = (P j
j+1 ṽj, P j

j+1 ṽj) = ‖P j
j+1 ṽj‖2 ≥ 0.

And as P j
j+1 ∈ Rnj+1×nj has rank nj , we have ‖P j

j+1 ṽj‖2 = 0 if and only if we have

ṽj = 0. This proves that Rj+1
j P j

j+1 is positive definite. By the same arguments, the

propositions for Rj Pj holds.
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2 Definition of grids, function spaces and operators

From Remark 2.3.2 follows in particular rk(Rj+1
j P j

j+1) = rk(Rj Pj) = nj . Hence the

operators Sj, Ŝj, j = 0, . . . , J are well posed. Further, we get the following basic

propositions for them:

Remark: 2.3.3. From the definitions for Sj , Ŝj it follows that Sj , Ŝj are symmetric

and positive definite (s.p.d.) for j = 0, . . . , J.

proof. With Remark 2.3.2, these characteristics hold for S−1
j and Ŝ−1

j respectivly. Hence

the proposed characteristics follow for the operators Sj , Ŝj.

Lemma: 2.3.4. By the definitions of section 2.3

1. Qj = P j
j+1 Sj Rj+1

j and Q̂j = Pj Ŝj Rj , holds for j = 0, . . . , J − 1.

2. The operators (Ij+1 − Qj) : Ṽj+1 → (P j
j+1(Ṽj))

⊥ and (I − Q̂j) : V → V ⊥
j are the

orthogonal projection concerning the inner product (., .).

3. We have Qj−1ṽj = 0 for an ṽj ∈ Ṽj, if and only if we have Rj
j−1 ṽj = 0. We have

Q̂jv = 0 for an v ∈ V, if and only if we have Rj vj = 0.

4. Q̂j Q̂k v = Q̂k Q̂j v = Q̂j v holds for j ≤ k.

proof. 1. Because of the uniqueness of the orthogonal projection with respect to a

given inner product, it is sufficient to prove that the operators Qj , Q̂j define each

an orthogonal projection. By the definition of Sj , we have for j = 0, . . . , J − 1

(Qj)
2 = P j

j+1 Sj Rj+1
j P j

j+1 Sj Rj+1
j

= P j
j+1 (Rj+1

j P j
j+1)

−1 Rj+1
j P j

j+1 Sj Rj+1
j

= P j
j+1 Sj Rj+1

j = Qj.

Hence Qj is a projection. From the symmetry of Sj follows with P j
j+1 = (Rj+1

j )T

(Qj)
T = (P j

j+1 Sj Rj+1
j )T = (Rj+1

j )T (Sj)
T (P j

j+1)
T = P j

j+1 Sj Rj+1
j = Qj .

This proves the orthogonality with respect to the inner product (., .). The results

for Q̂j follow by the same arguments.

2. As Qj and Q̂j are orthogonal projections this also holds for (Ij−Qj) and (I−Q̂j).
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2.3 Subspaces, prolongation and restriction

3. From the definition of Qj−1 as Qj−1 = P j−1
j Sj−1 Rj

j−1 it is obvious that Rj
j−1ṽj = 0

implies Qj−1 ṽj = 0. For the other implication we have that Sj−1 is positive definite

and P j−1
j has rank nj−1. For wj 6= 0, we therefore obatin also P j−1

j Sj−1 w̃j 6= 0.

So Qj−1ṽj = 0 implies Rj
j−1 ṽj = 0. The propositions for Q̂j and Rj follow again

by the same arguments.

4. For j ≤ k we get

Q̂j Q̂k v = Pj Ŝj Rj Pk Ŝk Rk v

= Pj Ŝj Rk
j Rk Pk Ŝk Rk v

= Pj Ŝj Rk
j Rk v = Q̂j v.

By the same arguments follows Q̂k Q̂j v = Q̂j v.

The fourth proposition of Lemma 2.3.4 immediately implies that

((Q̂i − Q̂i−1) v, (Q̂i − Q̂i−1) v) = ((Q̂i − Q̂i−1) v, v), for i = 1, . . . , J

(Q̂0 v, Q̂0 v) = (Q̂0 v, v)

((Q̂i − Q̂i−1) v, (Q̂j − Q̂j−1) v) = 0, for i, j = 1, . . . , J, i 6= j

and ((Q̂i − Q̂i−1) v, Q̂0 v) = 0, for i = 1, . . . , J.

These characteristics follow immediately as the operators are all orthogonal projections

with respect to the standard inner product.

The operators Aj ∈ Rnj×nj , j = 0, . . . , J − 1 as defined in (2.7) represent the operator

A on the subspaces Vj, j = 0, . . . , J −1. So as we want to use the operators Aj to solve

for an given operator A ∈ Rn×n and a given f ∈ Rn the equation A u = f we need that

the operators Aj are non singular.

Lemma: 2.3.5. 1. Let A ∈ Rn×n be a non singular matrix. Then it follows that Aj

is non singular if and only if there is no vj ∈ Vj with A vj ∈ V ⊥.
j

2. If A is s.p.d then is Aj for all j = 0, . . . , J − 1 s.p.d.

In particular this implies that Aj is non singular.

3. If A is real positive then is Aj for all j = 0, . . . , J − 1 real positive.

In particular this implies that Aj is non singular.
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2 Definition of grids, function spaces and operators

proof. 1. For an arbitrary j = 0, . . . , J−1 is Q̂j = Pj Ŝj Rj the orthogonal projection

V → Vj. And as it is Q̂j v = 0 if and only if it is Rj v = 0 we obtain Rj v = 0 if

and only if it is v ∈ V ⊥
j . As we have rk(Pj) = nj for Pj ∈ RnJ×nj we obtain that

there is an ṽj ∈ Ṽj with

Aj ṽj = Rj A Pj ṽj = 0

if and only if there is an vj = Pj ṽj ∈ Vj that holds Rj A vj = 0. And this is

equivalent to A vj ∈ V ⊥.
j

2. If A is s.p.d. then it follows

AT
j = (Rj A Pj)

T = P T
j AT RT

j = Rj A Pj = Aj .

and for an arbitrary ṽj ∈ Ṽj with ṽj 6= 0

ṽT
j Aj ṽj = ṽT

j Rj A Pj ṽj = (Pj ṽj)
T A Pj ṽj︸︷︷︸

6=0

> 0.

This implies that Aj is s.p.d. and therewith non singular.

3. If A is real positiv then it follows aj
i,k ∈ R for all elements aj

i,k of Aj = Rj A Pj .

Again for an arbitrary ṽj ∈ Ṽj with ṽj 6= 0 we obtain

ṽT
j Aj ṽj = ṽT

j Rj A Pj ṽj = (Pj ṽj)
T A Pj ṽj︸︷︷︸

6=0

> 0.

This implies that Aj is real positive and therewith non singular.

Corollary: 2.3.6. Let A ∈ Rn×n be a non singular matrix. Then it follows that Aj is

non singular if and only if there is no wj+1 ∈ V ⊥
j that holds A−1wj+1 ∈ Vj.

proof. The proposition is equivalent to the first proposition of Lemma 2.3.5.

The following technical aspect we will use frequently:

Lemma: 2.3.7. For j = 1, . . . , J − 1 it is

Rj
j−1(Ij − Qj−1) = 0.
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2.3 Subspaces, prolongation and restriction

proof. Based on the definition of Sj−1 we obtain

Rj
j−1(Ij − Qj−1) = Rj

j−1(Ij − P j−1
j Sj−1 Rj

j−1)

= Rj
j−1 − Rj

j−1 P j−1
j Sj−1 Rj

j−1 = Rj
j−1 − Rj

j−1.

Now we will give an alternative representation for Q̂j , that applies under a certain

condition.

Lemma: 2.3.8. By the definitions of P j−1
j , Sj−1, Ŝj and Ŝj−1 we have for j = 1, . . . , J−

1

Q̂j−1 = Pj Ŝj Qj−1 Rj

if and only if we have

Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1.

proof. By the definition of Q̂j−1 by Q̂j−1 = Pj−1 Ŝj−1 Rj−1 and because of rk(Pj) =

rk(Rj) = nj we obtain

Q̂j−1 = Pj Ŝj Qj−1 Rj = Pj Ŝj P j−1
j Sj−1 Rj

j−1 Rj

⇔ Pj−1 Ŝj−1 Rj−1 = Pj Ŝj P j−1
j Sj−1 Rj−1

⇔ P j−1
j Ŝj−1 = Ŝj P j−1

j Sj−1.

This is the proposition.

The meaning of this lemma is that the operators Ŝj, P
j−1
j commutate and Ŝj−1 =

Ŝj ◦Sj−1 holds. If we consider the matrix representations of the operators, the equation

Ŝj−1 = Ŝj ◦ Sj−1 is not well posed just by the dimensions of the matrices. But even if

we use the definitions of the operators just by their effect, the equation Ŝj−1 = Ŝj ◦Sj−1

does not hold in all situations. Furthermore it is obvious that the equations

Ŝj−1 = Ŝj ◦ Sj−1 and Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1

are the same if we interpret P j−1
j as the identity. Remember that we have done this as

we have associated the spaces Rn, Rni with the spaces of linear or bilinear functions.
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2 Definition of grids, function spaces and operators

Lemma 2.3.8 immediately implies that if the assumption of this lemma is fulfilled

Pj Ŝj (Ij − Qj−1) Rj = Pj Ŝj (Ij − P j−1
j Sj−1 Rj

j−1) Rj

= Q̂j − Pj Ŝj P j−1
j Sj−1 Rj

j−1 Rj

= Q̂j − Q̂j−1 follows.

Furthermore, it follows in this case that the matrices Ŝj , j = 0, . . . , J − 1 are not

needed to get matrix representations for orthogonal projections Q̂j . This results from

the following corollary.

Corollary: 2.3.9. If Ŝj+1 P j
j+1 Sj = P j

j+1 Ŝj holds for all j = 0, . . . , J − 1, it follows

for all v ∈ V

Pj Ŝj = P J−1
J SJ−1 P J−2

J−1 SJ−2 . . . P j
j+1 Sj

and Q̂j = P J−1
J SJ−1 P J−2

J−1 SJ−2 . . . P j
j+1 Sj Rj .

proof. By the representation Q̂j = Pj Ŝj Pj for j = 0, . . . , J − 1, the second proposition

follows immediately from the first one. The first proposition obviously holds for j =

J − 1 according to the assumption. Assume now that the equation holds for k > j.

Then we obtain

Pj Ŝj = P j+1
J P j

j+1 Ŝj

= P j+1
J Ŝj+1 P j

j+1 Sj

= P J−1
J SJ−1 P J−2

J−1 SJ−2 . . . P j
j+1 Sj.

Further Lemma 2.3.8 directly implies the following representation of the norm:

Corollary: 2.3.10. If Ŝi P
i−1
i Si−1 = P i−1

i Ŝi−1 holds, then it follows for all v ∈ V that

‖(Q̂i − Q̂i−1)v‖2 = (Ŝi (Ii − Qi−1) Ri v, (Ii − Qi−1) Ri v)

proof. By the assumption we obtain for an arbitrary v ∈ V

(Ŝi (Ii − Qi−1) Ri v, (Ii − Qi−1) Ri v)

= (Ŝi (Ii − Qi−1) Ri v, Ri Pi Ŝi (Ii − Qi−1) Ri v)

= (Pi Ŝi (Ii − Qi−1) Ri v, Pi Ŝi (Ii − Qi−1) Ri v)

= ((Q̂i − Q̂i−1)v, (Q̂i − Q̂i−1)v).
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2.4 The aggregation method

2.4 The aggregation method

2.4.1 The general setting

Now we will introduce the aggregation method. Hence we set for the nodes N J
i = {Ni},

for i = 1, . . . , n. If {N j
i }i=1,...,nj

and ϕj,i are defined for j ∈ {1, . . . , J}, then we define

some kind of node-like sets

N j−1
i ⊂ {N j

1 , . . . ,N j
nj
}, i = 1, . . . , nj−1

in such a way that we have

nj−1⋃

i=1

N j−1
i = {N j

1 , . . . ,N j
nj
} and N j−1

i ∩N j−1
k = ∅ for k 6= i.

Furthermore, we define the following sets of indices

Ij−1,j
i := {l ∈ {1, . . . , nj} |N j

l ⊂ N j−1
i }.

So the aggregation method is defined as we set for i = 1, . . . , nj−1

ϕj−1,i(x) :=
∑

k∈Ij−1,j
i

ϕj,k(x).

Vj−1 is defined as

Vj−1 =< ϕj−1,1, . . . , ϕj−1,nj−1
>

and we obtain dim(Vj−1) = nj−1. As v ∈ V = VJ has a unique representation v ∈
R

n, each vj ∈ Vj, j = 0, . . . , J has a unique representation vj ∈ R
nj . We get these

representations the same way. For j = 0, . . . , J and i = 1, . . . , nj , we set the unit

vector ej
i ∈ Rnj for ϕj,i. We obtain

vj(x) =

ni∑

i=1

vj(N j
i )ϕj,i(x) ≡

(
v(N j

1 ), . . . , v(N j
n)
)
.

With the definition of the spaces V0, . . . , VJ , we can also define the sets

Ij−k,j
i := {l ∈ {1, . . . , nj} |N j

l ⊂ N j−k
i }

and in particular the sets

Ik
i := {l ∈ {1, . . . , nJ} |N J

l ⊂ N k
i }.
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2 Definition of grids, function spaces and operators

Now we can define the following expressions: We say that two points (or sets) N j
i ,N j

k , i 6=
k of level j are aggregated if and only if i, k ∈ Ij−1,j

t holds for a t = 1, . . . , nj−1. Further,

we say that N j
i is isolated if and only if i ∈ Ij−1,j

s and |Ij−1,j
s | = 1 hold.

More generally, we say for 1 ≤ j ≤ J and 1 ≤ k ≤ j that the points N j
i(1), . . . ,N

j
i(l)

are aggregated to N j−k
t if i(1), . . . , i(l) ∈ Ij−k,j

t holds. Further, we say in this case

N j
i(1), . . . ,N

j
i(l) ⊂ N j−k

t .

Now for j = 1, . . . , J the linear restriction operators Rj
j−1 : Vj → Vj−1 which imply

these subspaces are given as follows:

Rj
j−1ϕj,i = ϕj−1,k, with i ∈ Ij−1,j

k .

For the linear prolongation operators P j−1
j : Vj−1 → Vj we want to ensure that P j−1

j ≡
idVj−1

holds. If we use R
nj−1 for Vj−1, we want to have P j−1

j = (Rj
j−1)

T . For that we

define P j−1
j : Vj−1 → Vj as

P j−1
j ϕj−1,i =

∑

k∈Ij−1,j
i

ϕj,k = ϕj−1,i.

In Figure 2.1 we have illustrated the set of nodes N 2,N 1 and N 0 that describe the

decrease of the system’s dimension. For the one-dimensional case we have illustrate

the effect of R2
1 and R2

0 = R1
0 R2

1 on a function v that is given as the sum of two basis

functions in Figure 2.2.

N 2
1 N 2

2 N 2
3

N 2
7 N 2

8 N 2
9

N 1
1 N 1

2

N 1
3

N 1
4

N 1
5 N 1

6

N 0
1 N 0

2

N 0
3

N 0
4

Figure 2.1: Coarsing of the grids

So far the restriction and prolongation operators are defined for function spaces Vj . The

same way we will introduce the operators Sj, Ŝj. Hence we define the linear operator
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Figure 2.2: Effect of R2
1 and R1

0 on v = ϕ2
2 + ϕ2

5
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2 Definition of grids, function spaces and operators

Sj : Vj+1 → Vj+1 for j = 0, . . . , J − 1 by

Sj ϕj+1,i :=
1

|Ij,j+1
k |

ϕj+1,i, with i ∈ Ij,j+1
k .(2.10)

Analogously, we define the linear operator Ŝj : Vj → Vj for j = 0, . . . J − 1 by

Ŝj ϕJ,i :=
1

|Ij,J
k |

ϕJ,i, with i ∈ Ij
k(2.11)

and ŜJ := Id.(2.12)

The following lemma will show that one of the characteristics of these operators is

that Sj Rj+1
j and Ŝj Rj respectively are the identity on certain subspaces of Ṽj+1 and

V respectively.

Lemma: 2.4.1. For j = 1, . . . , J

1. the operator Sj as defined in (2.10) fulfils

Sj Rj+1
j ϕj,i = ϕj,i = Rj+1

j Sjϕj,i, ∀ϕj,i ∈ Vj.

2. the operator Ŝj as defind in (2.11) fulfils

Ŝj Rjϕj,i = ϕj,i = Rj Ŝjϕj,i, ∀ϕj,i ∈ Vj.

proof. 1. Let ϕj,i ∈ Vj be an arbitrary base function with

ϕj,i =
∑

k∈Ij,j+1
i

ϕj+1,k.

Then we have

Sj Rj+1
j ϕj,i = Sj Rj+1

j

∑

k∈Ij,j+1
i

ϕj+1,k = Sj

∑

k∈Ij,j+1
i

Rj+1
j ϕj+1,k = Sj

∑

k∈Ij,j+1
i

ϕj,i

= |Ij,j+1
i | · Sj ϕj,i = |Ij,j+1

i | · 1

|Ij,j+1
i |

ϕj,i = ϕj,i

and

Rj+1
j Sj ϕj,i = Rj+1

j Sj

∑

k∈Ij,j+1
i

ϕj+1,k = Rj+1
j

∑

k∈Ij,j+1
i

Sj ϕj+1,k

= Rj+1
j

∑

k∈Ij,j+1
i

1

|Ij,j+1
i |

ϕj+1,k =
1

|Ij,j+1
i |

∑

k∈Ij,j+1
i

Rj+1
j ϕj+1,k

=
1

|Ij,j+1
i |

|Ij,j+1
i |ϕj,i = ϕj,i.
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2.4 The aggregation method

2. The proposition for Ŝj follows by exactly the same arguments.

In Section 2.3.2 we have seen in Lemma 2.3.4 that by the definition of P j
j+1 as P j

j+1 =

(Rj+1
j )T and Sj as (Rj+1

j P j
j+1)

−1 we have a representation of the orthogonal projection

Qj by Qj = P j
j+1 Sj Rj+1

j . Analogously this also holds for Q̂j . Now we will see that by the

given definitions for the operators P j
j+1, R

j+1
j , Sj and Ŝj and their characteristics, which

we have shown above, we get the same representations for the orthogonal projections

Qj and Q̂j respectively.

Lemma: 2.4.2. With the operators Sj, Ŝj as defined in (2.10), (2.11), it holds for Qj

and Q̂j that

Qj = P j
j+1 Sj Rj+1

j and Q̂j = Pj Ŝj Rj .

proof. Because of the definition of Qj , Q̂j as orthogonal projections with respect to

the inner product (., .) and the uniqueness of these operators we have to prove that

the operators P j
j+1 Sj Rj+1

j , Pj Ŝj Rj are orthogonal projections too. This will only be

shown for the operator Qj because of the the proof follows by the same arguments for

Q̂j .

First we show that Qj is a projector, i.e. Qj = (Qj)
2. For all vj+1 ∈ Vj+1 we obtain

P j
j+1 Sj Rj+1

j vj+1 ∈ Vj.

Further, we obtain

Sj Rj+1
j vj = vj ∀vj ∈ Vj

and P j
j+1 is the identity. So we get

P j
j+1 Sj Rj+1

j vj = vj ∀vj ∈ Vj.

Considering these conlusions, we have for all vj+1 ∈ Vj+1

(P j
j+1 Sj Rj+1

j ) P j
j+1 Sj Rj+1

j vj+1︸ ︷︷ ︸
∈Vj

= P j
j+1 Sj Rj+1

j vj+1.

This means that (Qj)
2 = Qj .

Further, we need to prove that for the operator Qj, that for all vj ∈ Vj and all vj+1 ∈
Vj+1, we obtain

(Qj vj+1, vj) = (vj+1, vj).
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2 Definition of grids, function spaces and operators

By the linearity of the operator, it is sufficient to prove this for the basis functions of

the spaces. Let ϕj+1,i ∈ Vj+1 and ϕj,k ∈ Vj be two arbitrary base functions. Then there

exist unique n, m ∈ {1, . . . , nj} with

P j
j+1 Sj Rj+1

j ϕj+1,i = P j
j+1 Sj ϕj,n = P j

j+1

1

|Ij,j+1
n |

ϕj,n

=
1

|Ij,j+1
n |

∑

t∈Ij,j+1
n

ϕj+1,t

and ϕj,k =
∑

s∈Ij,j+1
m

ϕj+1,s.

Now we remember that by the definition of the sets Ij,j+1
n , we obtain n = m or Ij,j+1

n ∩
Ij,j+1
m = ∅. Then n = m is equivalent to i ∈ Ij,j+1

m . Hence we get

(Qj ϕj+1,i, ϕj,k) =


 ∑

t∈Ij,j+1
n

ϕj+1,t,
∑

s∈Ij,j+1
m

ϕj+1,s




=





∑
t∈Ij,j+1

m
(ϕj+1,t, ϕj+1,t) if n = m

0 else

and (ϕj+1,i, ϕj,k) =


ϕj+1,i,

∑

s∈Ij,j+1
m

ϕj+1,s




=





∑
t∈Ij,j+1

m
(ϕj+1,t, ϕj+1,t) if i ∈ Ij,j+1

m

0 else

This completes the poof of Lemma 2.4.2

2.4.2 Matrix representations

In this section we will give matrix representations of the linear operators Rj
j−k, P

j−k
j , Sj

and Ŝj used for the aggregation method so far. With the unit-vectors ej
t ∈ Rnj , we

define the matrix Rj
M,j−1 ∈ Rnj−1×nj by its rows (Rj

M,j−1)i,., i = 1, . . . , nj−1 with

(Rj
M,j−1)i,. =

∑

t∈Ij−1,j
i

(ej
t)

T .
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2.4 The aggregation method

Furthermore, we define the following matrices for j = 1, . . . , J and 1 ≤ k < j :

Rj
M,j−k ∈ R

nj−k×nj by Rj
M,j−k := Rj−k+1

M,j−k · · · · · Rj
M,j−1

P j
M,j+1 ∈ R

nj+1×nj by P j
M,j+1 = (Rj+1

M,j)
T

P j−k
M,j ∈ R

nj−k×nj by P j−k
M,j := P j−1

M,j · · · · · P j−k
M,j−k+1.

Lemma: 2.4.3. By the definitions of Rj
j−k, P

j−k
j and Rj

M,j−k, P
j−k
M,j and the definition

of ej
i ∈ R

nj as a representation of ϕj,i ∈ Vj ≡ R
nj , we have for all j = 1, . . . , J and all

1 ≤ k < j that

1. Rj
M,j−k is a matrix representation of Rj

j−k.

2. P j−k
M,j is a matrix representation of P j−k

j .

proof. It is sufficient to prove both propositions for k = 1. The rest follows by the

iterative definition of the operators for k > 1.

1. For an arbitrary j ∈ 1, . . . , J and an arbitrary base function ϕj,i ∈ Vj with

ϕj,i ≡ ej
i ∈ Rnj , there is a unique k ∈ 1, . . . , nj−1 with i ∈ Ij−1,j

k . By the definition

of Rj
j−1, we obtain

Rj−1
j ϕj,i = ϕj−1,k ≡ e

nj−1

k ∈ Rnj−1 .

However, we have

Rj
M,j−1 ej

i =
(
(Rj

M,j−1)1,. e
j
i , . . . , (R

j
M,j−1)nj−1,. e

j
i

)

=



∑

t∈Ij−1,j
1

(ej
t )

T ej
i , . . . ,

∑

t∈Ij−1,j
nj−1

(ej
t )

T ej
i




= ej−1
k .

The last equation follows from the uniqueness of k with i ∈ Ij−1,j
k . Therefore the

proof for Rj
j−1 follows by the linearity of this operator.

2. Similary, for an arbitrary j ∈ 1, . . . , J and an arbitrary base function ϕj−1,i ∈ Vj−1

with ϕj−1,i ≡ ej−1
i ∈ Rnj−1 follows that there is a unique k ∈ 1, . . . nj with

k ∈ Ij−1,j
i . By the definition of P j−1

j we now have

P j−1
j ϕj−1,i =

∑

t∈Ij−1,j
i

ϕj,t ≡
∑

t∈Ij−1,j
i

ej
t with ej

t ∈ R
nj .
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2 Definition of grids, function spaces and operators

Moreover we obtain (Rj
M,j−1)

T
s,t = 1 if and only if N j

s ⊂ N j−1
t holds. Hence it

follows that

P j−1
M,j ej−1

i = (Rj
M,j−1)

T ej−1
i

=
(
((Rj

M,j−1).,1)
T ej−1

i , . . . , ((Rj
M,j−1).,nj

)T ej−1
i

)

=
(
(ej−1

l(1) )
T ej−1

i , . . . , (ej−1
l(nj)

)T ej−1
i

)

=
∑

t∈Ij−1,j
i

ej
t with ej

t ∈ R
nj .

In this calculation, l(x) ∈ N is the index with x ∈ Ij−1,j
l(x) . Again the equivalence

of the operators follows from the linearity.

As already mentioned iteration proves the proposition for k > 1.

Since it is always obvious whether or not we use a matrix, we will write P j−k
j , Rj

j−k, . . .

in both cases and drop the denotation with the index M.

Lemma: 2.4.4. By the definitions of Rj
j−k, P

j−k
j , for the matrix representations of the

operators we have

1. (Rj
j−k)i,. =

∑
t∈Ij−k,j

i
(ej

t )
T , for all j = 1, . . . , J and 1 ≤ k ≤ j.

2. Rj
j−k P j−k

j = diag(|Ij−k,j
1 |, . . . , |Ij−k,j

nj−k
|), for all j = 1, . . . , J and 1 ≤ k ≤ j.

3. (Sj−1)
−1 = diag(|Ij−1,j

1 |−1, . . . , |Ij−1,j
nj−1

|−1), for all j = 1, . . . , J.

4. (Ŝj)
−1 = diag(|Ij,J

1 |−1, . . . , |Ij,J
nj

|−1), for all j = 0, . . . , J.

proof. 1. For an arbitrary j = 1, . . . , J and k = 1, the proposition holds by the

definition of the matrix Rj
j−1. Assume that the proposition holds for a k − 1 ≥ 1.

Then we consider Rj
j−k = Rj−k+1

j−k Rj
j−k+1. By the assumption, we obtain for the

i-th row of Rj−k+1
j−k

(Rj−k+1
j−k )i,. =

∑

t∈Ij−k,j−k+1
i

ej−k+1
t ,

with

Ij−k,j−k+1
i = {t ∈ {1, . . . , nj−k+1} : N j−k+1

t ⊂ N j−k
i }.
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2.4 The aggregation method

Analogously, it follows for the z-th column of Rj
j−k+1 that in the row s the entry

is one if and only if it is

N j
z ⊂ N j−k+1

s

and zero otherwise. This implies for the element (Rj
j−k)i,s that

(Rj
j−k)i,s = (Rj−k+1

j−k )i,. (R
j
j−k+1).,s

=





1 if N j
s ⊂ N j−k+1

t ∧ N j−k+1
t ⊂ N j−k

i

0 otherwise.

With Ij−k,j
z = {l ∈ {1, . . . , nj} : N j

l ⊂ N j−k
z }.

2. From the first result we obtain

(Rj
j−k)s,. · (P j−k

j ).,t = (Rj
j−k)s,. · ((Rj

j−k)t,.)
T

=


 ∑

x∈Ij−k,j
s

(ej
x)

T


 ·


 ∑

y∈Ij−k,j
t

ej
y


 =




|Ij−k,j

s | if s = t

0 otherwise.

The zero is given as we have Ij−k,j
s ∩ Ij−k,j

t = ∅ for s 6= t.

3. This proposition follows from the definition of Sj−1 := (Rj
j−1 P j−1

j )−1 and from

the second proposition of this lemma.

4. This proposition follows from the definition of Ŝj := (Rj Pj)
−1 and also from the

result of this lemma.

The Lemma 2.4.4 gives a matrix representation of the operators Sj, Ŝj. As for the oper-

ators Rj
j−1, . . . , we use the same symbol for the operator and its matrix representation.

Later on, we will need some characteristics of the cardinal number of the sets Ij−k,j
i .

Therefore, we will take a look at this now.

Lemma: 2.4.5. For all j ≤ J and 0 ≤ k ≤ j and all i ∈ {1, . . . , nj−k},

|Ij−k,j
i | =

∑

lk−1∈Ij−k,j−k+1
i

∣∣∣∣∣∣∣

∑

lk−2∈Ij−k+1,j−k+2
lk−1

∣∣∣∣∣∣∣
· · ·

∑

l1∈Ij−2,j−1
l2

|Ij−1,j
l1

|

∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣
.

43



2 Definition of grids, function spaces and operators

In particular, if for all z ∈ {j − k + 1, . . . , j}, we have

|Iz−1,z
t | = sz, for all t with N z−1

t ⊂ N z
i ,

we also have

|Ij−k,j
i | = sj · · · · · sj−k+1.

proof. By the definition of the set Ij−k,k
i we obtain

Ij−k,j
i :=

{
l ∈ {1, . . . , nj} : N j

l ⊂ N j−k
i

}

=
{

l ∈ {1, . . . , nj} : N j
l ⊂ N j−1

l1
∧ N j−1

l1
⊂ N j−k

i

}

...

=
{

l ∈ {1, . . . , nj} : N j
l ⊂ N j−1

l1
∧ N j−1

l1
⊂ N j−2

l2
∧ . . .

. . . ∧ N j−k+1
lk−1

⊂ N j−k
i

}
.

Hence it follows for the cardinal number of the set Ij−k,j
i that

|Ij−k,j
i | =

∑

lk−1∈Ij−k,j−k+1
i

|Ij−k+1,j
lk−1

|

=
∑

lk−1∈Ij−k,j−k+1
i

∣∣∣∣∣∣∣

∑

lk−2∈I
l
j−k+1,j−k+2
k−1

|Ij−k+2,j
lk−2

|

∣∣∣∣∣∣∣

...

=
∑

lk−1∈Ij−k,j−k+1
i

∣∣∣∣∣∣∣

∑

lk−2∈Ij−k+1,j−k+2
lk−1

∣∣∣∣∣∣∣
· · ·

∑

l2⊂Ij−2,j−1
l1

|Ij−1,j
l1

|

∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣
.(2.13)

This completes the proof of this lemma. If we additionally have

|Iz−1,z
t | = sz for all t with N z−1

t ⊂ N z
i ,

it follows for all sets Iz−1,z
t which are used in (2.13) that their cardinal number only

depends on the index z. Thus, they are given by Iz−1,z
t = sz. This implies that

|Ij−k,j
i | = sj · · · · · sj−k+1.
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2.4 The aggregation method

2.4.3 The condition Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1 :

In Lemma 2.3.8, we have assumed that Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1 and as a result we have

arrived at a representation of the orthogonal projection Q̂j−1 by Q̂j−1 = Pj Ŝj Qj−1 Rj.

Furthermore, we have seen that by an iterative use of this condition we can drop the

operators Ŝj . If we consider the assumption in the function space, P j−1
j is the iden-

tity. Hence, the assumption can be interpreted as Ŝj ◦ Sj−1 = Ŝj−1. By the matrix

representations used in the previous section it is obvious from the dimensions of the

matrices, that this term is not well-posed. That is why we consider the equation as

given in Lemma 2.3.8.

It will be the primary aim of this section to show an equivalent characterisation for

the assumption Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1, that will depend on the structure of the sets

Ij−1,j
i . Further, we will show additional characteristics that hold by this assumption.

We define the following condition for the restriction operators:

If we have N J
x ,N J

y ⊂ N j
k for an k ∈ {1, . . . , nj} and

N J
x ⊂ N J−1

iJ−1(x), . . . ,N J
x ⊂ N j+1

ij+1(x)

as well as N J
y ⊂ N J−1

iJ−1(y), . . . ,N J
y ⊂ N j+1

ij+1(y)

then it follows that

|Ik,k+1
ik(x) | = |Ik,k+1

ik(y) |, for all k = j, . . . , J − 1.(2.14)

In short, we denote this with condition (2.14).

The condition means that two grid points (or rows of A) N J
x ,N J

y , that are at least in

the (J − j)-th step aggregated, have in all previous aggregation steps the same number

of grid points N J (or rows of A) that are aggregated with them to one new grid point

N k (or new row of Ak) for k ≥ j.

Now we show some technical lemmata that are coherent with this condition. The first

one will give us an easy sufficient condition for the condition (2.14). The other lemmata

will show characteristics of the condition.

Lemma: 2.4.6. If we assume for all j = 0, . . . , J that Sj ∈ R
nj×nj fulfils

Sj = sjIj with sj ∈ R,
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2 Definition of grids, function spaces and operators

then the condition (2.14) is fulfiled.

proof. Based on the assumption that

Sj = sjIj with sj ∈ R

for all j = 0, . . . , J − 1, we obtain for all j = 0, . . . , J − 1

|Ij,j+1
i | = |Ij,j+1

t | = sj for all i, t ∈ {1, . . . , nj}.

The situation given by the assumption of Lemma 2.4.6 is that in a single aggregation

step the number of aggregated points is always the same. Of course, this also holds

for the aggregation of two arbitrary points N j
i ,N j

k : In all previous steps, they are

aggregated with the equal number of points to a new grid point.

Lemma: 2.4.7. Assume that N J
x ,N J

y ⊂ N j
t . Then the following three statements are

equivalent:

1. condition (2.14) holds for N J
x ,N J

y ⊂ N j
t .

2. the equation |Ik,k+1
ij(a) | = |Ik,k+1

ij(x) | holds for all N J
a ⊂ N j

t with N J
a ⊂ N J−1

iJ−1(a), . . . ,N J
a ⊂

N j
ij(a) and all k = j, . . . , J − 1.

3. the equation |Ip,q
i(x)| = |Ip,q

i(y)| holds for all j ≤ p ≤ q ≤ J for |Ip,q
i(x)| and |Ip,q

i(y)| with

N p
i(x) ⊂ N j

x ,N p
i(y) ⊂ N j

y .

proof. We prove the proposition by three implications:

1 ⇒ 2 : If condition (2.14) holds, we get for an arbitrary N J
a ⊂ N j−1

t and N J
x that

N J
x ,N J

a are at least aggregated in step j − 1. So the assumption of condition

(2.14) is fulfiled. Hence it follows for all k = j, . . . , J − 1 that

|Ik,k+1
ij(a) | = |Ik,k+1

ij(x) |.
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2.4 The aggregation method

2 ⇒ 3 : By Lemma 2.4.5 the cardinal numbers of Ip,q
i(x), I

p,q
i(y) are given by

|Ip,q
i(x)| =

∑

lp∈Ip,p+1
i(x)

∣∣∣∣∣∣∣

∑

lp+1∈Ip+1,p+2
lp

∣∣∣∣∣∣∣
· · ·

∑

lq−1∈Iq−2,q−1
q−2

|Iq−1,q
q−1 |

∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣

|Ip,q
i(y)| =

∑

lp∈Ip,p+1
i(y)

∣∣∣∣∣∣∣

∑

lp+1∈Ip+1,p+2
lp

∣∣∣∣∣∣∣
· · ·

∑

lq−1∈Iq−2,q−1
q−2

|Iq−1,q
q−1 |

∣∣∣∣∣∣∣
. . .

∣∣∣∣∣∣∣

As all used sets Ir,r+1
s represent a node N r

s that is aggregated to N j−1
t , all sets

have the same cardinal number by the assumption of the second characteristic.

Therefore, both sums have the same value. This proves the proposition.

3 ⇒ 1 : This is obvious if we set k = 1.

On the next lemma, we will see in particular that the equation Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1

holds if and only if condition (2.14) is fulfilled. We can see this as the central charac-

teristic of this condition.

Lemma: 2.4.8. The condition (2.14) is equivalent to the following three statements:

1. for all t ∈ {1, . . . , nj−1} (Ŝj)k,k is the same number for all k ∈ Ij−1,j
t .

2. Ŝj Qj−1 = Qj−1 Ŝj

3. Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1 holds.

proof. 1. As it is (Ŝj)k,k = 1

|Ij,J
k

| we obtain from Lemma 2.4.7 that this is equal for

all k ∈ Ij−1,j
t , if and only if condition (2.14) holds.

2. First we assume that condition (2.14) holds. Let ej
i ∈ Rnj be a unit-vector. Then

it follows, that Rj
j−1e

j
i = ej−1

t ∈ Rnj−1 and that

P j−1
j Sj−1e

j−1
t = P j−1

j

1

|Ij−1,j
t |

ej−1
t =

1

|Ij−1,j
t |

∑

k∈Ij−1,j
t

ej
k.
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2 Definition of grids, function spaces and operators

Assuming that condition (2.14) holds, it follows for all k ∈ Ij−1,j
t that (Ŝj)k,k is

the same number s. This implies that

Ŝj Qj−1 ej
i = s

1

|Ij−1,j
t |

∑

k∈Ij−1,j
t

ej
k

and Qj−1 Ŝj ej
i = s Qj−1 ej

i = s
1

|Ij−1,j
t |

∑

k∈Ij−1,j
t

ej
k.

Assume now that condition (2.14) does not hold. Then there are two points

N j
x ,N j

y ⊂ N j−1
t with N j

x ⊂ N j,J
x , N j

y ⊂ N j,J
y and

(Ŝj)
−1
x,x = |Ij,J

x | = nx 6= ny = |Ij,J
y | = (Ŝj)

−1
y,y.

It follows that

Qj−1 Ŝj (ej
x + ej

y) = Qj−1

(
1

nx
ej

x +
1

ny
ej

y

)
= P j−1

j Sj−1

(
1

nx
+

1

ny

)
ej−1

t

= P j−1
j

1

|Ij−1,j
t |

(
1

nx
+

1

ny

)
ej−1

t

=
1

|Ij−1,j
t |

(
1

nx
+

1

ny
)
∑

i∈Ij−1,j
t

ej
i ∈ P j−1

j (Ṽj−1)

and Ŝj Qj−1 (ej
x + ej

y) = Ŝj
2

|Ij−1,j
t |

∑

i∈Ij−1,j
t

ej
i

=
2

|Ij−1,j
t |

∑

i∈Ij−1,j
t

1

|Ij,J
i |

ej
i /∈ P j−1

j (Ṽj−1).

So it is obvious that the elements can not be the same.

3. As shown in the proof of Lemma 2.4.5, we can generally say that

|Ij−1,J
i | =

∑

t∈Ij−1,j
i

|Ij,J
t |.(2.15)

If and only if condition (2.14) holds, it follows that

∑

t∈Ij−1,j
i

|Ij,J
t | = |Ij−1,j

i | · |Ij,J
t |, with t ∈ Ij−1,j

i .(2.16)
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2.4 The aggregation method

First we assume that condition (2.14) holds. Then we obtain for an arbitrary

unit-vector ej−1
i ∈ Rnj−1 that

Ŝj P j−1
j Sj−1 ej−1

i =
1

|Ij−1,j
i |

Ŝj P j−1
j ej−1

i =
1

|Ij−1,j
i |

Ŝj

∑

t∈Ij−1,j
i

ej
t

=
1

|Ij−1,j
i |

∑

t∈Ij−1,j
i

1

|Ij,J
t |

ej
t .

According to condition (2.14), 1

|Ij,J
t | is constant over t ∈ Ij−1,j

i for given i, j. With

equation (2.16), this implies for an arbitrary t ∈ Ij−1,j
i the equation

1

|Ij−1,J
i |

=
1

|Ij−1,j
i |

1

|Ij,J
t |

⇒ Ŝj P j−1
j Sj−1 ej−1

i =
1

|Ij−1,J
i |

∑

t∈Ij−1,j
i

ej
t .

On the other side we have

P j−1
j Ŝj−1 ej−1

i =
1

|Ij−1,J
i |

P j−1
j ej−1

i =
1

|Ij−1,J
i |

∑

t∈Ij−1,j
i

ej
t .

This proves the proposition. Now we assume that condition (2.14) does not hold.

Then there is a t ∈ {1, . . . , nj−1} and N j
x ,N j

y with x, y ∈ Ij−1,j
t . By the first

proposition of this lemma we can assume that (Ŝj)
−1
x,x = |Ij,J

x | 6= |Ij,J
y | = (Ŝj)

−1
y,y.

Hence it follows that

Ŝj P j−1
j Sj−1 (ej−1

t ) = Ŝj P j−1
j

1

|Ij−1,j
t |

ej−1
t =

1

|Ij−1,j
t |

Ŝj

∑

i∈Ij−1,j
t

ej
i

=
1

|Ij−1,j
t |

∑

i∈Ij−1,j
t

1

|Ij,J
i |

ej
i

and P j−1
j Ŝj−1 ej−1

t = P j−1
j

1

|Ij−1,J
t |

ej−1
t =

1

|Ij−1,J
t |

∑

i∈Ij−1,j
t

ej
i .

As in this case |Ij−1,j
t | · |Ij,J

x | 6= |Ij−1,J
t |, the proposition obviously follows if we

multiply both expressions with (ej
x)

T ((ej
y)

T ). It follows that

(ej
x)

T Ŝj P j−1
j Sj−1 (ej−1

t ) =
1

|Ij−1,j
t |

1

|Ij,J
x |

(ej
x)

T ej
i =

1

|Ij−1,j
t |

1

|Ij,J
x |

and (ej
x)

T P j−1
j Ŝj−1 ej−1

t =
1

|Ij−1,J
t |

(ej
x)

T ej
i =

1

|Ij−1,J
t |

.
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2 Definition of grids, function spaces and operators

At the least, we get a result for the kernel of the operator Rj
j−1, which we will use as a

condition in estimations on the condition and proofs of the non singularity of operators.

Lemma: 2.4.9. Assume that condition (2.14) holds. Then ker(Rj
j−1) = ker(Rj

j−1 Rj Pj)

holds as well.

proof. Consider an arbitrary ṽj ∈ Ṽj with ṽj ∈ ker(Rj
j−1). By Lemma 2.3.4, this is

equivalent to ṽj ∈ ker(Qj−1). From the second proposition of Lemma 2.4.8 we obtain

0 = Qj−1ṽj = Qj−1 Ŝj Rj Pj ṽj = Ŝj Qj−1 Rj Pj ṽj

= Ŝj P j−1
j Sj−1 Rj

j−1 Rj Pj ṽj.

As we have Ŝj P j−1
j Sj−1 ∈ R

nj×nj−1 with rk(Ŝj P j−1
j Sj−1) = nj−1 this is equivalent to

Rj−1
j Rj Pj ṽj = 0. This completes the proof.

2.4.4 The black box method

As we also want to treat the preconditioning operators as a black box preconditioner

for linear equation systems that has nothing to do with partial differential equations,

we will introduce them accordingly. So we set

V := VJ ≡ R
nJ and Ṽj ≡ R

nj , for j = 0, . . . , J − 1.

Then we choose arbitrary matrices P j−1
j ∈ Rnj×nj−1 with rk(P j−1

j ) = nj−1 for j =

0, . . . , J−1. We define Rj
j−1 by Rj

j−1 = (P j−1
j )T and define the matrices Rj

j−k, P
j−k
j , Pj, Rj

for j = 1, . . . , J and 1 ≤ k ≤ j as done in section 2.3.1.

Further, we define the spaces Vj for j = 0, . . . , J − 1 by

Vj :=
〈
Pj ej

1, . . . , Pj ej
nj

〉

with the unit-vectors ej
1, . . . , e

j
nj

∈ Rnj ≡ Ṽj . Similar to section 2.3.1 we define the

operators

Si−1 = (Ri
i−1 P i−1

i )−1, Ŝi = (Ri Pi)
−1

Qi−1 = P i−1
i Si−1 Ri

i−1 and Q̂i = Pi Ŝi Ri.

So they are just defined by the matrices. As shown in this section, this setting is

sufficient to obtain that Qi−1 : Rni → P i−1
i (Rni−1) and Q̂i : Rn → Pi(R

ni) are the
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2.5 The standard geometrical method (no aggregation)

orthogonal projections with respect to the inner product (., .). Analogously, we can

define the spaces W t
j , W̃j and Wj by

W t
j :=

〈
(Q̂j − Q̂j−1)ϕJ,1, . . . , (Q̂j − Q̂j−1)ϕJ,n

〉

W̃j := 〈(Ij − Qj−1)Rj ϕJ,1, . . . , (Ij − Qj−1)Rj ϕJ,n〉

Wj := 〈Pj(Ij − Qj−1)Rj ϕJ,1, . . . , Pj(Ij − Qj−1)Rj ϕJ,n〉 .

This leads to the same setting as the discussion of the finite elements. But here we

just choose arbitrary prolongations P j
j+1. They give the hole structure of the subspaces.

We get the structure of the aggregation method if we set P j−1
j := (Rj

j−1)
T . We define

Rj
j−1 by its rows (Rj

j−1)i,., if we set

(Rj
j−1)i,. =

∑

t∈Ij−1,j
i

(ej
t )

T

with sets Ij−1,j
k that fulfil

nj−1⋃

k=1

Ij−1,j
k = {1, . . . , nj} and Ii ∩ Ij = ∅ for i 6= j.

In conjunction with the iterative definition of Aj as Aj := Rj+1
j Aj+1 P j

j+1, we can

interpret N j
i as the i-th row or column of Aj . Ij,j+1

k is the set of rows (or colums) that

will be added in Aj+1 to get the k-th row (or column) of Aj . Hence, |Ij,j+1
k | is the

number of row or columns that are added.

2.5 The standard geometrical method (no aggregation)

For numerical results we will also use the standard geometrical method. Since we will

make some modifications to this method, we will give a short introduction to it. As

this method is mainly defined for grids with characteristic step widths, we introduce it

accordingly. Further we introduce the method for the two grid case. And as usual, the

multigrid situation follows if we use the setting iteratively.

Let V = Vh ⊃ VH be spaces of bilinear functions over the grids Th, TH . Assume that

they have the grid points N h
i ,NH

j with i = 1, . . . , nh and j = 1, . . . , nH

Assume that the situation is given as shown in Figure 2.3. Then the prolongation

P H
h : VH → Vh is given as follows. We distinguish three types of grid points.
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2 Definition of grids, function spaces and operators
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N h
1 N h

2 N h
3 N h

4 N h
5

N h
6 N h

7 N h
8

N h
11 N h

12 N h
13

NH
1 NH

2 NH
3

NH
4 NH

5 NH
6

Figure 2.3: Geometrical coarsing of the grid

1. For points N h
i = NH

j that also belong to the coarser grid (as for example N h
1 ),

we define

(P H
h vH)(N h

i ) = vH(NH
j ).

2. For points N h
i whose right and left neighbours N h

i−1 = NH
j ,N h

i+1 = NH
j+1 belong

to the coarser grid (as for example N h
2 ), we define

(P H
h vH)(N h

i ) = (vH(NH
j ) + vH(NH

j+1))/2.

The same definition holds for points N h
i whose upper and lower neighbours are

also points of the coarser grid (as for example N h
6 ).

3. For points N h
i whose right and left neighbours and upper and lower neighbours

are no grid points of the coarser grid (as for example N h
7 ), we define

(P H
h vH)(N h

i ) =
(vH(NH

j ) + vH(NH
j+1) + vH(NH

k ) + vH(NH
k+1)

4
.

Hence, NH
j ,NH

j+1 are the lower left and lower right neighbours of N h
i and NH

k ,NH
k+1

are the upper left and upper right neighbours.

This defines the prolongation P h
H and we define the restriction Rh

H by Rh
H = (P H

h )T .

For the one-dimensional situation, this defines basis functions as shown in Figure 2.4

on page 53 for the three grids T2, T1 and T0.
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2.5 The standard geometrical method (no aggregation)
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6 N 2
7 N 2

8 N 2
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1 N 0

2 N 0
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ϕ3, R2
1 ϕ3 and R2

0 ϕ3 respectively.

ϕ6, R2
1 ϕ6 and R2

0 ϕ6 respectively.

Figure 2.4: Restriction of two Basis functions
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2 Definition of grids, function spaces and operators

2.6 Decompositions and representations

At last, we will give some decompositions and representation of elements v ∈ Rn and

the inner products (v, v) respectively, that we want to use. For an arbitrary v ∈ V, we

have

v =
J∑

j=1

(Q̂j − Q̂j−1) v + Q̂0 v =
J∑

j=1

Pj Ŝj(Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1)Rj v + P0 Ŝ0 R0 v.

(2.17)

For this representation, no assumption on Q̂i for i < J is needed. The only assumption

on Q̂i is given by Q̂J = I. If we additionally have Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1, as for

example given for the aggregation method by condition (2.14), this implies that

v =

J∑

j=1

Pj Ŝj(Ij − Qj−1)Rj v + P0 Ŝ0 R0 v.(2.18)

So if we consider the two representations of v as given by (2.17) and (2.18), we get a

first idea of the meaning of condition (2.14).

By the calculations of section 2.3.2 we obtain for an arbitrary v ∈ V

(v, v) =

(
J∑

j=1

(Q̂j − Q̂j−1)v + Q̂0v,

J∑

j=1

(Q̂j − Q̂j−1)v + Q̂0v

)

=
J∑

j=1

(
(Q̂j − Q̂j−1)v, (Q̂j − Q̂j−1)v

)
+ (Q̂0 v, Q̂0 v)

=

J∑

j=1

(
v, (Q̂j − Q̂j−1)v

)
+ (v, Q̂0 v)

=
J∑

j=1

(v, Pj Ŝj (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v) + (Ŝ0 R0 v, R0 v).(2.19)

If additionally Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1 holds this can be represented as

(v, v) =
J∑

j=1

(v, Pj Ŝj (Ij − Qj−1) Rj v) + (Ŝ0 R0 v, R0 v).(2.20)
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2.6 Decompositions and representations

Further, we will use the following representation and estimation in the context of the

BPX method:
(

J∑

j=0

Q̂jv, v

)
=

J∑

j=0

(Q̂j v, v) =

J∑

j=0

(Ŝi Ri v, Ri v).

As Q̂j is the orthogonal projection with respect to the dot product (., .), it follows for

all Q̂j that

(v, v) = (Q̂j v, v) + ((I − Q̂j) v, v) ≥ (Q̂j v, v).

This obviously implies for all v ∈ V that

(v, v) ≤
J∑

j=0

(Q̂j v, v) ≤ (J + 1)(v, v).
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3 Introduction of the preconditioners

In this chapter we will introduce three different preconditioners to solve the linear

system of equations

Au = f

for a non singular A ∈ Rn×n and f ∈ Rn = V. As we only consider the linear system of

equations we set V = Rn.

All preconditioners are additive methods. We will introduce the preconditioners as two

grid methods by using the vector spaces V, V0 ⊂ V and W = V ⊥
0 . Our main interest is

the characteristic of the operators which follows from the subspaces that are used. So

we do not care about the quality of the solution on the different spaces. Hence we use

the exact inverse of the operators A and A0.

If we use the preconditioners in the context of partial differential equations and grids,

the methods are defined by using two grids. But in general we will introduce them as a

kind of black box method, that means the subspace V0 is defined by V0 = Im(P0(Ṽ0)),

with Ṽ0 = Rn0 (cf. section 2.4.4).

3.1 Common Setting

As we will introduce the preconditioners as two-grid methods, we can drop some of the

indices we have used in Chapter 2 to simplify the notation. We set

P = P 0
1 = P0, R = R1

0 = R0

S = S0 = Ŝ0 and Q0 = Q̂0.

The equations SJ−1 = ŜJ−1 and QJ−1 = Q̂J−1 hold independently of J.

Furthermore we remember that A0 ∈ Rn0×n0 is defined as

A0 = R A P
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3 Introduction of the preconditioners

and we still assume P = RT .

Furthermore, we define two common constants c1, d1, to use for some estimations. We

define c1 by

c1 := max
v0∈V0\{0}

‖A v0‖2

‖Q0 A v0‖2
(3.1)

and d1 by

d1 := min
v0∈V0\{0}

‖A v0‖2

‖Q0 A v0‖2
.(3.2)

The constants c1, d1 hence depend on the structure of the matrix A and the structure

of the subspace V0. The last dependency is more obvious if we transform the equation

(3.1) (and (3.2) respectively) into

c1 = max
ev0∈eV0\{0}

‖A P ṽ0‖2

‖Q0 A P ṽ0‖2
.

As Q0 is the orthogonal projection concerning the dot product (., .), we have

‖A v0‖2 ≥ ‖Q0 A v0‖2

for all v0 ∈ V0. Consequently, one is a lower bound for d1. For c1, it is not as easy to

get an upper bound. For further estimations, we want to show the following simple but

useful results of these constants.

Lemma: 3.1.1. Let A ∈ Rn×n, P ∈ Rn×n0 be given matrices. Assume that A0 is non

singular. Let c̃1, d̃1 be two constants that fulfil for all v ∈ V

d̃1(Q0 v, v) ≤ (A P A−1
0 R v, A P A−1

0 R v) ≤ c̃1(Q0 v, v).(3.3)

Then it follows that

c1 ≤ c̃1 and d1 ≥ d̃1.

If the inequality (3.3) for c̃1 (d̃1) is also true by equality for an v∗ ∈ V, then it follows

that

c1 = c̃1 (d1 = d̃1).
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3.1 Common Setting

proof. We start with the proposition for c1. As we have that R : Rn → Rn0 is surjective

and A−1
0 ∈ Rn0×n0 is non singular, it follows that

c̃1(P S R v, v) ≥ (A P A−1
0 R v, A P A−1

0 R v), ∀v ∈ R
n

⇔ c̃1(S ṽ0, ṽ0) ≥ (A P A−1
0 ṽ0, A P A−1

0 ṽ0), ∀ṽ0 ∈ R
n0

⇔ c̃1(S A0 A−1
0 ṽ0, A0 A−1

0 ṽ0) ≥ (A P A−1
0 ṽ0, A P A−1

0 ṽ0), ∀ṽ0 ∈ R
n0

⇔ c̃1(S A0 ṽ0, A0 ṽ0) ≥ (A P ṽ0, A P ṽ0), ∀ṽ0 ∈ R
n0

⇔ c̃1(S R A P ṽ0, R A P ṽ0) ≥ (A P ṽ0, A P ṽ0), ∀ṽ0 ∈ R
n0

⇔ c̃1(P S R A P ṽ0, A P ṽ0) ≥ (A P ṽ0, A P ṽ0), ∀ṽ0 ∈ R
n0

⇔ c̃1(Q0 A ṽ0, Q0 A ṽ0) ≥ (A P ṽ0, A P ṽ0), ∀ṽ0 ∈ R
n0 .

As this inequality is true for all v ∈ V this implies

c̃1 ≥ max
ev0∈eV0\{0}

‖A P ṽ0‖2

‖Q0 A P ṽ0‖2
= max

v0∈V0\{0}

‖A v0‖2

‖Q0 A v0‖2
= c1.

This shows the inequality for c1. The proposition for d1 follows by the same arguments.

Further, the proof shows that if there is a v∗ ∈ V that fulfils the inequality (3.3) for c̃1

by equality, and we define

v∗
0 = A−1

0 R v∗ and ṽ∗
0 = Pv∗

0

then the equality holds for ṽ∗
0 with

c̃1 =
‖A ṽ∗

0‖2

‖Q0 A ṽ∗
0‖2

= c1.

This shows the additional proposition for c1. The proposition for d1 follows again by

the same arguments.

We highlight that for explicit calculations respectively estimations of c1, d1 we use a

representation without a use of the inverse of A or A0. The form as given in (3.3) is

the form we want to use in estimations for the condition of the preconditioned systems.

Further we remember that it is d1 ≥ 1. Hence we can estimate d1 = 1.

Next, we will illustrate some characteristics of the operators R, Q0 and the spaces W, V0,

that are shown in Lemma 2.3.4, for the multigrid situation.
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3 Introduction of the preconditioners

Remark: 3.1.2. For the operators R, Q0 and the spaces W1, V0 as defined in chapter

2 the following characteristics hold in a two grid context:

1. For an arbitray v ∈ V, there are unique v0 ∈ V0, w ∈ W so that we have

v = Q0 v + (I − Q0) v = v0 + w.

Further, it follows that (v0, w) = 0.

2. For all w ∈ W, it follows that R w = 0. For v ∈ V we have R v = 0 if and only if

we have v ∈ W = (I − Q0)(V ).

proof. These propositions follow immediately from Lemma 2.3.4.

3.2 Introduction of C−1
BPX

Now we will introduce into this quite general setting a preconditioner C−1
BPX for the

equation Au = f, which is in more special cases well-known as the BPX method. As

already mentioned we use the exact inverse of A and A0 respectively as we do not

consider the quality of the approximation for these operators. We only consider the

relation between the spaces and neglect the solutions in subspaces. Hence it is sufficient

for our results to use the inverse operators. As we assume that A is non singular, the

existence of the operator A−1
0 is discussed in Lemma 2.3.5. In this section, its existence

is an assumption. For a non singular A ∈ Rn×n and a non singular A0 ∈ Rn0×n0 we

define C−1
BPX ∈ R

n×n by

C−1
BPX := A−1 + P A−1

0 R.(3.4)

Our aim is to determine constants cBPX , dBPX > 0 that fulfil for all v ∈ V the inequal-

ities

cBPX(A C−1
BPX v, A C−1

BPX v) ≤ (v, v) ≤ dBPX(A C−1
BPX v, A C−1

BPX v).(3.5)

More precisely, we will show on which characteristics the constants cBPX , dBPX depend.

As the space V is finite-dimensional, the existence of a constant cBPX > 0 is always

given. The existence of the constant dBPX > 0 is equivalent to the non singularity of

the operator A C−1
BPX . Therefore, we will first show the existence of dBPX > 0 and then

give an estimation for it.
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BPX

Lemma: 3.2.1. Let A ∈ Rn×n, A0 ∈ Rn0×n0 be non singular. Then the matrix

A C−1
BPX

is also non singular.

proof. Suppose that A C−1
BPX is singular. Then there must be a v ∈ V \{0} with

0 = A C−1
BPXv

⇔ 0 = v + A P A−1
0 R v

⇔ −v = A P A−1
0 R v

⇒ −R v = R A P︸ ︷︷ ︸
=A0

A−1
0 R v

⇔ −R v = R v.

For the given v ∈ V, we obtain R v = 0. However, in the case of R v = 0, we get

0 = AC−1
BPXv = v + A P A−1

0 R v = v.

And hence, this is in contradiction to the assumption.

To determine the constants cBPX and dBPX , we further need the angle between the two

addends of A C−1
BPXv. We define γ+

BPX , γ−
BPX as

γ+
BPX = min{t ∈ R+ : (A P A−1

0 R v, v) ≤ t ‖A P A−1
0 R v‖ ‖v‖, ∀v ∈ V }(3.6)

and γ−
BPX = min{t ∈ R+ : (A P A−1

0 R v, v) ≥ −t ‖A P A−1
0 R v‖ ‖v‖, ∀v ∈ V }.

(3.7)

So we get the following proposition:

Proposition: 3.2.2. For non singular matrices A ∈ Rn×n, A0 ∈ Rn0×n0 and a given

R ∈ Rn0×n the inequalities (3.5) hold with

cBPX =
1

1 + 2γ+
BPX

√
c1 + c1

and dBPX =
1

1 − (γ−
BPX)2

.
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3 Introduction of the preconditioners

proof. According to the definitions of this chapter, the inequality of Young A.0.3 with

ε =
√

c1 and Lemma 3.1.1 we have

(A C−1
BPX v, A C−1

BPX v) = (A A−1 v, A A−1 v) + 2(A A−1 v, A P A−1
0 R v)

+ (A P A−1
0 R v, A P A−1

0 R v)

≤ (v, v) + (A P A−1
0 R v, A P A−1

0 R v)

+ 2γ+
BPX‖v‖ ‖A P A−1

0 R v‖

≤ (1 + γ+
BPXε)(v, v)

+

(
1 +

γ+
BPX

ε

)
(A P A−1

0 R v, A P A−1
0 R v)

≤ (1 + γ+
BPXε)(v, v) +

(
1 +

γ+
BPX

ε

)
c1(Q0 v, v)

= (1 + γ+
BPX

√
c1)(v, v) +

(
1 +

γ+
BPX√
c1

)
c1(Q0 v, v)

≤ (1 + γ+
BPX

√
c1)(v, v) +

(
1 +

γ+
BPX√
c1

)
c1(v, v)

= (1 + 2γ+
BPX

√
c1 + c1)(v, v).

This proves the proposition for cBPX . For dBPX , it follows from the same arguments

according to the inequality of Young with ε = γ−
BPX

(A C−1
BPX v, A C−1

BPX v) ≥ (v, v) + (A P A−1
0 R v, A P A−1

0 R v)

− 2γ−
BPX‖v‖ ‖A P A−1

0 R v‖

≥ (1 − γ−
BPXε)(v, v)

+ (1 − γ−
BPX

ε
)(A P A−1

0 R v, A P A−1
0 R v)

≥ (1 − γ−
BPXγ−

BPX)(v, v) +

(
1 − γ−

BPX

γ−
BPX

)
d1(Q0 v, v)

≥ (1 − (γ−
BPX)2)(v, v).

Lastly we will show a simple restriction for γ−
BPX that will be useful later.
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DT

Corollary: 3.2.3. Let A ∈ Rn×n, A0 ∈ Rn0×n0 be non singular. Then it follows that

γ−
BPX < 1.

proof. Assume that γ−
BPX = 1 holds. Then we have a v ∈ V \{0} that fulfils

(A P A−1
0 R v, v) = −‖A P A−1

0 R v‖ ‖v‖

⇒ v = −A P A−1
0 R v

⇒ 0 = v + A P A−1
0 R v = A(A−1 v + P A−1

0 R v)

= A C−1
BPX v.

Hence A C−1
BPX is singular and that contradicts Lemma 3.2.1.

3.3 Introduction of C−1
DT

In this section we will introduce the preconditioner C−1
DT for the system of linear equa-

tions Au = f the same setting. By the same arguments as in section 3.2, we also use

the inverse A−1, A−1
0 for the definition of the preconditioner. For non singular matrices

A ∈ R
n×n, A0 ∈ R

n0×n0 we define C−1
DT by

C−1
DT := A−1(I − Q0) + P A−1

0 R.(3.8)

Of course, our aim is again to determine constants cDT , dDT > 0 that fulfil the inequal-

ities

cDT (A C−1
DT v, A C−1

DT v) ≤ (v, v) ≤ dDT (A C−1
DT v, A C−1

DT v)(3.9)

for all v ∈ V. We will do the same steps as in section 3.2 and start with a proof of the

existence of dDT > 0.

Lemma: 3.3.1. Let A ∈ Rn×n, A0 ∈ Rn0×n0 be non singular. Then the matrix

A C−1
DT

is also non singular.
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3 Introduction of the preconditioners

proof. Assume that A C−1
DT is singular. Then there must be a v ∈ V \{0} with

0 = AC−1
DT v

⇔ 0 = (I − Q0) v + A P A−1
0 R v

⇔ −(I − P S R) v = A P A−1
0 R v

⇒ −R (I − P S R)︸ ︷︷ ︸
=0

v = R A P︸ ︷︷ ︸
=A0

A−1
0 R v

⇔ 0 = R v.

So it follows that R v = 0. But in this case we obtain

0 = AC−1
DTv = (I − P S R) v + A P A−1

0 R v︸︷︷︸
=0

= v − P S R v = v.

And hence, this is in contradiction to the assumption.

In analogy to the last section we need the angles between the addends of A C−1
DT .

Therefore we define

γ+
DT := min

{
t ∈ R+ : (A P A−1

0 R v, (I − Q0)v)(3.10)

≤ t ‖A P A−1
0 R v‖ ‖(I − Q0)v‖, ∀v ∈ V

}

and γ−
DT := min

{
t ∈ R+ : (A P A−1

0 R v, (I − P S R)v)(3.11)

≥ −t ‖A P A−1
0 R v‖ ‖(I − Q0)v‖, ∀v ∈ V

}
.

Then we get the following estimations for the constants cDT and dDT :

Proposition: 3.3.2. For non singular matrices A ∈ Rn×n, A0 ∈ Rn0×n0 and a given

R ∈ R
n0×n the inequalities (3.9) hold with

cDT =
2

1 + c1 +
√

(c1 − 1)2 + 4c1(γ
+
DT )2

and dDT =
2

1 + d1 −
√

(1 − d1)2 + 4d1(γ
−
DT )2

.

In particular, we can also estimate that

dDT =
1

1 − γ−
DT

.
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DT

proof. According to the definition of C−1
DT and the inequality of Young A.0.3 with

ε =
c1 − 1 +

√
(1 − c1)2 + 4c1(γ

+
DT )2

2γ+
DT

we obtain for all v ∈ V

(A C−1
DT v, A C−1

DT v) = ((I − Q0) v, (I − Q0) v) + (A P A−1
0 R v, A P A−1

0 R v)

+ 2((I − Q0) v, A P A−1
0 R v)

≤ ((I − Q0) v, (I − Q0) v) + (A P A−1
0 R v, A P A−1

0 R v)

+ 2γ+
DT‖(I − Q0) v‖ ‖A P A−1

0 R v‖

≤ ((I − Q0) v, (I − Q0) v) (1 + γ+
DTε)

+ (A P A−1
0 R v, A P A−1

0 R v)

(
1 +

γ+
DT

ε

)

≤ ((I − Q0) v, v)(1 + γ+
DTε) + (Q0 v, v)

(
1 +

γ+
DT

ε

)
c1

= ((I − Q0) v, v)

(
1 + γ+

DT

c1 − 1 +
√

(1 − c1)2 + 4c1(γ
+
DT )2

2γ+
DT

)

+ (Q0 v, v)


1 +

γ+
DT

c1−1+
√

(1−c1)2+4c1(γ
+
DT

)2

2γ+
DT


 c1

= ((I − Q0) v, v)

(
c1 + 1 +

√
(1 − c1)2 + 4c1(γ

+
DT )2

2

)

+ (Q0 v, v)

(
1 +

2γ+
DT

c1 − 1 +
√

(1 − c1)2 + 4c1(γ
+
DT )2

)
c1

=

(
c1 + 1 +

√
(1 − c1)2 + 4c1(γ

+
DT )2

2

)(
((I − Q0) v, v) + (Q0 v, v)

)
(3.12)

=

(
c1 + 1 +

√
(1 − c1)2 + 4c1(γ

+
DT )2

2

)
(v, v).
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3 Introduction of the preconditioners

The equation (3.12) follows from the calculation:

c1 + 1 +
√

(c1 − 1)2 + 4c1(γ
+
DT )2

2
=

(
1 +

2(γ+
DT )2

c1 − 1 +
√

(1 − c1)2 + 4c1(γ
+
DT )2

)
c1

⇔ c1 + 1 +
√

(c1 − 1)2 + 4c1(γ
+
DT )2 =

(
c1 − 1 +

√
(1 − c1)2 + 4c1(γ

+
DT )2 + 2(γ+

DT )2

c1 − 1 +
√

(1 − c1)2 + 4c1(γ
+
DT )2

)
2c1

⇔
(c1 + 1 +

√
(c1 − 1)2 + 4c1(γ

+
DT )2)(c1 − 1 +

√
(1 − c1)2 + 4c1(γ

+
DT )2)

= (c1 − 1 +
√

(1 − c1)2 + 4c1(γ
+
DT )2 + 2(γ+

DT )2)2c1

⇔
2c2

1 − 2c1 + 2c1

√
(1 − c1)2 + 4c1(γ

+
DT )2 + 4c1(γ

+
DT )2

= 2c2
1 − 2c1 + 2c1

√
(1 − c1)2 + 4c1(γ

+
DT )2 + 4c1(γ

+
DT )2.

This completes the proof for cDT . For dDT we get according to the inequality of Young

with

ε =
1 − d1 +

√
(1 − d1)2 + 4d1(γ

−
DT )2

2γ−
DT

by the same arguments

(A C−1
DT v, A C−1

DT v) ≥ ((I − Q0) v, (I − Q0) v) + (A P A−1
0 R v, A P A−1

0 R v)

− 2γ−
DT‖(I − Q0) v‖ ‖A P A−1

0 R v‖

≥ ((I − Q0) v, v) (1 − γ−
DTε) + (Q0 v, v)

(
1 − γ−

DT

ε

)
d1

= ((I − Q0) v, v)

(
1 − γ−

DT

1 − d1 +
√

(1 − d1)2 + 4d1(γ
−
DT )2

2γ−
DT

)

+ (Q0 v, v)


1 − γ−

DT

1−d1+
√

(1−d1)2+4c1(γ
−

DT
)2

2γ−

DT


 d1

=
1

dDT
(v, v).
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The more simple expression for dDT follows if we estimate d1 = 1. This implies

sup
d1≥1

2

1 + d1 −
√

(1 − d1)2 + 4d1(γ
−
DT )2

=
2

1 + d1 −
√

(1 − d1)2 + 4d1(γ
−
DT )2

∣∣∣∣∣
d1=1

=
2

2 −
√

4(γ−
DT )2

=
1

1 − γDT

.

This completes the proof of the proposition.

Again, we will conclude this section with a simple restriction for γ−
DT that we will use

later.

Corollary: 3.3.3. Let A ∈ Rn×n, A0 ∈ Rn0×n0 be non singular. Then it follows that

γ−
DT < 1.

proof. Assume that

(A P A−1
0 R v, (I − Q0) v) = −‖A P A−1

0 R v‖ ‖(I − Q0)v‖

for a v ∈ V \{0}. Then it follows that

(I − Q0)v = −A P A−1
0 R v

⇒ 0 = (I − Q0)v + A P A−1
0 R v = A(A−1 (I − Q0)v + P A−1

0 R v)

= A C−1
DT v.

Hence A C−1
BPX is singular and that contradicts Lemma 3.3.1.

3.4 Relations between the constants

In this section we will show the relations between the constants we have defined in the

last sections. We will see that we can reduce them to one constant.

Lemma: 3.4.1. For a non singular A ∈ Rn×n, A0 ∈ Rn0×n0, the operator

A P A−1
0 R : V →

〈
A P A−1

0 Re1, . . . , A P A−1
0 R en

〉

is a projection and it follows

Q0 A P A−1
0 R v = Q0 v for all v ∈ V.(3.13)
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3 Introduction of the preconditioners

proof. The calculation

(A P A−1
0 R) (A P︸ ︷︷ ︸

A0

A−1
0 R) = A P A−1

0 A0 A−1
0 R

= A P A−1
0 R

shows that A P A−1
0 R is a projection. The equation (3.13) follows from

Q0 A P A−1
0 R v = P S R A P︸ ︷︷ ︸

A0

A−1
0 R v = P S R v = Q0 v.

From Lemma 3.4.1 we can conclude that the direction of the projection A P A−1
0 R is

orthogonal to V0. That means that for all v0 ∈ V0 a w ∈ W exists so that for all w1 ∈ W

follows that

A P A−1
0 R (v0 + w1) = A P A−1

0 R v0 = v0 + w.(3.14)

This points out that in general it is not a projection in the space V0. In other words:

V0 6= (A P A−1
0 R)(V ) =

〈
A P A−1

0 Re1, . . . , A P A−1
0 R en

〉
.

This would only be the case if we additionally had w = 0 in (3.14). Furthermore, it is

obvious that if

A P A−1
0 R v∗

0 = v∗
0 + w,(3.15)

holds for an v∗
0 ∈ V0 then we obtain

Q0 A P A−1
0 R v∗

0 = v∗
0(3.16)

and (I − Q0) A P A−1
0 R v∗

0 = w(3.17)

This is illustrated in Figure 3.1 on page 69.

Now we can give a result for the constants γ+
DT , γ−

DT . The main aspect of this lemma is

given by the fact that the elments

R v = v0 and (I − Q0)v = w

are elements of orthogonal subspaces. So for an v ∈ V with v = v0+w, v0 ∈ V0, w ∈ W,

the addends v0, w can each be modified without a modification of the other one.
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αDT

W

V0

(A P A−1
0 R)(V )

v1

v2

A P A−1
0 R v1

A P A−1
0 R v2

Figure 3.1: Direction of the projection A P A−1
0 R

Lemma: 3.4.2. According to the definitions (3.10), (3.11) for γ+
DT , γ−

DT

γ+
DT = γ−

DT holds.

proof. We show that, for an arbitrary v ∈ V with

(A P A−1
0 R v, (I − Q0)v) = t ‖A P A−1

0 R v‖ ‖(I − Q0)v‖, t ≥ 0

there is a v1 ∈ V that fulfils

(A P A−1
0 R v1, (I − Q0)v1) = −t ‖A P A−1

0 R v1‖ ‖(I − Q0)v1‖.

Hence it follows that γ+
DT ≤ γ−

DT .

We consider an arbitrary v ∈ V. We can decompose this into v = v0+w, v0 ∈ V0, w ∈ W.

Then we have

(A P A−1
0 R v, (I − Q0)v) = t ‖A P A−1

0 R v‖ ‖(I − Q0)v‖

with t ∈ [0, γ+
DT ]. According to Lemma 3.4.1 there is a w1 ∈ W so that it follows

A P A−1
0 R v = A P A−1

0 R v0 = v0 + w1.
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This implies that

(A P A−1
0 R v, (I − Q0)v) = t ‖A P A−1

0 R v‖ ‖(I − Q0)v‖

⇔ (v0 + w1, w) = t ‖v0 + w1‖ ‖w‖

⇔ (w1, w) = t ‖v0 + w1‖ ‖w‖.

It follows for

v1 := v − 2w

that

−(w1, w) = −t ‖v0 + w1‖ ‖w‖

⇔ (v0 + w1, −w) = −t ‖v0 + w1‖ ‖ − w‖

⇔ (A P A−1
0 R v1, (I − Q0)v1) = −t ‖A P A−1

0 R v1‖ ‖(I − Q0)v1‖.

This shows the inequality γ+
DT ≤ γ−

DT .

Based on the same arguments, it follows for an arbitrary ṽ ∈ V with

(A P A−1
0 R ṽ, (I − Q0)ṽ) = −t ‖A P A−1

0 R ṽ‖ ‖(I − Q0)ṽ‖

for ṽ1 := ṽ − 2(I − Q0)ṽ the equality

(A P A−1
0 R ṽ1, (I − Q0)ṽ1) = t ‖A P A−1

0 R ṽ1‖ ‖(I − Q0)ṽ1‖.

This shows γ−
DT ≤ γ+

DT .

From the result of Lemma 3.4.2 we drop the constants γ+
DT , γ−

DT and only use γDT =

γ+
DT = γ−

DT in the following.

Next we will prove a technical estimation for the relation of (I −Q0) A P A−1
0 R v0 and

Q0 A P A−1
0 R v0 that follows immediately from the angle γDT .

Lemma: 3.4.3. By the constant γDT it holds for all v ∈ V the inequality

‖(I − Q0) A P A−1
0 R v‖2 ≤ γ2

DT

1 − γ2
DT

‖Q0 A P A−1
0 R v‖2.

proof. By Remark 3.1.2, it is sufficient to prove the inequality for all v0 ∈ V0. Therefore,

we consider an arbitrary v0 ∈ V0. Then we obtain again by Lemma 3.4.1 that

A P A−1
0 R v0 = v0 + w
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with w ∈ W. Furthermore, it follows that

v0 = Q0 A P A−1
0 R v0

w = (I − Q0) A P A−1
0 R v0.

From the definition of γDT , it follows for v = v0 + w that

(A P A−1
0 R v, (I − Q0) v) ≤ γDT‖A P A−1

0 R v‖ ‖(I − Q0) v‖

⇔ (v0 + w, w) ≤ γDT‖v0 + w‖ ‖w‖

⇔ ‖w‖2 ≤ γDT‖v0 + w‖ ‖w‖

⇔ ‖w‖ ≤ γDT‖v0 + w‖

⇔ ‖w‖2 ≤ γ2
DT‖v0 + w‖2 = γ2

DT (‖v0‖2 + ‖w‖2)

⇔ ‖w‖2(1 − γ2
DT ) ≤ γ2

DT‖v0‖2

⇔ ‖w‖2 ≤ γ2
DT

(1 − γ2
DT )

‖v0‖2

⇔ ‖(I − Q0) A P A−1
0 R v0‖2 ≤ γ2

DT

(1 − γ2
DT )

‖Q0 A P A−1
0 R v0‖2.

This shows the proposition.

The dependency between ‖(I − Q0) A P A−1
0 R v‖ and ‖Q0 A P A−1

0 R v‖ is illustrated

in Figure 3.2. With cos(αDT ) = γDT , the figure also illustrates the angle between the

spaces (A P A−1
0 R)(V ), W.

Remark: 3.4.4. If the inequality

(A P A−1
0 R v, (I − Q0) v) ≤ γDT‖A P A−1

0 R v‖ ‖(I − Q0) v‖

is also true by equality for a v∗ then Lemma 3.4.3 also holds for this v∗ by equality.

We go on and consider the constants c1, d1. As we have already noticed, we have d1 ≥ 1.

Hence we can estimate d1 by its lower bound and set d1 = 1. For c1, we can give an

estimation that depends only on γDT .

Lemma: 3.4.5. For the constants γDT and c1 as defined in (3.1), we have

c1 ≤
1

1 − γ2
DT

.
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(1)

(2)

αDT

(1) = ‖Q0 A P A−1
0 R v2‖ (2) = ‖(I − Q0) A P A−1

0 R v2‖

W

V0

(A P A−1
0 R)(V )

v1

v2

A P A−1
0 R v1

A P A−1
0 R v2

Figure 3.2: Illustration of the quotient
‖Q0 A P A−1

0 R v2‖
‖(I−Q0) A P A−1

0 R v2‖
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proof. From the Lemmata 3.4.1 and 3.4.3 we obtain for an arbitrary v ∈ V with

v = v0 + w1, v0 ∈ V0, w1 ∈ W

A P A−1
0 R v = v0 + w

with w ∈ W, and ‖w‖2 ≤ γ2
DT

1 − γ2
DT

‖v0‖2.

Hence it follows that

‖A P A−1
0 R v‖2 = ‖A P A−1

0 R v0‖2

= ‖Q0 A P A−1
0 R v0 + (I − Q0) A P A−1

0 R v0‖2

= ‖v0 + w‖2 = ‖v0‖2 + ‖w‖2

≤ ‖v0‖2

(
1 +

γ2
DT

1 − γ2
DT

)
= ‖Q0 v‖2 1

1 − γ2
DT

.

This shows the proposition.

Remark: 3.4.6. In particular, Lemma 3.4.5 shows the implication

γDT = 0 ⇒ c1 = 1.

As we consider finite-dimensional linear spaces, it is well posed to define γDT as the

minimum of the set

{
t ∈ R+ : (A P A−1

0 R v, (I − Q0)v) ≤ t ‖A P A−1
0 R v‖ ‖(I − Q0)v‖, ∀v ∈ V

}
.

Hence there is a v∗ for which it follows that

A P A−1
0 R v0 = v0 + w

with (A P A−1
0 R v0, w) = γDT‖A P A−1

0 R v0‖ ‖w‖.

By Remark 3.4.4, this is the best estimation for c1.

At last we will consider the constants γ±
BPX . The next lemma shows that there is no

case in which we have γ+
BPX < 1 and that γ−

BPX , γDT are given by each other.

Lemma: 3.4.7. For the constants γ+
BPX , γ−

BPX as defined in (3.6), (3.7) we have

γ+
BPX = 1 and γ−

BPX = γDT .
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proof. We start with the assertion for γ+
BPX . By Lemma 3.4.1, we obtain for an arbi-

trary, but fixed v = v0 + w with v0 ∈ V0, w ∈ W, that there is a w1 ∈ W with

A P A−1
0 R v = A P A−1

0 R (v0 + w) = v0 + w1.

Then we set

v1 = v0 + w1

and hence it follows that

(A P A−1
0 R v1, v1) = (v0 + w1, v0 + w1)

= ‖v0 + w1‖ ‖v0 + w1‖

= ‖A P A−1
0 R v1‖ ‖v1‖.

This shows the proposition for γ+
BPX .

For the proposition concerning γ−
BPX and γDT we will show two inequalities.

γ−
BPX ≤ γDT : We assume that there is a γDT ≤ 1 with

(A P A−1
0 R v, (I − Q0) v) ≥ −γDT ‖A P A−1

0 R v‖ ‖(I − Q0) v‖

for all v ∈ V. We prove that this γDT fulfils also

(A P A−1
0 R v, v) ≥ −γDT ‖A P A−1

0 R v‖ ‖v‖ ∀v ∈ V

⇔ (v0 + w1, v0 + w) ≥ −γDT ‖v0 + w1‖ ‖v0 + w‖ ∀v0 ∈ V0, ∀w ∈ W.(3.18)

This implies γ−
BPX ≤ γDT .

We consider an arbitray v0 ∈ V0 with A P A−1
0 R v0 = v0 +w1. Then for all w ∈ W

with ‖w‖ = ‖w1‖ the left side of (3.18) is minimized if we set w = −w1 and the

right side of (3.18) is constant. Hence it is sufficient to consider w = −λw1 with

λ ∈ R+. We obtain that (3.18) is equivalent to

(v0 + w1, v0 − λw1) ≥ −γDT ‖v0 + w1‖ ‖v0 − λw1‖(3.19)

= −γDT

√
‖v0‖2 + ‖w1‖2

√
‖v0‖ + λ2‖w1‖

With the shortcut ‖w1‖2 = b and the scaling ‖v0‖ = 1 (for v0 = 0, both sides of

all inequalities are zero) this is equivalent to

1 − λb ≥ −γDT

√
1 + b

√
1 + λ2b.(3.20)
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If it is λb ≤ 1 then the inequality holds independent of γDT . Hence it is sufficient

to consider the situation λb > 1. (3.20) is fulfiled if we have

(1 − λb)2 ≤ γDT (1 + b + λ2b + λ2b2)

g :=
(1 − λb)2

(1 + b + λ2b + λ2b2)
≤ γDT .

If we differentiate g with respect to λ we obtain

∂ g

∂λ
= 2b(1 + b)

λ2b + λb − λ − 1

(1 + λ2b2 + (1 + λ2)b)2 .

From the assumption λ b > 1 follows

∂g

∂λ
= 2b(1 + b)

(λ + 1)(λ b − 1)

(1 + λ2b2 + (1 + λ2)b)2 ≥ 0.

So it is sufficient if the inequalities (3.20) and (3.19) respectively hold for the

limit λ → ∞. If we consider in (3.19) the limit with respect to λ we obtain

lim
λ→∞

(
(v0 + w1, v0 − λw1) ≥ −γDT ‖v0 + w1‖ ‖λw1‖

)

⇔ lim
λ→∞

(
‖v0‖2 − λ ‖w1‖2 ≥ −γDT ‖v0 + w1‖ ‖λw1‖

)

⇔ lim
λ→∞

(
− λ ‖w1‖2 ≥ −γDT ‖v0 + w1‖ ‖λw1‖

)

⇔ −‖w1‖2 ≥ −γDT ‖v0 + w1‖ ‖w1‖)

⇔ (v0 + w1, −w1) ≥ −γDT ‖v0 + w1‖ ‖w1‖

⇔ (A P A−1
0 R v, (I − Q0)v) ≥

− γDT ‖A P A−1
0 R v‖ ‖(I − Q0)v‖.

This inequality holds based on the assumptions.

γDT ≤ γ−
BPX : Now we assume that it holds

(A P A−1
0 R v, v) ≥ −γ−

BPX ‖A P A−1
0 R v‖ ‖v‖ ∀v ∈ V.(3.21)

We prove that it follows

(A P A−1
0 R v, (I − Q0) v) ≥ −γ−

BPX ‖A P A−1
0 R v‖ ‖(I − Q0) v‖ ∀v ∈ V.

(3.22)
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3 Introduction of the preconditioners

This implies γDT ≤ γ−
BPX .

We consider the inequality (3.22) for an arbitrary but fix v ∈ V with v = v0 + w

and A P A−1
0 R v = v0+w1. If it is v0 = 0 then it follows w1 = 0 and the inequality

(3.22) holds for all γ−
BPX ∈ [0, 1]. Hence it is sufficient to consider v0 6= 0. Then

the inequality (3.21) holds also for

vλ = λv0 + w, λ > 0.

This implies A P A−1
0 R vλ = λ(v0 + w1) and we obtain

(λv0 + λw1, λv0 + w) ≥ −γ−
BPX ‖λ(v0 + w1)‖ ‖λv0 + w‖.(3.23)

Based on λ > 0, this is equivalent to

(v0 + w1, λv0 + w) ≥ −γ−
BPX ‖v0 + w1‖ ‖λv0 + w‖.(3.24)

Since the inequality (3.24) holds for all λ > 0, this is also true for the limit λ → 0.

We obtain

(v0 + w1, w) ≥ −γ−
BPX ‖v0 + w1‖ ‖w‖

⇔ (A P A−1
0 R v, v) ≥ −γ−

BPX ‖A P A−1
0 R v‖ ‖v‖

for v = v0 + w. This proves the second inequality.

3.5 Introduction of C−1
2P

In this section we will introduce the preconditioner C−1
2P into the same setting as

C−1
DT , C−1

BPX as a third possibility of a preconditioning. This preconditioner is motivated

by the idea that for a symmetric matrix A C−1
BPX is just the symmetric alternative to

C−1
DT . So there is also a second possibility to modify C−1

DT to a symmetric precondi-

tioner. We use the same elements and define the preconditioner C−1
2P for a non singular

A ∈ Rn×n and a non singular A0 by

C−1
2P := (I − Q0) A−1 (I − Q0) + P A−1

0 R.(3.25)

Of course our aim is again to determine constants c2P , d2P > 0 that fulfil the inequalities

c2P‖A C−1
2P v‖2 ≤ ‖v‖2 ≤ d2P‖A C−1

2P v‖2(3.26)
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for all v ∈ V. We will do the same steps as for the BPX and the DT method. Thus

we will start with a proposition about the existence of d2P . Therefore we get the same

condition as we have in the DT -method and the BPX-method.

Lemma: 3.5.1. Let A ∈ Rn×n, A0 ∈ Rn0×n0 be a non singular matrices. Then the

matrix

A C−1
2P

is non singular.

proof. As A is non singular by the assumptions, the operator A C−1
2P is singular if and

only if C−1
2P is singular. This is given if and only if there is an v ∈ V \{0} that fulfils

C−1
2P v = 0. As we have for an arbitrary v ∈ V

((I − Q0) A−1 (I − Q0) v, P A−1
0 R v)

= (R (I − Q0) A−1 (I − Q0) v, A−1
0 R v) = 0

the two addends are orthogonal to each other with respect to the inner procuct (., .).

So for C−1
2P v = 0 its a necessary condition that both addends are equal zero.

From the assumptions follows P A−1
0 ∈ Rn×n0 and rk(P A−1

0 ) = n0. Thus we have

P A−1
0 R v = 0

if and only if we have R v = 0. This is equivalent to v ∈ W = V ⊥
0 . If we assume

v ∈ W = V ⊥
0 then it holds for the other addend

(I − Q0) A−1 (I − Q0) v = (I − Q0)A
−1v

This is zero if and only if A−1 v ∈ W⊥ = V0 holds. By Corollary 2.3.6 this contradicts

the assumtion that A0 is non singular.
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3 Introduction of the preconditioners

In this section we define the angles γ0,1
2P , γ1,0

2P and γ2P by

γ0,1
2P = min

{
t ∈ R : (A P A−1

0 R ṽ0, w) ≤ t‖A P A−1
0 R ṽ0‖ ‖w‖, ∀w ∈ W, v0 ∈ V0

}(3.27)

γ1,0
2P = min

{
t ∈ R : (A (I − Q) A−1 (I − Q) w, v0)

(3.28)

≤ t‖A (I − Q) A−1 (I − Q) w‖ ‖v0‖, ∀w ∈ W, v0 ∈ V0

}

γ2P = min
{
t ∈ R : (A (I − Q) A−1 (I − Q) v, A P A−1

0 R v)

(3.29)

≤ t ‖A (I − Q) A−1 (I − Q) v‖ ‖A P A−1
0 R v‖, ∀v ∈ V

}
.

Based on these definitions, it is obvious that γ0,1
2P is the same constant as γDT . Fur-

thermore, for a given matrix the constants γ0,1
2P and γ1,0

2P are easier to determine than

γ2P . However, the constant we will use for estimations for the c2P , d2P is γ2P . We will

do that as in sections 3.3 and 3.2. Therefore, we will prove a relation between these

constants in the next lemma. This result is similar to the result of Lemma 3.4.3.

Lemma: 3.5.2. Let γ0,1
2P , γ1,0

2P be as defined in (3.27), (3.28). If we assume that

γ0,1
2P , γ1,0

2P < 1 holds then we have

‖(I − Q0) A P A−1
0 R v0‖ ≤ γ0,1

2P√
1 − (γ0,1

2P )2

‖Q0 A P A−1
0 R v0‖

for all v0 ∈ V0 and

‖Q0 A (I − Q0) A−1 (I − Q0) w‖ ≤ γ1,0
2P√

1 − (γ1,0
2P )2

‖(I − Q0) A (I − Q0) A−1 (I − Q0) w‖

for all w ∈ W.

proof. As mentioned, the constant γ0,1
2P is the same as γDT . For this constant we have

proved the propostion in section 3.4. For γ1,0
2P the proof follows by the same arguments:

for an arbitrary w ∈ W we obtain

A (I − Q0) A−1 (I − Q0) w = w1 + v0 with w1 ∈ W, v0 ∈ V0.

Hence it follows that

(I − Q0) A (I − Q0) A−1 (I − Q0) w = w1 and Q0 A (I − Q0) A−1 (I − Q0) w = v0
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and by the definition of γ1,0
2P we obtain for the selected w and for v0 = A (I−Q0) A−1 (I−

Q0) w that

(A (I − Q0) A−1 (I − Q0) w, v0) ≤ γ1,0
2P ‖A (I − Q0) A−1 (I − Q0) w‖ ‖v0‖ ∀v0 ∈ V0

⇒ (v0 + w1, v0) ≤ γ1,0
2P ‖v0 + w1‖ ‖v0‖

⇔ ‖v0‖2 ≤ γ1,0
2P ‖v0 + w1‖ ‖v0‖

⇔ ‖v0‖ ≤ γ1,0
2P ‖v0 + w1‖

⇔ ‖v0‖2 ≤ (γ1,0
2P )2‖v0 + w1‖2 = (γ1,0

2P )2‖v0‖2 + (γ1,0
2P )2‖w1‖2

⇔ ‖v0‖ ≤ γ1,0
2P√

1 − (γ1,0
2P )2

‖w1‖.

This proves the proposition for γ1,0
2P .

By the result of Lemma 3.5.2 we can represent the result of A P A−1
0 R v and (I −

Q0) A−1 (I − Q0) v respectively for an arbitrary v ∈ V by

A P A−1
0 R v = v0 + w0, with v0 ∈ V0, w0 ∈ W

and A (I − Q0) A−1 (I − Q0) v = v1 + w1 with v1 ∈ V0, w1 ∈ W.

Then we can represent the dot products (v1, v0) and (w0, w1) as follows:

(v0, v1) = µ1 ‖v0‖ ‖w1‖, with µ1 ≤
γ1,0

2P√
1 − (γ1,0

2P )2

(3.30)

and (w0, w1) = µ0 ‖w1‖ ‖v0‖ with µ0 ≤
γ0,1

2P√
1 − (γ0,1

2P )2

.(3.31)

Now we will prove an estimation for γ2P .

Lemma: 3.5.3. Let γ0,1
2P , γ1,0

2P , γ2P be as defined in (3.27), (3.28) and (3.29). If we

assume that we have µ0, µ1 < 1 then

γ2P ≤ γ1,0
2P

√
1 − (γ0,1

2P )2 + γ0,1
2P

√
1 − (γ1,0

2P )2

holds.
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proof. Based on the definition of γ2P we have to prove that the inequality

(A (I − Q) A−1 (I − Q) v,A P A−1
0 R v)(3.32)

≤ γ2P‖A (I − Q) A−1 (I − Q) v‖ ‖A , P A−1
0 R v‖

holds for an arbitrary v ∈ V . For an arbitrary v ∈ V we obtain

A P A−1
0 R v = v0 + w0, with v0 ∈ V0, w0 ∈ W

A (I − Q) A−1 (I − Q) v = v1 + w1, with v1 ∈ V0, w1 ∈ W.

Hence the Proposition (3.32) is equivalent to

(v0 + w0, v1 + w1) ≤ γ2P‖v0 + w0‖ ‖v1 + w1‖

⇔ (v0, v1) + (w0, w1) ≤ γ2P

√
‖v0‖2 + ‖w0‖2

√
‖v1‖2 + ‖w1‖2.(3.33)

By the result of Lemma 3.5.2 we get

‖w0‖ = µ0 ‖v0‖ with µ0 ≤
γ0,1

2P√
1 − (γ0,1

2P )2

‖v1‖ = µ1 ‖w1‖ with µ1 ≤
γ1,0

2P√
1 − (γ1,0

2P )2

.

Hence the inequality (3.33) follows if we have

‖v0‖ ‖v1‖ + ‖w0‖ ‖w1‖ ≤ γ2P

√
‖v0‖2 + ‖w0‖2

√
‖v1‖2 + ‖w1‖2

⇐ ‖v0‖ ‖w1‖(µ0 + µ1) ≤ γ2P

√
‖v0‖2(1 + λ2

0)
√

‖w1‖2(1 + λ2
1)

⇔ µ0 + µ1√
1 + λ2

0

√
1 + λ2

1

≤ γ2P .(3.34)

If we differentiate the left side with respect to µi, i = 0, 1, we obtain

d

dµ0

(µ0 + µ1)
2

(1 + µ2
0)(1 + µ2

1)
=

(1 − µ0µ1)

(1 + µ2
0)

2(1 + µ2
1)

2

d

dµ1

(µ0 + µ1)
2

(1 + µ2
0)(1 + µ2

1)
=

(1 − µ0µ1)

(1 + µ2
0)

2(1 + µ2
1)

2
.
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By the assumption of µ0µ1 < 1 for all v ∈ V is (3.34) increasing in µ1, µ0. Hence we

can estimate them by their upper bound. This leads to the estimation

µ0 + µ1√
1 + µ2

0

√
1 + µ2

1

≤
γ0,1
2P√

1−(γ0,1
2P

)2
+

γ1,0
2P√

1−(γ1,0
2P

)2√
1 +

(γ0,1
2P

)2

(1−(γ0,1
2P

)2)

√
1 +

(γ1,0
2P

)2

(1−(γ1,0
2P

)2)

=

γ0,1
2P√

1−(γ0,1
2P

)2
+

γ1,0
2P√

1−(γ1,0
2P

)2√
1

1−(γ0,1
2P

)2

√
1

1−(γ1,0
2P

)2

=

√
1 − (γ1,0

2P )2

√
1 − (γ0,1

2P )2


 γ0,1

2P√
1 − (γ0,1

2P )2

+
γ1,0

2P√
1 − (γ1,0

2P )2




= γ1,0
2P

√
1 − (γ0,1

2P )2 + γ0,1
2P

√
1 − (γ1,0

2P )2.

This shows the proposition.

Thus Lemma 3.5.3 gives us an estimation for the angle γ2P if γ0,1
2P and γ1,0

2P are small

enough. We should mention that the special cases of γ0,1
2P = 0 or γ1,0

2P = 0 are included

in the estimation above. Furthermore, we get the following corollary:

Corollary: 3.5.4. Assume that γ0,1
2P = 0 (γ1,0

2P = 0) holds. Then we have

γ2P ≤ γ1,0
2P (γ2P ≤ γ0,1

2P ).

proof. As we have γ0,1
2P = 0 it follows from Lemma 3.5.2 µ0 = 0. Hence the proof follows

immediately from Lemma 3.5.3.

Next we will give an estimation for the condition of A C−1
2P . For this estimation we have

to quantify the condition that A0 is non singular. This characteristic can be expressed

by the introduction of the following constant: There exist constants d2, c2 > 0 which

fulfil

d2‖(I − Q0) v‖2 ≤ ‖A (I − Q0) A−1 (I − Q) v‖2 ≤ c2‖(I − Q0) v‖2, ∀v ∈ V(3.35)

⇔ d2‖w‖2 ≤ ‖A (I − Q0) A−1 w‖2 ≤ c2‖w‖2, ∀w ∈ W.

The existence of c2 is always given as the operators are finite dimensional. The constant

d2 exists if and only if there is no v ∈ W that fulfils A−1 v ∈ V0. And in Corollary 2.3.6

we have seen that this is equivalent to the non singularity of A0. Further, we remember

that γ0,1
2P = γDT and thus we obtain from the results of sections 3.4 and 3.1 that

d1‖Q0 v‖2 ≤ ‖A P A−1
0 R v‖2 ≤ c1‖Q0 v‖2 with d1 = 1, c1 =

1

1 − γDT

holds for all v ∈ V. By these assumptions we can give the following estimation for the

condition of A C−1
2P .
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Proposition: 3.5.5. Let A ∈ Rn×n, A0 ∈ Rn0×n0 be non singular matrices. Then

c2P‖A C−1
2P v‖2 ≤ ‖v‖2 ≤ d2P‖A C−1

2P v‖2

holds for all v ∈ V with

c2P =
2

c2 + c1 +
√

(c1 − c2)2 + 4c1c2γ
2
2P

and d2P =
2

d1 + d2 −
√

(d1 − d2)2 + 4γ2
2Pd1d2

In particular, if V0 is invariant with respect to A, the inequality holds with

c2P =
2

c2 + 1 +
√

(c2 − 1)2 + 4c2(γ
1,0
2P )2

and d2P =
2

1 + d2 −
√

(1 − d2)2 + 4(γ1,0
2P )2

.

proof. For d2P we obtain with the constants d1, d2 and γ2P from the inequality of Young

with

ε =
d1 − d2 +

√
(d1 − d2)2 + 4d2d1γ2

2P

2γ2P

for an arbitrary v ∈ V that

‖A C−1
2P ‖2 ≥ ‖A P A−1

0 R v‖2 + ‖A (I − Q0) A−1 (I − Q0) v‖2

− 2γ2P‖A P A−1
0 R v‖ ‖A (I − Q0) A−1 (I − Q0) v‖

≥ ‖A P A−1
0 R v‖2(1 − γ2P ε) + ‖A (I − Q0) A−1 (I − Q0) v‖2

(
1 − γ2P

ε

)

≥ ‖Q0 v‖2(1 − γ2P ε)d1 + ‖(I − Q0) v‖2(1 − γ2P

ε
)d2

=
d1 + d2 −

√
(d1 − d2)2 + 4d2d1γ2

2P

2
‖Q0v‖2.

This proves the proposition for d2P . The proposition for c2P follows similary with

ε =
c2 − c1 +

√
(c1 − c2)2 + 4γ2

2P c2c1

2γ2P c1

.

If V0 is invariant with respect to A then we obtain γ0,1
2P = γDT = 0. Hence we have

c1 ≤ 1
1−γ2

DT

= 1 and the result of Corollary 3.5.4 for γ2P . This implies the additional

assertion.
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3.6 Estimations by angles

In the sections 3.2 and 3.3 we have introduced the two preconditioners C−1
DT and C−1

BPX

for the linear system A u = f and we have given estimations for the condition of A C−1
DT

and A C−1
BPX in the Euclidean norm. In section 3.4 we have shown relations between

the constants that determine the estimations for the condition. Now we can reduce

those constants that are given by the stiffness matrix and the structure of the subspace

to γDT . First we will show some additional resutlts for the angle γDT . With that it will

also be possible to get the best possible estimation for the condition in the Euclidean

norm. Hence we can compare the methods and analyse the behaviour with respect to

this characteristic. As a short cut we set

µγDT
:=

γDT√
1 − γ2

DT

for γDT ∈ [0, 1).(3.36)

The operators C−1
DT , CBPX are well-posed if A, A0 are non singular. By Corollary 3.3.3

we have in this case γDT < 1 and hence µγDT
is also well posed for the operators of our

interest .

Further, we define for an v ∈ V the Operator Qv : V →< v > as the orthogonal

projection with respect to the dot product (., .).

3.6.1 Basics for angles

As we will need some basic results for the angles between spaces we will present them

first. In this process, we will also take a look at the situation that is given for the

operators defined in previous sections of this chapter.

Lemma: 3.6.1. Let V be a vector space, W be a vector subspace and B : V → V, a

linear operator. Then we have for an arbitrary but fix v ∈ V with B v 6= 0

tv0 := inf{t ∈ R : (B v, w) ≤ t ‖B v‖ ‖w‖, ∀w ∈ W} = sup
w∈W, w 6=0

(B v, w)

‖B v‖ ‖w‖ =: t̃v0.

proof. For an arbitrary v ∈ V we obtain from the definition of t̃v0

(B v, w)

‖B v‖ ‖w‖ ≤ t̃v0, ∀w ∈ W\{0}

⇒ (B v, w) ≤ t̃v0 ‖B v‖ ‖w‖, ∀w ∈ W.
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This implies

t̃v0 ≥ tv0.

The other inequality follows by the same argument. This completes the proof.

Lemma: 3.6.2. Let V be a finite dimensional vector space and V0, W two vector

subspaces that fulfil (v0, w) = 0 for all v0 ∈ V0, w ∈ W . Assume that I − Q : V → W

is the orthogonal projection with respect to the inner product (., .). Assume further that

B : V → V is a linear operator with ker(B) = W and B v /∈ W for all v ∈ V. Assume

that, for an v∗ ∈ V,

t0 = min{t ∈ R : (B v∗, w) ≤ t ‖B v∗‖ ‖w‖, ∀w ∈ W}(3.37)

holds with a t0 ∈ [0, 1). Then we can draw the following conclusions:

1. The inequality (3.37) holds if and only if we have

(B v∗, (I − Q) B v∗) = t0 ‖B v∗‖ ‖(I − Q) B v∗‖.(3.38)

2. In the case of v∗ /∈ W, we have

‖(I − Q)Bv∗‖2

‖Q Bv∗‖2
=

t20
1 − t20

and
‖B v∗‖2

‖Q B v∗‖2
=

1

1 − t20
.

3. If we have v∗ /∈ W and λ ∈ R+ is given then it follows for all w ∈ W with

‖w‖ = 1 that

(B v∗, λw) ≤
(

B v∗, λ
(I − Q)Bv∗

‖(I − Q)Bv∗‖

)
= ‖Q B v∗‖

(
λ

t0√
1 − t20

)

and (B v∗, λw) ≥
(

B v∗, −λ
(I − Q)Bv∗

‖(I − Q)Bv∗‖

)
= −‖Q B v∗‖

(
λ

t0√
1 − t20

)
.

proof. 1. First we consider the case that the condition (3.37) holds with t0 = 0. As

we have (I − Q)B v∗ ∈ W, we obtain that the inequality

(B v∗, w) ≤ t‖B v∗‖ ‖w‖

must also hold for w = (I − Q)B v∗. This implies

0 ≤ ‖(I − Q)B v∗‖2 = (B v∗, (I − Q)B v∗) ≤ 0 · ‖B v∗‖ ‖(I − Q)B v∗‖ = 0.
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Hence it, follows that B v∗ = 0 or (I − Q)B v∗ = 0. In both cases, the equality

(3.38) holds with t0 = 0. The other direction follows by the same argument.

Now we assume that we have t0 > 0. Then we obtain B v∗ 6= 0. First, in this, we

assume that t0 follows from (3.37). Based on Lemma 3.6.1 the definition of t0 is

equivalent to

t0 = sup
w∈W, w 6=0

(B v∗, w)

‖B v∗‖ ‖w‖ .

As we have (I − Q) B v∗ ∈ W, it follows that

(B v∗, (I − Q) B v∗)

‖B v∗‖ ‖(I − Q) B v∗‖ ≤ sup
w∈W,w 6=0

(B v∗, w)

‖B v∗‖ ‖w‖ = t0.

However for a w ∈ W, w 6= (I − Q) B v we obtain that there are w̃ ∈ W and

λ ∈ R that fulfil

w = w̃ + λ (I − Q) B v∗

and 0 = (w̃, (I − Q) B v∗).

It follows that
(B v∗, w)

‖B v∗‖ ‖w‖ =
(B v∗, λ(I − Q) B v∗ + w̃)

‖B v∗‖ ‖λ(I − Q) B v∗ + w̃‖ =
(B v∗, λ(I − Q) B v∗)

‖B v∗‖
√
‖λ(I − Q) B v∗‖2 + ‖w̃‖2

≤ (B v∗, λ(I − Q) B v∗)

‖B v∗‖ ‖λ(I − Q) B v∗‖ =
(B v∗, (I − Q) B v∗)

‖B v∗‖ ‖(I − Q) B v∗‖ .

This implies

sup
w∈W,w 6=0

(B v∗, w)

‖B v∗‖ ‖w‖ =
(B v∗, (I − Q) B v∗)

‖B v∗‖ ‖(I − Q) B v∗‖ .

Based on the same calculation we obtain (3.37) if we define t0 by (3.38).

2. From the first result of this lemma it follows that

(B v∗, (I − Q) Bv∗) = t0 ‖B v∗‖ ‖(I − Q) B v∗‖

⇔ ‖(I − Q) Bv∗‖2 = t0 ‖B v∗‖ ‖(I − Q) B v∗‖

⇔ ‖(I − Q) Bv∗‖ = t0 ‖B v∗‖

⇔ ‖(I − Q) Bv∗‖2 = t20 (‖Q B v∗‖2 + ‖(I − Q) B v∗‖2)

⇔ ‖(I − Q) Bv∗‖2(1 − t20) = t20 ‖Q B v∗‖2

⇔ ‖(I − Q)Bv∗‖2

‖Q Bv∗‖2
=

t20
1 − t20
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and also that

‖Bv∗‖2

‖Q Bv∗‖2
=

‖Q B v∗‖2 + ‖(I − Q)Bv∗‖2

‖Q Bv∗‖2
= 1 +

t20
1 − t20

=
1

1 − t20
.

3. From the result of Lemma 3.6.1 and the first result of this lemma, as well as from

the definition of t0, it follows for all w ∈ W\{0} that

(B v∗, w)

‖Bv∗‖ ‖w‖ ≤ (B v∗, (I − Q)B v∗)

‖Bv∗‖ ‖(I − Q)B v∗‖ .

Hence it follows for all w ∈ W with ‖w‖ = 1 that

(B v∗, w) ≤
(

B v∗,
(I − Q)Bv∗

‖(I − Q)Bv∗‖

)
.

And from the second result of this lemma we obtain
(

B v∗, λ
(I − Q)Bv∗

‖(I − Q)Bv∗‖

)
=

(
(I − Q) B v∗, λ

(I − Q)Bv∗

‖(I − Q)Bv∗‖

)

= λ
‖(I − Q)Bv∗‖2

‖(I − Q)Bv∗‖ = λ‖Q B v∗‖ t0√
1 − t20

.

However, by the same arguments we have

(B v∗, λw) ≥ −λ

(
B v∗,

(I − Q)Bv∗

‖(I − Q)Bv∗‖

)
= −‖Q B v∗‖λ t0√

1 − t20

for all w ∈ W with ‖w‖ = 1.

Remark: 3.6.3. By Lemma 3.6.1 we obtain for v ∈ V with B v 6= 0 that

sup
w∈W, w 6=0

(B v, w)

‖Bv‖ ‖w‖ =
(B v, (I − Q)Bv)

‖Bv‖ ‖(I − Q)Bv‖ .

As we have ker(B) = W, we get for the case of B = A P A−1
0 R by the definition of γDT

that

γDT = sup
v∈V,w∈W ; Bv,w 6=0

(B v, w)

‖Bv‖ ‖w‖ = sup
v∈V ; Bv,(I−Q)Bv 6=0,

(B v, (I − Q)Bv)

‖Bv‖ ‖(I − Q)Bv‖

= sup
v0∈V0; Bv0,(I−Q)Bv 6=0

(B v0, (I − Q)Bv0)

‖Bv0‖ ‖(I − Q)Bv0‖
.
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As we consider finite dimensional spaces V, there is a v∗ ∈ V with

(B v∗; (I − Q)Bv∗)

‖Bv∗‖ ‖(I − Q)Bv∗‖ = γDT .

Otherwise we could only conclude that there is a sequence (v∗,k)k∈N, for which

lim
k→∞

(B v∗,k, (I − Q)Bv∗,k)

‖Bv∗,k‖ ‖(I − Q)Bv∗,k‖ = γDT

holds.

3.6.2 Estimations for the preconditioners

In this section we will show estimations for the conditions of A C−1
DT and A C−1

BPX in the

Euclidean norm. As already mentioned, we will also show that these estimations are

the best possible estimations. Further, we will compare the methods with each other

and analyse the behaviour of the condition if the constant γDT increases or decreases.

Before we can start with the estimations we have to highlight two simple propositions

for real numbers µ:

Remark: 3.6.4. For all µ ∈ R+ we have

2 + µ2 − µ
√

4 + µ2

2
≤ 1 ≤ 2 + µ2 + µ

√
4 + µ2

2
.

Furthermore,

2 + µ2 − µ
√

4 + µ2

2
= 1 =

2 + µ2 + µ
√

4 + µ2

2

holds if and only if µ = 0 holds as well.

proof. Based on µ ∈ R+ it is obvious that

1 ≤ 2 + µ2 + µ
√

4 + µ2

2

and 1 =
2 + µ2 + µ

√
4 + µ2

2
⇔ µ = 0.
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The other inequality follows from

1 ≥ 2 + µ2 − µ
√

4 + µ2

2
⇔ µ2 ≤ µ

√
4 + µ2

⇔ µ2 ≤ 4 + µ2

and 1 =
2 + µ2 − µ

√
4 + µ2

2
⇔ µ2 = µ

√
4 + µ2.

The last equality holds if and only if µ = 0 holds.

Theorem: 3.6.5. Let A ∈ Rn×n, A0 ∈ Rn0×n0 be non singular and C−1
DT as defined in

(3.8). Then the inequalities

cDT‖A C−1
DT v‖2 ≤ ‖v‖2 ≤ dDT‖A C−1

DT v‖2(3.39)

hold for all v ∈ V with

cDT :=
2 + µ2

γDT
− µγDT

√
4 + µ2

γDT

2
and dDT :=

2 + µ2
γDT

+ µγDT

√
4 + µ2

γDT

2
.

proof. We consider an arbitrary v ∈ V. We can decompose this into v = v0 + w, with

v0 ∈ V0 and w ∈ W. If we have v0 = 0, it follows that

‖A C−1
DT v‖2 = ‖(I − Q)v‖2 + ‖A P A−1

0 R v‖2

+ 2(A P A−1
0 R v, (I − Q) v)

= ‖(I − Q)v‖2 = ‖w‖2 = ‖v‖2.

Hence the inequalities (3.39) hold with cDT = dDT = 1.

Now we assume that we have v0 6= 0. By Remark 3.6.4 we obtain for the given terms,

cDT ≤ 1, dDT ≥ 1 and 1 = cDT = dDT if and only if we have µγDT
= 0. First we

consider the inequality concerning cDT . We can scale the inequality so that we can

assume w.l.o.g. ‖v0‖ = ‖w‖ = 1 and v = v0 + wλ with λ ∈ R. For the given v0 we

obtain by Corollary 3.3.3

∣∣(A P A−1
0 R v0, (I − Q) A P A−1

0 R v0)
∣∣ = t ‖A P A−1

0 R v0‖ ‖(I − Q) A P A−1
0 R v0‖

with a t ∈ [0, γDT ], γDT < 1. So the setting µ2
t = t2/(1 − t2) is well posed. Further we

remember that

Q0 A P A−1
0 R v = Q0 v = v0.
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It follows that

−cDT‖A C−1
DT v‖2 + ‖v‖2

= −cDT

(
‖(I − Q)v‖2 + ‖A P A−1

0 R v‖2 + 2(A P A−1
0 R v, (I − Q) v)

)

+ ‖v0‖2 + ‖w‖2

= −cDT

(
‖λw‖2 + ‖A P A−1

0 R v‖2 + 2(A P A−1
0 R v, λ w, )

)

+ ‖λw‖2 + ‖v0‖2

= −cDT

(
λ2 + ‖Q0 A P A−1

0 R v‖2 + ‖(I − Q0) A P A−1
0 R v‖2

+ 2(λ w, (I − Q0) A P A−1
0 R v)

)
+ λ2 + 1

= −cDT

(
λ2 + ‖v0‖2 + µ2

t‖v0‖2 + 2(λ w, (I − Q0) A P A−1
0 R v)

)
+ λ2 + 1

≥ −cDT

(
λ2 + 1 + µ2

t + 2λµt

)
+ λ2 + 1(3.40)

≥ −cDT

(
λ2 + 1 + µ2

γDT
+ 2λµγDT

)
+ λ2 + 1.(3.41)

From the calculation above and Lemma 3.6.2 with B = A P A−1
0 R we obtain the

inequality (3.40). By the algebraic signs it is sufficient to consider λ ∈ R+. Hence we

obtain the inequality (3.41) from the monotonie t ≤ γDT ⇒ µt ≤ µγDT
(cf. (A.0.6)).

Further, we see that the inequality

0 ≤ −cDT

(
λ2 + 1 + µ2

γDT
+ 2λµγDT

)
+ λ2 + 1(3.42)

holds in the case of µγDT
= 0 with cDT = 1. Now we can go on and consider the case of

µγDT
> 0. Hence it follows cDT < 1 from remark 3.6.4. If we differentiate (3.42) with

respect to λ, we get

d

dλ

[
−cDT

(
λ2 + 1 + µ2

γDT
+ 2λµγDT

)
+ λ2 + 1

]
= 2λ(1 − cDT ) − 2cDTµγDT

.

From the assumption of cDT < 1 we obtain that (3.41) is minimized by λ =
cDT µγDT

1−cDT
.

From the minimizing value, it follows that

−cDT

(
λ2 + 1 + µ2

γDT
+ 2λµγDT

)
+ λ2 + 1 =

c2
DT − cDT (2 + µ2

γDT
) + 1

1 − cDT

.

As the denominator is positive, we just consider the nominator. The proposition for

cDT follows as the roots of the nominator with respect to cDT are given by

cDT =
2 + µ2

γDT
± µγDT

√
4 + µ2

γDT

2
.

89



3 Introduction of the preconditioners

We have to set the negative algebraic sign for cDT , then we obtain for all v ∈ V with

v = v0 + λw, v0 ∈ V0, w ∈ W, λ ∈ R and ‖v0‖ = ‖w‖ = 1 that

0 ≤ c2
DT − cDT (2 + µ2

γDT
) + 1

1 − cDT
≤ −cDT‖A C−1

DT v‖2 + ‖v‖2.

Next, we consider the estimation concerning dDT . One more we decompose an arbitrary

v ∈ V into v = v0 +λw, with v0 ∈ V0, w ∈ W, ‖v0‖ = ‖w‖ = 1 and λ ∈ R. So we obtain

∣∣(A P A−1
0 R v0, (I − Q) A P A−1

0 R v0)
∣∣ = t ‖A P A−1

0 R v0‖ ‖(I − Q) A P A−1
0 R v0‖

with a t ∈ [0, γDT ]. Similary to the calculation done for as cDT and Lemma 3.6.2

respectively we have

dDT‖A C−1
DT v‖2 − ‖v‖2

= dDT

(
‖λw‖2 + ‖A P A−1

0 R v‖2 + 2(λ w, A P A−1
0 R v)

)

− (‖λw‖2 + ‖v0‖2)

≥ dDT

(
λ2 + 1 + µ2

t − 2λµt

)
− (λ2 + 1).(3.43)

The inequality (3.43) follows as it is again sufficient to consider λ ∈ R+. Again, for

µt = 0 we have

0 ≤ dDT

(
λ2 + 1 + µ2

t − 2λµt

)
− (λ2 + 1)

with dDT = 1. So we can further assume that we have µt > 0 and dDT > 1 for the

proposed dDT . We differentiate the term (3.43) with respect to λ. Then we get

d

dλ

[
dDT

(
λ2 + 1 + µ2

t − 2λµt)
)
− (λ2 + 1)

]
= 2λ(dDT − 1) − 2dDT µt.

Hence, (3.43) is minimized by λ = dDT µt

dDT−1
. It follows for dDT > 1 that

dDT

(
λ2 + 1 + µ2

t − 2λµt

)
− (λ2 + 1) = λ2(dDT − 1) − 2λdDT µt + (µ2

t + 1)dDT − 1

≥ µ2
td

2
DT

(dDT − 1)
− 2d2

DTµ2
t

dDT − 1
+

((µ2
t + 1)dDT − 1)(dDT − 1)

dDT − 1

=
d2

DT − dDT (2 + µ2
t ) + 1

dDT − 1

≥ d2
DT − dDT (2 + µ2

γDT
) + 1

dDT − 1
.(3.44)
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The last inequality follows as the term is decreasing in µt, and from t ∈ [0, γDT ] follows

µγDT
≥ µt. As the denominator is positive for dDT > 1, we just consider the nominator.

We obtain that the roots of d2
DT − dDT (2 + µ2

γDT
) + 1 are given by

dDT =
2 + µ2

γDT
± µγDT

√
4 + µ2

γDT

2
.(3.45)

If we set the positive algebraic sign for dDT it follows for all v ∈ V with v = v0+λw, v0 ∈
V0, w ∈ W, λ ∈ R and ‖v0‖ = ‖w‖ = 1 that

0 ≤ d2
DT − dDT (2 + µ2

γDT
) + 1

dDT − 1
≤ dDT‖A C−1

DT v‖2 − ‖v‖2.

This completes the proof.

We can see immediately from the proof of Theorem 3.6.5 that the constants cDT , dDT

are best possible. We only have to construct the minimizing elements given in the

theorem.

Corollary: 3.6.6. With the constants cDT , dDT as defined in Theorem 3.6.5, there

is no c∗ > cDT and no d∗ < dDT so that the inequalities (3.39) hold with c∗ and d∗

respectively for all v ∈ V.

proof. As the space V is finite-dimensional, there is a v∗
0 ∈ V0 with ‖v∗

0‖ = 1 so that

we have

(A P A−1
0 R v∗

0, (I − Q) A P A−1
0 R v∗

0)

= γDT ‖A P A−1
0 R v∗

0‖ ‖(I − Q) A P A−1
0 R v∗

0‖

⇒ (A P A−1
0 R v∗

0, λ(I − Q) A P A−1
0 R v∗

0) = λ
γDT√

1 − γ2
DT

‖Q0v
∗
0‖2

and ‖A P A−1
0 R v∗

0‖2 = ‖Q0v
∗
0‖2 1

1 − γ2
DT

.

If we set

v∗
λ,c = v∗

0 +
(I − Q) A P A−1

0 R v∗
0

‖(I − Q) A P A−1
0 R v∗

0‖
cDT µγDT

1 − cDT︸ ︷︷ ︸
λ

,

we obtain that the inequality

cDT‖A C−1
DT v∗

λ,c‖2 ≤ ‖v∗
λ,c‖2
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holds by equality. So there is no bigger c ∈ R that fulfils the inequality for all v ∈ V.

The same follows for dDT if we set

v∗
λ,d = v∗

0 −
(I − Q) A P A−1

0 R v∗
0

‖(I − Q) A P A−1
0 R v∗

0‖
dDT µγDT

dDT − 1
.

Next, we will show that according to the Theorem, 3.6.5 the constants cDT , dDT are

given by a simple one-dimensional optimization problem or a two dimensional restricted

optimization problem respectively.

Corollary: 3.6.7. The constants cDT , dDT of Theorem 3.6.5 are equivalent to

cDT = min
λ∈R

λ2 + 1

λ2 + 1 + µ2
γDT

+ 2λµγDT

= min
λ∈R, µ∈[0,µγDT

]

λ2 + 1

λ2 + 1 + µ2 + 2λµ

dDT = max
λ∈R

λ2 + 1

λ2 + 1 + µ2
γDT

− 2λµγDT

= max
λ∈R, µ∈[0,µγDT

]

λ2 + 1

λ2 + 1 + µ2 − 2λµ
.

proof. By inequality (3.41), we obtain cDT by

0 ≤ −cDT

(
λ2 + 1 + µ2

γDT
+ 2λµγDT

)
+ 1 + λ2, ∀λ ∈ R

⇔ cDT ≤ λ2 + 1

λ2 + 1 + µ2
γDT

+ 2λµγDT

, ∀λ ∈ R.

The proof of Theorem 3.6.5 shows that the minimum of the right side exists. From

Corollary 3.6.6 we obtain that the given constant is the biggest one, so it is given by

the minimum of the right side. From the inequality (3.40), the proposition for the

two-dimensional restricted system by the same arguments.

The proposition for dDT follows by the same arguments.

At last, we will consider the behaviour of the constants with respect to γDT . The results

are quite easy to see.

Corollary: 3.6.8. For the constants cDT , dDT of Theorem 3.6.5 we have

d

d γDT
[cDT ] < 0 and

d

d γDT
[dDT ] > 0.
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proof. By Lemma A.0.6, we have d
dγDT

[µDT ] > 0. Hence it follows that

d

d γDT
[dDT ] =

d

d µDT
[dDT ] · d

d γDT
[µDT ]

=
2µDT +

√
4 + µ2

DT + µDT√
4+µ2

DT

2
· d

d γDT
[µDT ]

︸ ︷︷ ︸
>0

> 0

and
d

d γDT
[cDT ] =

d

d µDT
[cDT ] · d

d γDT
[µDT ]

=
2µDT −

√
4 + µ2

DT − µ2
DT√

4+µ2
DT

2
· d

d γDT

[µDT ]

︸ ︷︷ ︸
>0

< 0.

The last inequality thus follows by

0 > 2µDT −
√

4 + µ2
DT − µ2

DT√
4 + µ2

DT

=
2µDT

√
4 + µ2

DT − (4 + µ2
DT ) − µ2

DT√
4 + µ2

DT

= −(
√

4 + µ2
DT − µDT )2

√
4 + µ2

DT

.

If we consider the two dimensional restricted system in Corollay 3.6.7, then the propo-

sition for the behaviour of cDT , dDT follows quite simple as an bigger γDT implies a

bigger µγDT
, and thus cDT (or dDT ) is given as the minimum (maximum) for the same

function on a bigger set.

Next, we will consider the BPX-method and we will get similar results. So at first we

will again highlight a basic proposition on real numbers that will give the constants for

the BPX-method.

Remark: 3.6.9. For all µ ∈ R+ we have

5 + µ2 −
√

9 + 10µ2 + µ4

8
< 1 ≤ 5 + µ2 +

√
9 + 10µ2 + µ4

8

and 1 =
5 + µ2 +

√
9 + 10µ2 + µ4

8
⇔ µ = 0.
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proof. For

5 + µ2 +
√

9 + 10µ2 + µ4

8

the proposition is obvious from µ ∈ R+. We obtain the other inequality by

1 ≥ 5 + µ2 −
√

9 + 10µ2 + µ4

8

⇔ µ2 − 3 ≤
√

9 + 10µ2 + µ4

⇔ µ4 − 6µ2 + 9 ≤ 9 + 10µ2 + µ4.

If we insert µ = 0, this implies
5+µ2−

√
9+10µ2+µ4

8
< 1.

Later we will see that we can conclude from cBPX |µγDT
=0 = 1/2 that 1/2 is an upper

bound for cBPX (cf. Corollary 3.6.13).

Now we will procead to the central result for the BPX-method.

Theorem: 3.6.10. Let A ∈ Rn×n, A0 ∈ Rn0×n0 be non singular and C−1
BPX be as

defined in (3.4). Then the inequalities

cBPX‖A C−1
BPX v‖2 ≤ ‖v‖2 ≤ dBPX‖A C−1

BPX v‖2(3.46)

hold for all v ∈ V with

cBPX :=
5 + µ2

γDT
−√9 + 10µ2

γDT
+ µ4

γDT

8
(3.47)

and dBPX :=
5 + µ2

γDT
+
√

9 + 10µ2
γDT

+ µ4
γDT

8
.

proof. We consider an arbitrary v ∈ V. First we assume that we have v = w, with

w ∈ W. As W = ker(R), it follows that

‖A C−1
BPX‖2 = ‖v‖2 + ‖A P A−1

0 R v‖2 + 2(A P A−1
0 R v, v) = ‖v2‖.

Hence, the inequalities (3.46) hold with cBPX = dBPX = 1 and by Remark 3.6.9 this is

fulfil by the given constants.

Now we assume that we have v = v0 + w, with v0 ∈ V0, w ∈ W and v0 6= 0. Further,

we highlight that we have cBXP < 1 and dBPX ≥ 1. By the assumption of v0 6= 0,

we can scale the inequality that way that we have v = v0 + λw, with λ ∈ R+ and

‖v0‖ = ‖w‖ = 1. Further, we obtain from Corollary 3.2.3 for the given v0 that

∣∣(A P A−1
0 R v0, (I − Q) A P A−1

0 R v0)
∣∣ = t ‖A P A−1

0 R v0‖ ‖(I − Q) A P A−1
0 R v0‖
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with a t ∈ [0, γDT ], γDT < 1. Thus the setting µ2
t = t2/(1 − t2) is well posed. As we

have

Q0 A P A−1
0 R v = Q0 v = v0.

it follows for cBPX that

cBPX‖A C−1
BPX‖2(3.48)

= cBPX

(
‖v‖2 + ‖A P A−1

0 R v‖2 + 2(A P A−1
0 R v, v)

)

= cBPX

(
‖λw‖2 + ‖v0‖2 + ‖Q0 A P A−1

0 R v‖2 + ‖(I − Q0) A P A−1
0 R v‖2

+ 2(Q0 A P A−1
0 R v, v) + 2((I − Q0) A P A−1

0 R v, v)
)

= cBPX

(
‖λw‖2 + ‖v0‖2 + ‖v0‖2 + µ2

t ‖v0‖2

+ 2(Q0 v, v) + 2((I − Q0) A P A−1
0 R v, λ w)

)

= cBPX

(
λ2 + 2 + µ2

t + 2(Q0 v, v) + 2((I − Q0) A P A−1
0 R v, λ w)

)

≤ cBPX

(
λ2 + 4 + µ2

t + 2λµt

)
(3.49)

≤ cBPX

(
λ2 + 4 + µ2

γDT
+ 2λµγDT

)
.

Based on the algebraic signs it is sufficient to consider λ ∈ R+. This implies the last

inequality above. As we have ‖v‖2 = ‖v0‖2 + ‖λw‖2 = 1 + λ2, by the scaling of v0, w

we obtain

−cBPX‖A CBPX‖2 + ‖v‖2 ≥ λ2 + 1 − cBPX

(
λ2 + 4 + µ2

γDT
+ 2λµγDT

)
.(3.50)

We differentiate (3.50) with respect to λ, we obtain

d

dλ

(
λ2 + 1 − cBPX

(
λ2 + 4 + µ2

γDT
+ 2λµγDT

))

= 2λ − cBPX(2λ + 2µγDT
).

Hence (3.50) is minimized by λ =
µγDT

cBPX

1−cBPX
and we get

λ2 + 1 − cBPX

(
λ2 + 4 + µ2

γDT
+ 2λµγDT

)
≥ c2

BPX − cBPX
5+µ2

γDT

4
+ 1

4

1 − cBPX
.
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As the denominator is positive, we only take a closer look at the nominator. The roots

of the nominator with respect to cBPX are given by

cBPX =
5 + µγ2

DT
±
√

9 + 10µ2
γDT

+ µ4
γDT

8
.

If we take the negative algebraic sign, it follows for all v ∈ V with v = v0 + λw, v0 ∈
V0, w ∈ W, λ ∈ R and ‖v0‖ = ‖w‖ = 1 that

0 ≤
5 + µγ2

DT
−√9 + 10µ2

γDT
+ µ4

γDT

8(1 − cBPX)
≤ ‖v‖2 − cBPX‖A C−1

BPX v‖2.

This proves the propostion for cBPX .

Next, we consider the proposition for dBPX . By the calculation above we can again

consider a v ∈ V that fulfils v = v0 + λw with ‖v0‖ = ‖w‖ = 1 and λ ∈ R. Hence it

follows that

dBPX‖A C−1
BPX‖2

= dBPX

(
‖λw‖2 + ‖v0‖2 + ‖Q0 A P A−1

0 R v‖2 + ‖(I − Q0) A P A−1
0 R v‖2

+ 2(Q0 A P A−1
0 R v, v) + 2((I − Q0) A P A−1

0 R v, v)
)

= dBPX

(
λ2 + 1 + ‖Q0 v‖2 + µ2

t‖Q0 v‖2

+ 2(Q0 v, v) + 2((I − Q0) A P A−1
0 R v, v)

)

= dBPX

(
λ2 + 2 + µ2

t + 2(Q0 v, v) + 2((I − Q0) A P A−1
0 R v, v)

)

≥ dBPX

(
λ2 + 4 + µ2

t − 2λµt

)
.

So we obtain

dBPX‖A C−1
BPX‖2 − ‖v‖2 ≥ dBPX

(
λ2 + 4 + µ2

t − 2λµt

)
− (1 + λ2).(3.51)

In the case of µt = 0, this holds by dBPX = 1. This proofs the proposition for µt = 0.

Now we can assume that we have µt > 0 and dBPX > 1 for the proposed dBPX . If we

differentiate (3.51) with respect to λ, we get

d

dλ

[
dBPX

(
λ2 + 4 + µ2

t − 2λµt

)
− (1 + λ2)

]
= 2λ(dBPX − 1) − 2µtdBPX .
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3.6 Estimations by angles

Hence, (3.51) is minimized with respect to λ if we set λ = µtdBPX

dBPX−1
. From this value we

obtain

dBPX

(
λ2 + 4 + µ2

t − 2λµt

)
− (1 + λ2) =

d2
BPX − dBPX

5+µ2
t

4
+ 1

4

dBPX − 1

≥ d2
BPX − dBPX

5+µ2
γDT

4
+ 1

4

dBPX − 1
.

The denominator is positive, so we consider only the nominator. For this one, the roots

with respect to dBPX are given by

dBPX =
5 + µ2

γDT
±
√

9 + 10µ2
γDT

+ µ4
γDT

8
.

As we take the positive algebraic sign, it follows for all v ∈ V with v = v0 + λw, v0 ∈
V0, w ∈ W, λ ∈ R and ‖v0‖ = ‖w‖ = 1 that

0 ≤
5 + µγ2

DT
+
√

9 + 10µ2
γDT

+ µ4
γDT

8(dBPX − 1)
≤ dBPX‖A C−1

BPX v‖2 − ‖v‖2.

As the constants cDT , dDT defined in Theorem 3.6.5 are best possible estimations, this

is also the case for the constants cBPX , dBPX. In more formal words:

Corollary: 3.6.11. With the constants cBPX , dBPX defined in Theorem 3.6.10, there

is no c∗ > cBPX and no d∗ < dBPX so that the inequalieties (3.46) hold with c∗ and d∗

respectively for all v ∈ V.

proof. As the space V is finite-dimensional, there is a v∗
0 ∈ V0 with ‖v∗

0‖ = 1 for which

we obtain

(A P A−1
0 R v∗

0, (I − Q) A P A−1
0 R v∗

0)

= γDT ‖A P A−1
0 R v∗

0‖ ‖(I − Q) A P A−1
0 R v∗

0‖

⇒ (A P A−1
0 R v∗

0, λ(I − Q) A P A−1
0 R v∗

0) = λ
γDT√

1 − γ2
DT

‖Q0v
∗
0‖2

and ‖A P A−1
0 R v∗

0‖2 = ‖Q0v
∗
0‖2 1

1 − γ2
DT

.

If we set

v∗
λ,c = v∗

0 +
(I − Q) A P A−1

0 R v∗
0

‖(I − Q) A P A−1
0 R v∗

0‖
cBPXµγDT

1 − cBPX︸ ︷︷ ︸
λ

,
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3 Introduction of the preconditioners

the inequality

cBPX‖A C−1
BPXv∗

λ,c‖2 ≤ ‖v∗
λ,c‖2

is true with equality. So there is no bigger c ∈ R that fulfils the inequality for all v ∈ V.

The same follows for dBPX if we set

v∗
λ,d = v∗

0 −
(I − Q) A P A−1

0 R v∗
0

‖(I − Q) A P A−1
0 R v∗

0‖
dBPXµγDT

dBPX − 1
.

Like we did for the DT -method, we also want to give a characterisation for cBPX , dBPX

by a one-dimensional optimization problem (and a two-dimensional restricted optimiza-

tion problem, respectively).

Corollary: 3.6.12. The constants cBPX , dBPX defined in Theorem 3.6.10 are equiva-

lent defined as

cBPX = min
λ∈R

λ2 + 1

λ2 + 4 + µ2
γDT

+ 2λµγDT

= min
λ∈R,µ∈[0,µγDT

]

λ2 + 1

λ2 + 4 + µ2 + 2λµ

dBPX = max
λ∈R

λ2 + 1

λ2 + 4 + µ2
γDT

− 2λµγDT

= max
λ∈R,µ∈[0,µγDT

]

λ2 + 1

λ2 + 4 + µ2 − 2λµ
.

proof. From the inequality (3.50), we obtain cBPX by

0 ≤ −cBPX

(
λ2 + 4 + µ2

γDT
+ 2λµγDT

)
+ 1 + λ2, ∀λ ∈ R

⇔ cBPX ≤ λ2 + 1

λ2 + 4 + µ2
γDT

+ 2λµγDT

, ∀λ ∈ R.

The proof of Theorem 3.6.10 shows the existence of the minimum of the right side.

Hence, the minimum is the best estimation and by Corollary 3.6.11 we obtain that

cBPX is given as the best estimation. The representation by a restricted problem

follows by the same arguments from (3.49).

0 ≤ −cBPX

(
λ2 + 4 + µ2

t + 2λµt

)
+ 1 + λ2, ∀λ ∈ R, ∀µt ≤ µγDT

.

The assertion for dBPX follows by the same arguments.

At last we will consider the behaviour of the constants with respect to γDT . The results

are again quite easy to see.
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Corollary: 3.6.13. For the constants cBPX , dBPX of Theorem 3.6.10, we have

d

d γDT
[cBPX ] < 0 and

d

d γDT
[dBPX ] > 0.

proof. From Lemma A.0.6, it follows that d
dγDT

[µDT ] > 0. Hence we obtain that

d

d γDT
[dBPX ] =

d

d µγDT

[dBPX ] · d

d γDT
[µγDT

]

=
2µγDT

+
10µγDT

+2µ3
γDT√

9+10µ2
γDT

+µ4
γDT

8
· d

d γDT
[µγDT

]

︸ ︷︷ ︸
>0

> 0

and

d

d γDT

[cDT ] =
d

d µDT

[cBPX ] · d

d γDT

[µDT ]

=
2µDT − 10µγDT

+2µ3
γDT√

9+10µ2
γDT

+µ4
γDT

8
· d

d γDT
[µDT ]

︸ ︷︷ ︸
>0

< 0.

The last inequality follows from the consideration below:

0 > 2µγDT
− 10µγDT

+ 2µ3
γDT√

9 + 10µ2
γDT

+ µ4
γDT

⇔ 4µ2
γDT

(9 + 10µ2
γDT

+ µ4
γDT

) < (10µγDT
+ 2µ3

γDT
)2

⇔ 36µ2
γDT

< 100µ2
γDT

.

Again, as for the DT -method, we could also conclude from the restricted optimization

problem as given in Corollary 3.6.12, that a smaller angle γDT gives a lower constant

dBPX and a bigger constant cBPX .

Remark: 3.6.14. In Corollaries 3.6.6 and 3.6.11, the space V and thus V0 ⊂ V in

particular is finite-dimensional in each case. As we consider the case V = Rn this is

sufficient. However, the assumption is not necessary as the proposition for the constants

would also follow for sequences (v∗
k)k∈N so that

lim
k→∞

A P A−1
0 R v∗

k, (I − Q) A P A−1
0 R v∗

k

‖A P A−1
0 R v∗

k‖ ‖(I − Q) A P A−1
0 R v∗

k‖
= γDT .
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Now we have given estimations for the condition of A C−1
BPX and A C−1

DT in the Euclidean

norm. As the estimations all depend only on the constant γDT and µDT respectively,

and as we have shown in the Corollaries 3.6.6 and 3.6.11 that these are the best pos-

sible estimations, we can now compare the two methods. More exactly: As we have

exactly calculated (rather than just estimated) the condition with respect to the Eu-

clidean norm we can compare the methods with respect to this characteristic. As the

condition is given by di

ci
, i = DT, BPX, we will take a look at the a relations between

dDT and dBPX , and between 1
cDT

and 1
cBPX

. At last, we will calculate a relation for the

quotient.

Theorem: 3.6.15. For the constants cDT , dDT , cBPX and dBPX as defined in this

section, it follows that

cBPX ≤ cDT , dBPX ≤ dDT

and
dDT

cDT
≤ dBPX

cBPX
⇔ γDT ≤

√
1/2.

proof. From the Corollaries 3.6.12 and 3.6.7 we obtain

dBPX = max
λ∈R

λ2 + 1

λ2 + 4 + µ2
γDT

− 2λµγDT

and dDT = max
λ∈R

λ2 + 1

λ2 + 1 + µ2
γDT

− 2λµγDT

.

As for a given µγDT
∈ R+ and for all λ ∈ R, we have

λ2 + 1

(λ2 − µγDT
)2 + 4

<
λ2 + 1

(λ2 − µγDT
)2 + 1

⇔ λ2 + 1

λ2 + 4 + µ2
γDT

− 2λµγDT

<
λ2 + 1

λ2 + 1 + µ2
γDT

− 2λµγDT

.

It follows that

dBPX = max
λ∈R

λ2 + 1

λ2 + 4 + µ2
γDT

− 2λµγDT

=
(λ∗)2 + 1

(λ∗)2 + 4 + µ2
γDT

− 2λ∗µγDT

<
(λ∗)2 + 1

(λ∗)2 + 1 + µ2
γDT

− 2λ∗µγDT

≤ max
λ∈R

λ2 + 1

λ2 + 1 + µ2
γDT

− 2λµγDT

= dDT .
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This implies dBPX ≤ dDT . By the same arguments, we obtain for cDT , cBPX that

cDT = min
λ∈R

λ2 + 1

λ2 + 1 + µ2
γDT

− 2λµγDT

=
(λ∗)2 + 1

(λ∗)2 + 1 + µ2
γDT

− 2λ∗µγDT

>
(λ∗)2 + 1

(λ∗)2 + 4 + µ2
γDT

− 2λ∗µγDT

≥ min
λ∈R

λ2 + 1

λ2 + 4 + µ2
γDT

− 2λµγDT

= cBPX .

From the definition of µγDT
, we obtain

γDT ≤
√

1/2 ⇔ µ2
γDT

≤ 1.

Hence we get the last proposition by

dDT

cDT
≤ dBPX

cBPX

⇔ 2 + µ2
γDT

+ µγDT

√
4 + µ2

γDT

2 + µ2
γDT

− µγDT

√
4 + µ2

γDT

≤ 5 + µ2
γDT

+
√

9 + 10µ2
γDT

+ µ4
γDT

5 + µ2
γDT

−√9 + 10µ2
γDT

+ µ4
γDT

⇔ (5 + µ2
γDT

)µγDT

√
4 + µ2

γDT
≤ (2 + µ2

γDT
)
√

9 + 10µ2
γDT

+ µ4
γDT

⇔ (5 + µ2
γDT

)2µ2
γDT

(4 + µ2
γDT

) ≤ (2 + µ2
γDT

)2(9 + 10µ2
γDT

+ µ4
γDT

)

⇔ 0 ≤ µ4
γDT

+ 2µ2
γDT

− 3

⇒ µ2
γDT

= 1.

The proof is completed by the fact that we have µγDT
∈ R+ for γDT ∈ [0, 1).

3.7 First Summary

We will close this section by a first summary of our results. We have introduced the

preconditioners C−1
BPX , C−1

DT and C−1
2P by using the inverse of A, A0. In this introduction

we have seen that the three operators are all well posed if A, A0 are non singular. For

all preconditioners, we have given an easy basic estimation for the condition of A C−1

in the Euclidean norm. For the preconditioners C−1
BPX and C−1

DT , we have seen that we

can give much better estimations. In particular, they depend only on the angle γDT

and the value µγDT
respectively.

Further, we have seen in the Corollaries 3.6.8 and 3.6.13 that the constants dBPX , dDT

are increasing in γDT and cBPX , cDT are decreasing in γDT . This gives us a first idea to
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3 Introduction of the preconditioners

modify the system that way that we have γDT = 0. As the spaces V0, W are orthogonal

to each other, it is easy to see that the condition of γDT = 0 is equivalent to the

condition that V0 is invariant with respect to the operator A. We will take a closer look

at this aspect in the next chapter. So far we will just consider what would happen in

the case of γDT = 0.

Corollary: 3.7.1. Assume thatwe have γDT = 0. Then it follows for the constants

cDT , dDT and cBPX , dBPX of section 3.6.2 that

dDT

cDT
= 1 and

dBPX

cBPX
= 4.

proof. The proof follows as γDT = 0 implies µγDT
= 0. Hence the proof follows from

the results of Theorems 3.6.5 and 3.6.10.

As the exact calculation for the conditions only depends on the constant γDT , we can

compare the two methods. This is done in Theorem 3.6.15. By the quotients d/c, we

see that the BPX-method is better if the angle is bigger. More exactly this is the case

if we have γDT ≥
√

1/2. These are the more serious problems. If the angle is small,

the solution is quite exactly given by the addition of the solutions of the subspaces. In

this case, the DT -method has the lower condition. By the relations for dDT , dBPX and

cDT , cBPX as given in Theorem 3.6.15, we can interpret this as follows:

Interpretation of dDT , dBPX : As already mentioned, the constants dDT , dBPX are

the more serious problem. These constants exist if and only if the operators A C−1
DT and

A C−1
BPX respectively are non singular. So for a robust preconditioner it is important

that the constant d has an upper bound which is as small as possible. Hence, as we

have dBPX ≤ dDT , we can conclude that the BPX-method is more robust.

From the representation

‖v‖2

‖A C−1
i v‖2

≤ di for all v ∈ V

follows λmin(A C−1
i ) ≥ 1

di
, i = DT, BPX

with

λmin(A C−1
i ) := min{|λ| ∈ R+ : A C−1

i v = λ v for an v ∈ Rn\{0}}.
Now we can see that 1

di
is a lower bound for absolute value of the eigenvalues of A C−1

i .

Thus, a bigger di means a lower bound for the eigenvalue with the smallest absolute

value.
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Interpretation of cDT , cBPX : The constants cDT , cBPX determine how exact the so-

lution can be. In Corollary 3.7.1, we have seen that by the condition γDT = 0, the

BPX-method is not exact. We obtain this as we have cBPX = 1
4

in this case. By

comparison, we get cDT = 1 in this case. Hence, the constant ci, i = DT, BPX can be

seen as a measure for how exact a method can be.

As done for the constants d from the representation

‖v‖2

‖A C−1
i v‖2

≥ ci for all v ∈ V

follows λmax(A C−1
i ) ≤ 1

ci

i = DT, BPX

with

λmax(A C−1
i ) := max{|λ| ∈ R+ : A C−1

i v = λ v for an v ∈ Rn\{0}}.

We can see 1
ci

as an upper bound for the eigenvalues of A C−1
i . Thus, a smaller ci means

a lower bound for the biggest eigenvalue.
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4 Modification of the BPX and DT

Method

In chapter 3 we have introduced the preconditioners C−1
BPX , C−1

DT and C−1
2P . Then we

have given quite simple estimations for the condition of C−1
i A, i = BPX, DT, 2P in

the Eulidian norm. In section 3.6 we have proved a better estimation for the BPX

and the DT -method with respect to the same norm. In particular we have seen that

we can estimate the condition just by one constant, the given estimations are best and

the behaviour of the condition with respect to the constant is quite easy to see.

So in this chapter we will modify the preconditioner. First, only by modifying the

prolongation (one sided), then by modifying the prolongation and the restriction (two

sided). As it is obvious that the constant γDT as defined in chapter 3 is zero if and

only if the subspace V0 is invariant with respect to the operator A, the aim will be to

modify the prolongation in a way, that holds this invariance. Furthermore we high-

light that the restriction and prolongation must not be given by an aggregation method.

As in the last chapter, we will introduce the modification for the two grid methods.

Hence we drop the same indices as in the last chapter.

4.1 A one sided modification

First we will try to modify the DT and the BPX-method by a one sided modification.

A modification matrix X ∈ Rn×n should have the property

rk(X P ) = n0.

We define a modified prolongation PX ∈ Rn×n0 by

PX := X P.
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To get a consistence on the subspace V0 we define a modified lower dimensional operator

A0,X by

A0,X := R A PX.

For the non singularity of A0,X we get by the analogy to Lemma 2.3.5 and Corollary

2.3.6 respectively the following result:

Lemma: 4.1.1. Let A ∈ Rn×n be a non singular matrix. Then it follows that A0,X is

non singular if and only if there is no v0 ∈ V0 that holds A X v0 ∈ W = V ⊥.
0

proof. The proof follows from the same arguments as in Lemma 2.3.5.

Analogue to γDT we define the angles γDT,X by

γDT,X := min
{
t ∈ R+ : (A PX A−1

0,X R v, (I − Q0)v)(4.1)

≤ t ‖A PX A−1
0,X R v‖ ‖(I − Q0)v‖, ∀v ∈ V

}
.

So we get a first simple result for the operator A PX A−1
0,X R v that we will use for both

methods. The result is the simple generalization of Lemma 3.4.1.

Lemma: 4.1.2. Let A ∈ Rn×n, R ∈ Rn0×n be given matrics. Assume that A0,X is non

singular. Then the operator

A PX A−1
0,X R : V →

〈
A PX A−1

0,X Re1, . . . , A PX A−1
0,X R en

〉

is a projection and

Q0 A PX A−1
0,X R v = Q0 v(4.2)

holds for all v ∈ V.

proof. The calculation

(A PX A−1
0,X R) (A PX︸ ︷︷ ︸

A0,X

A−1
0,X R) = A PX A−1

0,X A0,X A−1
0,X R

= A PX A−1
0,X R

shows that A PX A−1
0,X R is a projection. The equation (4.2) follows from

Q0 A PX A−1
0,X R v = P S R A PX︸ ︷︷ ︸

A0,X

A−1
0,X R v = P S R v = Q0 v.
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4.1 A one sided modification

By Lemma 4.1.2 we can conclude that the direction of the projection A PX A−1
0,X R is

orthogonal to V0. That means that for an arbitrary v ∈ V with v = v0+w, w ∈ W, v0 ∈
V0 it is

Q0 v = v0, (I − Q0) v = w

and A PX A−1
0,X R v = A PX A−1

0,X R v0 = v0 + w1, w1 ∈ W.

But the image space of A PX A−1
0,X R is also in this case in general not given by V0. We

will take a look at a condition for this. It is:

Lemma: 4.1.3. For given non singular A ∈ Rn×n, A0,X ∈ Rn0×n0 the following three

statements are equivalent:

1. It holds γDT,X = 0.

2. V0 is invariant with respect to A X.

3. It holds (A PX A−1
0,X R) (V ) = V0.

proof. To prove the equivalences we will show three implications:

1 ⇒ 2 : For an arbitrarily given v0 ∈ V0 there is an w1 ∈ W that holds for all w ∈ W

A PX A−1
0,X R (v0 + w) = v0 + w1.

Hence we obtain for v = v0 + w1 by γDT,X = 0

(A PX A−1
0,X R v, (I − Q) v) ≤ γDT,X ‖A PX A−1

0,X R v‖ ‖(I − Q) v‖

⇔ (v0 + w1, w1) ≤ 0

⇔ (w1, w1) ≤ 0

⇒ w1 = 0.

This implies A PX A−1
0,X R (v0 + w) = v0 ∈ V0. As we have

V0 = Im((P A−1
0,X R)(V0))

it follows that V0 is invariant with respect to A X.
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4 Modification of the BPX and DT Method

2 ⇒ 3 : As it holds P A−1
0,X R v ∈ V0 for all v ∈ V we obtain by the invariance of V0 with

respect to A X the inclusion A PX A−1
0,X R (V ) ⊂ V0. As it is

R A PX A−1
0,X R = R

we obtain

rk(A PX A−1
0,X R) ≥ rk(R A PX A−1

0,X R) = rk(R) = n0

This implies that A PX A−1
0,X R : V → V0 is surjective.

3 ⇒ 1 : As we obtain A PX A−1
0,X R ∈ V0 = W⊥ for all v ∈ V. It follows

(A PX A−1
0,X R v, w) = 0 ∀v ∈ V, ∀w ∈ W.

This implies the proposition.

The information given by the last two lemmata is similar to the conlusions we get in

section 3.4 for the unmodified method. In particular we have seen in the Lemmata

3.4.1 and 4.1.2 analogoues propositions for the operators A P A−1
0 R and A PX A−1

0,X R.

This result will be the main aspect to get similar results for the modified method. The

effect of the modification is illustrated in Figure 4.1. Based on the mentioned analogy

the Figure 4.1 is the modification of Figure 3.1 at page 69.

4.1.1 The DT-method

For a non singular matrix A ∈ Rn×n and a non singular A0,X ∈ Rn0×n0 we define the

modified preconditioner C−1
DT,X by

C−1
DT,X := A−1(I − Q0) + PX A−1

0,X R.(4.3)

First we will show that the operator C−1
DT,X is non singular. This follows in the next

lemma based on the same assumption and arguments as used in Lemma 3.3.1 for the

unmodified operator.

Lemma: 4.1.4. Let A ∈ R
n×n, A0 ∈ R

n0×n0 be non singular. Then the matrix

A C−1
DT,X

is non singular.
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4.1 A one sided modification

αDT

αDT,X

W

V0

(A P A−1
0 R)(V )

(A X P A−1
0,X R)(V )

v1

v2

A P A−1
0 R v1

A P A−1
0 R v2

A X P A−1
0,X R v1

A X P A−1
0,X R v2

Figure 4.1: Effect of the modified projection A X P A−1
0,X R

proof. Suppose that A C−1
DT,X is singular. Then it must exist an v ∈ V \{0} with

0 = A C−1
DT,Xv

⇔ 0 = (I − Q0) v + A PX A−1
0,X R v

⇔ −(I − Q0) v = A PX A−1
0,X R v

⇒ −R (I − Q0) v = R A PX︸ ︷︷ ︸
=A0,X

A−1
0,X R v

⇔ 0 = R v.

So the for the given v ∈ V we obtain R v = 0. But in the case of R v = 0 we obtain

0 = A C−1
DT,Xv = (I − Q0) v + A PX A−1

0,X R v = v.

This is in contradiction to the assumption.

As shown in Corollary 3.3.3 in the unmodified situation the proof of the non singularity

of A C−1
DT,X implies γDT,X < 1.

To get estimations for the condition of A C−1
DT,X that can be compared with the esti-

mations of section 3.6 we need similar results. So for the modified method we will give
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4 Modification of the BPX and DT Method

an estimation just depending on the constant γDT,X. So we define for this chapter

µγDT,X
=

γDT,X√
1 − γ2

DT,X

Theorem: 4.1.5. Let A ∈ Rn×n, A0,X ∈ Rn0×n0 be non singular and C−1
DT,X as defined

in (4.3). Then the inequalities

cDT,X‖A C−1
DT,X v‖2 ≤ ‖v‖2 ≤ dDT,X‖A C−1

DT,X v‖2(4.4)

hold for all v ∈ V with

cDT,X :=
2 + µ2

γDT,X
− µγDT,X

√
4 + µ2

γDT,X

2
(4.5)

and dDT,X :=
2 + µ2

γDT,X
+ µγDT,X

√
4 + µ2

γDT,X

2
.

proof. The proof follows exactly the same arguments as the proof of Theorem 3.6.5.

We use again Lemma 3.6.2. This time we set

B = A PX A−1
0,X R instead of B = A P A−1

0 R

as done in the proof of Theorem 3.6.5. Then the proof follows as

Q0 A PX A−1
0,X R v = Q0v

holds as Q0 A P A−1
0 R v = Q0 v in the proof of Theorem 3.6.5.

As the constants cDT,X, dDT,X that determine the condition of A C−1
DT,X have the same

structure as cDT , dDT in Theorem 3.6.5 it is obvious that we obtain for the constants

cDT,X , dDT,X the same characteristics as for cDT , dDT . These are summarized in the next

proposition.

Proposition: 4.1.6. Let cDT,X , dDT,X be as given in Theorem 4.1.5 then it follows:

1. cDT,X ≤ 1 ≤ dDT,X and it is cDT,X = 1 = dDT,X if and only if it is γDT,X = 0.

2. It is

d

dγDT,X

[cDT,X] < 0 and
d

dγDT,X

[dDT,X ] > 0.

110



4.1 A one sided modification

3. There is no c∗ > cDT,X and no d∗ < dDT,X that hold for all v ∈ V

c∗‖C−1
DT,X A v‖2 ≤ ‖v‖2 ≤ d∗‖C−1

DT,X A v‖2.

4. The constants cDT,X, dDT,X are given by

cDT,X = min
λ∈R

λ2 + 1

λ2 + 1 + µ2
γDT,X

+ 2λµγDT,X

= min
λ∈R, µ∈[0,µγDT,X

]

λ2 + 1

λ2 + 1 + µ2 + 2λµ

dDT,X = max
λ∈R

λ2 + 1

λ2 + 1 + µ2
γDT,X

− 2λµγDT,X

= max
λ∈R, µ∈[0,µγDT,X

]

λ2 + 1

λ2 + 1 + µ2 − 2λµ
.

proof. The proof follows the same arguments as the proofs of Remark 3.6.4 and the

Corollaries 3.6.6, 3.6.7 and 3.6.8.

Using these results we can compare the modified method with respect to different

modification matrices X1, X2 with each other.

Proposition: 4.1.7. Let A ∈ Rn×n be non singular and X1, X2 ∈ Rn×n two modifica-

tions so that A0,X1 , A0,X2 ∈ Rn0×n0 are non singular. Assume further that it is

γDT,X1 := min
{
t ∈ R+ : (A PX1 A−1

0,X1
R v, (I − Q0)v)

≤ t ‖A PX1 A−1
0,X1

R v‖ ‖(I − Q0)v‖, ∀v ∈ V
}

γDT,X2 := min
{
t ∈ R+ : (A PX2 A−1

0,X2
R v, (I − Q0)v)

≤ t ‖A PX2 A−1
0,X2

R v‖ ‖(I − Q0)v‖, ∀v ∈ V
}

and γDT,X1 < γDT,X2

then it holds

cDT,X1 > cDT,X2 and dDT,X1 < dDT,X2.

proof. The proposition is immediately followed by the second proposition of 4.1.6.

Looking at the proposition 4.1.7 it is obvious that the aim of a modification should be

a low angle γDT,X . At the same time there are two restrictions for practical causes:

1. As we will in general use iterative methods instead of to determine A−1
0,X the matrix

X should induce for A0,X good characteristics for common iterative methods (cf.

chapter 9).
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4 Modification of the BPX and DT Method

2. The effort to determine X, PX and to calculate X v0 for, a v0 ∈ V0 or PX ṽ0 for a

ṽ0 ∈ Ṽ0 should be limited.

We have assumed for the modification matrix only X ∈ Rn×n with rk(X P ) = n0.

In particular the DT -method do only use X v0 for v0 ∈ V0. So it is obvious that the

modification matrix is not unique because for an arbitrary w ∈ W the result of X w

does not matter. We will see this in an explicit example (cf section 5.1.1). We will

conclude this section with the example X = A−1. In this case we obtain:

(A X P A−1
0,X R v, (I − Q) v) = (P A−1

0,X R v, (I − Q) v)

= (A−1
0,X R v, R (I − Q)︸ ︷︷ ︸

=0

v) = 0.

Hence it is γDT,X = 0 in this case. Furthermore it is quite obvious that V0 is invariant

with respect to A X = id. We have shown above that this implies the invariance, too.

This implies cDT,X = dDT,X = 1. If we take a closer look at this example we get

A0,X = R A X P = R P ⇒ A−1
0,X = S.

This implies

A C−1
DT,X = A

(
A−1 (I − Q) + A−1 P A−1

0,X R
)

= (I − Q) + P S R = I.

So the preconditioner is in this case the exact inverse of A.

4.1.2 The BPX-method

Now we will consider the effect on the BPX-method if we modify this method in the

same way as we have done it for the DT-method. For a non singular A ∈ Rn×n and

a non singular A0,X ∈ Rn0×n0 we define the one sided modified BPX-preconditioner

C−1
BPX,X by

C−1
BPX,X = A−1 + PX A−1

0,X R.(4.6)

Again we will first show that the operator C−1
BPX,X is non singular. The next lemma is

the modified version of Lemma 3.2.1.
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4.1 A one sided modification

Lemma: 4.1.8. Let A ∈ Rn×n, A0 ∈ Rn0×n0 be non singular. Then the matrix

A C−1
BPX,X

is non singular.

proof. Suppose that A C−1
BPX,X is singular. Then there is an v ∈ V \{0} with

0 = A C−1
BPX,Xv

⇔ 0 = v + A PX A−1
0,X R v

⇔ −v = A PX A−1
0,X R v

⇒ −R v = R A PX︸ ︷︷ ︸
=A0,X

A−1
0,X R v

⇔ −R v = R v.

So the for the given v ∈ V we obtain R v = 0. But in the case of R v = 0 we obtain

0 = A C−1
BPX,Xv = v + A PX A−1

0,X R v = v.

This gives the contradiction.

So we obtain also for the modified BPX-method a central result that estimates the

condition of A C−1
BPX,X in the Euclidean norm just by the angle γDT,X . So the result is

the generalization of Theorem 3.6.10.

Theorem: 4.1.9. Let A ∈ Rn×n, A0,X ∈ Rn0×n0 be non singular and C−1
BPX,X as defined

in (4.6). Then the inequalities

cBPX,X‖A C−1
BPX,X v‖2 ≤ ‖v‖2 ≤ dBPX,X‖A C−1

BPX,X v‖2(4.7)

hold for all v ∈ V with

cBPX,X :=
5 + µ2

γDT,X
−
√

9 + 10µ2
γDT,X

+ µ4
γDT,X

8
(4.8)

and dBPX,X :=
5 + µ2

γDT,X
+
√

9 + 10µ2
γDT,X

+ µ4
γDT,X

8
.
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4 Modification of the BPX and DT Method

proof. The proof follows exactly the same arguments as the proof of Theorem 3.6.10.

We use again Lemma 3.6.2 and set

B = A PX A−1
0,X R instead of B = A P A−1

0 R

as done in the proof of Theorem 3.6.10.

As for the modification of the DT -method, the constants cBPX,X , dBPX,X that deter-

mine the condition of A C−1
BPX,X follow the same structure as cBPX , dBPX in Theorem

3.6.10. So it is obvious that we obtain for the constants cBPX,X , dBPX,X the same

properties as for cBPX , dBPX . These are summarized in the next proposition.

Proposition: 4.1.10. Let cBPX,X , dBPX,X be as given in Theorem 4.1.9 then it follows:

1. cBPX,X < 1 ≤ dBPX,X and it is dBPX,X = 1 if and only if it is γDT,X = 0.

2. It is

d

dγDT,X

[cBPX,X ] < 0 and
d

dγDT,X

[dBPX,X ] > 0.

3. There is no c∗ > cBPX,X and no d∗ < dBPX,X that hold for all v ∈ V

c∗‖C−1
BPX,X A v‖2 ≤ ‖v‖2 ≤ d∗‖C−1

BPX,X A v‖2.

4. The constants cBPX,X , dBPX,X are given by

cBPX,X = min
λ∈R

λ2 + 1

λ2 + 4 + µ2
γDT,X

+ 2λµγDT,X

= min
λ∈R, µ∈[0,µγDT,X

]

λ2 + 1

λ2 + 4 + µ2 + 2λµ

dBPX,X = max
λ∈R

λ2 + 1

λ2 + 4 + µ2
γDT,X

− 2λµγDT,X

= max
λ∈R, µ∈[0,µγDT,X

]

λ2 + 1

λ2 + 4 + µ2 + 2λµ
.

proof. The proof follows the same arguments as the proofs of Remark 3.6.9 and the

Corollaries 3.6.11, 3.6.12 and 3.6.13.

So as for the DT -method we can also compare the modified BPX-method for two

different modifications X1, X2 with each other.
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4.1 A one sided modification

Proposition: 4.1.11. Let A ∈ Rn×n be non singular and X1, X2 ∈ Rn×n two modifi-

cations so that A0,X1 , A0,X2 ∈ Rn0×n0 are non singular. Assume further that it is

γDT,X1 := min
{
t ∈ R+ : (A PX1 A−1

0,X1
R v, (I − Q0)v)

≤ t ‖A PX1 A−1
0,X1

R v‖ ‖(I − Q0)v‖, ∀v ∈ V
}

γDT,X2 := min
{
t ∈ R+ : (A PX2 A−1

0,X2
R v, (I − Q0)v)

≤ t ‖A PX2 A−1
0,X2

R v‖ ‖(I − Q0)v‖, ∀v ∈ V
}

and γDT,X1 < γDT,X2

then we have

cBPX,X1 > cBPX,X2 and dBPX,X1 < dBPX,X2.

proof. The proposition is immediately followed by the second proposition of 4.1.10.

So as for the DT -method we can conclude that a lower angle γDT,X implies a lower

condition of A C−1
BPX,X. And as we have done for the DT -method we will conclude this

section with the example X = A−1. We have seen in section 4.1.1 that we obtain in

this case

γDT,X = 0 ⇒ µγDT,X
= 0 and A0,X = S−1.

So this implies for the modified BPX-method:

A C−1
BPX,X = A

(
A−1 + A−1 P A−1

0,X R
)

= I + P S R = I + Q0.

It is therefore obvious that we get in this case

(A C−1
BPX,X v, A C−1

BPX,X v) = ((I + Q0) v, v)

⇒ (v, v) ≤ ((I + Q0) v, v) ≤ 2(v, v).

Hence the BPX-method is not exact in this case. But the smallest eigenvalue is given

by λmin = 1 in this case.
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4.1.3 Summary

So we can summarize the results of section 4.1 as follows: As its possible to set X =

In for the modification matrix, it is obvious that the modified preconditioners are a

generalization of the non modified ones. Furthermore we have seen that based on the

fact that

A PX A−1
0,X R

is a projection and Q0 A PX A−1
0,X R v = Q0 v holds for all v ∈ V we get the same results

as for the unmodified method. The methods differ with regard to the assumption.

For a given matrix A and a given prolongation P (and therewith the structure of the

subspace V0) the matrices A−1
0 and A−1

0,X respectively are well-posed if and only if the

operators A0 and A0,X respectively are non singular. And in both cases this implies

that the preconditioners are well posed too. We have pointed out that the conditions

for this are that there is no v0 ∈ V0 that holds A v0 ∈ W, and A X v0 ∈ W respectively.

So it depends on the modification whether the preconditioners are well posed.

If we compare the modified preconditioners C−1
DT,X and C−1

BPX,X then we can do this in

the same way as we have done in the unmodified situation in Theorem 3.6.15. So it is

obvious that we obtain

dDT,X

cDT,X
≤ dBPX,X

cBPX,X
⇔ γDT,X ≤

√
1/2.

If we compare the modified methods with the unmodified methods, then the result

is illustrated in Figure 4.1 at page 109. As already mentioned we can interpret the

unmodified method as a modification with X = I. Hence the modified methods can be

compared with the unmodified if we use the results of Propositions 4.1.7 and 4.1.11.

This points out that the modification makes the method better if and only if we have

γDT,X < γDT .

However, there are some problems for the modification, too. First, as already men-

tioned, the problem of the effort concerns the preconditioners. For practical issues we

will not determine X but PX . Hence the number of multiplication in a iterative solution

method remains the same. But there can be the problem of a fill in for PX , A0,X . And

of course this raises the effort per multiplication.
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Another problem is that if A is a symmetric matrix then this is also true for the coarse

grid operator A0. In general this is not true for the modified operator A0,X . If we want

to use the preconditioner as a symmetric one this is a problem. To solve this problem

we will modify the preconditioner in a symmetric way. We will show this in the next

section.

4.2 A two sided modification

As mentioned before, the modification of the preconditioner by an operator X has the

side effect that for a symmetric operator A the operator A0,X is in general not sym-

metric. In particular the hole operator C−1
BPX,X is no more symmetric. The aim of this

section is therefore to keep for symmetric operators A the coarse grid operators and the

modified operator C−1
BPX symmetric. So we will concentrate on symmetric operators A.

Similarly to the one sided modification, we define for a non singular operator A ∈ R
n×n

and a modification X ∈ Rn×n with rk(X P ) = n0 the modified prolongation PX ∈
R

n×n0 and restriction RX ∈ R
n0×n as follows

PX := X P and RX := (PX)T .

Furthermore, we define the coarse grid operator A0,XX ∈ Rn×n as follows

A0,XX := RX A PX .

Then we define the operators Q0,X ∈ Rn×n and SX ∈ Rn0×n0 as follows

SX := (RX PX)−1 and Q0,X := PX SX RX .

Based on this definition for SX we can highlight two important characteristics that we

have also used for S in the unmodified, respectively one sided modified situation.

Remark: 4.2.1. Based on the definitions as given above it follows that SX is symmetric

and positive definite.

proof. As it is

(S−1
X )T = (RX PX)T = P T

X RT
X = RX PX = S−1

X

it holds that S−1
X is symmetric. As we have for an arbitrary ṽ0 ∈ Rn0

(ṽ0, S−1
X ṽ0) = (PX ṽ0, PX ṽ0) = ‖PX ṽ0‖2 ≥ 0.
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Based on the condition rk(PX) = n0 it follows ‖PX ṽ0‖2 = 0 if and only if it is ṽ0 = 0.

So it is S−1
X s.p.d. and hence also SX .

Furthermore we define in analogy to the spaces V0, W the vector spaces V0,X and WX

as follows

V0,X := Im(Q0,X(Rn))

WX := Im((I − Q0,X)(Rn)).

Based on these definitions we get the following basics for the operators and vector

spaces:

Lemma: 4.2.2. Based on the definitions of this section it holds:

1. Q0,X : V → V0,X and (I−Q0,X) : V → WX are orthogonal projections with respect

to the inner product (., .).

2. For a given v ∈ V the following three characteristics are equivalent:

a) It is Q0,X v = 0.

b) It is RX v = 0.

c) It is v ∈ WX .

3. For a non singular matrix A ∈ Rn×n the matrix A0,XX ∈ Rn0×n0 is non singular

if and only if there is no v0,X ∈ V0,X with A v0,X ∈ WX .

4. If A is s.p.d. then this holds also for A0,XX . In particular A0,XX is in this case

non singular.

5. If A is real positive then A0,XX is also real positive.

proof. 1. Based on the calculation

Q2
0,X = (PX SX RX)(PX SX︸ ︷︷ ︸

=I

RX) = PX SX RX = Q0,X

it follows that Q0,X is a projection. Based on the symmetry

QT
0,X = (PX SX RX)T = RT

X SX PX = PX SX RX

it follows that the projection is orthogonal with respect to (., .). The proposition

of the image space follows the definition of V0,X .

The proposition for I − Q0,X follows the same arguments.
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2. We prove three implications:

a) ⇒ b) Based on the definition of Q0,X as Q0,X = PX SX RX it follows from the non

singularity of SX and the assumption rk(PX) = n0 that (PX SX) ∈ R
n×n0

has rank n0. Therewith Q0,X v = 0 implies RX v = 0.

b) ⇒ c) If it is RX v = 0 then it follows

(I − Q0,X) v = v − PX SX RX v = v.

This implies v ∈ WX .

c) ⇒ a) As (I − Q0,X) : V → WX is a projection, it follows for v ∈ WX

(I − Q0,X) v = v ⇒ Q0,X v = 0.

3. We obtain that A0,XX is singular if and only if there is a ṽ∗
0 ∈ R

n0\{0} with

A0,XX ṽ∗
0 = RX A PX ṽ∗

0 = 0.

Based on the definition of V0,X and the assumption rk(PX) = n0 we get PX ṽ0 6= 0

for all ṽ0 ∈ Rn0\{0}. This implies A PX ṽ0 6= 0 for all ṽ0 ∈ Rn0\{0}. Furthermore,

it is PX ṽ0 ∈ V0,X based on the definition of V0,X . As we have ker(RX) = WX it

follows

A0,XX ṽ∗
0 = 0 ⇔ RX A (PX ṽ∗

0) = 0 ⇔ A (PX ṽ∗
0) ∈ WX .

This proves the proposition.

4. If A is s.p.d. then we obtain that A0,XX is symmetric based on

AT
0,XX = (RX A PX)T = P T

X AT RT
X = RX A PX = A0,XX .

And we obtain that A0,XX is positive definite as follows

(A0,XX ṽ0, ṽ0) = (A PX ṽ0, PX ṽ0) = ‖PX ṽ0‖2
A ≥ 0.

From the assumption rk(PX) = n0 follows PX ṽ0 6= 0 for ṽ0 6= 0 and hence

‖PX ṽ0‖2
A > 0 for ṽ0 6= 0.

5. The fifth assertion of this Lemma follows immediately from the proof of the fourth

assertion.
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4 Modification of the BPX and DT Method

So we define an angle γDT,XX ∈ R+ as follows

γDT,XX := min
{
t ∈ R+ : (APX A−1

0,XX RX v, (I − Q0,X)v)(4.9)

≤ t ‖A PX A−1
0,XX RX v‖ ‖(I − Q0,X)v‖, ∀v ∈ V

}
.

Therewith we define for γDT,XX < 1 the constant µγDT,XX
as

µγDT,XX
:=

γDT,XX√
1 − γ2

DT,XX

.

Hence we obtain two results that are similar to the Lemmata 4.1.2 and 4.1.3.

Lemma: 4.2.3. For a non singular A ∈ Rn×n the operator

A PX A−1
0,XX RX : V →

〈
A PX A−1

0,XX RXe1
1, . . . , A PX A−1

0,X RX e1
n

〉

=
〈
A PX e0

1, . . . , A PX e0
n0

〉

is a projection and it holds for all v ∈ V

Q0,X A PX A−1
0,XX RX v = Q0,X v(4.10)

proof. The calculation

(A PX A−1
0,XX RX) (A PX︸ ︷︷ ︸

=A0,XX

A−1
0,XX RX) = A PX A−1

0,XX A0,XX A−1
0,XX RX

= A PX A−1
0,XX RX

shows that A PX A−1
0,XX RX is a projection. The equality of the two spaces is a result

of the non singularity of A0,XX . Hence the matrix A−1
0,XX RX ∈ Rn0×n has rank n0.

Therewith {e1
0, . . . , e

0
n0
} is a basis of Im(A0,XX RX (Rn)). The equation (4.10) follows

from

Q0,X A PX A−1
0,XX RX v = PX SX RX A PX︸ ︷︷ ︸

A0,XX

A−1
0,XX RX v = PX SX RX v = Q0,X v.

Lemma: 4.2.4. For non singular A ∈ Rn×n, A0,XX ∈ Rn0×n0 the following three

characteristics are equivalent:
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4.2 A two sided modification

1. It holds γDT,XX = 0.

2. V0,X is invariant with respect to A.

3. It holds (A PX A−1
0,XX RX) (V ) = V0,X .

proof. We show three implications:

1 ⇒ 2 : For an arbitrarily given v0,X ∈ V0,X and all wX ∈ WX it is

A PX A−1
0,XX RX (v0,X + wX) = v0,X + w1,X

with w1,X ∈ WX . Hence we obtain for v = v0,X + w1,X by γDT,XX = 0

(A PX A−1
0,XX RX v, (I − Q0,X) v) ≤ γDT,XX ‖A PX A−1

0,XX R v‖ ‖(I − Q0,X) v‖

⇔ (v0,X + w1,X , w1,X) ≤ 0

⇔ (w1,X , w1,X) ≤ 0

⇒ w1,X = 0.

This implies that V0,X is invariant with respect to A.

2 ⇒ 3 : As it holds PX A−1
0,XX RX v ∈ V0,X for all v ∈ V it follows based on the invariance

of V0,X with respect to A the inclusion A PX A−1
0,XX RX (V ) ⊂ V0,X . As it is

RX A PX A−1
0,XX RX = RX

we obtain

rk(A PX A−1
0,XX RX) ≥ rk(RX A PX A−1

0,XX RX) = rk(RX) = n0.

This implies that A PX A−1
0,XX RX : V → V0,X is surjective. Hence we have

(A PX A−1
0,XX RX) (V ) = V0,X .

3 ⇒ 1 : As we obtain A PX A−1
0,XX RX ∈ V0,X = W⊥

X for all v ∈ V. It follows

(A PX A−1
0,XX RX v, wX) = 0 ∀v ∈ V, ∀wX ∈ WX .

This implies the proposition.
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4 Modification of the BPX and DT Method

So like the similar lemmata for the one sided modification the two lemmata above show

the structure of the modification as well as the aim of the modifications. The major

stake of the difference is that for the one sided modification we still consider the sub-

space V0 like in the unmodified situation. Then we try to create the situation in which

it holds that V0 is invariant with respect to A X. So we modify the operator. As the

lemmata above suggested in the two sided modification, we will consider V0,X , WX . We

will try to create the modification in a way that the modified space V0,X is invariant

with respect to the operator A. This situation is illustrated in Figure 4.2 (cf. Figure

3.1 at page 69 and Figure 4.1 at page 109).

Before we take a look at the two sided modified preconditioners we will consider the

condition that V0,X is invariant with respect to A with respect to the aggregation

method. Hence we assume that we have two sets I1, I2 with

I1 :=
{
i ∈ {1, . . . , n} : N 1

i is an isolated point
}

I2 :=
{
(i, j) ∈ {1, . . . , n} × {1, . . . , n} : N 1

i ,N 1
j are aggregated.

}

According to the definition of V0 this implies that

{e1
i : i ∈ I1} ∪ {e1

i + e1
j : (i, j) ∈ I2}

is a basis of V0. Therewith

{X.,i : i ∈ I1} ∪ {X.,i + X.,j : (i, j) ∈ I2}(4.11)

is a basis of V0,X if we use the aggregation method to construct P and V0,X , respectively.

We obtain the following result concerning the invariance of V0,X with respect to A.

Proposition: 4.2.5. Let A ∈ R
n×n be s.p.d. Then V0,X is invariant with respect to A

if and only if there are z1, . . . , zn0 with

V0,X =
〈
z1, . . . , zn0

〉

and A zi = λi zi for i = 1, . . . , n0.

proof. We prove two implications. First we assume that {z1, . . . , zn0} is a basis of V0,X

with A zi = λi zi for i = 1, . . . , n0. Then it follows obviously A zi ∈ V0,X for i = 1, . . . , n0.

Hence it follows that V0,X is invariant with respect to A based on the linearity of the
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4.2 A two sided modification

W

WX

V0

V0,X

(A P A−1
0 R)(V )

(A PX A−1
0,XX RX)(V )v

v0

v0,x

(1)

(2)

(3)

(4)

(2) = ‖Q0 A P A−1
0 R v‖ = ‖v0‖(1) = ‖(I − Q0) A P A−1

0 R v‖

(4) = ‖Q0,X A PX A−1
0,XX RX v‖ = ‖v0,X‖(3) = ‖(I − Q0,X) A PX A−1

0,XX RX v‖

Figure 4.2: Modification of spaces V0,X
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4 Modification of the BPX and DT Method

operator. Second we assume that V0,X is not given by n0 eigenvectors of A. Then we

have that a basis of V0,X is given by

(z1 + · · · + zk) ∪ {b2, . . . , bn0}

with A zi = λi zi for i = 1, . . . , k, k ≥ 2 and there are i, j with λi 6= λj. Furthermore,

we have

zT
i bj = 0 for i = 1, . . . , k, and j = 2, . . . , n0.

Hence we obtain

A (z1 + · · · + zk) = λ1 z1 + · · ·+ λk zk.

Based on

(λ1 z1 + · · · + λk zk)
T bj = 0 for j = 2, . . . , n0

and λ1 z1 + · · ·+ λk zk /∈< z1 + · · ·+ zk > we obtain

λ1 z1 + · · ·+ λk zk /∈ V0,X .

This proves the second implication.

Based on the Proposition 4.2.5 it follows from the representation (4.11) for a basis of

V0,X that V0,X is invariant with respect to A if and only if the columns and the sum of

columns of X, respectively are given by n0 linear independent eigenvectors of A. Our

ideas to modify this system will be based on this characteristic. We will carry out this

modification at the end of the section.

Based on the results above we can give estimations for the DT -method and the BPX-

method in the two sided modified situation that are analogue to the unmodified meth-

ods. The major stake will be that we use the angles γDT,XX instead of γDT and

respectively the spaces V0,X , WX instead of V0, W.

4.2.1 The DT-method

We will start by the definition of a two sided modified preconditioner C−1
DT,XX . For a

non singular A and a non singular A0,XX we define C−1
DT,XX as follows

C−1
DT,XX := A−1(I − Q0,X) + PX A−1

0,XX RX .(4.12)

As usual we will start by proving the non singularity of A C−1
DT,XX. This is based on the

same arguments as Lemma 4.1.4.
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4.2 A two sided modification

Lemma: 4.2.6. Let A ∈ Rn×n, A0,XX ∈ Rn0×n0 be non singular. Then the matrix

A C−1
DT,XX

is non singular.

proof. Suppose that A C−1
DT,XX is singular. Then it must exist a v ∈ V \{0} with

0 = A C−1
DT,XXv

⇔ 0 = (I − Q0,X) v + A PX A−1
0,XX RX v

⇒ −RX (I − Q0,X) v = RX A PX︸ ︷︷ ︸
=A0,XX

A−1
0,XX RX v

⇔ 0 = RX v.

So the for the given v ∈ V we obtain RX v = 0. But in the case of RX v = 0 it follows

0 = A C−1
DT,XXv = (I − Q0,X) v + A PX A−1

0,XX RX v = v.

This is in contradiction to the assumption.

Again as mentioned after the proof of the non singularity of A C−1
DT,X the non singulariy

of A C−1
DT,XX immediately implies γDT,XX < 1 for all non singular operators A, and all

prolongations P and modifications X that fulfil that A0,XX is non singular.

So we can prove for the two sided modified preconditioner the same characteristics as

for the one sided and the unmodified preconditioner.

Theorem: 4.2.7. Let A ∈ Rn×n, A0,XX ∈ Rn0×n0 be non singular and C−1
DT,XX as

defined in (4.12). Then the inequalities

cDT,XX‖A C−1
DT,XX v‖2 ≤ ‖v‖2 ≤ dDT,XX‖A C−1

DT,XX v‖2(4.13)

holds for all v ∈ V with

cDT,XX :=
2 + µ2

γDT,XX
− µγDT,XX

√
4 + µ2

γDT,XX

2

and dDT,XX :=
2 + µ2

γDT,XX
+ µγDT,XX

√
4 + µ2

γDT,XX

2
.
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4 Modification of the BPX and DT Method

proof. We can set for the vector spaces V0, W of Lemma 3.6.2 the spaces V0,X , WX .

Moreover, we can set in this lemma B = A PX A−1
0,XX RX . Furthermore, we have shown

for all v ∈ V the equality

Q0,X v = Q0,X A PX A−1
0,XX RX v.

Hence we obtain the propositions based on the same arguments as the propositions of

Theorem 3.6.5.

Again the constants cDT,XX , dDT,XX that determine the condition of A C−1
DT,XX have

the same structure as cDT , dDT in Theorem 3.6.5 and cDT,X , dDT,X in Theorem 4.1.5,

respectively. It is obvious that we obtain for the constants the same characteristics as

before. These are summarised in the following proposition.

Proposition: 4.2.8. Let cDT,XX , dDT,XX be as given in Theorem 4.2.7 then it follows:

1. cDT,XX ≤ 1 ≤ dDT,XX and it is cDT,XX = 1 = dDT,XX if and only if it is

γDT,XX = 0.

2. It is

d

dγDT,XX
[cDT,XX ] < 0 and

d

dγDT,XX
[dDT,XX ] > 0.

3. There is no c∗ > cDT,XX and no d∗ < dDT,XX that hold for all v ∈ V

c∗‖C−1
DT,XX A v‖2 ≤ ‖v‖2 ≤ d∗‖C−1

DT,XX A v‖2.

4. The constants cDT,XX , dDT,XX are given by

cDT,XX = min
λ∈R

λ2 + 1

λ2 + 1 + µ2
γDT,XX

+ 2λµγDT,XX

= min
λ∈R, µ∈[0,µγDT,XX

]

λ2 + 1

λ2 + 1 + µ2 + 2λµ

dDT,XX = max
λ∈R

λ2 + 1

λ2 + 1 + µ2
γDT,XX

− 2λµγDT,XX

= max
λ∈R, µ∈[0,µγDT,XX

]

λ2 + 1

λ2 + 1 + µ2 − 2λµ
.

proof. As the constants cDT,XX , dDT,XX have the same structure as cDT , dDT in Theorem

3.6.5 the proof follows again the same arguments as the proofs of Remark 3.6.4 and the

Corollaries 3.6.6, 3.6.7 and 3.6.8.
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4.2 A two sided modification

To conclude the section we will take a look at some examples for modification matrices.

These will be motivated for symmetric matrices. We therefore take into consideration

the result concerning the invariance of V0,X given in Proposition 4.2.5. If A is symmetric

then there is an orthogonal matrix O ∈ Rn×n that holds

A = O DA OT ,

with a diagonal matrix DA. Then we set

As = O Ds
A OT with Ds

A = diag
(
(DA)s

1,1, . . . , (DA)s
n,n

)

for s ∈ R. For the modification we set X = A−1/2. Therewith X is in this case also

given as symmetric. This implies

A0,XX = R XT A X P = R P = S−1

SX = (R XT X P )−1 = (R A−1 P )−1.

Therewith it follows

A C−1
DT,XX = (I − A−1/2 P (R A−1 P )−1 R A−1/2) + A A−1/2 P S R A−1/2

= A1/2 (I − A−1 P (R A−1 P )−1 R) A−1/2 + A1/2 Q0 A−1/2

= A1/2 (I + Q0 − A−1 P (R A−1 P )−1 R) A−1/2.

This is the exact inverse if and only if the term in brackets is the identity. This is

equivalent to

Q0 v = A−1 P (R A−1 P )−1 R v ∀v ∈ V.

Based on this characteristic we see that such a modification is senseless. For the un-

modified system we have the problem that V0 is not invariant with respect to A. For

the two sided modification with X = A−1/2 we obtain the problem that V0 is not in-

variant with respect to A−1. Furthermore we want to highlight that we obtain the same

problem if we use A−1 to carry out the modification.

As mentioned above we will consider a modification that is based only on the eigenvec-

tors of A. We highlight that we modify the symmetric operator with an unsymmetric

X. We still assume that A = O DA OT . Then it follows for X = O

A0,XX = R XT A X P = R OT O DA OT O P = R DA P

SX = (R XT X P )−1 = (R P )−1 = S.
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4 Modification of the BPX and DT Method

This implies

A C−1
DT,XX = (I − X P SX R XT ) + O DA OT X P A−1

0,XX R XT

= (I − O P S R OT ) + O DA OT O P (R DA P )−1 R OT

= O (I − Q0) OT + O DA P (R DA P )−1 R OT

= O (I − Q0 + DA P (R DA P )−1 R) OT .

And again this is exact if the term in brackets is the identity. Again this is in general

not fulfilled as this is equivalent to

Q0 v = DA P (R DA P )−1 R v ∀v ∈ V.

As it is Q0 v ∈ V0 and if N 1
1 ,N 1

2 are aggregated we obtain for

P (R DA P )−1 R v = (1, 1, 0, . . . , , 0)T

DA P (R DA P )−1 R v = (λ1, λ2, 0, . . . , 0) /∈ V0.

Hence for this modification we have the problem that V0 is not invariant with respect

to DA. We take a closer look at the space V0,X follows from the use of X = O. Let

zi = X.,i be the eigenvectors of A. With the sets I1, I2 as used for the representation

(4.11) it follows that

{zi : i ∈ I1} ∪ {zi + zj : (i, j) ∈ I2}

is a basis of V0,X . Hence the assumptions of Proposition 4.2.5 are not fulfilled. To

construct a modification that fulfils the assumptions of Proposition 4.2.5 we define

Ĩ ∈ Rn×n as follows

Ĩ = diag(̃i1,1, . . . , ĩn,n)

ĩi,i =





1 if N 1
i is an isolated point

or N 1
i ,N 1

j are aggregated and it is i < j

0 otherwise.

Based on the definition of Ĩ it follows for an arbitrary T ∈ Rn×n

(T Ĩ).,i =





T.,i if N 1
i is an isolated point

or N 1
i ,N 1

j are aggregated and it is i < j

(0, . . . , 0)T otherwise.
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4.2 A two sided modification

So the matrix Ĩ selects n0 columns of T. Based on the same argument Ĩ T selects the

same n0 rows of T. Then we define the matrix X = Õ = O Ĩ. Based on this modification

we obtain

SX = (R Ĩ OT OĨ P )−1 = I0.

Q0,X = PX SX RX = O Ĩ P R Ĩ OT = O Ĩ OT

A0,XX = RX A PX = R Ĩ OT A O Ĩ P = R Ĩ OT O DA OT O Ĩ P = R Ĩ DA Ĩ P =: D̃A

with D̃A ∈ Rn0×n0

D̃A = diag((D̃A)1,1, . . . , (D̃A)n0,n0).

As it is DA = diag(λ1, . . . , λn) with the eigenvalues λi, i = 1, . . . , n of A it follows

that (D̃A)i,i = λj with j ∈ {1, . . . , n}. Moreover, we obtain from the definiton of Q0,X

that this operator is the projection V → V0,X that is orthogonal with respect to the

Euclidean norm.

From the calculations above we obtain

A C−1
DT,XX = A A−1 (I − Q0,X) + A PX A−1

0,XX RX

= I − O Ĩ P R Ĩ OT + O DA OT O Ĩ P (D̃A)−1 R Ĩ OT

= I − O Ĩ P R Ĩ OT + O DA Ĩ P (D̃A)−1 R Ĩ OT .

Therewith A C−1
DT,XX is the identity if and only if it is

O Ĩ P R Ĩ OT = O DA Ĩ P (D̃A)−1 R Ĩ OT .(4.14)

We have the equality above if

Ĩ P = DA Ĩ P (D̃A)−1

holds. For the left side of this equation if e1
i is the k-th column of P we obtain that

(Ĩ P ).,k = e1
i . And if e1

i + e1
j with i < j is the k-column of P that (Ĩ P ).,k = e1

i . For the

right side we obtain if the e1
i is the k-column of P that

(P (D̃A)−1).,k =
1

λi
e1

i

⇒ (Ĩ P (D̃A)−1).,k =
1

λi

e1
i

⇒ (DA Ĩ P (D̃A)−1).,k = e1
i .

129



4 Modification of the BPX and DT Method

And if e1
i + e1

j with i < j is the k-column of P that

(P (D̃A)−1).,k =
1

λi
(e1

i + e1
j)

⇒ (Ĩ P (D̃A)−1).,k =
1

λi

e1
i

⇒ (DA Ĩ P (D̃A)−1).,k = e1
i .

Therewith the equation (4.14) holds and we obtain A C−1
DT,XX = I.

To conclude this example we want to highlight two characteristics of the modification:

1. For practical issues there is so far no rule which n0 eigenvectors of A should be

chosen.

2. We obtain the same result if we modify with X = O D
−1/2
A Ĩ . In this case we scale

the eigenvectors with the associated eigenvalue. We get A0,XX = I0 in this case

and A C−1
DT,XX = I follows from a similar calculation.

4.2.2 The BPX-method

Similarly to the two sided modified DT -method we define the two sided modified BPX

preconditioner. For a non singular A and a non singular A0,XX we define C−1
BPX,XX as

follows

C−1
BPX,XX := A−1 + PX A−1

0,XX RX .(4.15)

As already mentioned we obtain for the two sided modification that A0,XX is symmetric

if this holds for A. But in contrast to the DT -method we obtain for the BPX-method

the symmetry of the operator C−1
BPX,XX . The result is

(C−1
BPX,XX)T = (A−1 + PX A−1

0,XX RX)T = (A−1)T + (RX)T (A−1
0,XX)T (PX)T

= A−1 + PX A−1
0,XX RX = C−1

BPX,XX .

Then we will show that A C−1
BPX,XX is also non singular based on the same condition

as used all the time.

Lemma: 4.2.9. Let A ∈ Rn×n, A0,XX ∈ Rn0×n0 be non singular. Then the matrix

A C−1
BPX,XX

is non singular.
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4.2 A two sided modification

proof. Suppose that A C−1
BPX,XX is singular. Then there is a v ∈ V \{0} with

0 = A C−1
BPX,XXv

⇔ 0 = v + A PX A−1
0,XX RX v

⇒ −RX v = RX A PX︸ ︷︷ ︸
=A0,XX

A−1
0,XX RX v

⇔ −RX v = RX v.

So for the given v ∈ V we obtain RX v = 0. But in the case of RX v = 0 it follows

0 = A C−1
BPX,XXv = v + A PX A−1

0,XX RX v = v.

Hence this is in contradiction to the assumption.

We have shown for the DT -method how we have to modify the assumptions and the

steps to get the same result as for the unmodified method, we obtain this also for the

modified BPX-method. This is obvious as we used the same arguments in section 3.6

for both methods.

Theorem: 4.2.10. Let A ∈ Rn×n, A0,XX ∈ Rn0×n0 be non singular and C−1
BPX,XX as

defined in (4.15). Then the inequalities

cBPX,XX‖A C−1
BPX,XX v‖2 ≤ ‖v‖2 ≤ dBPX,XX‖A C−1

BPX,XX v‖2(4.16)

holds for all v ∈ V with

cBPX,XX :=
5 + µ2

γDT,XX
−
√

9 + 10µ2
γDT,XX

+ µ4
γDT,XX

8
(4.17)

and dBPX,XX :=
5 + µ2

γDT,XX
+
√

9 + 10µ2
γDT,XX

+ µ4
γDT,XX

8
.(4.18)

proof. As mentioned above the proposition follows the same arguments as the propo-

sitions of Theorem 3.6.10 if we modify the spaces for that and we use the arguments

as explained in the proof of Theorem 4.2.7.

So it is obvious that we get the same characteristics as before. To sum up it is:

Proposition: 4.2.11. Let cBPX,XX , dBPX,XX be as given in Theorem 4.2.10 then it

follows:
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1. cBPX,XX < 1 ≤ dBPX,XX and it is dBPX,XX = 1 if and only if it is γDT,XX = 0.

2. It is
d

dγDT,XX

[cBPX,XX ] < 0 and
d

dγDT,XX

[dBPX,XX ] > 0.

3. There is no c∗ > cBPX,XX and no d∗ < dBPX,XX that hold for all v ∈ V

c∗‖C−1
BPX,XX A v‖2 ≤ ‖v‖2 ≤ d∗‖C−1

BPX,XX A v‖2.

4. The constants cBPX,XX , dBPX,XX are given by

cBPX,XX = min
λ∈R

λ2 + 1

λ2 + 4 + µ2
γDT,XX

+ 2λµγDT,XX

= min
λ∈R, µ∈[0,µγDT,XX

]

λ2 + 1

λ2 + 4 + µ2 + 2λµ

dBPX,XX = max
λ∈R

λ2 + 1

λ2 + 4 + µ2
γDT,XX

− 2λµγDT,XX

= max
λ∈R, µ∈[0,µγDT,XX

]

λ2 + 1

λ2 + 4 + µ2 − 2λµ
.

proof. The proof follows again based on the same structure as for the unmodified or

one sided modified BPX-method.

To conclude this section we will also consider for the two sided BPX-method the same

modifications as done for the DT -method. For X = A−1/2 we obtain

A C−1
BPX,XX = I + A A−1/2 P S R A−1/2

= A1/2 (I + Q0) A−1/2.

Hence this illustrates again that the BPX-method can not be exact. Furthermore we

see that this is as far from the identity as the unmodified method. As unsymmetric

example we consider for A = O DA OT again X = O. Then it follows

A C−1
BPX,XX = I + O DA OT O P (R DA P )−1 R OT

= O (I + DA P (R DA P )−1 R) OT .

This is more senseful. In particular if it is DA P (R DA P )−1 R = Q0. However, the

problems concerning this characteristic are explained for the DT -method. Finally we

will carry out the modification with X = Õ = O Ĩ. In this case we obtain from the

same calculation as done for the DT -method

A C−1
BPX,XX = I + O DA OT O Ĩ P (D̃A)−1 R Ĩ OT

= O (I + Ĩ) OT = I + QV0,X
.

Since QV0,X
is the projection V → V0,X that is orthogonal with respect to the Euclidean

norm we obtain the biggest (smallest) eigenvalue of A C−1
BPX,XX : two (one).
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5 Examples for modifications

In the last chapter we have seen that we can modify the preconditioninig methods as

we modify the prolongation, or the prolongation and the restriction respectively. Now

we will consider the problems we have introduced as model problems in section 2.2. We

will motivate modifications by meaningful results for quite simple special cases of these

problems. Afterwards we will considere more general cases of the modell problems to

get an idea of what happens in these cases in relation to our modification. Of course

we will get in the more general cases not the meaningful results which we have for the

simple problems. Further we will use for all the examples the aggregation method to

get the coarser grids.

5.1 Convection diffusion equation

5.1.1 One dimensional convection

We will start with our unsymmetric model problem and consider the convection diffu-

sion equation defined in (2.5). As a more simple version we will consider the stiffness

matrices we get in the case of the one dimensional system with ε = 0. The equation we

consider is given by

b(x) Dx u(x) = f(x) ∀x ∈ Ω ⊂ R

u(x) = c(x) ∀x ∈ ∂Ω.

Furthermore, we assume that it is b(x) > 0, for all x ∈ Ω. We use finite differences for

the discritisation and by appliying the upwind method we get in Ni the stencil

[−bi, bi, 0]

with bi > 0. To set ε = 0 can be seen as the limit ε → 0. As the diffusion is often small

compared to the convection (that means ε << b(x)) a discritisation and a solution

method should at least confirm that the equation we get from the limit ε → 0 is as
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5 Examples for modifications

exact as possible. This can be seen as motivation for this problem. Furthermore, the

one dimensional situation can be seen as the situation of a one dimensional convection

in a two or three dimensional system.

For the most aspects it is sufficient to consider a small system given by the four grid

points N 1
1 , . . . ,N 1

4 . Then we assume that we aggregate the grid points N 1
2 ,N 1

3 to the

new point N 0
2 (cf. Figure 5.1 at page 135). So we obtain that the restriction R and

the prolongation P are give by

P =




1 0 0

0 1 0

0 1 0

0 0 1




and R = P T =




1 0 0 0

0 1 1 0

0 0 0 1


 .(5.1)

Therewith also follows that

R P = diag(1, 2, 1), S = diag(1, 1/2, 1),

P S R = Q0 =




1 0 0 0

0 1/2 1/2 0

0 1/2 1/2 0

0 0 0 1




and (I − Q0) =




0 0 0 0

0 −1/2 1/2 0

0 1/2 −1/2 0

0 0 0 0




.

So this also gives the structure of the subspaces V0, W. It is

{(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)}

a basis of V0 and

{(0,−1, 1, 0)}

a basis of W and we obtain the stiffness matrix A as

A =




b1 0 0 0

−b2 b2 0 0

0 −b3 b3 0

0 0 −b4 b4




.(5.2)
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5.1 Convection diffusion equation

We highlight, that this implies that the coarse gird operator A0 is follows as

A0 = R A P =




b1 0 0

−b2 b2 0

0 −b4 b4


 .(5.3)

Therewith the coefficient b3 that represents the conjunction between the grid points

N2,N3 has no effect for the coarser operator. The hole system is illustrated in Figure

5.1.

N 1
1 N 1

2 N 1
3 N 1

4

N 0
1 N 0

2 N 0
3

b1 b2 b3 b4

b1 b2 b4

Figure 5.1: Coarsing of the four point system

Unmodified method

First we will consider the result for the unmodified method. In particular we will

consider the angle γDT that determines the condition of A C−1
BPX and A C−1

DT in the

Euclidean norm. Based on the definition of γDT and the results of the previous chapters

the following equivalence is obvious:

γDT := min
{
t ∈ R+ : (A P A−1

0 R v, (I − Q0)v)

≤ t ‖A P A−1
0 R v‖ ‖(I − Q0)v‖, ∀v ∈ V

}

⇔ γDT := min
{
t ∈ R+ : (A v0, w) ≤ t ‖A v0‖ ‖w‖, ∀v0 ∈ V0, ∀w ∈ W

}
.
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5 Examples for modifications

To consider the inequality

(A v0, w) ≤ γDT ‖A v0‖ ‖w‖ ∀v0 ∈ V0, w ∈ W

is more simple for explicit calculations. Thus we obtain in the simple situation the

following result:

Proposition: 5.1.1. Let A be given as in (5.2) and P, R as given in (5.1). Then

(A v0, w) ≤ γ‖A v0‖ ‖w‖, ∀v0 ∈ V0, w ∈ W

holds with γ =
√

1/2. Furthermore this is the best possible estimation.

proof. As an arbitrary v0 ∈ V0 and an arbitrary w ∈ W is given by

v0 = (f, u, u, g), f, u, g ∈ R

w = (0, s,−s, 0), s ∈ R

we obtain

A v0 = (b1f, b2(u − f), 0, b4(g − u)).

And therewith follows

(A v0, w) = b2 s (u − f)

‖A v0‖2 = b2
1f

2 + b2
2(u − f)2 + b2

4(g − u)2

‖w‖2 = 2s2.

This implies

(A v0, w)2 = b2
2s

2(u − f)2 =
1

2
(2 s2) (b2

2(u − f)2)

≤ 1

2
(2 s2) (b2

2(u − f)2 + b2
1f

2 + b2
4(g − u)2)

=
1

2
‖w‖2 ‖A v0‖2.

It is obvious that this is the best possible estimation if we consider the case of f = 0

and g = u.
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5.1 Convection diffusion equation

Furthermore, it is obvious that this result does not depend on the low dimension of the

problem. For a matrix of the same structure and an arbitrary dimension we get the

same result.

We consider the situation of n grid points. Then we assume that the stencil in N 1
i

is given by [−bi, bi, 0]. By the choosen numeration of the grid points follows that the

stiffness matrix A ∈ Rn×n follows as

ai,j =





bi for j = i

−bi for j = i − 1

0 else.

(5.4)

For an illustration see Figure 5.2 at page 142. Furthermore we still assume that R ∈
Rn0×n follows from the aggregation method. Hence we have

Rj,. =





(e1
i )

T if N 1
i ⊂ N 0

j is an isolated point

(e1
i )

T + (e1
i+1)

T if N 1
i ,N 1

i+1 are aggregated to N 0
j .

(5.5)

Then the result of Proposition 5.1.1 can be generalized as follows:

Proposition: 5.1.2. Let A, R be given as in (5.4), (5.5) and P = RT . Then

(A v0, w) ≤ γ ‖A v0‖ ‖w‖, ∀v0 ∈ V0, w ∈ W.

holds with γ =
√

1/2. Furthermore this estimation is best possible.

proof. We distinguish two different situations for the grid points. First we consider a

point N 1
i that is isolated. Then it is w(i) = 0 and we have

(A v0)(i) w(i) ≤ 1/2 ((A v0)(i))
2 (w(i))2

⇔ 0 ≤ 0.

And of course this inequality is fulfilled.

Now we consider a point N 1
i that is aggregated with N 1

i+1 to N 0
j . In this case we have

w(i) = −w(i + 1)

and v0(i) = v0(i + 1) ⇒ (A v0)(i + 1) = 0, ∀v0 ∈ V0.
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5 Examples for modifications

Therewith follows that
(

[ (A v0)(i), (A v0)(i + 1) ], [w(i), w(i + 1)]
)

= (A v0)(i)w(i)

∥∥ [ (A v0)(i), (A v0)(i + 1)
] ∥∥2

= ((A v0)(i))
2

∥∥ [w(i), w(i + 1)
] ∥∥2

= 2w(i)2.

So the inequality holds with γDT =
√

1/2 for all one or two dimensional subsystem.

The proposition follows from Lemma A.0.4. That this is the best possible estimation

follows immediately from Proposition 5.1.1.

An exact modification

Now we will construct for the simple system a modification X = (xi,j) that realises

γDT,X = 0. We will do this for the low dimensional system. Then we will show that we

can generalise this to an arbitrary big system of the given structure. The main idea of

this approch is that we invert the flux that is described by A for aggregated points.

So our aim is to construct X such that V0 is invariant with respect to A X. On our four

point system this is equivalent to

(A X v0)(2) = (A X v0)(3) holds for all v0 ∈ V0 ≡ R
4.

Based on the basis of V0 as shown above the equality must hold for all basis vectors.

Hence we obtain that this is equivalent to

(A X)2,1 = (A X)3,1, (A X)2,4 = (A X)3,4(5.6)

and (A X)2,2 + (A X)2,3 = (A X)3,2 + (A X)3,3.

As N 1
1 ,N 1

4 are isolated points (i.e. as e1
1, e

1
4 are basis elements of V0) the values of the

first and the fourth row of A X does not matter. As we will modify few elements this

motivates to set for the first and the fourth row of X the first and the fourth unit

vector of R4. That means

X1,. = (e1
1)

T and X4,. = (e1
4)

T .

Next we will consider the three equations given in (5.6). It is

(A X)2,4 = (A X)3,4

⇔ a2,1x1,4 + a2,2x2,4 + a2,3x3,4 + a2,4x4,4 = a3,1x1,4 + a3,2x2,4 + a3,3x3,4 + a3,4x4,4

⇔ a2,2x2,4 = a3,2x2,4 + a3,3x3,4
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5.1 Convection diffusion equation

This is fulfilled if we set x2,4 = x3,4 = 0. Furthermore, we obtain

(A X)2,1 = (A X)3,1

⇔ a2,1x1,1 + a2,2x2,1 + a2,3x3,1 + a2,4x4,1 = a3,1x1,1 + a3,2x2,1 + a3,3x3,1 + a3,4x4,1

⇔ a2,1 + a2,2x2,1 = a3,2x2,1 + a3,3x3,1

We set in this equation x3,1 = 0. Therewith the last equality is equivalent to

x2,1 =
−a2,1

a2,2 − a3,2

=
b2

b2 + b3

.

So this equation is also fulfilled if we set x2,1 as given above. At least we consider

(A X)2,2 + (A X)2,3 = (A X)3,2 + (A X)3,3

⇔ a2,2x2,2 + a2,2x2,3 = a3,2x2,2 + a3,3x3,2 + a3,2x2,3 + a3,3x3,3

We set for the consistence x2,2 = 1 = x3,3 and x3,2 = 0. Therewith the equality is

equivalent to

a2,2 + a2,2x2,3 = a3,2 + a3,2x2,3 + a3,3

⇔ x2,3 =
a3,3 − a2,2 + a3,2

a2,2 − a3,2

.

For the matrix A this implies

x2,3 =
−b2

b2 + b3

= −x2,1.

Alltogether we get the matrices X, PX as follows:

X =




1 0 0 0

b2
b2+b3

1 − b2
b2+b3

0

0 0 1 0

0 0 0 1




and PX =




1 0 0

b2
b2+b3

b3
b2+b3

0

0 1 0

0 0 1




.(5.7)

Thus it it follows rk(PX) = n0 = 3 as the rows 1, 3, 4 of PX are linearly independent.

This property for a modification we have always assumed in the chapter 4.

And we can summarize the main properties of the matrix X as follows:
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5 Examples for modifications

Proposition: 5.1.3. Let A, P be as defined in (5.2), (5.1) and X as defined in (5.7).

Then it follows that V0 is invariant with respect to A X.

proof. The proof follows the calculation as done above in this section.

Moreover, we will highlight some interesting characteristics of this modification that

we will prove later in a more general system. First it is obvious as the first row of X

is given by e1
1 that it follows (A X v)(1) = (A v)(1) for all v ∈ V. As (X)3,. and (X)4,.

are also given by the unit vectors e1
3, e

1
4 we obtain analogue (A X v)(4) = (A v)(4) for

all v ∈ V.

At least we highlight that it follows

A0,X =




b1 0 0

−2 b2 b3
b2+b3

2 b2 b3
b2+b3

0

0 −b4 b4




So if we compare the matrices A0, A0,X (cf. (5.3)) we see that the modification maintains

a lot of useful characteristics.

1. We have (A0)i,j 6= 0 ⇔ (A0,X)i,j 6= 0. So there is no fill in if we use the modifica-

tion. That means that the effort for the lower dimension grids does not increase

if we we compare the modified system with the non modified system.

2. Like A, A0 the matrix A0,X fulfils

ai,i > 0, ai,j ≤ 0 for i 6= j and

n∑

j=1, j 6=i

|ai,j| ≤ ai,i.

So the matrix A0,X is also an M-matrix. A more detailed analysis of this aspect

is done in section 9.1.

3. The link between N 0
1 and N 0

2 is in the modified system given by 2 b2 b3
b2+b3

. In the

unmodified system this is just given by b3, so the link is modified by the factor
2b2

b2+b3
. This makes sense as a small b2 should imply that the value on N 1

4 and N 0
3

respectively does not depend so strong on the value on N 1
1 and N 0

1 , respectively.

In the unmodified system this is not realized. For an illustration see again Figure

5.1 at page 135.
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5.1 Convection diffusion equation

4. The modification holds

4∑

j=1

xi,j = 1, for all i = 1, . . . , 4.

Because of this characteristic it follows X v = v for all constant vectors v. It

is easy to see that we obtain A v ∈ V0 for constant v ∈ V. So in this case no

modification is necessary. Therewith it is a kind of consistence that the choosen

modification has no effect on such vectors.

Because of the inverse of A as defined in (5.2) is

A−1 =




1
b1

0 0 0
1
b1

1
b2

0 0
1
b1

1
b2

1
b3

0
1
b1

1
b2

1
b3

1
b4

.




it is X 6= A−1 for X given in (5.7). Together with the modification as given in (5.7)

this illustrates that for a modification it is not necessary to determine the inverse of A

to get the invariance of V0 with respect to A X.

Exact modification for one dimensional convection systems of arbitrary size

In the last section we have seen that we can give a perfect modification for the matrix

A we get for the one dimensional convection on the small system given by four grid

points. Now we will show that we can generalize this to an arbitrary number of grid

points and an arbitray structure of grid points that are aggregated pairwise to new grid

points. This will explain some of the choices for the matrix X we have done in the last

section and they seem to be arbitrary.

We consider the situation as illustrated in Figure 5.2. That means the stencil in N 1
i is

given by [−bi, bi, 0]. Based on the chosen numeration of the grid points follows that the

stiffness matrix A ∈ Rn×n is given as

ai,j =





bi for j = i

−bi for j = i − 1

0 else

(5.8)
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N 1
i−3 N 1

i−2 N 1
i−1 N 1

i N 1
i+1 N 1

i+2 N 1
i+3

N 0
j−2 N 0

j−1 N 0
j N 0

j+1

a1
i−2,i−3 a1

i−1,i−2 a1
i,i−1 a1

i+1,i a1
i+2,i+1 a1

i+3,i+2

a0
j−1,j−2 a0

j,j−1 a0
j+1,j

Figure 5.2: Coarsing of an arbitrary one dimensional system

with bi > 0, i = 1, . . . , n. For the restriction we define R ∈ R
n0×n of the form

Rj,. =





(e1
i )

T if N 1
i ⊂ N 0

j is an isolated point

(e1
i )

T + (e1
i+1)

T if N 1
i ,N 1

i+1 are aggregated to N 0
j

(5.9)

Then we highlight that by the structure of R given above

{
{e1

i : N 1
i is isolated} ∪ {e1

i + e1
j : N 1

i ,N 1
j are aggregated}

}
(5.10)

is a basis of V0.

Then for a restriction R ∈ Rn0×n of the structure defined in (5.9), we define the
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5.1 Convection diffusion equation

modification matrix X ∈ Rn×n based on its rows Xi,. as

Xi,. := (e1
i )

T , if N 1
i is an isolated point.

(5.11)

Xi,. := (e1
i )

T , if N 1
i ,N 1

i−1 are aggregated to N 0
j for an j ∈ {1, . . . , n0}.

Xi,. := (e1
i )

T +
bi

bi + bi+1

((e1
i−1)

T − (e1
i+1)

T ), for i > 1 if N 1
i ,N 1

i+1 are aggregated

to N 0
j for an j ∈ {1, . . . , n0}.

X1,. := (e1
1)

T − b1

b1 + b2

(e1
2)

T , if N 1
1 ,N 1

2 are aggregated to N 0
j for an j ∈ {1, . . . , n0}.

Therewith this modification matrix is a generalization of the matrix defined in (5.7).

We get the same meaningful result as in the situation of the small system with four

grid points:

Proposition: 5.1.4. Let A be as defined in (5.8). Let R be a restriction operator as

defined in (5.9), P = RT and X be the modification defined in (5.11). Then it follows

that V0 is invariant with respect to A X.

proof. To prove that it is A X v0 ∈ V0 it is sufficient to prove that for two aggregated

points N 1
i ,N 1

i+1 we obtain

(A X v0)(i) = (A X v0)(i + 1) ∀v0 ∈ V0.

Because of the definition of A as given in (5.8) we can represent A through its rows Ai,.

as

Ai,. =





b1(e
1
1)

T for i = 1

bi(e
1
i − e1

i−1)
T for i 6= 1.

First we assume that it is i > 1. Then it follows from the definitions

Xi−1,. = (e1
i−1)

T , Xi,. = (e1
i )

T +
bi

bi + bi+1

((e1
i−1)

T − (e1
i+1)

T ), Xi+1,. = (e1
i+1)

T

(5.12)

Ai,. = bi((e
1
i )

T − (e1
i−1)

T ), and Ai+1,. = bi((e
1
i+1)

T − (e1
i )

T ).
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Based on ai,j = ai+1,j = 0 for j /∈ {i− 1, i, i + 1} follows from the rows i − 1, i, i + 1 of

X as given above

(A X)i,j = Ai,. · X.,j = 0 = Ai+1,. · X.,j = (A X)i+1,j for j /∈ {i − 1, i, i + 1}.

Hence it is sufficient to prove

(A X)i,i−1 = (A X)i+1,i−1

and (A X)i,i + (A X)i,i+1 = (A X)i+1,i + (A X)i+1,i+1.

Based on the definition of X the columns i − 1, i, i + 1 of X follow as

X.,i = ei, X.,i−1 = ei−1 +
bi

bi + bi+1
ei + xi−2,i−1 ei−2

X.,i+1 = ei+1 −
bi

bi + bi+1
ei + xi+2,i+1 ei+2.

In the equation above is xi−2,i = 0 if N 1
i−2 is not aggregated with N 1

i−1 and xi+2,i+1 = 0

if N 1
i+2 is not aggreageted with N 1

i+3. Independent of the values of xi−2,i, xi+2,i+1 follows

for the rows of (A X) that it is

(A X)i,. = Ai,.(X.,i−1 (e1
i−1)

T + X.,i (e
1
i )

T + X.,i+1 (e1
i+1)

T )

=

(
b2
i

bi + bi+1

− bi

)
(e1

i−1)
T + bi(e

1
i )

T − b2
i

bi + bi+1

(e1
i+1)

T

= − bibi+1

bi + bi+1
(e1

i−1)
T + bi(e

1
i )

T − b2
i

bi + bi+1
(e1

i+1)
T

and (A X)i+1,. = Ai+1,.(X.,i−1 (e1
i−1)

T + X.,i (e
1
i )

T + X.,i+1 (e1
i+1)

T )

= − bibi+1

bi + bi+1
(e1

i−1)
T − bi+1(e

1
i )

T +

(
bibi+1

bi + bi+1
+ bi+1

)
(e1

i+1)
T .
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5.1 Convection diffusion equation

Since for all v0 ∈ V0 holds v0(i) = v0(i + 1) it follows for an arbitrary v0 ∈ V0

(A X v0)(i) = (A X)i,. v0

= − bibi+1

bi + bi+1
v0(i − 1) +

(
bi −

b2
i

bi + bi+1

)
v0(i)

= − bibi+1

bi + bi+1
v0(i − 1) +

bibi+1

bi + bi+1
v0(i)

and (A X v0)(i + 1) = (A X)i+1,. v0

= − bibi+1

bi + bi+1
v0(i − 1) +

(
−bi+1 +

bibi+1

bi + bi+1
+ bi+1

)
v0(i)

= − bibi+1

bi + bi+1

v0(i − 1) +
bibi+1

bi + bi+1

v0(i).

This completes the proof for i > 1. The case of i = 1 we only have to consider if N 1
1 ,N 1

2

are aggregated. In this case follows, based on the same arguments as for i > 1, that

(A X)1,. = b1(e
1
1)

T − b2
1

b1 + b2

(e1
2)

T

and (A X)2,. = −b2(e
1
1)

T +

(
b1b2

b1 + b2
+ b2

)
(e1

2)
T .

Based on v0(1) = v0(2) for all v0 ∈ V0 we obtain for an arbitrary v0 ∈ V0

(A X v0)(1) = (A X)1,. v0 =

(
b1 −

b2
1

b1 + b2

)
v0(1) =

b1b2

b1 + b2
v0(1)

and (A X v0)(2) = (A X)2,. v0 =

(
−b2 +

b1b2

b1 + b2

+ b2

)
v0(1) =

b1b2

b1 + b2

v0(1).

From the Proposition 5.1.4 follows that with the matrix X as given in (5.11) V0 is

invariant with respect to A X. From Lemma 4.1.3 follows therewith that the angle

γDT,X is zero. We know from section 4.1 that this is the best possible result.

To conclude the discussion of this modification we will show that the structure of the

coarse grid operators A0,X is an operator of the same structure as A0 also for the

arbitrary big system. To show this we will show the structure of A0 and A0,X . W.l.o.g.

we assume that we have for the prolongation matrix P the following order condition:

pi,j 6= 0 ⇒ ps,t = 0, ∀ s ≥ i, ∀ t < j.(5.13)
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To illustrate this assumption we assume that the structure of P is given for example

as follows:

P =




1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1




and P 6=




0 0 0 1

0 0 0 1

0 1 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 0 1 0




.

This is always possible to reach by means of a permutation matrix Π we use. This

transforms P to Π P ΠT = P̂ with the assumed structure. So the permutation matrix

just represents another numeration on the coarse grid points. Furthermore, it is obvious

based on the structure of A that

(e1
i )

T A = bi(e
1
i − e1

i−1)
T holds for all i ≥ 2

and (e1
1)

T A = b1 (e1
1)

T .

We will use this property to prove the propositions concerning the structure of A0, A0,X .

Lemma: 5.1.5. Let A be a matrix as defined in (5.8), R a restriction operator as

defined in (5.9) so that P = RT fulfils the condition (5.13). Let X be the modification

matrix as given in (5.11). Then it follows:

1. For P e0
k = e1

i or P e0
k = e1

i + e1
i+1 we obtain for i > 1

a0
k,t =





bi if t = k

−bi if t + 1 = k

0 otherwise

and a0
1,t =





b1 if t = 1

0 otherwise

for i = 1.

2. For P e0
k = e1

i we obtain for i > 1

a0,X
k,t =





bi if t = k

−bi if t + 1 = k

0 otherwise.

and a0,X
1,t =





b1 if t = 1

0 otherwise

for i = 1.
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5.1 Convection diffusion equation

3. For P e0
k = e1

i + e1
i+1 we obtain for i > 1

a0,X
k,t =





2bi bi+1

bi+bi+1
if t = k

− 2bi bi+1

bi+bi+1
if t + 1 = k

0 otherwise.

and a0,X
1,t =





b1b2
b1+b2

if t = 1

0 otherwise

for i = 1.

proof. For all propositions we only prove the proposition for the case of P e0
k = e1

i or

P e0
k = e1

i + e1
i+1 with i > 1. For i = 1 it follows k = 1 from the condition (5.13). Then

the prove always follows the same arguments as for i > 1.

1. First we assume that we have P e0
k = e1

i . As it is generally

a0
k,t = (e0

k)
T A0 e0

t = (e0
k)

T R A P e0
t = (e0

k)
T P T A P e0

t

= (P e0
k)

T A (P e0
t ) = (e1

i )
T A (P e0

t )

= bi(e
1
i − e1

i−1)
T (P e0

t )

we obtain for t = k

a0
k,k = bi(e

1
i − e1

i−1)
T e1

i = bi.

For t = k − 1 follows by the assumption (5.13) on the structure of P

P e0
t = P e0

k−1 = e1
i−1 if Ni−1 is isolated, or

P e0
t = P e0

k−1 = e1
i−1 + e1

i−2 if Ni−1,Ni−2 are aggregated.

In both cases follows the propositon for a0
k,k−1 that is

a0
k,k−1 = bi(e

1
i − e1

i−1)
T (P e0

k−1) = bi(e
1
i − e1

i−1)
T e1

i−1 = −bi

or a0
k,k−1 = bi(e

1
i − e1

i−1)
T (P e0

k−1) = bi(e
1
i − e1

i−1)
T (e1

i−1 + e1
i−2) = −bi.

For t < k − 1 it follows from the condition (5.13)

P e0
t = e1

j or P e0
t = e1

j + e1
j−1 with j ≤ i − 2.

This implies

a0
k,t = bi(e

1
i − e1

i−1)
T e1

j = bi(e
1
i − e1

i−1)
T (e1

j + e1
j−1) = 0 for t < k − 1.
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Similary it follows for t > k from the condition (5.13)

P e0
t = e1

j or P e0
t = e1

j + e1
j+1 with j ≥ i + 1.

And this implies

a0
k,t = bi(e

1
i − e1

i−1)
T e1

j = bi(e
1
i − e1

i−1)
T (e1

j + e1
j+1) = 0 for t ≥ k + 1.

Then we assume that we have P e0
k = e1

i + e1
i+1. Based on the same arguments as

above we obtain

a0
k,t = (e0

k)
T A0 e0

t =
(
bi(e

1
i − e1

i−1)
T + bi+1(e

1
i+1 − e1

i )
T
)

(P e0
t )

we obtain for t = k

a0
k,k =

(
bi(e

1
i − e1

i−1)
T + bi+1(e

1
i+1 − e1

i )
T
)

(e1
i + ei+1) = bi.

For t = k − 1 follows again by the assumption (5.13) on the structure of P

P e0
t = P e0

k−1 = e1
i−1 if Ni−1 is isolated, or

P e0
t = P e0

k−1 = e1
i−1 + e1

i−2 if Ni−1,Ni−2 are aggregated.

In both cases follows the propositon for a0
k,k−1 that is

a0
k,k−1 =

(
bi(e

1
i − e1

i−1)
T + bi+1(e

1
i+1 − e1

i )
T
)

(P e0
k−1)

=
(
bi(e

1
i − e1

i−1)
T + bi+1(e

1
i+1 − e1

i )
T
)

e1
i−1 = −bi

or a0
k,k−1 =

(
bi(e

1
i − e1

i−1)
T + bi+1(e

1
i+1 − e1

i )
T
)

(P e0
k−1)

=
(
bi(e

1
i − e1

i−1)
T + bi+1(e

1
i+1 − e1

i )
T
)

(e1
i−1 + e1

i−2) = −bi.

For t < k − 1 and t > k the assertion follows as in the case of P e0
k = e1

i . This

shows the proposition about the structure of A0.

2. We assume again that we have P e0
k = e1

i with i > 1. Again we will consider the

elements of the k-th row of A0,X . We obtain

a0,X
k,t = (e0

k)
T A0,X e0

t = (P e0
k)

T A X (P e0
t ) = (e1

i )
T A X (P e0

t )

= bi(e
1
i − e1

i−1)
T X (P e0

t ).
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Based on the assumption that N 1
i is an isolated point we obtain for the i-th and

the (i − 1)-th row of X

Xi,. = (e1
i )

T and Xi−1,. = (e1
i−1)

T and therewith

(e1
i − e1

i−1)
T X = (e1

i − e1
i−1)

T .

So it follows

a0,X
k,t = bi(e

1
i − e1

i−1)
T (P e0

t )

and we have shown in the first part of the proof that this is bi for t = k, −bi for

t = k − 1 and zero otherwise.

3. Now we assume that we have P e0
k = e1

i +e1
i+1 with i > 1. Then it follows for A0,X

a0,X
k,t = (e0

k)
T A0,X e0

t = (P e0
k)

T A X (P e0
t ) = (e1

i + e1
i+1)

T A X (P e0
t )

= bi (e
1
i − e1

i−1)
T X (P e0

t ) + bi+1 (e1
i+1 − e1

i )
T X (P e0

t )

= (bi − bi+1) (e1
i )

T X (P e0
t ) + (bi+1 (e1

i+1)
T − bi (e

1
i−1)

T )0 X (P e0
t ).

As N 1
i ,N 1

i+1 are aggregated it follows for the rows of X

Xi−1,. = (e1
i−1)

T , Xi+1,. = (e1
i+1)

T

and Xi,. = (e1
i )

T +
bi

bi + bi+1
(e1

i−1 − e1
i+1)

T .

Hence we obtain

(e1
i−1)

T X = Xi−1,. = (e1
i−1)

T , (e1
i+1)

T X = Xi+1,. = (e1
i+1)

T

(e1
i )

T X = Xi,. = (e1
i )

T +
bi

bi + bi+1
(e1

i−1 − e1
i+1)

T .

Therewith we get for a0,X
k,t

a0,X
k,t = (bi − bi+1)

(
(e1

i )
T +

bi

bi + bi+1
(e1

i−1 − e1
i+1)

T

)
(P e0

t )

+
(
bi+1 (e1

i+1)
T − bi (e

1
i−1)

T
)
(P e0

t )

=
b2
i − b2

i+1

bi + bi+1

(e1
i )

T P e0
t −

2bi bi+1

bi + bi+1

(e1
i−1)

T P e0
t

+
−b2

i + b2
i+1 + 2bibi+1

bi + bi+1

(e1
i+1)

T P e0
t .
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In the case of t = k it follows P e0
t = e1

i + e1
i+1 and therewith that

a0,X
k,k =

b2
i − b2

i+1

bi + bi+1
(e1

i )
T (e1

i + e1
i+1) −

2bi bi+1

bi + bi+1
(e1

i−1)
T (e1

i + e1
i+1)

+
−b2

i + b2
i+1 + 2bibi+1

bi + bi+1
(e1

i+1)
T (e1

i + e1
i+1)

=
b2
i − b2

i+1

bi + bi+1
+ 0 +

−b2
i + b2

i+1 + 2bibi+1

bi + bi+1
=

2bibi+1

bi + bi+1
.

In the case of t = k − 1 we get

P e0
k−1 = e1

i−1 or P e0
k−1 = e1

i−1 + e1
i−2.

In both cases it follows

a0,X
k,k−1 =

b2
i − b2

i+1

bi + bi+1
(e1

i )
T e1

i−1 −
2bi bi+1

bi + bi+1
(e1

i−1)
T e1

i−1

+
−b2

i + b2
i+1 + 2bibi+1

bi + bi+1
(e1

i+1)
T e1

i−1

= − 2bibi+1

bi + bi+1
.

For t ≤ k − 2 it follows again

P e0
t = e1

j or P e0
t = e1

j + e1
j−1 with j ≤ i − 2

and for t ≥ k + 1

P e0
t = e1

j or P e0
t = e1

j + e1
j+1 with j ≥ i + 2.

This proves again a0,X
k,t = 0 for t 6= k, k − 1.

To illustrate the assertion of Lemma 5.1.5 we give the following example: Assume that

the grids are structured as in Figure 5.3. Then it results A0, A0,X as follows:

A0 =




b1

−b3 b3

−b4 b4

−b6 b6




A0,X =




2 b1b2
b1+b2

−b3 b3

− 2 b4b5
b4+b5

2 b4b5
b4+b5

− 2 b6b7
b6+b7

2 b6b7
b6+b7



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N 1
1 N 1

2 N 1
3 N 1

4 N 1
5 N 1

6 N 1
7

N 0
1 N 0

2 N 0
3 N 0

4

b1 b2 b3 b4 b5 b6 b7

b1 b3 b4 b6

2 b1b2
b1+b2

b3
2 b4b5
b4+b5

2 b6b7
b6+b7

unmodified

modified

Figure 5.3: Unmodified and modified links in the coarse grid operator

To conclude this section we highlight that the modification again fulfils

rk(PX) = n0.

This is obtained as it follows

(PX)j,. = (e0
t )

T

if N 1
j ⊂ N 0

t is an isolated point or N 1
i ,N 1

j are aggregated to N 0
t . This implies that n0

rows of PX are given by the n0 unit basis vectors of Rn0 .

Modification based on the inverse of blocks

Next we will consider the idea to consider the aggregated points as blocks which are

independent of the rest of the system. So we are back in the situation as given in

section 5.1.1 and consider the system of four points. The stiffness matrix of our intrest

is still

A =




b1 0 0 0

−b2 b2 0 0

0 −b3 b3 0

0 0 −b4 b4




.(5.14)
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Based on the structure of R as defined in (5.9) we consider the blocks

B1 = (b1), B2 =


 b2 0

−b3 b3


 , B3 = (b4).

Then we will set X as the inverse of blocks given by

X =




B−1
1

B−1
2

B−1
3


 .(5.15)

As it is

B−1
1 =

(
1

b1

)
, B−1

2 =


1/b2 0

1/b2 1/b3


 , B−1

3 =

(
1

b4

)

we obtain

A X =




1 0 0 0

−b2/b1 1 0 0

0 −b3/b2 1 0

0 0 −b4/b3 0




and A0,X =




1 0 0

−b2/b1 2 − b3/b2 0

0 −b3/b4 1


 .

First we highlight that for this modification we obtain rk(X) = n. This implies

rk(PX) = n0.

Compared with the modification we have done bevor its obvious that this idea is simpler

to implement in a numerical algorithm. But the problems of this modification are quite

obvious.

1. The matrix A0,X can be singular. This is for example the case if it is b3 = 2b2.

2. For b3 > 2b2 the matrix A0,X is non singular but it is obvious that A0,X is no

M-matrix in this case. (For a closer look at the characteristics of A0,X concerning

M-matrices, cf. chapter 9.)

3. At last there is no local estimation for γDT,X < 1 that fulfils

(A X P A−1
0,X R v, (I − Q0) v) ≤ γDT,X ‖A X P A−1

0,X R v‖ ‖(I − Q0) v‖

152



5.1 Convection diffusion equation

for all v ∈ V. This can be seen as follows: As already mentioned is R v = R Q0 v.

Hence the inequality above is equivalent to

(A X v0, w) ≤ γDT,X ‖A X v0‖ ‖w‖

for all v0 ∈ V0 and all w ∈ W. Since we only want to consider the local situation

of the two aggregated points this is equivalent to

((A X v0)(2) w(2) + (A X v0)(3) w(3))2

≤ γDT,X

(
[(A X v0)(2)]2 + [(A X v0)(3)]2

)
(w(2)2 + w(3)2).

For v0 = (f, u, u, g), f, u, g ∈ R and w = (0, s,−s, 0), s ∈ R this is equivalent to

[(
u − f

b2

b1

)
− u

(
1 − b3

b2

)]2

s2 ≤ γ2
DT,X(2s2)

[(
u − f

b2

b1

)2

+ u2

(
1 − b3

b2

)2
](5.16)

Then we see that for

f =

(
2 − b3

b2

)
b1

b2

u

the inequality (5.16) is only fulfilled for γDT,X = 1.

Of course there are some reasons for this modification. First of all the modification

is quite simple and we can use it for many systems. The only assumption we need is

that the blocks we get are not singular and that the modified coarser operator A0,X

is not singular. The second one is that the effort of this modification is quite small

since we modify for aggregated points N 1
i ,N 1

j only the values (P v0)(i) and (P v0)(j).

Hence there is no additional effort to search other neighbours and modify the values

for them. At least there is the idea that the matrix A is mainly given by blocks and

other links are weak. Then B is a good approximation for A. We will see that this idea

better suits for the symmetric problems. In particular for the two sided modification

for symmetric problems. The problem of the modification for the convection system is

obvious as in the example above the value on N 1
2 is mainly given by the the value on

N 1
1 . The interpretation as blocks implicates that the value on N 1

2 mainly depends on

the value on N 1
3 .
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5.1.2 Modifications for a two dimensional convection

Now we will consider a two dimensional convection system. As the block inversion

offers problems for the convection system already for the one dimensional case, we only

want to consider for this example the modification we have introduced as an exact

modification in section 5.1.1.

So we will consider a problem given as follows: The matrix A ∈ Rn×n is given as

A = bi,j with bi,i > 0, bi,j ≤ 0, for i 6= j(5.17)

bi,i ≥
∑

j 6=i

|bi,j | for i = 1, . . . , n

and bi,j 6= 0 ⇒ bj,i = 0 for i 6= j.

The matrix in (5.17) represents a convection system of two dimensions (or higher).

This motivates the condition bi,j 6= 0 ⇒ bj,i = 0. So there is neither a convection from

N 1
i to N 1

j nor vice versa, but both directions in one system are meaningless.

To define the modification X, we first define the set M0 of indices as follows

M0(i) :=
{
t ∈ {1, . . . , n}\{i} : bi,t 6= 0.

}
.

Based on the interpretation as a convection system, M0(i) is the set of the indices of

the grid points N 1
t that have an influence on N 1

i .

Then we define our modification matrix X ∈ R
n×n also by its rows as

Xi,. =





(e1
i )

T if N 1
i is isolated or N 1

i is aggregated

with N 1
j and it is bi,j 6= 0.

(e1
i )

T + xi,j(e
1
j )

T + xi,k(e
1
k)

T if N 1
i ,N 1

j are aggregated, it is bi,j = 0

and it is k ∈ M0(i).

(5.18)

If we aggregate two points N 1
i ,N 1

j with bi,j 6= 0 and it is M0(i) = ∅ then we set xi,k = 0.

If it is |M0(i)| > 1 then we choose just one of the indices. Based on the idea to reduce

the influence of grid points which only influence one of the two points N 1
i ,N 1

j , it is a

feasible heuristic to choose an index k ∈ M0(i) that holds

|bi,k| ≥ |bi,s| ∀s ∈ M0(i).
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We want to consider examples for xi,j, xi,k that will give results similar to those we

had for the one dimensional situation and we want to show to what extent this is a

generalization of the modification given in this context. First we define for an arbitrary

grid point N 1
k or row Ak,. of A respectively the set M(k) as follows

M(k) =
{
t ∈ {1, . . . , n}\{k} : N 1

t ,N 1
s , s 6= k, are aggregated and it is xt,k 6= 0.

}
.

(5.19)

Based on this definition follows that it is t ∈ M(k) if it is xt,k 6= 0. That implies N 1
t

is aggregated with another grid point N 1
s and it is bt,k 6= 0. Further is this N 1

k used to

modify the situation for N 1
t ,N 1

s . Based on the definitions of M(k), X, A we obtain

t ∈ M(k) ⇒ ak,t = 0.(5.20)

This implication holds as we have xt,k 6= 0 if it is t ∈ M(k) from the definition of M(k).

The definition of X implies bt,k 6= 0 and therewith follows bk,t = 0 from the definition

of A.

We obtain the following result:

Proposition: 5.1.6. Let A, X be matrices as defined in (5.17),(5.18). Let N 1
i ,N 1

j be

two aggregated points with bj,i 6= 0. Let N 1
k be a grid point with bi,k 6= 0.

1. If it is bj,k = 0 and it is bi,t = bj,t = 0 for all t ∈ M(k)\{i} and we define

xi,k =
|bi,k|

bi,i+|bj,i| then

(A X)i,k = (A X)j,k =
bj,i|bi,k|

bi,i + |bj,i|
holds.

2. If it is bj,t = 0 for all t with t ∈ M(i), bi,t = 0 for all t with t ∈ M(j) and we

define xi,j =
bj,j−bi,i+bj,i

bi,i+|bj,i| then

(A X)i,i + (A X)i,j = (A X)j,j + (A X)j,i =
bi,ibj,j

bi,i + |bj,i|
holds.

proof. Based on the assumption of bj,i 6= 0 and the definition of X it follows that we

have Xj,. = (e1
j)

T and Xi,. = (e1
i )

T + xi,k(e
1
k)

T + xi,j(e
1
j )

T .

1. We obtain that the k−th column of X follows as

X.,k = e1
k +

n∑

t=M(k)

xt,ke
1
t = e1

k + xi,ke
1
i +

n∑

t=M(k)\{i}
xt,ke

1
t
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Hence we have based on the assumption bi,t = bj,t = 0 for all t ∈ M(k)\{i}

(A X)i,k = Ai,. X.,k = bi,ixi,k + bi,k

(A X)j,k = Aj,. X.,k = bj,ixi,k.

The second equation thereby results from the condition bj,k = 0. This implies

that they are equal if it is

xi,k =
|bi,k|

bi,i + |bj,i|
.

And we obtain

(A X)j,k =
bj,i|bi,k|

bi,i + |bj,i|
= (A X)i,k.

2. Based on the assumption that N 1
i ,N 1

j are aggregated with bj,i 6= 0 it follows for

the columns i, j of X

X.,i = e1
i +

∑

t∈M(i)

xt,ie
1
t

and X.,j = e1
j + xi,je

1
i +

∑

t∈M(j)

xt,je
1
t .

Furthermore we obtain from the assumption bj,t = 0 for all t with t ∈ M(i), bi,t =

0 for all t with t ∈ M(j) and the implication (5.20) that we have bi,t = bj,t = 0

for all t with t ∈ M(i) ∪ M(j). This implies

(A X)i,i + (A X)i,j = Ai,.X.,i + Ai,.X.,j

= bi,i + bi,ixi,j = (1 + xi,j)bi,i

(A X)j,i + (A X)j,j = Aj,.X.,i + Aj,.X.,j

= bj,i + xi,jbj,i + bj,j = (1 + xi,j)bj,i + bj,j.

So this is equal if we have

xi,j =
bj,j − bi,i + bj,i

bi,i + |bj,i|
.

And we obtain in this case

(A X)i,i + (A X)i,j = (1 + xi,j)bi,i

=
bi,i

(
bj,j − bi,i + bj,i + bi,i + |bj,i|

)

bi,i + |bj,i|
=

bi,ibj,j

bi,i + |bj,i|
.
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5.1 Convection diffusion equation

First we will take a closer look on the assertion of the Proposition 5.1.6 then we will

consider the assumptions. To ensure that V0 is invariant with respect to A X we have

to prove for two aggregated points N 1
i ,N 1

j that

(A X v0)(i) = (A X v0)(j) ∀v0 ∈ V0.

The result of Proposition 5.1.6 is that we have

(A X v0)(i) = (A X v0)(j)

for v0 = (e1
i + e1

j) and v0 = e1
k.

Therewith we do not have the invariance of V0 with respect to A X, but we are a little

bit closer to this as in the unmodified method.

Further we obtain that the values for

(A X)i,i, (A X)i,j, (A X)i,k and (A X)j,i, (A X)j,j, (A X)j,k,

respectively are as given in the one dimensional system. Hence we obtain a good mod-

ification if the system is mainly a one dimensional system.

So we will take a look at the assumptions we have in the last proposition and what

kind of convection system can be described by them. If we have a two dimensional

convection system then we assume the stencil in N 1
i given as




0 0 0

−bi,x bi,x + bi,y 0

0 −bi,y 0


 with bi,x, bi,y ≥ 0.

This means that the convection locally has two directions, and this does not change its

direction. So we assume that after a permutation of rows and columns it is k = i − 1

and j = i + 1. Then the rows k, i, j of A are given as

A =




. . . −bk,y . . . −bk,x bk,x + bk,y . . .

. . . −bi,y . . . −bi,x bi,x + bi,y . . .

. . . −bj,y . . . −bj,x bj,x + bj,y . . .


 .

So if we aggregate the points N 1
i and N 1

j and all other points are isolated it is obvious

that the assumtions of Proposition 5.1.6 are fulfilled. This is illustrated in Figure 5.4
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5 Examples for modifications

(a). Moreover, there is no restriction for the direction of the links, so the situation as

given in Figure 5.4 (b) also fulfils the condition. Furhtermore, the assumptions also

hold if N 1
k is aggregated with its left neighbour N 1

k−1 and we use N 1
l to modify this

aggregation. Then the assumptions of the Proposition 5.1.6 are fulfilled. This fol-

lows as we have bk,k−1 6= 0 and so only the (k − 1)-th row of X is modified and it is

bi,k−1 = bj,k−1 = 0 (Figure 5.4 (c)). Based on the same arguments the assumtions hold

in a situation as shown in Figure 5.4 (d). The situation illustrated in (e) also does not

infringe the assumptions if N 1
l is used to modifiy the aggregation between N 1

s ,N 1
t . It

is bi,t 6= 0 and bj,s 6= 0, but the aggregation of N 1
s ,N 1

t implies a modification of the

t-th row of X. There are only the entries xt,l and xt,s that are modified. This changes

values in the i-th and the j-th row of (A X). But the entries (A X)i,i, (A X)i,j, (A X)i,k

and (A X)j,i, (A X)j,j, (A X)j,k do not depend on this. In (f) N 1
s is aggregated with N 1

t

and bs,t 6= 0. So from the definition of X follows that the t-th row of X is modified.

In the situation of (f) it is xt,k modified and t ∈ M(k). This infringes the assumptions

for the first assertion of Proposition 5.1.6. Obviously the situation (g) infringes the

assumption bj,k = 0 and hence also a condition for the first assertion of the proposition.

At last we will consider an example that infringes the assumptions of the second asser-

tion, but this is not possible based on the given situation of a locally unique direction

of the convection. So we have to construct the example as shown in (h) (The direction

of the arrows give the direction of the convection in this case). N 1
i is used to modifiy

the aggregation between N 1
t ,N 1

s . This implies xt,s, xt,i 6= 0. Hence it follows from the

definition t ∈ M(i). As it is bj,i 6= 0 this infringes the assumptions.

We can summarize this as follows: The assumptions are weaker than they seem at first

sight. Especially for the second assertion they are always fulfilled if the directions of

the convection are locally unique. If the convection is only one dimensional in a two

(or three) dimensional system then it follows for example bi,y = 0 for all i = 1, . . . , n.

Also the assumptions for the first assertion of Proposition 5.1.6 are therefore always

fulfilled. Furthermore, we can see that in the one dimensional convection system as

given in section 5.1.1 with the modification as given in (5.11) has the same structure

as a modification given by the conditions of Proposition 5.1.6. We will prove this in

the next lemma.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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General direction of the convection

Figure 5.4: Illustration of the assumptions of Proposition 5.1.6
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Lemma: 5.1.7. Let A, X be as given in (5.8), (5.11). Then for two aggregated points

N 1
i ,N 1

i+1 the modification holds the structure as given in (5.18) with

xi,i−1 =
|bi,i−1|

bi,i + |bi+1,i|
and xi,i+1 =

bi+1,i+1 − bi,i + bi+1,i

bi,i + |bi+1,i|
.

proof. The modification as given in (5.11) obviously has the same structure as the

modification given in (5.18). Furthermore, it is in the one dimensional system

bi,i = −bi,i−1 = bi and bi+1,i+1 = −bi+1,i = bi+1.

Hence follows for xi,i−1 and xi,i+1

xi,i−1 =
|bi,i−1|

bi,i + |bi+1,i|
=

−bi

bi + bi+1

and xi,i+1 =
bi+1 − bi − bi+1

bi + bi+1
=

bi

bi + bi+1
.

This is the structure we have given in (5.11) for the modification.

In the case of the one dimensional convection the modfication fulfils additionally xi,i−1+

xi,i+1 = 0. For functions and vectors respectively this implies that the image of constant

function is a constant function. For the modified coarse grid operator A0,X this implies

that it is also a M-matrix. This we will discuss more detailed in chapter 9.

To conclude this section we will present two propositions which are similar to Propo-

sition 5.1.6. The first one has the same result as the first result of Proposition 5.1.6

for a slightly more general situation. The second porposition gives a perfect result in

a quite theoretical situation.

Proposition: 5.1.8. Let A, X be matrices as defined in (5.17),(5.18). Let N 1
i ,N 1

j be

two aggregated points with bj,i 6= 0. Let N 1
k be a grid point with bi,k 6= 0. If bi,t = bj,t = 0

for all t ∈ M(k)\{i} and we define xi,k =
|bi,k|−|bj,k|
bi,i+|bj,i| , then

(A X)i,k = (A X)j,k =
bj,i|bi,k| − bi,i|bj,k|

bi,i + |bj,i|
holds.

proof. Similarly to the proof of Proposition 5.1.6, we obtain that the k−th column of

X follows as

X.,k = e1
k +

n∑

t=M(k)

xt,ke
1
t = e1

k + xi,ke
1
i +

n∑

t=M(k)\{i}
xt,ke

1
t .
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5.1 Convection diffusion equation

Hence, based on the assumption bi,t = bj,t = 0 for all t ∈ M(k)\{i}, we have

(A X)i,k = Ai,. X.,k = bi,ixi,k + bi,k

(A X)j,k = Aj,. X.,k = bj,ixi,k + bj,k.

Thus we have (A X)i,k = (A X)j,k if we have

xi,k =
|bi,k| − |bj,k|
bi,i + |bj,i|

.

And we obtain

(A X)j,k =
bj,i|bi,k| − bi,i|bj,k|

bi,i + |bj,i|
= (A X)i,k.

If we compare the assumptions of the Propositions 5.1.6 and 5.1.8 then we see that

in Proposition 5.1.8 we drop the assumption of bj,k = 0. If we consider the cases as

illustrated in Figure 5.4 then we obtain that the situation as presented in (g) does

not infringe the assumptions of Proposition 5.1.8. But we have to determine one more

element of A for the modification. This implies a higher effort for the construction of

PX . The assertion of the two propositions is more or less the same.

Proposition: 5.1.9. Let A, X be matrices as defined in (5.17),(5.18). Let N 1
i ,N 1

j be

two aggregated points with bj,i 6= 0. Assume that we have xk,i = xk,j = 0 for all k 6= i, j

with bi,k 6= 0 or bj,k 6= 0. If we define

xi,k =





1 for k = i

bj,j−bi,i+bj,i

bi,i+|bj,i| for k = j

|bi,k|−|bj,k|
bi,i+|bj,i| for k 6= i, j.

then we have

(A X)i,k = (A X)j,k for k 6= i, j

and (A X)i,i + (A X)i,j = (A X)j,j + (A X)j,i.

proof. The second equality follows immediately from the second assertion of Proposition

5.1.6. The first equality follows like the first assertion of Propositon 5.1.6. The k-th

column of X is

X.,k = e1
k +

n∑

t=M(k)

xt,ke
1
t = e1

k + xi,ke
1
i +

n∑

t=M(k)\{i}
xt,ke

1
t .

161



5 Examples for modifications

Hence we have, based on the assumption xk,i = xk,j = 0 for k 6= i, j with bi,k 6= 0 or

bj,k 6= 0,

(A X)i,k = Ai,. X.,k = bi,ixi,k + bi,k

(A X)j,k = Aj,. X.,k = bj,ixi,k + bj,k.

Thus we have (A X)i,k = (A X)j,k if we have

xi,k =
|bi,k| − |bj,k|
bi,i + |bj,i|

.

As already mentioned, the assumptions of Proposition 5.1.9 are quite restrictive. They

are for example fulfilled if only N 1
i ,N 1

j are aggregated and all other points are isolated

points.

5.1.3 Modifications for a convection diffusion system

Finally we want to consider a convection diffusion system. To show the effect that oc-

curs compared with the convection system it is sufficient to consider the small system

given by four points. So we will do this first. Then we will show that the results of

Proposition 5.1.6 hold in a weaker sense.

So we will start by a system given by four grid points as illustrated in Figure 5.5.

The stencil in N 1
i is given by

[−εi−1 − bi, bi + εi−1 + εi, −εi].
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N 1
1 N 1

2 N 1
3 N 1

4

N 0
1 N 0

2 N 0
3

Figure 5.5: Coarsing of the four point system

So the stiffness matrix for the small system is given by

A =




b1 + ε0 + ε1 −ε1 0 0

−b2 − ε1 b2 + ε1 + ε2 −ε2 0

0 −b3 − ε2 b3 + ε2 + ε3 −ε3

0 0 −b4 − ε3 b4 + ε3 + ε4




(5.21)

=




b1 0 0 0

−b2 b2 0 0

0 −b3 b3 0

0 0 −b4 b4




+




ε0 + ε1 −ε1 0 0

−ε1 ε1 + ε2 −ε2 0

0 −ε2 ε2 + ε3 −ε3

0 0 −ε3 ε3 + ε4




= B + E.

To have an idea of what happens in this system if we use no modification we will first

consider the second and the third row of A. We remember that a basis of V0 is given as

{(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)}.

Hence V0 is invariant with respect to A if and only if

a2,1 = a3,1, a2,4 = a3,4 and a2,2 + a2,3 = a3,3 + a3,2.
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As shown in section 5.1.1 we have for an arbitrary v0 ∈ V0 the representation v0 =

(f, u, u, g)T with f, u, g ∈ R and therewith

A v0 = B v0 + E v0

= (b1 f, b2(u − f), 0, b4(u − g))

+ (ε0f + ε1(f − u), ε1(u − f), ε2(u − g), ε3(g − u) + ε4g).

So we can split the problem of the invariance into two subproblems. The first one

with respect to the matrix B and the other one with respect to E. So we will use the

modification as figured out in the last section and section 5.1.1 respectively and show

that the bias is only given by the the matrix E. The idea is that the main influence for

the system is given by B as this represents the convection.

So we set

X =




1 0 0 0
|a2,1|

a2,2+|a3,2| 1
a3,3−a2,2+a3,2

a2,2+|a3,2| 0

0 0 1 0

0 0 0 1




(5.22)

We therefore have the same structure of the modification. In particular this modifica-

tion is easily given by the elements of A since we do not differ for the calculation of X

between the symmetric and the antisymmetric part of the operator. Then we obtain

(A X)2,1 =
|a2,1|a2,2

a2,2 + |a3,2|
+ a2,1 =

|a3,2|a2,1

a2,2 + |a3,2|

(A X)2,2 + (A X)2,3 = a2,2 + a2,3 +
a2,2(a3,3 − a2,2 + a3,2)

a2,2 + |a3,2|
=

a2,2a3,3

a2,2 + |a3,2|
+ a2,3

(A X)2,4 = 0

and (A X)3,1 =
a3,2|a2,1|

a2,2 + |a3,2|

(A X)3,2 + (A X)3,3 = a3,2 + a3,3 +
a3,2(a3,3 − a2,2 + a3,2)

a2,2 + |a3,2|
=

a3,3a2,2

a2,2 + |a3,2|

(A X)3,4 = a3,4.

With these calculations we can summarize the results we get for this small system as

follows:
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5.1 Convection diffusion equation

Lemma: 5.1.10. Let A, X be matrices as given in (5.21), (5.22) then

1. (A X)2,1 = (A X)3,1 holds.

2. (A X v0)(2) − (A X v0)(3) = −ε2v0(3) + ε3v0(4). In particular this difference is

independent of B for all v0 ∈ V0.

3. follows if εi = ε for all i = 0, . . . , 4 then we have A X v0 ∈ V0 for all constant

vectors v0.

proof. 1. The first proposition follows immediately form the calculation above the

lemma.

2. For v0 ∈ V0 with v0 = (f, u, u, g)T it follows

(A X v0)(2) − (A X v0)(3)

= [(A X)2,1 − (A X)3,1]f + [(A X)2,4 − (A X)3,4]g

+ [(A X)2,2 + (A X)2,3 − (A X)3,2 − (A X)3,3]u

= a2,3u − a3,4g = −ε2u + ε3g.

The last equation follows thereby again from the calculations above the lemma.

3. If we have εi = ε for i = 0, . . . , 4 and it is v0 constant then it follows from the

calculation done for the second proposition

(A X v0)(2) − (A X v0)(3) = −ε2u + ε3g = ε(g − u) = 0.

From the calculation above and the results of the Lemma 5.1.10 respectively it is

obvious that we can not transform the result as easily to a more general result as done

for the convection. We will see that if we try to do this we always get a dependency

on the elements of E. Let A = B + E ∈ Rn×n be matrices which fulfil

B = (bi,j), with bi,i > 0, bi,j ≤ 0, for i 6= j(5.23)

bi,i ≥
∑

j 6=i

|bi,j | and bi,j 6= 0 ⇒ bj,i = 0

and E = (εi,j), with εi,i > 0, εi,j ≤ 0, for i 6= j(5.24)

εi,i ≥
∑

j 6=i

|εi,j| and εi,j = εj,i.
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To define the modification X we remember the definition of the set M0(i) and define

the set M1(i) as

M1(i) :=
{
t ∈ {1, . . . , n}\{i} : |ai,t| > |at,i| 6= 0.

}
.

Based on the interpretation as a convection system, M1(i) is the set of the indices of

the grid points N 1
t that have an influence by the convection on N 1

i .

Then we define X as done in (5.18) as

Xi,. =





(e1
i )

T if N 1
i is isolated or N 1

i is aggregated

with N 1
j and it is |ai,j| > |aj,i|.

(e1
i )

T + xi,j(e
1
j)

T + xi,k(e
1
k)

T if N 1
i ,N 1

j are aggregated, it is |ai,j| < |aj,i|

and it is k ∈ M1(i).

(5.25)

(Based on the modification it is implicit that we only aggregate N 1
i ,N 1

j if it is ai,j 6=
aj,i.) As in the definition (5.18), we choose one of the indices if it is |M1(i)| > 1. And

again it is a feasible heuristic to choose the index k with |bi,k| ≥ |bi,s| for all s ∈ M1(i).

But if it is M1(i) = ∅, it can be also useful to choose an index k with ai,k = ak,i.

Then we get a result that can be seen as a generalization of Proposition 5.1.6.

Proposition: 5.1.11. Let A = B + E and X be matrices as defined in (5.23),(5.24)

and (5.25). Let N 1
i ,N 1

j be two aggregated points with |aj,i| > |ai,j|. Let further N 1
k be

a grid point with bi,k 6= 0.

1. If it is bj,k = 0 and it is bi,t = bj,t = 0 for all t ∈ M(k)\{i} and we define

xi,k =
|ai,k |

ai,i+|aj,i| then

(A X)i,k −
∑

t∈M(k)\{i}
εi,txt,k = (A X)j,k −

∑

t∈M(k)

εj,txt,k =
ai,k|aj,i|

ai,i + |aj,i|

holds.

2. If it is bi,t = bj,t = 0 for all t with t ∈ M(i)∪M(j) and we define xi,j =
aj,j−ai,i+aj,i

ai,i+|aj,i|
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then

(A X)i,i + (A X)i,j − εi,j −
∑

t∈M(i)

εi,txt,i −
∑

t∈M(j)

εi,txt,j

=(A X)j,j + (A X)j,i −
∑

t∈M(i)

εj,txt,i −
∑

t∈M(j)

εj,txt,j =
ai,iaj,j

ai,i + |aj,i|

holds.

proof. Based on the assumption of |aj,i| > |ai,j| and the definition of X it follows that

we have Xj,. = (e1
j)

T and Xi,. = (e1
i )

T + xi,k(e
1
k)

T + xi,j(e
1
j)

T .

1. We obtain that the k−th column of X is given as

X.,k = e1
k +

n∑

t=M(k)

xt,ke
1
t = e1

k + xi,ke
1
i +

n∑

t=M(k)\{i}
xt,ke

1
t

Hence we have based on the assumption bi,t = bj,t = 0 for all t ∈ M(k)\{i}

(A X)i,k = Ai,. X.,k = ai,ixi,k + ai,k +

n∑

t=M(k)\{i}
xt,kεi,t

(A X)j,k = Aj,. X.,k = aj,ixi,k +

n∑

t=M(k)\{i}
xt,kεj,t.

The second equation results thereby from the condition bj,k = 0. So we obtain for

xi,k =
|ai,k |

ai,i+|aj,i| the following

(A X)i,k =
ai,k|aj,i|

ai,i + |aj,i|
+

n∑

t=M(k)\{i}
xt,kεi,t

and (A X)j,k =
ai,k|aj,i|

ai,i + |aj,i|
+

n∑

t=M(k)\{i}
xt,kεj,t

2. Based on the assumption that N 1
i ,N 1

j are aggregated with bj,i 6= 0 it follows for

the columns i, j of X

X.,i = e1
i +

∑

t∈M(i)

xt,ie
1
t

and X.,j = e1
j + xi,je

1
i +

∑

t∈M(j)

xt,je
1
t .
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As it is bi,t = bj,t = 0 for all t with t ∈ M(i) ∪ M(j) this implies

(A X)i,i + (A X)i,j = Ai,.X.,i + Ai,.X.,j

= ai,i + ai,ixi,j + ai,j +
∑

t∈M(i)\{k}
εi,txt,i +

∑

t∈M(j)

εi,txt,j

= (1 + xi,j)ai,i + ai,j +
∑

t∈M(i)\{k}
εi,txt,i +

∑

t∈M(j)

εi,txt,j

(A X)j,i + (A X)j,j = Aj,.X.,i + Aj,.X.,j

= aj,i + xi,jaj,i + aj,j +
∑

t∈M(i)\{k}
εj,txt,i +

∑

t∈M(j)

εj,txt,j

= (1 + xi,j)aj,i + aj,j +
∑

t∈M(i)\{k}
εj,txt,i +

∑

t∈M(j)

εj,txt,j .

If we have xi,j =
aj,j−ai,i+aj,i

ai,i+|aj,i| then we obtain

(A X)i,i + (A X)i,j

= (1 + xi,j)ai,i + ai,j +
∑

t∈M(i)\{k}
εi,txt,i +

∑

t∈M(j)

εi,txt,j

=
ai,i

(
ai,i + |aj,i| + aj,j − ai,i + aj,i

)

ai,i + |aj,i|
+ ai,j +

∑

t∈M(i)\{k}
εi,txt,i +

∑

t∈M(j)

εi,txt,j

=
ai,iaj,j

ai,i + |aj,i|
+ ai,j +

∑

t∈M(i)\{k}
εi,txt,i +

∑

t∈M(j)

εi,txt,j
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5.2 Modifications for the symmetric model problem (one sided)

and

(A X)j,i + (A X)j,j

= (1 + xi,j)aj,i + aj,j +
∑

t∈M(i)\{k}
εj,txt,i +

∑

t∈M(j)

εj,txt,j

=
aj,i

(
aj,j − ai,i + aj,i + ai,i + |aj,i|

)

ai,i + |aj,i|
+

aj,jai,i + aj,j|aj,i|
ai,i + |aj,i|

+
∑

t∈M(i)\{k}
εj,txt,i +

∑

t∈M(j)

εj,txt,j

=
aj,iaj,j

ai,i + |aj,i|
+

aj,jai,i + aj,j|aj,i|
ai,i + |aj,i|

+
∑

t∈M(i)\{k}
εj,txt,i +

∑

t∈M(j)

εj,txt,j

=
aj,jai,i

ai,i + |aj,i|
+

∑

t∈M(i)\{k}
εj,txt,i +

∑

t∈M(j)

εj,txt,j .

This proves the proposition.

The main aspect of the Proposition 5.1.11 is that if we have a convection diffusion

system and we do the same modification as for a convection system then we get the

same result with a bias that only depends on the elements of E and X. Based on the

given structure the idea is that the elements of B are much bigger than the elements of

E. If we assume that the elements of B have the size b and the elements of E the size ε,

then based on the definition of X the elements xi,j which are used for the modification

also have the size b
b

= 1. Therefore the bias is given by the size of ε.

5.2 Modifications for the symmetric model problem

(one sided)

Now we will consider modifications for the symmetric problem as introduced in section

2.2. The continious problem is given by the equation

−div(α(x) grad u(x)) = f(x), ∀x ∈ Ω

u(x) = g(x), ∀x ∈ ∂Ω.
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5 Examples for modifications

with a symmetric α(x) ∈ R2×2. So we obtain the stencils as



−δnw −εn −δne

−εw m −εe

−δsw −εs −δse




with m = εn + εe + εs + εw + δne + δse + δsw + δnw

and εi > 0, for i = n, e, s, w

δi ≥ 0, for i = ne, se, sw, nw.

As for the convection we will start from a one dimensional system. That means Ω ⊂ R

and α(x) ∈ R+. The stencil follows in N 1
i as

[−ai−1, ai−1 + ai,−ai], with ai−1, ai > 0.

So again we will first consider the small system of four grid points that is given by

N 1
1 , . . . ,N 1

4 . Then we assume that we aggregate the grid points N 1
2 ,N 1

3 to the new

point N 0
2 . We obtain that the restriction R and the prolongation P are

P =




1 0 0

0 1 0

0 1 0

0 0 1




and R = P T =




1 0 0 0

0 1 1 0

0 0 0 1


 .(5.26)

The links and the system are illustrated in Figure 5.6.

And therewith A, A0 follow as

A =




ε + ε0 −ε 0 0

−ε a + ε −a 0

0 −a a + δ −δ

0 0 −δ δ + δ0




and A0 =




ε + ε0 −ε 0

−ε ε + δ −δ

0 −δ δ + δ0


 .

(5.27)

A short discussion for an estimation of γDT of the unmodified method will be presented

in the section 8.1. With regard to this we will only consider modifications and the

modified systems, respectively.

170
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N 1
1 N 1

2 N 1
3 N 1

4

N 0
1 N 0

2 N 0
3

ε0 ε a δ δ0

ε0 ε δ δ0

Figure 5.6: Coarsing of the symmetric four point system

5.2.1 An exact modification

First we will construct for the given small system of A, P, R a modification X that

holds

A X v0 ∈ V0 for all v0 ∈ V0.(5.28)

As for the unsymmetric example of the small system shown in (5.6) based on the basis

{e1
1, e

1
2 + e1

3, e
1
4} of V0 the condition (5.28) is equivalent to

(A X)2,1 = (A X)3,1, (A X)2,4 = (A X)3,4(5.29)

and (A X)2,2 + (A X)2,3 = (A X)3,2 + (A X)3,3.(5.30)

Again to do as few modifications as possible we set the first and the fourth row of X

as follows

X1,. = (e1
1)

T and X4,. = (e1
4)

T .

Next we will consider the three conditions given in (5.29), (5.30) seperated. For
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5 Examples for modifications

(A X)2,1 = (A X)3,1 we obtain

(A X)2,1 = (A X)3,1

⇔ −ax3,1 + (a + ε)x2,1 − ε = (a + δ)x3,1 − ax2,1

⇔ x2,1 =
2a + δ

2a + ε
x3,1 +

ε

2a + ε
.

Again as explained above we set x3,1 = 0 and the equation above implies x2,1 = ε
2a+ε

.

For the equation (A X)2,4 = (A X)3,4 we obtain based on the same arguments

(A X)2,4 = (A X)3,4

⇔ x3,4 =
2a + ε

2a + δ
x2,4 +

δ

2a + δ
.

We set again x2,4 = 0 and we obtain x3,4 = δ
2a+δ

. So far we should remark that the

values for the modification are easy to calculate based on the elements of the matrix

A. It is

x2,1 =
a2,2 + a2,3

a2,2 − a2,3
and x3,4 =

a3,3 + a3,2

a3,3 − a3,2
.

So we consider the condition (5.30). It follows

(A X)2,2 + (A X)2,3 = (A X)3,2 + (A X)3,3

⇔ (2a + δ)(x3,2 + x3,3) = (2a + ε)(x2,2 + x2,3).

This is fulfilled if we set

x2,3 = 0 = x3,2, x2,2 =
1

2a + ε
and x3,3 =

1

2a + δ
.

Altogether this gives the modification matrix X in the form

X =




1 0 0 0

ε
2a+ε

1
2a+ε

0 0

0 0 1
2a+δ

δ
2a+δ

0 0 0 1




(5.31)

and we can summarize the result for this system and the so defined modification as

follows:
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Proposition: 5.2.1. Let A, P, X be as defined in (5.27), (5.26) and (5.31). Then V0

is invariant with respect to A X.

proof. For the proof see the calculation above in this section.

So far it seems that we could modify the symmetric problem as well as the problem

given by the one dimensional convection. In the next two sections we will first consider

a more general one dimensional problem that is not possible to modify that way. Then

we will consider a special case that can be solved in higher dimensions, too. But

because of the structure of the coarser operators we will see that this is more or less a

theoretical result.

5.2.2 Problems for exact modifications

The problem of the modification is obvious if we consider a system of the same structure

that belongs to six grid points N 1
1 , . . . ,N 1

6 and we assume that the points N 1
2 ,N 1

3 and

N 1
4 ,N 1

5 are aggregated to N 0
2 and N 0

3 , respectively. This is illustrated in Figure 5.7.

����������������������

N 1
1 N 1

2 N 1
3 N 1

4 N 1
5 N 1

6

N 0
1 N 0

2 N 0
3 N 0

4

a0 a1 a2 a3 a4 a5 a6

Figure 5.7: Coarsing of the symmetric six point system
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5 Examples for modifications

We have the matrices as follows:

P =




1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1




and A =




a0 + a1 −a1 0 0 0 0

−a1 a1 + a2 −a2 0 0 0

0 −a2 a2 + a3 −a3 0 0

0 0 −a3 a3 + a4 −a4 0

0 0 0 −a4 a4 + a5 −a5

0 0 0 0 −a5 a5 + a6




(5.32)

Then we generalize the modification as given in (5.31) and define X ∈ R6×6 as follows

X =




1 0 0 0 0 0

a1

2a2+a1

1
2a2+a1

0 0 0 0

0 0 1
2a2+a3

a3

2a2+a3
0 0

0 0 a3

2a4+a3

1
2a4+a3

0 0

0 0 0 0 1
2a4+a5

a5

2a4+a5

0 0 0 0 0 1




(5.33)

A basis of V0 is in this case given as follows

{
(1, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 0, 1)

}
.

Hence to keep that result that V0 is invariant with respect to A X it must hold

A X v0 ∈ V0

Hence it is necessary that the second and the third row of A X fulfil the following

equations:

(A X)2,1 = (A X)3,1, (A X)2,6 = (A X)3,6

(A X)2,2 + (A X)2,3 = (A X)3,2 + (A X)3,3

(A X)2,4 + (A X)2,5 = (A X)3,4 + (A X)3,5.
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5.2 Modifications for the symmetric model problem (one sided)

If we calculate these two rows we obtain

(A X)2,. =

( −a1a2

a1 + 2a2
,

a1 + a2

a1 + 2a2
,

−a2

a3 + 2a2
,

−a2a3

2a2 + a3
, 0, 0

)

(A X)3,. =

( −a1a2

a1 + 2a2
,

−a2

a1 + 2a2
,

a2 + a3

a3 + 2a2
− a2

3

a3 + 2a4
,

(a2 + a3)a3

2a2 + a3
− a3

a3 + 2a4
, 0, 0

)
.

So it is obvious that the meaningful result of the grid given by four points does not hold

in this situation. A closer look shows quite simply that there is no local estimation in

this case.

In the next section we will show that this problem results from the situation in which

there are neighbours of aggregated points that are not isolated points.

5.2.3 A solvable situation in arbitrary dimensions

Now we will show that we can generalize the modification to a quite general situation

having only the restriction that the neigbours of aggregated points are isolated points.

This assumption we will also consider in chapter 8. Based on this strict assumption we

obtain a meaningful result. This gives us the motivation for more general systems.

So the situation should be given as follows: Let A ∈ Rn×n be a s.p.d. matrix that fulfils

ai,i > 0, ∀i = 1, . . . , n(5.34)

ai,j ≤ 0, ∀i, j = 1, . . . , n, i 6= j

ai,i ≥
n∑

j=1, i6=j

|ai,j|.

Let N 1
i ,N 1

j be two points that will be aggregated to N 0
t for an t ∈ {1, . . . , n0} and all

points N 1
k , k 6= i, j with ai,k 6= 0 or aj,k 6= 0 are isolated points. This is illustrated

in Figure 5.8 at page 176 .Then we define the modification X ∈ Rn×n by its rows Xi,.

with

Xi,. = (e1
i )

T if N 1
i is an isolated point.(5.35)

Xi,. =
1

ai,i + |ai,j|

(
(e1

i )
T +

n∑

k=1, k 6=i,j

|ai,k|(e1
k)

T

)
if N 1

i ,N 1
j are aggregated

to N 0
t for an t ∈ {1, . . . , n0}.
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Figure 5.8: Coarsing of a symmetric system for an exact modification

Proposition: 5.2.2. Assume the situation as given above in this section. Then for

two aggregated points N 1
1 ,N 1

2 it holds

(A X)1,1 =
a1,1

a1,1 + |a1,2|
, (A X)1,2 = − |a1,2|

a2,2 + |a1,2|
,

(A X)1,k = − |a1,2 a1,k|
a1,1 + |a1,2|

− |a1,2 a2,k|
a2,2 + |a1,2|

for k 6= 1, 2.

(A X)2,2 =
a2,2

a2,2 + |a2,1|
, (A X)2,1 = − |a2,1|

a1,1 + |a2,1|

(A X)2,k = − |a2,1 a2,k|
a2,2 + |a2,1|

− |a2,1 a1,k|
a1,1 + |a2,1|

for k 6= 1, 2.

proof. Based on the symmetry of the proposition it is sufficient to prove the propositions

for the entries in the first row of A X. We define the set

M := {t ∈ {1, . . . , n} : Xt,. 6= e1
t}.

Based on the definition of X it is t ∈ M if and only if N 1
t is not an isolated point.

Based on the assumptions we have

t ∈ M\{1, 2} ⇒ a1,t = a2,t = 0.
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We start by the proposition for (A X)1,1. Based on the definition above we obtain

X.,1 =
1

a1,1 + |a1,2|
e1
1 +

∑

t∈M\{1,2}
xt,1e

1
t

⇒ (A X)1,1 = A1,. · X.,1 = a1,1
1

a1,1 + |a1,2|
.

Based on the same argument we obtain

X.,2 =
1

a2,2 + |a2,1|
e1
2 +

∑

t∈M\{1,2}
xt,2e

1
t

⇒ (A X)1,2 = A1,. · X.,2 = − |a1,2|
a2,2 + |a2,1|

.

At last we will consider an arbitrary k 6= 1, 2. Then we will distinguish two situations.

First we will assume that N 1
k is a isolated point. Then it is

X.,k = e1
k +

∑

t∈M

xt,ke
1
t = e1

k + e1
1xt,1 + e1

2xt,2 +
∑

t∈M\{1,2}
xt,ke

1
t .

As we have a1,t = a2,t = 0 for t ∈ M\{1, 2} we obtain

(A X)1,k = A1,. · X.,k = A1,. ·


e1

k + e1
1x1,k + e1

2x2,k +
∑

t∈M\{1,2}
xt,ke

1
t




= a1,k + x1,ka1,1 + x2,ka1,2

= a1,k +
|a1,k|

a1,1 + |a1,2|
a1,1 +

|a2,k|
a2,2 + |a2,1|

a1,2

=
a1,k|a1,2|

a1,1 + |a1,2|
+

|a2,k|a1,2

a2,2 + |a2,1|
= − |a1,ka1,2|

a1,1 + |a1,2|
− |a2,ka1,2|

a2,2 + |a2,1|
.

Secondly we will assume that N 1
k is aggregated with N 1

l to N 0
s . As this implies a1,k =

a2,k = 0 we obtain from the definition of X that the k-th column is

X.,k =
n∑

t=1

xt,ke
1
t =

n∑

t=3

xt,ke
1
t .

This implies

(A X)1,k = A1,. · X.,k = 0 = − |a1,ka1,2|
a1,1 + |a1,2|

− |a2,ka1,2|
a2,2 + |a2,1|

.

This proves the assertion.
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Theorem: 5.2.3. Assume the situation as given above in this section. Then it follows

that V0 is invariant with respect to A X.

proof. From the results of proposition 5.2.2 we obtain

(A X)1,1 + (A X)1,2 = (A X)2,2 + (A X)2,1

⇔ a1,1

a1,1 + |a1,2|
− |a1,2|

a2,2 + |a1,2|
=

a2,2

a2,2 + |a2,1|
− |a2,1|

a1,1 + |a1,2|

⇔ a1,1 a2,2 + a1,1|a1,2| − (a1,1|a1,2| + a2
1,2)

(a1,1 + |a1,2|)(a1,2 + |a1,2|)
=

a1,1 a2,2 + a2,2|a1,2| − (a2,2|a2,1| + a2
2,1)

(a2,2 + |a2,1|)(a1,1 + |a1,2|)
.

This equation holds since it is based on the symmetry of A we have a1,2 = a2,1. For an

arbitrary k 6= 1, 2 we obtain

(A X)1,k = (A X)2,k

− |a1,2 a1,k|
a1,1 + |a1,2|

− |a1,2 a2,k|
a2,2 + |a1,2|

= − |a2,1 a2,k|
a2,2 + |a2,1|

− |a2,1 a1,k|
a1,1 + |a2,1|

.

Again this holds considering the characteristic a1,2 = a2,1. Therewith we have (A X v0)(1) =

(A X v0)(2) for all v0 ∈ V0.

We therefore obtain a result that seems to be the same as for the one dimensional

convection. The difference in the assumptions is given as follows. For the convection we

have only considered a one dimensional system but for the symmetric problem we have

the condition that the neighbours of aggregated points are isolated points. The problem

related to this condition is that the dimension of the matrix hardly changes if the

coarsing holds this condition. This can be seen in Figure 5.8 at page 176. Additionally,

in a numerical algorithm it takes a huge effort to control that the assumptions are

fulfilled in each step.

5.2.4 Modification by the inverse of blocks

Again, as for the convection system it can be an idea to modify the system with the

inverse of small blocks. Therefore we consider again the system given by four grid

points as described at the beginning of this section. We remember that the matrix A
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5.2 Modifications for the symmetric model problem (one sided)

is given as

A =




ε + ε0 −ε 0 0

−ε a + ε −a 0

0 −a a + δ −δ

0 0 −δ δ + δ0




(5.36)

As the second and the third row and column are aggregated we define the blocks

A1 = (ε + ε0), A2 =


a + ε −a

−a a + δ


 and A3 = (δ + δ0).

From these definitions we obtain

A−1
1 = (ε + ε0)

−1, A−1
2 =

1

(a + ε)(a + δ) − a2


a + δ a

a a + ε


 and A−1

3 = (δ + δ0)
−1.

and with these blocks we define the modification X by

X =




A−1
1

A−1
2

A−1
3


 .(5.37)

We obtain

A X =




1 −ε(a+δ)
N

−εa
N

0

− ε
ε+ε0

1 0 0

0 0 1 − δ
δ+δ0

0 − δa
N

− δ(a+ε)
N

1




and A0,X =




1 −ε(2a+δ)
N

0

− ε
ε+ε0

2 − δ
δ+δ0

0 − δ(2a+δ)
N

1




with N =
1

(a + δ)(a + ε) − a2
.

So we see for the block inversion in the small symmetric system the following charac-

teristics:

1. The modification in general does not fulfil that V0 is invariant with respect to

A X.

2. If the links to the outside of N 1
2 ,N 1

3 are all equal (that means ε = δ = ε0 = δ0)

then we have A X v0 ∈ V0 for constant vectors v0 ∈ V0.
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5 Examples for modifications

3. If we take a look at the second row of A0,X and compare this with the second

row of A0 ((A0)2,. = (−ε, ε + δ,−δ)) we can see that in the modified system the

diagonal element is bigger than the other elements of this row. This characteristic

is not so strong in the unmodified systems. More formally we obtain for ε0, δ0 > 0:

a0
2,2

|a0
2,1| + |a0

2,3|
=

ε + δ

ε + δ
= 1 <

2
ε

ε+ε0
+ δ

δ+δ0

=
a0,X

2,2

|a0,X
2,1 | + |a0,X

2,3 |
.

In particular we obtain in the case of ε = ε0 and δ = δ0

a0,X
2,2

|a0,X
2,1 | + |a0,X

2,3 |
= 2.

This motivates the idea that the system of linear equations

A0,Xu0 = R f

is more simple to solve using an iterative method than the unmodified system

A0,Xu0 = f.

4. Furhtermore, in the case of ε = δ the modified coarser system also has the fol-

lowing structure

ai,i > 0, ai,j ≤ 0, for i 6= j

and ai,i ≥
4∑

j=1, j 6=1

|ai,j|.

Unfortunately this characteristic does not hold in the case of ε 6= δ for the first

or the fourth row.

5.3 Modifications for the symmetric model problem

(two sided)

In this section we will consider the idea of a two sided modification. Again we will

consider the system that is given on the four grid points N 1
1 , . . . ,N 1

4 . So the situation
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is the same as the one at the beginning of section 5.2. The stiffness matrix is given by

A =




ε + ε0 −ε 0 0

−ε a + ε −a 0

0 −a a + δ −δ

0 0 −δ δ + δ0




(5.38)

and for the coarser grid we aggregate the points N 1
2 ,N 1

3 to a new one. As shown in

section 4.2 for the condition of A C−1
DT,XX and A C−1

BPX,XX in the Euclidean norm the

relevant constant γDT,XX is given as

γDT,XX := min
{

t ∈ R+ : (A PX A−1
0,XX RX v, (I − Q0,X)v)

≤ t ‖A PX A−1
0,XX RX v‖ ‖(I − Q0,X)v‖, ∀v ∈ V

}
.

As we have concluded in section 4.2 the aim is to minimise γDT,XX . The optimal

constant γDT,XX = 0 is given if and only if V0,X is invariant with respect to A. For the

given model problem

{(1, 0, 0, 0)T , (0, 1, 1, 0)T , (0, 0, 0, 1)T}

is a basis of V0. As we have the assumption rk(X P ) = n0 = 3

{X (1, 0, 0, 0)T , X (0, 1, 1, 0)T , X (0, 0, 0, 1)T} = {X.,1, (X.,2 + X.,3), X.,4}

is a basis of V0,X .

5.3.1 Exact modification

We have seen in section 4.2 that an optimal two sided modification depends on the

knowledge and the use of the eigenvectors of the operator A. First of all if we know

them there are easier possibilities to solve A u = f than to use the presented precon-

ditioner. Furthermore, it will result a modification X with xi,j 6= 0 for almost all i, j.

Hence the effort to use this modification is for big systems much higher than for the

iterative method itself.

Summary: The exact modification is theoretically well known but it is not interesting

for practical issues.
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5 Examples for modifications

5.3.2 Approximations

As done for the one sided modification with the inverse of blocks we will approximate

the operator A by three blocks which are motivated by the given restriction. For the

two sided modification the idea will belong to the eigenvectors of the system. We set

B1 = (ε + ε0), B2 =




a + ε −a

−a a + δ


 and B3 = (δ + δ0).

Then we determine the eigenvectors of

B =




B1

B2

B3


 .

Based on the block structure of B it is obvious that we can determine the eigenvectors

for the separated blocks.

The blocks B1, B4 imply the eigenvectors (e1
1)

T , (e1
4)

T . For B2 the eigenvectors are follow

as

v1 =

(
δ − ε +

√
4a2 + (δ − ε)2

2a
, 1

)T

(5.39)

v2 =

(
δ − ε −

√
4a2 + (δ − ε)2

2a
, 1

)T

with the eigenvalue

λ1 =
2a + δ + ε −

√
4a2 + (δ − ε)2

2

λ2 =
2a + δ + ε +

√
4a2 + (δ − ε)2

2
.

To take a closer look at this part we will consider the basis vector X(e1
2 + e1

3)
T of V0,X .

182



5.3 Modifications for the symmetric model problem (two sided)

We obtain the equation system




(A X (e1
2 + e1

3))(2)

(A X (e1
2 + e1

3))(3)


 = λ2,3




(X (e1
2 + e1

3))(2)

(X (e1
2 + e1

3))(3)




⇔




(a + ε)(x2,2 + x2,3) − a(x3,2 + x3,3)

(a + δ)(x3,3 + x3,2) − a(x2,2 + x2,3)


 = λ2,3




x2,2 + x2,3

x3,3 + x3,2




With the shortcuts y2 = x2,2 + x2,3 and y3 = x3,3 + x3,2 we obtain the linear system of

equations




(a + ε)y2 − ay3

(a + δ)y3 − ay2)


 = λ2,3




y2

y3


 ⇔




(a + ε) −a

−a (a + δ)






y2

y3


 = λ2,3




y2

y3




Hence we obtain that (y2, y3)
T is an eigenvector of




(a + ε) −a

−a (a + δ)


 .

As there is no further condition on x2,2, x2,3, x3,2 and x3,3 we set

x2,3 = 0 = x3,2

and (x2,2, x3,3)
T is an eigenvector of B2. Therewith

{(1, 0, 0, 0)T , (0, x2,2, x3,3, 0), (0, 0, 0, 1)T}

is a basis of V0,X . Since there are two eigenvectors of B2 we have to choose one of them.

Therefore we consider the situation of ε = δ. In that case we obtain for the eigenvectors

and eigenvalues

v1 = (1, 1)T , with λ1 = ε(5.40)

v2 = (−1, 1)T , with λ2 = 2a + ε.

Based on these vectors it is obvious that to choose v1 and (x2,2, x3,3) = (1, 1), respec-

tively it means that the system will not be modified. This implies two characteristics:
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5 Examples for modifications

1. The use of v2 is more influential than v1.

2. In the case of ε = δ the unmodified system is equal to the system modified with

v1.

This modification is based on the general example we presented in section 4.2.1. In this

section we have mentioned that we do not know which eigenvectors we should choose.

By the block structure this problem is partly solved. The question is still open which

eigenvector we use for the block B2. Based on the example of section 4.2.1 it is obvious

that we have to choose one of them.

So far we have discussed only the structure of the subspace. For practical issues also

the scaling of the vectors we use as columns in X or PX play a role. To conclude this

section we will define this idea of modification for an arbitrary big system. Afterwards

we will discuss the aspect of the scaling of the columns of X. This discussion will lead

us to additional modifications.

For a given A ∈ Rn×n, s.p.d. we set X = diag(x1,1, . . . , xn,n). Furthermore, we set

xi,i = 1 if N 1
i that is an isolated point. If N 1

i ,N 1
j are aggregated then we define

A(i,j) ∈ R2×2 by

A(i,j) :=


ai,i ai,j

aj,i aj,j


 .(5.41)

Then we set




xi,i

xj,j


 = vi,j

where vi,j is an eigenvector of A(i,j).

Now we will consider the problem of the scaling. This was already mentioned in section

4.2.1 and above, respectively. So far, for two aggregated points N 1
i ,N 1

j we have just set

(xi,i, xj,j) = vi,j with an eigenvector vi,j. To keep a consistence to xk,k with an isolated

point N 1
k and to fulfil Õ ÕT = Ĩ it seems reasonable to set

(xi,i, xj,j) =
vi,j

‖vi,j‖
.
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5.3 Modifications for the symmetric model problem (two sided)

As already presented in section 4.2.1 this implies S0,X = I0. In general we have S0,X =

(R XT X P )−1. By the given block structure for X it is obvious that this implies

S0,X = diag(s0,X
1,1 , . . . , s0,X

n0,n0
)

with s0,X
k,k = 1 if N 1

t is an isolated point with {k} = I1,0
t and s0,X

k,k = (xi,i, xj,j) (xi,i, xj,j)
T

if N 1
i ,N 1

j are aggregated to N 0
k ({i, j} = I1,0

k ). Hence the scaling

(xi,i, xj,j) =
vi,j

‖vi,j‖

implies s0,X
k,k = 1 for all k = 1, . . . , n0. We obtain that S0,X is easy to calculate indepen-

dent of the scaling. We will see in the section 7.2.2 that an advantage is given by this

scaling. However there is a numerical problem in this case. We consider the situation

of the matrix A given in (5.38). Additionally we assume ε = δ. As we have already

highlighted (1, 1) is in this case an eigenvector of B2. If we use the scaling presented

above we obtain

X =




1 0 0 0

0
√

1/2 0 0

0 0
√

1/2 0

0 0 0 1


 A0,XX =




ε + ε0 − ε√
2

0

− ε√
2

ε+δ√
4

− δ√
2

0 − δ√
2

δ + δ0


 .

Therewith it is obvious that A0,XX does not hold

a0,XX
i,i ≥

n∑

j=1, j 6=i

|a0,XX
i,j |.

Since we use iterative methods to solve

A0,XXu0 = RX f

we lose a useful characteristic for the methods (cf. chapter 9). This motivates to set

for two aggregated points N 1
i ,N 1

j with the eigenvector vi,j of A(i,j)

(xi,i, xj,j) =
√

2
vi,j

‖vi,j‖
.

For ε = δ this implies in our example that the modified method does not differ from the

unmodified one. However we will see in the multigrid setting that this will again imply

a problem. This one will be solved by the assumption that a condition is fulfilled.
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5 Examples for modifications

An additional idea is to set again X = diag(x1,1, . . . , xn,n). Then we set

xi,i =
1

√
ai,i

if N 1
i is an isolated point. If N 1

i ,N 1
j are aggregated we set




xi,i

xj,j


 =

1√
λi,j

vi,j

‖vi,j‖

where vi,j is an eigenvector of A(i,j) and λi,j the associated eigenvalue. This is motivated

by the idea to set X = D
−1/2
A O Ĩ as we have presented in section 4.2. However the

problem of such a setting is discussed above.

5.4 Summary

To conclude this chapter we will summarise the results we have shown based on some

simple characteristics. As in the last chapter we will mainly consider the one sided

modifications.

For the one sided modificatios we distinguish two kinds of modifications. The exact

modifications and the modification based on blocks. First it is quite obvious that if

N 1
i ,N 1

j are aggregated then using xi,i, xi,j, xj,i and xj,j is not sufficient in any situation

for an exact modification. This results as the subsystem N 1
i ,N 1

j is always influenced

from other points. So we always need the influence of other points for an exact mod-

ification. As we do not use any geometrical structure we have to determine the other

points by the entries of A. This can imply a much higher effort than modifications

which use no other points. However we have seen that such modifications can be sim-

ple and have useful characteristics if the influence for two aggregated points is only

given by one point. See therefore the example of the one dimensional convection. In

the case of the two (or higher) dimensional convection we have seen that if the influence

is given by different points we can control the bias based on one direction with a quite

simple modification. Moreover we have seen for the convection diffusion system that if

there is a main influence that has the structure of the convection than we get the same

result with a little bias based on the diffusion. But the terms which are used for the

modification are still easy to calculate.
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5.4 Summary

For the modification based on blocks we have also for quite simple problems not so

meaningful results concernig the invarianc of subspaces. However, this modification

is easy to define. In particular this holds if the structure of the system is complex.

Additionally the effort in an algorithm is low. This results as we need no N 1
k , k 6= i, j

to modify the aggregation between N 1
i ,N 1

j .

At least in the symmetric example we have seen that in such a situation we need a high

effort and strict assumptions to obtain similar results as for the exact modifications

in a convection system. The main aspect of this characteristic is that for aggregated

points N 1
i ,N 1

j it has an influence whether the a neighbour is aggregated or not. In

addition, the modification of the neighbours also has an influence on the values for

N 1
i ,N 1

j . This is not the case in the convection system. Afterwards we have seen that

the modification by the inverse of blocks seems a good and simple idea for the sym-

metric system. However, as for a symmetric matrix A the one sided modified operator

A0,X is not symmetric we can use this only as a two grid method. Hence, this is more

or less only a theoretical result.

For the two sided modification of a symmetric system we know that the eigenvectors

of the operator play a role. Afterwards we have presented approximations which are

based on using eigenvectors of smaller subsystems. This idea based on the characteris-

tics that these eigenvectors are simpler to determine and as the subsystems are given

by a block matrix, the most entries of the eigenvectors are zero. Furthermore we have

seen that in particular we have a diagonal matrix for the modification matrix. As for

other methods based on blocks it follows that the effort is quite low.

There is an additional (positive) effect obtained by the modification. For example if we

use the modification by the inverse of blocks then it is possible that the modified coarse

grid operator A0,X has better numerical characteristics than the operator A0. As we

mainly consider the angles between the solutions and always assume the exact solution

in all subspaces this is a minor effect in this work. However, we should highlight that

for numerical experiments this could be the main effect.
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6 Multigrid aspects for the

preconditioners

So far we have introduced the preconditioning operators C−1
DT , C−1

BPX and C−1
2P as two

grid algorithms. Now we want to generalize them to multigrid algorithems. Thereby

we generalize also the approximation that is used for the inverse on the different grids.

So far we have just set them as A−1, A−1
0 . That means that we have used the exact

inverse on the differnt grids. Therewith we have obtained the estimations of our intrest.

Now we are more interested in the existence of these preconditioners. As in the chapter

3 it is in this chapter not necessary that the restriction is given by the aggregation

method. However there will some situations in which we use assumptions that are for

the aggregation method given by the condition (2.14).

6.1 Multigrid aspects for C−1
BPX

We will define the BPX preconditioner in the setting of J + 1 grids in a way that

for J = 1 it is the same as the two grid algorithm defined in section 3.2. So for non

singular B(j) ∈ Rnj×nj , j = 0, . . . , J we define the operator C−1
BPX as follows

C−1
BPX(B(0), . . . , B(J)) :=

J∑

j=0

Pj (B(j))−1 Rj .(6.1)

First we will show a sufficient condition for the operators B(j), j = 0, . . . , J so that

the operator C−1
BPX(B(0), . . . , B(J)) is non singular. We will proof this the same way as

done in the two grid case.

Lemma: 6.1.1. Assume that there is a matrix B̃ ∈ Rn×n with

(Rk B̃ Pk (B(k))−1)(ṽk) = τk
(evk)ṽk, τk

(evk) > 0(6.2)

for all ṽk ∈ Ṽk and all k = 0, . . . , J. Then C−1
BPX(B(0), . . . , B(J)) is non singular.

189



6 Multigrid aspects for the preconditioners

proof. We will show that based on the assumptions there is no v ∈ V \{0} that fulfils

C−1
BPX v = 0. Assume that such an v ∈ V \{0} exists. For an arbitrary j ≤ J we have

R0 = Rj
0 Rj and therewith follows

0 = C−1
BPX v =

J∑

j=0

Pj (B(j))−1 Rj v

⇒ 0 = R0 B̃

(
J∑

j=0

Pj (B(j))−1 Rj v

)
=

J∑

j=0

Rj
0 (Rj B̃ Pj (B(j))−1) (Rj v)︸ ︷︷ ︸

∈eVj

=

J∑

j=0

Rj
0 τ j

(Rj v)(Rj v) =

J∑

j=0

τ j
(Rj v)R0 v = R0 v

(
J∑

j=1

τ j
(Rj v)

)
.

Hence we obtain R0 v = 0. Assume now for an k ≤ J it is Ri v = 0 for all i ≤ k − 1.

Then it follows

0 =
J∑

j=0

Pj (B(j))−1 Rj v =
J∑

j=k

Pj (B(j))−1 Rj v.

And this implies

0 =
J∑

j=k

Rk B̃ Pj (B(j))−1 Rj v =
J∑

j=k

Rj
k (Rj B̃ Pj (B(i))−1) (Rj v)︸ ︷︷ ︸

∈eVj

=

J∑

j=k

Rj
k τ j

(Rj v)(Rj v) =

J∑

j=k

τ j
(Rj v)(Rk v) = Rk v

(
J∑

j=k

τ j
(Rj v)

)
.

Hence it is Rk v = 0. Based on the argument of the induction this implies RJ v = v = 0

and this is in contradiction to the assumptions.

The assumption of the existence of an operator B̃ that fulfils the equation (6.2) seems

to be quite strong. The following lemma will show that this condition can be fulfilled

rather simply.

Lemma: 6.1.2. Let B ∈ Rn×n be a non singular matrix so that the matrices B(j) ∈
Rnj×nj defined as follows

B(j) :=
1

σj
Rj B Pj , j = 0, . . . , J, σj > 0(6.3)

are non singular. If we set B̃ = B then the equation (6.2) holds for all j = 0, . . . , J

and all ṽj ∈ Ṽj with τ j
(evj ) = σj for all ṽj ∈ Ṽj .
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6.1 Multigrid aspects for C−1
BPX

proof. For an arbitrary j ∈ {0, . . . , J} we obtain from the assumptions for an arbitrary

ṽj ∈ Ṽj

(Rj B Pj (B(j))−1)(ṽj) = σj Bj (B(j))−1 (ṽj) = σj ṽj .

With B = A and σj = 1 for all j = 0, . . . , J this is the situation we have considered

for the two grid algorithms. This leads to a definition for the multigrid case that is, in

the case of J = 1 the same as considered in the chapter for the two grid method. We

define for a non singular B ∈ Rn×n the operator C−1
BPX as follows

C−1
BPX(B) :=

J∑

j=0

Pj B−1
j Rj with Bj = Rj B Pj .(6.4)

From the results above C−1
BPX is non singular if this holds for the matrices Bj , j =

0, . . . , J. The non singularity of the matrices B(j) are discussed in Lemma 2.3.5.

If we use the BPX-method as a preconditioner to solve A u = f then the lemmata

above give us the idea that the quality of the preconditioner depends on some aspects.

The first one is that the coarse grid operators B(j) should be good approximations of

A in certain subspaces. So it seems to be a good idea to set B(j) as done in (6.3)

with B = A. If we do this the next aspect is that we need a good scaling operator σi.

At last we have to consider the structure of the used subspaces. As in the two grid

situation it is obvious that the angle between them has an influence on the quality of

the preconditioner. For vk ∈ Vk and B ∈ Rn×n we can decompose B vk as

B vk = Q̂k(B vk) + (I − Q̂k)(B vk) = Pk Ŝk Rk (B vk)︸ ︷︷ ︸
∈Vk

+ (I − Pk Ŝk Rk)(B vk)︸ ︷︷ ︸
∈V ⊥

k

.

The idea we got from the two grid method that the quality depends on the bias of B

as given by

‖(I − Q̂k)(B vk)‖
‖Q̂k(B vk)‖

and that it is optimal if the spaces Vk are invariant with respect to B.
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6 Multigrid aspects for the preconditioners

To specify this idea we consider a representation of A C−1
BPX(B(0), . . . B(J)). We obtain

A C−1
BPX(B(0), . . .B(J)) =

J∑

j=0

A Pj (B(j))−1 Rj

(6.5)

=
J∑

j=0

Q̂j A Pj (B(j))−1 Rj +
J∑

j=0

(I − Q̂j) A Pj (B(j))−1 Rj

=

J∑

j=0

Pj Ŝj Aj (B(j))−1 Rj +

J∑

j=0

(I − Q̂j) A Pj (B(j))−1 Rj.

If we consider the special case that B(j) = Aj for j = 0, . . . , J then this is equivalent to

A C−1
BPX(A) =

J∑

j=0

Pj Ŝj Rj +
J∑

j=0

(I − Q̂j) A Pj A−1
j Rj(6.6)

=

J∑

j=0

Q̂j +

J∑

j=0

(I − Q̂j) A Pj A−1
j Rj

Therewith we furthermore see that we obtain

A C−1
BPX(A) =

J∑

j=0

Q̂j

if Vi is invariant with respect to A.

6.2 Multigrid aspects for C−1
DT

In this section we will introduce the DT -method in the context of J +1 grids. Similary

to for the BPX-method it should be done in a way that in the case J = 1 we get the

preconditioner as given in in section 3.3. However, for the DT -method there are two

possible generalisations that we will present.

6.2.1 Version 1

Again for non singular B(j) ∈ R
nj×nj , j = 0, . . . , J we define the operator C−1

DT,1

C−1
DT,1(B

(0), . . . , B(J)) :=
J∑

j=1

Pj (B(j))−1 (Ij − Qj−1) Rj + P0 (B(0))−1 R0.(6.7)
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6.2 Multigrid aspects for C−1
DT

As we have done for the BPX-method we will show a sufficient condition for the non

singularity of C−1
DT,1. Similary to the proof for the BPX-method this will depend on an

assumption concerning the operators B(j), j = 0, . . . , J.

Lemma: 6.2.1. Assume that there is a matrix B̃ ∈ Rn×n implying for all k = 1, . . . , J

that

W̃k is invariant with respect to (Rk B̃ Pk (B(k))−1)(6.8)

and rk(Rk B̃ Pk (B(k))−1) = nk for k = 0, . . . , J. Then C−1
DT,1(B

(0), . . . , B(J)) is non

singular.

proof. We will prove that based on the assumptions there is no v ∈ V \{0} that fulfils

C−1
DT (B(0), . . . , B(J)) v = 0. Assume that such an v ∈ V \{0} exists. For an arbitrary

j ≤ J it is R0 = Rj
0 Rj . Furthermore, we remember that we can represent an arbitrary

w̃k ∈ W̃k as

w̃k = (Ik − Qk−1) Rk v(k) = (Ik − P k−1
k Sk−1 Rk

k−1) Rk v(k) with an v(k) ∈ V .

Therewith follows

0 = C−1
DT,1 v =

J∑

j=1

Pj (B(j))−1 (Ij − Qj−1) Rj v + P0 (B(0))−1 R0 v

⇒ 0 = R0 B̃

(
J∑

j=1

Pj (B(i))−1 (Ij − Qj−1) Rj v + P0 (B(0))−1 R0 v

)

=
J∑

j=1

Rj
0 (Rj B̃ Pj (B(j))−1) (Ij − Qj−1) Rj v︸ ︷︷ ︸

∈fWj

+(R0 B̃ P0 (B(0))−1) R0 v︸︷︷︸
∈eV0

=
J∑

j=1

Rj−1
0 Rj

j−1 (Ij − Qj−1)︸ ︷︷ ︸
=0

Rj v(j) + (R0 B̃ P0 (B(0))−1) R0 v

= (R0 B̃ P0 (B(0))−1) R0 v.

Based on the assumption rk(R0 B̃ P0 (B(0))−1) = n0 we have R0 v = 0. Assume now
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that for an k ≤ J we have Rjv = 0 for all j < k. Then we obtain

0 =
J∑

j=1

Pj (B(j))−1 (Ij − Qj−1) Rj v + P0 (B(0))−1 R0 v

=

J∑

j=k

Pj (B(j))−1 (Ij − Qj−1) Rj v.

And this implies

0 =

J∑

j=k

Rk B̃ Pj (B(i))−1 (Ij − Qj−1) Rj v

=

J∑

j=k

Rj
k (Rj B̃ Pj (B(i))−1) (Ij − Qj−1) Rj v︸ ︷︷ ︸

∈fWj

= (Rk B̃ Pk (B(k))−1) (Ik − Qk−1) Rk v +

J∑

j=k+1

Rj
k (Ij − Qj−1) Rj v(j)

= (Rk B̃ Pk (B(k))−1) (Ik − Qk−1) Rk v +
J∑

j=k+1

Rj−1
k Rj

j−1 (Ij − Qj−1)︸ ︷︷ ︸
=0

Rj v(j)

= (Rk B̃ Pk (B(k))−1) (Ik − Qk−1) Rk v.

Based on the assumption rk(Rk B̃ Pk (B(k))−1) = nk this implies (Ik − Qk−1) Rk v = 0.

Hence we obtain from the definition of Qk−1 and the assumption Rj v = 0 for j < k

0 = (Ik − Qk−1) Rk v = Rk v − P k−1
k Sk−1 Rk−1 v = Rk v.

Iteratively we obtain RJ v = 0. Hence the contradiction follows from RJ v = v.

To compare the two proofs of the non singularity for C−1
DT,1 and C−1

BPX we will start by

comparing the sufficient conditions for the proofs.

Lemma: 6.2.2. If there is a non singular B̃ ∈ Rn×n which fulfils

(Rk B̃ Pk (B(k))−1)(ṽk) = τk
(evk)ṽk, τk

(evk) > 0

for all k = 0, . . . , J and all ṽk ∈ Ṽk then for the matrix B̃ also holds

W̃k is invariant with respect to (Rk B̃ Pk (B(k))−1)

for all k = 1, . . . , J and rk(Rk B̃ Pk (B(k))−1) = nk for k = 0, . . . , J.
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proof. If it is for a B̃

(Rk B̃ Pk (B(k))−1)(ṽk) = τk
(evk)ṽk, τk

(evk) > 0

then W̃k ⊂ Ṽk is invariant with respect to this operator. Furthermore, the assumption

obviously implies the non singularity of Rk B̃ Pk (B(k))−1.

Remark: 6.2.3. Lemma 6.2.2 implies together with Lemma 6.1.2 that the technical

condition about the invariance of subspaces is easily fulfilled if there is an non singular

B ∈ Rn×n for that we have

B(j) :=
1

σj
Rj B Pj, with σj > 0, j = 0, . . . , J.

Additionally the assumption

rk(Rk B̃ Pk (B(k))−1) = nk

is equivalent to

rk(Rk B̃ Pk) = nk.

For a matrix B̃ ∈ Rn×n this is discussed in Lemma 2.3.5.

So at the first view it seems that the sufficient condition for the DT -method is weaker

than the condition for BPX-method. But in the proof for C−1
DT,1 we additionally use

P k−1
k Sk−1 Rk

k−1 : Ṽk → P k−1
k (Ṽk−1)

is the orthogonal projection concerning the inner product (., .). This is equivalent to

the condition Sk−1 = (Rk
k−1 P k−1

k )−1. That means that we have to calculate for each

j = 0, . . . , J −1 an inverse matrix. For the aggregation method this is possible without

an additional big effort as (Rk
k−1 P k−1

k ) is a diagonal matrix. But this is not so easy

if we want to use other restriction operators as for example the standard geometrical

restriction. This is not necessary for the BPX-method.

As we have done for the BPX-method we have the analogy to the two grid method

also for the DT -method. We define C−1
DT,1(B) by

C−1
DT,1(B) :=

J∑

j=0

Pj B−1
j (Ij − Qj−1) Rj + P0 B−1

0 R0(6.9)

with Bj = Rj B Pj, j = 0, . . . , J.(6.10)
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Based on the results above this is a non singular matrix if the matrices Bj , j = 0, . . . , J

are non singular. This is the result if we set B̃ = B in Lemma 6.2.1. Then B−1
j is well

posed and we have

(Rk B̃ Pk (B(k))−1) = (Rk B Pk B−1
k ) = Ik.

Hence W̃k is invariant with respect to (Rk B̃ Pk (B(k))−1) and we obtain

rk(Rk B̃ Pk (B(k))−1) = nk

Thus the quality of the DT -method as a preconditioner for A u = f depends on the

aspects that have been important for the BPX-method. The first is that the matrices

B(j) should be good approximations for Aj . The second is again that if we decompose

an arbitrary vk ∈ Vk

A vk = Q̂k(A vk) + (I − Q̂k)(A vk) = Pk Ŝk Rk (A vk)︸ ︷︷ ︸
∈Vk

+ (I − Pk Ŝk Rk)(A vk)︸ ︷︷ ︸
∈V ⊥

k

.

Then the quality of the preconditioner depends on the bias given by

‖(I − Q̂k)(A vk)‖
‖Q̂k(A vk)‖

.

This is obvious if we take a look at the following representations of

A C−1
DT,1(B

(0), . . . B(J)) that will conclude this section and motivate modifications as
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done in the two grid case. We have

A C−1
DT,1(B

(0), . . . B(J))

(6.11)

=

J∑

j=1

A Pj (B(j))−1 (Ij − Qj−1) Rj + A P0 (B(0))−1 R0

=
J∑

j=1

Q̂j A Pj (B(j))−1 (Ij − Qj−1) Rj + Q̂0 A P0 (B(0))−1 R0

+

J∑

j=1

(I − Q̂j) A Pj (B(j))−1 (Ij − Qj−1) Rj + (I − Q̂0) A P0 (B(0))−1 R0

=
J∑

j=1

Pj Ŝj Aj (B(j))−1 (Ij − Qj−1) Rj + P0 Ŝ0 A0 (B(0))−1 R0

+

J∑

j=0

(I − Q̂j) A Pj (B(j))−1 (Ij − Qj−1) Rj + (I − Q̂j) A P0 (B(0))−1 R0.

If we consider the special case that B(j) = Aj for j = 0, . . . , J then this is equivalent to

A C−1
DT,1(A) =

J∑

j=1

Pj Ŝj (Ij − Qj−1) Rj + P0 Ŝ0 R0(6.12)

+
J∑

j=0

(I − Q̂j) A Pj A−1
j (Ij − Qj−1) Rj + (I − Q̂0) A P0 A−1

0 R0.

If we have Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1 for j = 1, . . . , J we get based on Lemma 2.3.8 that

this is the same as

A C−1
DT,1(A) =

J∑

j=1

(Q̂j − Q̂j−1) + Q0

+
J∑

j=0

(I − Q̂j) A Pj (B(j))−1 (Ij − Qj−1) Rj + (I − Q̂0) A P0 (B(0))−1 R0.

Therewith we obtain that if Vi is invariant with respect to A then

A C−1
DT,1(A) =

J∑

j=1

(Q̂j − Q̂j−1) + Q̂0 = I.
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To conclude this we want to highlight that if the equation Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1

does not hold we have another kind of bias because even if Vi is invariant with respect

to A we only obtain

A C−1
DT,1(A) =

J∑

j=1

Pj Ŝj (Ij − Qj−1) Rj + P0 Ŝ0 R0

=

J∑

j=1

(Q̂j − Pj Ŝj Qj−1 Rj) + Q̂0.

This leads to the idea of another kind of modification.

Remark: 6.2.4. Based on Lemma 2.4.8 we obtain that for the aggreagation method the

equation Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1 holds if and only if the condition (2.14) is fulfilled.

6.2.2 Version 2

For the DT -methods we have seen that in the context of two grids it holds A C−1
DT = I

if V0 is A-invariant. In the last section we have seen that for the multigrid situation we

need an additional condition to obtain this property. Hence we will propose a second

generalisation for the two grid method. This one should hold that we only need the

assumption that Vi is A-invariant to obtain A C−1
DT,2 = I.

In other words we want to get a certain consistence without using the additional as-

sumption that Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1 holds or the condition (2.14) is fulfilled, re-

spectively.

For non singular B(j) ∈ Rnj×nj , j = 0, . . . , J we define the operator C−1
DT,2 as follows

C−1
DT,2(B

(0), . . . , B(J)) :=

J∑

j=1

Pj (B(j))−1 (Ij − Ŝ−1
j P j−1

j Ŝj−1R
j
j−1) Rj + P0 (B(0))−1 R0.

(6.13)

Then we have a similar result for the non singularity of C−1
DT,2(B

(0), . . . , B(J)) as in the

last section for C−1
DT,1(B

(0), . . . , B(J)).

Lemma: 6.2.5. Assume that there is a matrix B̃ ∈ Rn×n that implies

Im(((Ik − Ŝ−1
k P k−1

k Ŝk−1 Rk
k−1)Rk)(V )) is invariant with respect to (Rk B̃ Pk (B(k))−1)

(6.14)

for k = 1, . . . , J and rk(Rk B̃ Pk (B(k))−1) = nk for k = 0, . . . , J. Then C−1
DT,2(B

(0), . . . , B(J))

is non singular.
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proof. We will show that based on the assumption there is no v ∈ V \{0} with

C−1
DT,2(B

(0), . . . , B(J)) v = 0. Assume that such an v ∈ V \{0} exists. From the as-

sumption (6.14) on the invarianve follows that

(Rj B̃ Pj (B(j))−1)(Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v = (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj vj

for all j = 1, . . . j with an vj ∈ V. Hence we obtain

0 =
J∑

j=1

Pj (B(j))−1(Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v + P0 (B(0))−1 R0 v

⇒ 0 =

J∑

j=1

Q̂0 B̃ Pj (B(j))−1(Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v + Q̂0 B̃ P0 (B(0))−1 R0 v

=

J∑

j=1

P0 Ŝ0 Rj
0 (Rj B̃ Pj (B(j))−1)(Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj v

+ P0 Ŝ0 (R0 B̃ P0 (B(0))−1) R0 v

=

J∑

j=1

P0 Ŝ0 Rj
0 (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj vj + P0 Ŝ0 (R0 B̃ P0 (B(0))−1) R0 v

=
J∑

j=1

(
Q̂0 − P0 Ŝ0 Rj

0 Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1

)
vj + P0 Ŝ0 (R0 B̃ P0 (B(0))−1) R0 v

=

J∑

j=1

(
Q̂0 − P0 Ŝ0 Rj

0 Rj Pj P j−1
j Ŝj−1 Rj

j−1

)
vj + P0 Ŝ0 (R0 B̃ P0 (B(0))−1) R0 v

=

J∑

j=1

(
Q̂0 − Q̂0Q̂j−1

)
vj + P0 Ŝ0 (R0 B̃ P0 (B(0))−1) R0 v

= P0 Ŝ0 (R0 B̃ P0 (B(0))−1) R0 v.

As we have

rk(Ŝ0) = rk(R0 B̃ P0 (B(0))−1) = rk(P0) = n0

this implies R0 v = 0. Assume that we have Rj v = 0 for an k ≤ J and all j < k. Then
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it follows

0 =

J∑

j=1

Pj (B(j))−1(Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v + P0 (B(0))−1 R0 v

=
J∑

j=k

Pj (B(j))−1(Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v

⇒ 0 =

J∑

j=k

Q̂k B̃ Pj (B(j))−1(Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v

=

J∑

j=k+1

Q̂k B̃ Pj (B(j))−1(Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v

+ Q̂k B̃ Pk (B(k))−1(Rk − Ŝ−1
k P k−1

k Ŝk−1 Rk−1) v

=
J∑

j=k+1

Pk Ŝk Rj
k (Rj B̃ Pj (B(j))−1)(Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj v

+ Pk Ŝk (Rk B̃ Pk (B(k))−1) Rk v

=

J∑

j=k+1

Pk Ŝk Rj
k (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj vj

+ Pk Ŝk (Rk B̃ Pk (B(k))−1) Rk v

=

J∑

j=k+1


Pk Ŝk Rk − PkŜk Rj

k Rj︸ ︷︷ ︸
bQk

Pj P j−1
j Ŝj−1 Rj

j−1 Rj︸ ︷︷ ︸
bQj−1


 vj

+ Pk Ŝk (Rk B̃ Pk (B(k))−1) Rk v

=

J∑

j=k+1

(Q̂k − Q̂k Q̂j−1) vj + Pk Ŝk (Rk B̃ Pk (B(k))−1) Rk v

= Pk Ŝk (Rk B̃ Pk (B(k))−1) Rk v.

From the assumption

rk(Ŝk) = rk(Rk B̃ Pk (B(k))−1) = rk(Pk) = nk

follows Rk v = 0. Hence RJ v = v = 0 follows based on the argument of induction.
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Of course it is again a good idea to set B(j) = Aj = Rj A Pj. We obtain in this situation

A Pj A−1
j (Ij−Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj

= Q̂j A Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj

+ (I − Q̂j) A Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj

= Pj Ŝj (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj

+ (I − Q̂j) A Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj

= (Q̂j − Pj Ŝj Rj Pj P j−1
j Ŝj−1 Rj − 1)

+ (I − Q̂j) A Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj

= (Q̂j − Q̂j−1)

+ (I − Q̂j) A Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj.

This implies

A C−1
DT,2(A) =

J∑

j=1

(Q̂j − Q̂j−1) + Q̂0

+

J∑

j=1

(I − Q̂j) A Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj + (I − Q̂0)A P0 A−1
0 R0.

And if we additionally have Vi that is invariant with respect to A this implies

A C−1
DT,2(A) =

J∑

j=1

(Q̂j − Q̂j−1) + Q̂0 = I.

That means that if we take the operator C−1
DT,2 instead of C−1

DT,1 then we can drop the

assumption that the equation Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1 holds or the condition (2.14) is

fulfilled to get an easy representation of A C−1
DT,2 v as the sum of the identity and a bias.

The bias is for this operator again induced by the non invariance of Vi with respect to

A. However using C−1
DT,2 instead of C−1

DT,1 implicates a higher effort. The matrices Ŝi

have to be calculated and saved. For the aggregation method the effort is not so high

as the matrices Ŝj, j = 0, . . . , J are diagonal matrices too.

We will conclude the section with the proof that if the equation Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1

holds the two methods C−1
DT,1 and C−1

DT,2 are the same.
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Lemma: 6.2.6. Let C−1
DT,1, C

−1
DT,2 be as defined in (6.7),(6.7). If we assume that the

equation Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1 holds then we have

C−1
DT,1 = C−1

DT,2.

proof. Based on the assumptions we obtain

Qj−1 = P j−1
j Sj−1 Rj

j−1 = Ŝ−1
j Ŝj P j−1

j Sj−1 Rj
j−1

= Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1.

This proves the assertion.

6.3 Multigrid aspects for C−1
2P

Similarly to the DT -method we will present two modifications for the generalisation of

the 2P -method. They will distinguish by the assumption of the equation Ŝj P j−1
j Sj−1 =

P j−1
j Ŝj−1 holds or the condition (2.14) is fulfilled respectively. If we consider the

aggregation method then we can sum this up to the assumption that the condition

(2.14) is fulfilled. Moreover, for the first version of this preconditioner, we will need

this condition for the non singularity of the preconditioner and not only for a good

estimation in a theoretical situation.

6.3.1 Version 1

We will introduce a generalisation of the the 2P -method in the context of J + 1 grids

that is similar to the generalisation done for C−1
DT,1. So again for non singular B(j) ∈

Rnj×nj , j = 0, . . . , J we define the operator C−1
2P,1 by

C−1
2P,1(B

(0), . . . , B(J)) :=
J∑

j=1

Pj (Ij − Qj−1)(B
(j))−1 (Ij − Qj−1) Rj + P0 (B(0))−1 R0.

First we have that for symmetric B(j), j = 0, . . . , J the operator C−1
2P,1 is symmetric,

too. This follows from
(
Pj (Ij − Qj−1)(B

(j))−1 (Ij − Qj − 1) Rj

)T

=
(
(Ij − Qj−1) Rj

)T(
(B(j))−1

)T (
Pj (Ij − Qj−1)

)T

= Pj (Ij − Qj−1)(B
(j))−1 (Ij − Qj−1) Rj.
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If we want to consider the non singularity of this preconditioner we need stronger

assumptions than for the DT or the BPX−method. First we need a simple result for

the decomposition of an v ∈ V by the operators

(Ij − P j−1
j Sj−1 Rj

j−1) Rj v, R0 v.

Lemma: 6.3.1. Based on the definition of Rk
j there is no v ∈ V \{0} with

(Ij − P j−1
j Sj−1 Rj

j−1) Rj v = 0 for all j = 1, . . . , J

and R0 v = 0.

proof. Assume that such an v ∈ V \{0} exists. Then it is in particular R0 v = 0. Assume

now that for an k ≤ J we have Rj v = 0 for all j < k. We obtain from the assumption

0 = (Ik − P k−1
k Sk−1 Rk

k−1) Rk v = Rk v − P k−1
k Sk−1 Rk−1 v = Rk v.

Based on the argument of the induction it follows RJ v = v = 0. This gives the

contradiction to the assumption.

We should highlight two aspects of Lemma 6.3.1. The first is that this lemma does not

need any assumption concerning Sk−1. The second is that the lemma does not give any

information whether

J∑

j=1

Pj (Ij − P j−1
j Sj−1 Rj

j−1) Rj + P0 R0

is singular or not. However, now we can give a proof for the non singularity of the

operator C−1
2P,1.

Lemma: 6.3.2. Let B(j) ∈ Rnj×nj be non singular, with

(Ij − Qj−1) (B(j))−1 (Ij − Qj−1)ṽj = 0 ⇒ (Ij − Qj−1)ṽj = 0 for j = 1, . . . , J.

(6.15)

If we assume that

ker(Ri
i−1) = ker(Ri

i−1 Ri Pi)(6.16)

holds, then the operator C−1
2P,1 is non singular.
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proof. Assume that there is an v ∈ V \{0} with C−1
2P,1 v = 0. Then it follows by Lemma

6.3.1 that

(Ij − P j−1
j Sj−1 Rj

j−1) Rj v for j = 1, . . . , J and R0 v

are not all zero. Based on the assumption on the non singularity of (B(j))−1, j = 0, . . . J

it follows that

(B(j))−1 (Ij − P j−1
j Sj−1 Rj

j−1) Rj v j = 1, . . . , J and (B(0))−1 R0 v

does not all vanish. Briefly we write

(B(j))−1 (Ij − P j−1
j Sj−1 Rj

j−1) Rj v = uj ∈ R
nj for j = 1, . . . , J

and (B(0))−1 R0 v = u0 ∈ R
n0 .

This implies

0 = C−1
2P,1 v =

J∑

j=1

Pj (Ij − Qj−1)uj + P0 u0

⇒ 0 = R0

(
J∑

j=1

Pj (Ij − Qj−1)uj + P0 u0

)

=

J∑

j=1

Rj−1
0 Rj

j−1 Rj Pj (Ij − Qj−1)uj + R0 P0 u0(6.17)

Based on the definition of Sj−1 as Sj−1 = Rj
j−1 P j−1

j we obtain Rj
j−1 (Ij − Qj−1)uj = 0

for all uj ∈ Rnj . From the assumption (6.16) follows that

Rj
j−1 Rj Pj (Ij − Qj−1)uj = 0

holds for all j = 1, . . . , J. Therewith it follows from (6.17) R0 P0 u0 = Ŝ−1
0 u0 = 0. Hence

we have u0 = 0. Assume now that it is uj = 0 for an k ≤ J and all j < k. Then it
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follows

0 = Rk

(
J∑

j=1

Pj (Ij − Qj−1) uj + P0 u0

)

=

J∑

j=k

Rk Pj (Ij − Qj−1) uj

= Rk Pk (Ik − Qk−1) uk +

J∑

j=k+1

Rj−1
k Rj

j−1 Rj Pj (Ij − Qj−1) uj

= Rk Pk (Ik − Qk−1) uk.

Thereby follows the last equation again from the assumption (6.16) and Rj
j−1 (Ij −

Qj−1) uj = 0 for all j = k + 1, . . . , J. By the definition of uk and rk(Rk Pk) = nk this is

equivalent to

(Ik − Qk−1) (B(k))−1 (Ik − Qk−1) Rk v = 0.

Based on the assumption (6.15) this implies (Ik − Qk−1) Rk v = 0. Hence we have also

uk = (B(k))−1 (Ik − Qk−1) Rk v = 0.

From the argument of the induction it follows uj = 0, j = 0, . . . , J. This is in contra-

diction to the assumption of v 6= 0.

We want to highlight that the condition (6.16) follows for the aggregation method from

the condition (2.14). This is proved in Lemma 2.4.9.

To conclude this section we will take a look at the condition used in the proof of

Lemma 6.3.2. As above mentioned the second condition is for the main aspect of this

work equivalent to the assumption that condition (2.14) is fulfilled. This condition is

well-known from section 2.4.3. So we consider here only the other assumption given by

(6.15). If we set B(i) = Ai = Ri A Pi then the condition is equivalent to the assumption

that Ai is non singular. This we will show in the next lemma. Moreover we have shown

that if A is s.p.d. then we obtain that Ai is also s.p.d. In particular this implies that

Ai is not singular.
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Lemma: 6.3.3. If we set B(j) = Aj = Rj A Pj and Aj is non singular for j = 0, . . . , J

then the condition

(Ij − Qj−1) (B(j))−1 (Ij − Qj−1)ṽj = 0 ⇒ (Ij − Qj−1)ṽj = 0 for j = 1, . . . , J.

(6.18)

holds. In particular (6.18) holds if we set B(j) = Aj = Rj A Pj and A is symmetric

positive definite.

proof. If there is an ṽj ∈ Ṽj with w̃j = (Ij − Qj−1)ṽj 6= 0 and

(Ij − Qj−1) A−1
j (Ij − Qj−1) ṽj = 0(6.19)

then it follows from the non singularity of Aj

A−1
j (Ij − Qj−1) ṽj = ṽ∗

j 6= 0.

It follows from (6.19)

(Ij − Qj−1) ṽ∗
j = 0 ⇔ ṽ∗

j = Qj−1 ṽ∗
j .

We highlight that Sj−1 Rj
j−1ṽ

∗
j 6= 0 follows from this equation. Hence we obtain

Aj−1 Sj−1 Rj
j−1ṽ

∗
j = Rj

j−1 Aj P j−1
j Sj−1 Rj

j−1ṽ
∗
j

= Rj
j−1 Aj Qj−1 ṽ∗

j = Rj
j−1 Aj ṽ∗

j

= Rj
j−1 Aj A−1

j (Ij − Qj−1)ṽj

= Rj
j−1 (Ij − Qj−1)ṽj = 0.

This is in contradiction to the non singularity of Aj−1.

The additional result follows because we obtain from Lemma 2.3.5 that Aj is non

singular in this case.

So in the case of a symmetric A the condition for the non singularity is given by condi-

tion (2.14). To conclude this section we want to summarize the result concerning the

non singularity of C−1
2P,1 for the aggregation method and a symmetric positive definite

operator A.

Theorem: 6.3.4. Let A ∈ Rn×n be s.p.d. Assume that the aggregation method is

used to construct VJ−1, . . . , V0 and the condition (2.14) is fulfilled. Then C−1
2P,1 with

B(j) = A−1
j is non singular.

proof. The proof follows from the arguments presented in this section.
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6.3.2 Version 2

Again as done for the DT -method we will introduce a second version that is independent

of the condition (2.14). Hence we define for non singular B(i) ∈ R
ni×ni, i = 0, . . . , J

the operator C−1
2P,2 by

C−1
2P,2(B

(0), . . . , B(J)) :=

J∑

j=1

Pj (Ij − P j−1
j Ŝj−1 Rj

j−1 Ŝ−1
j )(B(j))−1 (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj

+ P0 (B(0))−1 R0.

As a first result it is obvious that for symmetric B(j), j = 0, . . . , J the operator C−1
2P,2

is symmetric, too. This follows from

(
Pj (Ij − P j−1

j Ŝj−1 Rj
j−1 Ŝ−1

j )(B(j))−1 (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj

)T

=
(
(Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj

)T(
(B(j))−1

)T (
Pj (Ij − P j−1

j Ŝj−1 Rj
j−1 Ŝ−1

j )
)T

= Pj (Ij − P j−1
j Ŝj−1 Rj

j−1 Ŝ−1
j )(B(j))−1 (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj.

For a result concerning the non singularity of C−1
2P,2 we need a technical result similar

to Lemma 6.3.1.

Lemma: 6.3.5. Based on the definition of RJ = I and Rj = Rj+1
j Rj+1 there is no

v ∈ V \{0} with

(Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v = 0 for all j = 1, . . . , J

and R0 v = 0.

proof. The proof holds based on the same arguments as the proof of Lemma 6.3.1.

Therewith, we obtain the result of our interest:

Lemma: 6.3.6. Let B(j) ∈ Rnj×nj be non singular, with

(Ij − P j−1
j Ŝj−1 Rj

j−1 Ŝ−1
j ) (B(j))−1 (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1)ṽj = 0(6.20)

⇒ (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1)ṽj = 0 for j = 1, . . . , J.

Then the operator C−1
2P,2 is non singular.
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proof. Assume that there is an v ∈ V \{0} with C−1
2P,2 v = 0. Then it follows from

Lemma 6.3.5 that

(Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v j = 1, . . . , J and R0 v

are not all zero. From the assumption on the non singularity of (B(j))−1, j = 0, . . . J

it follows that

(B(j))−1 (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v for j = 1, . . . , J and (B(0))−1 R0 v

does not all vanish. Briefly we write

(B(j))−1 (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj v = uj ∈ R

nj for j = 1, . . . , J

and (B(0))−1 R0 v = u0 ∈ R
n0 .

This implies

0 = C−1
2P,2 v =

J∑

j=1

Pj (Ij − P j−1
j Ŝj−1 Rj

j−1 Ŝ−1
j )uj + P0 u0

⇒ 0 = R0

(
J∑

j=1

Pj (Ij − P j−1
j Ŝj−1 Rj

j−1 Ŝ−1
j )uj + P0 u0

)

=
J∑

j=1

Rj−1
0 Rj

j−1 Rj Pj (Ij − P j−1
j Ŝj−1 Rj

j−1 Ŝ−1
j )uj + R0 P0 u0

=

J∑

j=1

Rj−1
0 (Rj

j−1 Ŝ−1
j − Rj

j−1 Rj Pj P j−1
j Ŝj−1 Rj

j−1 Ŝ−1
j )uj + R0 P0 u0

=
J∑

j=1

Rj−1
0 (Rj

j−1 Ŝ−1
j − Rj

j−1 Ŝ−1
j )uj + R0 P0 u0

= R0 P0 u0.

This implies u0 = 0. The rest of the proof follows again the argument of induction

where the same calculation is used in each step.

Next we will take a look at the conditions of Lemma 6.3.6. We will show that we get

for this generalisation a similar result as in Lemma 6.3.3.
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Lemma: 6.3.7. If we set B(j) = Aj = Rj A Pj and Aj is non singular for j = 0, . . . , J

then the condition

(Ij − P j−1
j Ŝj−1 Rj

j−1 Ŝ−1
j ) (B(j))−1 (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1)ṽj = 0(6.21)

⇒ (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1)ṽj = 0 for j = 1, . . . , J.

holds. In particular (6.21) holds if we set B(j) = Aj = Rj A Pj and A is symmetric

positive definite.

proof. If there is an ṽj ∈ Ṽj with w̃j = (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1)ṽj 6= 0 and

(Ij − P j−1
j Ŝj−1 Rj

j−1 Ŝ−1
j ) A−1

j (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1)ṽj = 0

then we obtain from the non singularity of Aj

A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1)ṽj = ṽ∗
j 6= 0.

As we have (Ij − P j−1
j Ŝj−1 Rj

j−1 Ŝ−1
j )ṽ∗

j = 0 we obtain

ṽ∗
j = P j−1

j Ŝj−1 Rj
j−1 Ŝ−1

j ṽ∗
j .

We highlight that Ŝj−1 Rj
j−1 Ŝ−1

j ṽ∗
j 6= 0 follows. Hence we have

Aj−1 Ŝj−1 Rj
j−1 Ŝ−1

j ṽ∗
j = Rj

j−1 Aj P j−1
j Ŝj−1 Rj

j−1 Ŝ−1
j ṽ∗

j

= Rj
j−1 Aj ṽ∗

j

= Rj
j−1 Aj A−1

j (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1)ṽj

= Rj
j−1 (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1)ṽj

= (Rj
j−1 − Rj

j−1 (Rj Pj) P j−1
j Ŝj−1 Rj

j−1)ṽj

= (Rj
j−1 − Ŝ−1

j−1 Ŝj−1 Rj
j−1)ṽj = 0

This is therefore in contradiction to the non singularity of Aj−1.

The additional result follows as we obtain from Lemma 2.3.5 that Aj is non singular

in this case.

We will conclude the section by highlighting that we have C−1
2P,1 = C−1

2P,2 if we use the

aggregation method and the condition (2.14) holds. The proof for this follows the

same argument as the proof of Lemma 6.2.6 which gives the same result for the two

generalisations of C−1
DT .
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preconditioners

As we have modified the two grid preconditioners we will also try to do this for the

multigrid preconditioners. In the context of two grids the aim was that V0 is invariant

with respect to A X (one sided) and V0,X is invariant with respect to A (two sided),

respectively. So in this section we will formulate this in the context of J + 1 grids.

Hence we will use J different modifications.

To motivate this we will first consider a version of the one sided modified DT -method

and the BPX-method in the context of J + 1 grids and J modifications, respectively.

These modifications will all have all the dimension n×n so it is obvious that this implies

a huge effort. Hence this is not based on practical issues but rather on motivation.

Afterwards we will present an idea to define the modifications iteratively by matrices

which have a reduced dimension. For the aggregation method we will see that the

condition (2.14) plays an important role, again. Furthermore, we will see that for the

two sided modified preconditioner this is not as easy as for the one sided modified one.

7.1 Full modifications: A motivation for modifications

on J + 1 grids.

To generalise the results of chapter 4 the aim is to have modifications X̂i, with

A X̂i Pi ṽi ∈ Vi for all ṽi ∈ Ṽi

⇔ Vi is invariant with respect to AX̂i.

for all i = 0, . . . , J − 1.
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For operators X̂i, i = 0, . . . , J − 1 we define modified prolongations Pi, bX as

Pi, bX := X̂i Pi for i = 0, . . . , J − 1

and PJ, bX := I.

For A ∈ Rn×n we define the one sided modified coarse grid operators Ai, bX ∈ Rni×ni as

follows

Ai, bX := Ri A X̂i Pi for i = 0, . . . , J.(7.1)

Lemma: 7.1.1. Let A ∈ Rn×n be non singular, let Aj,X ∈ Rnj×nj be non singular for

j = 0, . . . , J and X̂i ∈ Rn×n, i = 0, . . . , J − 1. Then it follows for all v ∈ V

1. We have
(
A X̂i Pi A

−1
i,X Ri v, A X̂j Pj A−1

j,X Rj v
)

= (Q̂i v, v) +
(
(I − Q̂i) A X̂i Pi A

−1
i,X Ri v, A X̂j Pj A−1

j,X Rj v
)
.

for i, j = 0, . . . , J, i ≤ j.

2. We have
(
A X̂i Pi A

−1
i,X (Ii − Qi−1) Ri v, A X̂j Pj A−1

j,X (Ij − Qj−1) Rj v
)

= δi,j

(
Ŝi (Ii − Qi−1) Ri v, (Ii − Qi−1) Ri v v

)

+
(
(I − Q̂i) A X̂i Pi A

−1
j,X Ri v, A X̂j Pj A−1

j,X Rj v
)
.

for all i, j = 1, . . . , J with i ≤ j and
(
A X̂0 P0 A−1

0,X R0 v, A X̂j Pj A−1
j,X (Ij − Qj−1) Rj v

)

=
(
(I − Q̂0) A X̂0 P0 A−1

0,X R0 v, A X̂j Pj A−1
j,X (Ij − Qj−1) Rj v

)

for all j = 1, . . . , J.

3. If we additionally have Ŝi P
i−1
i Si−1 = P i−1

i Ŝi−1 for all i = 1, . . . , J − 1 then it

follows
(
A X̂i Pi A

−1
i,X (Ii − Qi−1) Ri v, A X̂j Pj A−1

j,X (Ij − Qj−1) Rj v
)

= δi,j((Q̂i − Q̂i−1) v, v) +
(
(I − Q̂i) A X̂i Pi A

−1
j,X Ri v, A X̂j Pj A−1

j,X Rj v
)
.
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for all i, j = 1, . . . , J with i ≤ j and

(
A X̂0 P0 A−1

0,X R0 v, A X̂j Pj A−1
j,X (Ij − Qj−1) Rj v

)

=
(
(I − Q̂0) A X̂0 P0 A−1

0,X R0 v, A X̂j Pj A−1
j,X (Ij − Qj−1) Rj v

)

for all j = 1, . . . , J.

proof. 1. Based on the definition of Ai,X we obtain

(A X̂i Pi A
−1
i,X Ri v, A X̂j Pj A−1

j,X Rj v)

= (Q̂i A X̂i Pi A
−1
i,X Ri v, A X̂j Pj A−1

j,X Rj v)

+ ((I − Q̂i) A X̂i Pi A
−1
i,X Ri v, A X̂j Pj A−1

j,X Rj v)

= (Ŝi Ri A X̂i Pi A
−1
i,X Ri v, Rj

i Rj A X̂j Pj A−1
j,X Rj v)

+ ((I − Q̂i) A X̂i Pi A
−1
i,X Ri v, A X̂j Pj A−1

j,X Rj v)

= (Ŝi Ri v, Rj
i Rj v)

+ ((I − Q̂i) A X̂i Pi A
−1
i,X Ri v, A X̂j Pj A−1

j,X Rj v)

= (Q̂i v, v) + ((I − Q̂i) A X̂i Pi A
−1
i,X Ri v, A X̂j Pj A−1

j,X Rj v).

2. For i ≤ j we obtain with Q̂j = Pj Ŝj Rj for all v ∈ V

(A X̂i Pi A
−1
i,X (Ii − Qi−1) Ri v, A X̂j Pj A−1

j,X (Ij − Qj−1) Rj v)

= (Pi Ŝi Ri A X̂i Pi A
−1
i,X (Ii − Qi−1) Ri v, A X̂j Pj A−1

j,X (Ij − Qj−1) Rj v)

+ ((I − Q̂i) A X̂i Pi A
−1
i,X (Ii − Qi−1) Ri v, A X̂j Pj A−1

j,X (Ij − Qj−1) Rj v)

= (Ŝi (Ii − Qi−1) Ri v, Rj
i (Ij − Qj−1) Rj v)

+ ((I − Q̂i) A X̂i Pi A
−1
i,X (Ii − Qi−1) Ri v, A X̂j Pj A−1

j,X (Ij − Qj−1) Rj v)

= δi,j (Ŝi (Ii − Qi−1) Ri v, (Ii − Qi−1) Ri v)

+ ((I − Q̂i) A X̂i Pi A
−1
i,X (Ii − Qi−1) Ri v, A X̂j Pj A−1

j,X (Ij − Qj−1) Rj v)

The assertion for i = 0 follows the same arguments.
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3. Based on the assumption Ŝi P
i−1
i Si−1 = P i−1

i Ŝi−1 for all i = 1, . . . , J − 1 we

obtain from Corollary 2.3.10

‖(Q̂i − Q̂i−1)v‖2 = (Ŝi (Ii − Qi−1) Ri v, (Ii − Qi−1) Ri v).

Hence the equation follows from the second assertion of this Lemma. The asser-

tion for i = 0 follows the same arguments.

Considering the results of Lemma 7.1.1 we highlight that if Vi is invariant with respect

to A X̂i then it follows (I−Q̂i) A X̂i Pi ṽi = 0 for all ṽi ∈ Ṽi. We will use this assumption

later to motivate the modifications in the multigrid setting.

Based on the matrices X̂i, i = 0, . . . , J we can define one sided modified DT -method

and BPX-method on J + 1 grids. Let B(j), j = 0, . . . J be non singular matrices, then

we define C−1

DT, bX
(B(0), . . . , B(J)), C−1

BPX, bX
(B(0), . . . , B(J)) as follows

C−1

DT, bX
(B(0), . . . , B(J)) :=

J∑

j=1

Pj, bX (B(j))−1 (Ij − Qj−1) Rj + P0, bX (B(0))−1 R0.

C−1

BPX, bX
(B(0), . . . , B(J)) :=

J∑

j=1

Pj, bX (B(j))−1 Rj + P0, bX (B(0))−1 R0.

Therewith we get the following proposition for the existence of both preconditioners:

Lemma: 7.1.2. Let A ∈ Rn×n, B(j) ∈ Rnj×nj , j = 0, . . . J be non singular and X̂j ∈
Rn×n modifications with rk(X̂j Pj) = nj . If there is a matrix B̃ ∈ Rn×n with

(Rj B̃ Pj, bX (B(j))−1)(ṽj) = τ j
(evj )ṽj , τ j

(evj ) ∈ R, τ j
(evj)

> 0(7.2)

for all j = 1, . . . , J then C−1

BPX, bX
(B(0), . . . , B(J)) is non singular.

If there is a matrix B̃ ∈ Rn×n with

W̃j is invariant with respect to (Rj B̃ Pj, bX (B(j))−1)(7.3)

and rk(Rj B̃ Pj, bX (B(j))−1) = nj for j = 0, . . . , J. Then C−1

DT, bX
(B(0), . . . , B(J)) is non

singular.

proof. The proof follows by the same arguments as used in the proofs of the Lemmata

6.1.1 and 6.2.1 respectively.
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We highlight that we can again define a second version of the modified preconditioner

C−1

DT, bX
if we set

C−1

DT, bX,2
(B(0), . . . , B(J)) :=

J∑

j=1

Pj, bX (B(j))−1 (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj

+ P0, bX (B(0))−1 R0.

We obtain the analogue result concerning the non singularity of

C−1

DT, bX,2
(B(0), . . . , B(J)) as given in Lemma 6.2.5 for the unmodified version. Further-

more we want to highlight that as in the unmodified situation the assumptions on the

inivariance are fulfilled if we consider for j = 0, . . . , J the situation

Aj, bX = B(j).

Similarly to the unmodified situation we can give representations for A C−1

BPX, bX
and

A C−1

DT, bX
, respectively. We will see that based on the strong assumption that we have

matrices X̂j, j = 1, . . . , J which fulfil that Vj is invariant with respect to A X̂j we ob-

tain a meaningful result for both preconditioners.

For the BPX-method we obtain from the assumption that Vi is invariant with respect

to A X̂i for an arbitrary v ∈ V

A C−1

BPX, bX
v =

J∑

j=0

A X̂j Pj (B(j))−1 Rj v =

J∑

j=0

Q̂j A X̂j Pj (B(j))−1 Rj v

=
J∑

j=0

Pj Ŝj Aj, bX (B(j))−1 Rj v.

In the case of Aj, bX = B(j) it follows

A C−1

BPX, bX
v =

J∑

j=0

Q̂j v.
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Based on the same characteristic for X̂j it follows for the DT -method

A C−1

DT, bX
v =

J∑

j=1

A X̂j Pj (B(j))−1 (Ij − Qj−1) Rj v + A X̂0 P0 (B(0))−1 R0 v

=

J∑

j=1

Q̂j A X̂j Pj (B(j))−1 (Ij − Qj−1) Rj v + Q̂0 A X̂0 P0 (B(0))−1 R0 v

=

J∑

j=1

Pj Ŝj Aj, bX (B(j))−1 (Ij − Qj−1) Rj v + P0 Ŝ0 A0, bX (B(0))−1 R0 v.

Again in the case of Aj, bX = B(j) it follows

A C−1

DT, bX
v =

J∑

j=1

Pj Ŝj (Ij − Qj−1) Rj v + P0 Ŝ0 R0 v

If additionally Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1 holds then it follows based on Corollary 2.3.9

A C−1

DT, bX
v =

J∑

j=1

(Q̂j − Q̂j−1) v + Q̂0 v = v.

Of course we have again that for the aggregation method the condition (2.14) is equiv-

alent to the characteristic that the equation Ŝj P j
j−1 Sj−1 = P j

j−1 Ŝj−1 holds. And if the

equation does not hold it is obvious that we can take the operator C−1

DT, bX,2
.

The calculations above motivate the aim that Vj is invariant with respect to A X̂j for

the multigrid situation. We can also motivate this based on the results of Lemma 7.1.1.
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For an arbitrary v ∈ V this implies for B(k) = Ak, bX

‖AC−1

DT, bX
v‖2

=
n∑

j=1

(A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v, A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v)

+ (A P0,X A−1
0,X R0 v, A P0,X A−1

0,X R0 v)

+ 2

n∑

j=1

(A Pj,X Aj, bX(Ij − Qj−1)Rj v, A P0,X A−1
0,X R0 v)

2
n∑

j=1

J∑

i=j+1

(A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v, A Pi,X A−1

i, bX
(Ii − Qi−1)Ri v)

=

n∑

j=1

(Q̂j A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v, A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v)

+
n∑

j=1

((I − Q̂j) A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v, A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v)

+ (Q̂0 A P0,X A−1
0,X R0 v, A P0,X A−1

0,X R0 v)

+ ((I − Q̂0) A P0,X A−1
0,X R0 v, A P0,X A−1

0,X R0 v)

+ 2

n∑

j=1

(Q̂0 A Pj,X Aj, bX(Ij − Qj−1)Rj v, A P0,X A−1
0,X R0 v)

+ 2
n∑

j=1

((I − Q̂0) A Pj,X Aj, bX(Ij − Qj−1)Rj v, A P0,X A−1
0,X R0 v)

+ 2

n∑

j=1

J∑

i=j+1

(Q̂j A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v, A Pi,X A−1

i, bX
(Ii − Qi−1)Ri v)

+ 2
n∑

j=1

J∑

i=j+1

((I − Q̂j) A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v, A Pi,X A−1

i, bX
(Ii − Qi−1)Ri v)

If we assume that Ŝj P j
j−1 Sj−1 = P j

j−1 Ŝj−1 holds then it follows from the calculation
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7 Multigrid aspects for the modified preconditioners

above and the results of Lemma 7.1.1

‖AC−1

DT, bX
v‖2

=
n∑

j=1

((Q̂j − Q̂j−1) v, v) + (Q̂0 v, v)

+

n∑

i,j=1

((I − Q̂j) A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v, A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v)

+ ((I − Q̂0) A P0,X A−1
0,X R0 v, A P0,X A−1

0,X R0 v)

+ 2

n∑

j=1

((I − Q̂0) A Pj,X Aj, bX(Ij − Qj−1)Rj v, A P0,X A−1
0,X R0 v)

2
n∑

j=1

J∑

i=j+1

((I − Q̂j) A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v, A Pi,X A−1

i, bX
(Ii − Qi−1)Ri v)

The last equation in the calculation above follows from Lemma 7.1.1. If we have

additionally that Vj is invariant with respect to AX̂j for j = 0, . . . , J −1 then it follows

from the calculation above

‖A C−1

DT, bX
v‖2 = ‖v‖2.

All the term

((I − Q̂j) A Pj,X A−1

j, bX
(Ij − Qj−1)Rj v, A Pi,X A−1

i, bX
(Ii − Qi−1)Ri v) i, j = 1, . . . , J

((I − Q̂0) A P0,X A−1
0,X R0 v, A P0,X A−1

0,X R0 v)

((I − Q̂0) A Pj,X Aj, bX(Ij − Qj−1)Rj v, A P0,X A−1
0,X R0 v) j = 1, . . . , J

represents a kind of bias that vanishes if the condition of the invariance holds.

Although the results above are meaningful, it is not a good idea to determine matrices

X̂j ∈ Rnj×nj , j = 0, . . . , J with the assumed characteristics. As they all have the

dimension (n × n) there is a huge effort to determine them, and also to apply them.

We should highlight that in an algorithm we have to use them twice. First for the

calculation X̂j Pj

(
(B(−1)) Rj v

)
. The second time is for the approximation of Aj, bX.
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So we use the basic idea of multigrid algorithms to determine modifications. This

means that we will construct modifications Xj ∈ Rnj×nj for which we use only the

operator Aj,X and the space Ṽj−1 and Im(P j−1
j (Ṽj−1)), respectively. Hence they can

be constructed iteratively.

7.2 Modification of reduced systems

As motivated at the end of the last section we will consider modifications Xj ∈ Rnj×nj

for j = 1, . . . , J. Similarly to the two grid situation we require for P j−1
j ∈ Rnj×nj−1 that

rk(Xj P j−1
j ) = nj−1. Then we define

P j−1
j,X := Xj P j−1

j for j = 1, . . . , J(7.4)

P i
j,X := P j−1

j,X ◦ · · · ◦ P i
i+1,X for i, j = 1, . . . , J, j ≥ i

Pj,X := P j
J,X for j = 0, . . . , J − 1 and PJ,X := I.

For a two sided modification we define the operators

Ri
j,X = (P j

i,X)T for i, j = 1, . . . , J, j ≤ i(7.5)

Rj,X = (Pj,X)T for j = 0, . . . , J

Sj,X = (P j
j+1,X Rj+1

j,X )−1, Ŝj,X = (Pj,X Rj,X)−1 for j = 0, . . . , J − 1

Qj,X = P j
j+1,X Sj,X Rj+1

j,X , Q̂j = Pj,X Ŝj,X Rj,X for j = 0, . . . , J − 1.

Then we define the spaces

Vj,X := Pj,X(Ṽj) ≡ Pj,X(Rnj ) for j = 0, . . . , J(7.6)

Wj,X := (Ij − Qj−1,X)(Ṽj) for j = 1, . . . , J.

Furthermore, we set iteratively

Aj,X := Rj+1
j Aj+1,X P j

j+1,X and Aj,XX := Rj+1
j,X Aj+1,XX P j

j+1,X(7.7)

for j = 0, . . . , J − 1 and AJ,X = A = AJ,XX . Based on the definition of the operators it

follows immediately

Aj,X := Rj A Pj,X and Aj,XX := Rj,X A Pj,X(7.8)
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7 Multigrid aspects for the modified preconditioners

for j = 0, . . . , J − 1. Based on these definitions we define for non singular B(j) ∈
Rnj×nj , j = 0, . . . , J the one or two sided precondition operators as follows

C−1
BPX,X(B(0), . . . , B(J)) :=

J∑

j=0

Pj,X (B(j))−1 Rj

(7.9)

C−1
DT,1,X(B(0), . . . , B(J)) :=

J∑

j=1

Pj,X (B(j))−1 (Ij − Qj−1) Rj + P0,X (B(0))−1 R0

C−1
DT,2,X(B(0), . . . , B(J)) :=

J∑

j=1

Pj,X (B(j))−1 (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1) Rj

+ P0,X (B(0))−1 R0

C−1
BPX,XX(B(0), . . . , B(J)) :=

J∑

j=0

Pj,X (B(j))−1 Rj,X

C−1
DT,1,XX(B(0), . . . , B(J)) :=

J∑

j=1

Pj,X (B(j))−1 (Ij − Qj−1,X) Rj,X + P0,X (B(0))−1 R0,X

C−1
DT,2,XX(B(0), . . . , B(J)) :=

J∑

j=1

Pj,X (B(j))−1 (Ij − Ŝ−1
j,X P j−1

j,X Ŝj−1,X Rj
j−1,X) Rj,X

+ P0,X (B(0))−1 R0,X

7.2.1 One sided modification

In this section we will first briefly consider a short assertion concerning the non sin-

gularity of the one sided modified precondition operators. Afterwards we will take a

look at the properties we get from the iterative modifiation as given from the iterative

definition of Pj,X. The main result will be that if we use the aggregation method, the

condition (2.14) is fulfilled and we have that Im(P j−1
j (Ṽj−1)) is invariant with respect

to Aj,X Xj then we obtain

A Pj,X = Q̂jA Pj,X.

For the two grid situation this is equivalent to the characteristic that V0 is invariant

with respect to A X. Also for the multigrid situation we will see that this has the same

characteristic.
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7.2 Modification of reduced systems

Lemma: 7.2.1. Let A ∈ Rn×n, B(j) ∈ Rnj×nj , j = 0, . . . J be non singular and Xj ∈
Rnj×nj , j = 1, . . . , J modifications that hold rk(Xj P j

j−1) = nj. If there is a matrix

B̃ ∈ Rn×n with

(Rj B̃ Pj,X (B(j))−1)(ṽj) = τ j
(evj )ṽj , τ j

(evj ) > 0(7.10)

for all j = 1, . . . , J then C−1
BPX,X(B(0), . . . , B(J)) is non singular.

If there is a matrix B̃ ∈ Rn×n with

W̃j is invariant with respect to (Rj B̃ Pj,X (B(j))−1)(7.11)

(
Im(((Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1)Rj)(V )) is invariant with respect to(7.12)

(Rj B̃ Pj,X (B(j))−1)
)

and rk(Rj B̃ Pj,X (B(j))−1) = nj for j = 0, . . . , J. Then C−1
DT,1,X(B(0), . . . , B(J))(

C−1
DT,2,X(B(0), . . . , B(J))

)
is non singular.

proof. The proof follows the same arguments as used in the proofs of Lemmata 6.1.1,

6.2.1 and 6.2.5.

Moreover, we highlight that like in the unmodified situation the conditions (7.10),

(7.11) and (7.12) are fulfilled if we set B(j) = Aj,X . Now we consider the main aspect

of this section. Based on the characteristics for the two grid situation we obtain in the

following characteristic for the modifications on the reduced systems:

Lemma: 7.2.2. Let A ∈ Rn×n be non singular. Let Pj,X be as defined in (7.4). If we

assume that Im(P j
j+1(Ṽj)) is invariant with respect to Aj+1,X Xj+1 for j = 0, . . . , J − 1

then we have

A Pj,X ṽj ∈ Vj for all ṽj ∈ Ṽj(7.13)

if and only if we have

P J−1
J SJ−1 P J−2

J−1 SJ−2 . . . , P j
j+1 ṽj ∈ Vj for all ṽj ∈ Ṽj.(7.14)

proof. Based on the invariance of Im(P j
j+1(Ṽj)) with respect to Aj+1,X Xj+1 we obtain

Aj+1,X Xj+1 P j
j+1 = Qj Aj+1,X Xj+1 P j

j+1 = P j
j+1 Sj Rj+1

j Aj+1,X P j
j+1 = P j

j+1 Sj Aj,X
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7 Multigrid aspects for the modified preconditioners

for j = 1, . . . , J. If we use this characteristic iteratively we obtain

A Pj,X = A XJ P J−1
J P j

J−1,X

= QJ−1 A XJ P J−1
J P j

J−1,X

= P J−1
J SJ−1 RJ

J−1 AJ,X XJ P J−1
J P j

J−1,X

= P J−1
J SJ−1 AJ−1,X P j

J−1,X

= P J−1
J SJ−1 QJ−1 AJ−1,X P j

J−1,X

= P J−1
J SJ−1 P J−2

J−1 SJ−2 AJ−2,X P j
J−2,X

...

= P J−1
J SJ−1 P J−2

J−1 SJ−2 . . . , P j
j+1 Sj Aj,X .

This proves the proposition.

It is obvious that in the multigrid situation the equation (7.13) is the generalisation

of the characteristic that V0 is invariant with respect to A X in the two grid situa-

tion. Based on Lemma 7.2.2 we obtain that if the invariance is given for the two grid

situations between the grids j and j − 1 for j = 1, . . . , J then the equation (7.13) is

equivalent to the condition (7.14). This condition does not depends on the operators

Aj,X but only on the structure of the aggregation and the spaces Vj, respectively. Hence

for the aggregation method we can sum this up as follows:

Corollary: 7.2.3. Let A ∈ Rn×n be non singular and Pj,X be as defined in (7.4).

Assume that the aggregation method is used to construct the coarser grids and the

condition (2.14) holds. If Im(P k−1
k (Ṽk−1)) is invariant with respect to Ak,X Xk for

k = j + 1, . . . , J then we have

A Pj,X ṽj ∈ Vj for all ṽj ∈ Ṽj .

proof. Based on Lemma 2.4.8 we have that for the aggregation method the condition

(2.14) is equivalent to the equation Ŝk P k−1
k Sk−1 = P k−1

k Ŝk−1 for k = j + 1, . . . , J.

Based on Corollary 2.3.9 we obtain that this implies

P J−1
J SJ−1 P J−2

J−1 SJ−2 . . . , P j
j+1 Sj = Q̂j .

Hence we have

P J−1
J SJ−1 P J−2

J−1 SJ−2 . . . , P j
j+1 ṽj ∈ Vj for all ṽj ∈ Vj
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and the assertion follows from Lemma 7.2.2.

Based on the results above and the calculations in chapter 6 it is obvious that if the

assumptions of Lemma 7.2.1 and Corollary 7.2.3, respectively are fulfilled then we

obtain

A Pj,X = Q̂j A Pj,X

for j = 0, . . . , J − 1. From this result it follows

A C−1
DT,1,X(A) =

J∑

j=1

A Pj,X A−1
j,X (Ij − Qj−1) Rj + A P0,X A−1

0,X R0

=

J∑

j=1

Q̂j A Pj,X A−1
j,X (Ij − Qj−1) Rj + Q̂0A P0,X A−1

0,X R0

=
J∑

j=1

(Q̂j − Q̂j−1) + Q̂0 = I.

Based on the same assumptions we obtain for the BPX-method

A C−1
BPX,X(A) =

J∑

j=0

A Pj,X A−1
j,X Rj =

J∑

j=0

Q̂j A Pj,X A−1
j,X Rj =

J∑

j=0

Q̂j .

7.2.2 Two sided modification

As done for the one sided modification in the multigrid setting at the beginning of this

section we will present a sufficient condition for the non singularity of the two sided

modifications. Afterwards we will consider the characteristics of the modifications on

the reduced systems. We will see that if we can fulfil the condition that Im(P j−1
j,X (Ṽj−1))

is invariant with respect to Aj,XX then there are no additional problems for the multi-

grid situation. As already discussed in section 5.3 this assumption is only theoretically

interesting. If we consider the block matrices as done in section 5.3.2 we will see that

again the condition (2.14) plays a role in the multigrid situation.

Lemma: 7.2.4. Let A ∈ Rn×n, B(j) ∈ Rnj×nj , j = 0, . . . J be non singular and Xj ∈
Rnj×nj , j = 1, . . . , J modifications that hold rk(Xj P j−1

j ) = nj . If there is a matrix

B̃ ∈ Rn×n with

(Rj,X B̃ Pj,X (B(j))−1)(ṽj) = τ j
(evj)

ṽj , τ j
(evj ) > 0(7.15)
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for all j = 1, . . . , J then C−1
BPX,XX(B(0), . . . , B(J)) is non singular.

If there is a matrix B̃ ∈ Rn×n with

W̃j,X is invariant with respect to (Rj,X B̃ Pj,X (B(j))−1)(7.16)

(
Im(((Ij − Ŝ−1

j,X P j−1
j,X Ŝj−1,X Rj

j−1,X)Rj,X)(V )) is invariant with respect to(7.17)

(Rj,X B̃ Pj,X (B(j))−1)
)

and rk(Rj,X B̃ Pj,X (B(j))−1) = nj for j = 0, . . . , J. Then C−1
DT,1,XX(B(0), . . . , B(J))(

C−1
DT,2,XX(B(0), . . . , B(J))

)
is non singular.

proof. As for the one sided modification the proof follows by the same arguments as

used in the proofs of Lemmata 6.1.1, 6.2.1 and 6.2.5, respectively.

Furthermore, we highlight as in the unmodified and one sided modified situation, re-

spectively that the conditions (7.15), (7.16) and (7.17) are fulfilled if we set B(j) =

Aj,XX .

Now we consider the main aspect of this section. For the one sided modification the

aim is to use only a two grid situation to determine one modification. This is given as

Aj,XX P j−1
j,X ṽj−1 ∈ Im(P j−1

j,X (Ṽj−1)) for all ṽj−1 ∈ Ṽj−1

⇔ Im(P j−1
j,X (Ṽj−1)) is invariant with respect to Aj,XX

for j = 1, . . . , J. It is obvious that for J = 1 this condition is equivalent to the charac-

teristic that V0,X is invariant with respect to A. Hence we can give a first result that is

the generalisation of Proposition 4.2.5.

Proposition: 7.2.5. Let Aj,XX ∈ Rnj×nj be s.p.d. Then Im(P j−1
j,X (Ṽj−1)) is invariant

with respect to Aj,XX if and only if there are z1, . . . , znj−1
with

Im(P j−1
j,X (Ṽj−1)) =

〈
z1, . . . , znj−1

〉

and Aj,XX zi = λi zi for i = 1, . . . , nj−1.

proof. The proof follows the same arguments as the proof of Proposition 4.2.5.

Based on the Propositon 7.2.5 we have a characteristic for the modifications Xj that

imply for all two gird situations (Ṽj−1, Im(P j−1
j,X (Ṽj−1)) for j = 1, . . . , J) the same result
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as we have in the situation given by only two grids. Hence we consider the result we

obtain for A Pk,X. Based on the charactersitics mentioned so far the aim is

A Pj,X ṽj ∈ Vj,X for all ṽj ∈ Ṽj(7.18)

for all j = 0, . . . , J − 1.

Similarly to Lemma 7.2.2 for the one sided modification we obtain the following result.

Lemma: 7.2.6. Let A ∈ Rn×n be non singular. Let Pj,X be as defined in (7.4). If we

assume that Im(P j
j+1,X(Ṽj)) is invariant with respect to Aj+1,XX for j = 0, . . . , J − 1

then we have

A Pj,X ṽj ∈ Vj,X for all ṽj ∈ Ṽj(7.19)

if and only if we have

P J−1
J,X SJ−1,X P J−2

J−1,X SJ−2,X . . . , P j
j+1,X ṽj ∈ Vj,X for all ṽj ∈ Ṽj.(7.20)

proof. Based on the invariance of Im(P j
j+1,X(Ṽj)) with respect to Aj+1,XX we obtain

Aj+1,XX P j
j+1,X = Qj,X Aj+1,XX Xj+1 P j

j+1 = P j
j+1,X Sj,X Rj+1

j,X Aj+1,XX P j
j+1,X

= P j
j+1 Sj,X Aj,X .

If we use this characteristic iteratively we obtain

A Pj,X = A XJ P J−1
J P j

J−1,X

= P J−1
J,X SJ−1,X AJ−1,XX P j

J−1,X

= P J−1
J,X SJ−1,X QJ−1,X AJ−1,XX P j

J−1,X

= P J−1
J,X SJ−1,X P J−2

J−1,X SJ−2,X AJ−2,XX P j
J−2,X

...

= P J−1
J,X SJ−1,X P J−2

J−1,X SJ−2,X . . . , P j
j+1,X Sj,X Aj,XX .

This proves the proposition.

Based on Lemma 7.2.6 we need to fulfil the condition (7.20). Based on the Propositon

7.2.5 it is obvious that to fulfil Im(P j−1
j,X (Ṽj−1)) invariant with respect to Aj,XX it is

necessary that Vj−1,X is given by nj−1 eigenvectors of Aj,XX . Since we have done it for
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the one sided modification we will concentrate on the aggregation method. Theirfore

we can given the following sufficient condition for the invariance given in (7.20).

As a generalisation of the setting used in section 4.2 for the two grid situation we set

Ij
1 :=

{
i ∈ {1, . . . , n} : N j

i is an isolated point
}

Ij
2 :=

{
(i, k) ∈ {1, . . . , n} × {1, . . . , n} : N j

i ,N j
k are aggregated to N j−1

t .
}

We mark again with Xj
.,i the i-th colum of Xj . Hence

{Xj
.,i : i ∈ I1} ∪ {Xj

.,i + X.,k : (i, k) ∈ I2}

is a basis of Im(P j−1
j,X (Ṽj−1)) if we use the aggreagation method.

Lemma: 7.2.7. Let P j−1
j be given by the aggregation method. Assume that Xj ∈

Rnj×nj is given based on its columns as

Xj
.,k = zt for k ∈ Ij

1 and Xj
.,k + Xj

.,i = zt for (i, k) ∈ Ij
2

with A zt = λtzt

Assume further

(
Xj

.,k

)T
Xj

.,k = 1 for k ∈ Ij
1

(
Xj

.,k + Xj
i,.

)T (
Xj

.,k + Xj
.,i

)
= 1 for (i, k) ∈ Ij

2

and

(
Xj

.,k1

)T
Xj

.,k2
= 0 for k1, k2 ∈ Ij

1 , k1 6= k2

(
Xj

.,k1
+ Xj

.,i1

)T (
Xj

.,k2
+ Xj

.,i2

)
= 0 for (k1, i1), (k2, i2) ∈ Ij

2 , (k1, i1) 6= (k2, i2)

(
Xj

.,k + Xj
.,i

)T
Xj

t = 0 for (k, i) ∈ Ij
2 , t ∈ Ij

1

then it is

Sj−1,X = Ij−1.

proof. Based on the definitions the columns of P j−1
j,X are given from nj−1 orthonormal

eigenvectors. This implies the assertion.
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7.2 Modification of reduced systems

Corollary: 7.2.8. Assume that the assumptions of Lemma 7.2.7 are fulfilled for j =

0, . . . , J − 1, then it follows that

P J−1
J,X SJ−1,X P J−2

J−1,X SJ−2,X . . . , P j
j+1,X ṽj ∈ Vj,X for all ṽj ∈ Ṽj.

proof. Based on the assumptions of Lemma 7.2.7 we obtain Sj,X = Ij for j = 0, . . . , J−
1. This implies for an arbitrary ṽj ∈ Ṽj

P J−1
J,X SJ−1,X P J−2

J−1,X SJ−2,X . . . , P j
j+1,X ṽj

=P J−1
J,X P J−2

J−1,X . . . , P j
j+1,X ṽj = Pj,X ṽj ∈ Vj,X.

To sum up the results above we can maintain that if we have the modifications Xj that

hold Aj,XX(Im(P j−1
j,X (Ṽj−1))) ∈ Im(P j−1

j,X (Ṽj−1)) then there is no problem concerning

the multigrid aspects. As already discussed in section 5.3 this is only a theoretical

result even for the most simple problems. Also as discussed in section 5.3 we consider

that we use the eigenvectors of a block matrix that should approximate A. Then we

will consider two situations presented in section 5.3:

1. If we set for two aggregated points N j
i ,N j

k with the eigenvector vj
i,k of A

(i.k)
j the

modification

(xj
i,i, x

j
k,k) =

vj
i,k

‖vj
i,k‖

then it is ‖(xj
i,i, x

j
k,k)‖ = 1. Based on the same arguments used in Lemma 7.2.7

this implies Sj−1,X = Ij−1. Hence we have in this case also

P J−1
J,X SJ−1,X P J−2

J−1,X SJ−2,X . . . , P j−1
j,X ṽj

=P J−1
J,X P J−2

J−1,X . . . , P j−1
j,X ṽj−1 ∈ Vj−1,X.

However the problem is mentioned in section 5.3. Based on this modification Xj

we obtain that Aj−1,XX is in general no M-matrix because it is possible to lose

the property

aj−1,XX
i,i ≥

n∑

k=1, k 6=i

|aj−1,XX
i,k |.
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7 Multigrid aspects for the modified preconditioners

2. If we set for two aggregated points N j
i ,N j

k with the eigenvector vj
i,k of A

(i.k)
j the

modification

(xj
i,i, x

j
k,k) =

√
2

vj
i,k

‖vj
i,k‖

then it is ‖(xj
i,i, x

j
k,k)‖ =

√
2. As already mentioned, this is the same situation as

in the unmodified situation. Hence we obtain the same characteristic. It is

Sj,X = diag(sj,X
1,1 , . . . , sj,X

nj ,nj
)

with sj,X
k,k = 1 if |Ij,j+1

k | = 1 and sj,X
k,k = (xi,i, xj,j) (xi,i, xj,j)

T = 2 if Ij,j+1
k =

{N 1
i ,N 1

j }. Therewith the

P J−1
J,X SJ−1,X P J−2

J−1,X SJ−2,X . . . , P j−1
j,X ṽj ∈ Vj for all ṽj ∈ Ṽj(7.21)

does not hold in general. Based on the arguments above we need the property

P J−1
J SJ−1 P J−2

J−1 SJ−2 . . . , P j−1
j ṽj ∈ Vj for all ṽj ∈ Ṽj .

It is obvious that we also obtain for the modified situation that (7.21) holds if

the condition (2.14) is fulfilled.
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8 Symmetric Problems

In this chapter we will consider the preconditioners C−1
DT and C−1

BPX for a symmetric

stiffness matrix A. As already mentioned in chapter 2 the problem will be motivated

by the partial differential equation

div(a(x) grad u(x)) = f(x) ∀x ∈ Ω(8.1)

u(x) = 0 ∀x ∈ ∂Ω

as discussed in the section 2. We only take the general structure of these matrices and

so we do not distinguish whether the matrix is the result of a finite element method

or by finite differences. So it will be our aim in this chapter to give properties of the

preconditioners C−1
BPX , C−1

DT for s.p.d. matrices A that fulfil additional

ai,i > 0, for all i = 1, . . . , n(8.2)

ai,j ≤ 0, for all i, j = 1, . . . , n with i 6= j

n∑

j=1, j 6=i

|ai,j| ≤ |ai,i|, forall i = 1, . . . , n.

We will take a look at the angle γDT that determines our estimations for the condition

as done in chapter 3. We will determine the constant γDT for two special situations.

Our main aspect will be to consider the condition of the preconditioner in the norm

that is induced by A. We will take a closer (quite technical) view of the constants that

appear by this estimations. As the motivation is given by the problem (8.1) this is also

the situation in which we will give estimations for the constants.

As we have done before, we will first consider the two grid situation. In this case we

will drop the indices on the prolongation and restriction operators. Furthermore, if

we want to determine a constant we assume that the aggregation method is used to

construct VJ−1, . . . , V0.
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8 Symmetric Problems

8.1 Introduction and problem

In this section we will consider a matrix A that results from the discritisation of (8.1)

on a small sector Ωs ⊂ R. In this sector we will see the structure of the stiffness matrices

we consider, the structure of the coarser operators and the problems which arise. The

problem will be that if we only consider the local situation it is in general not possible

to determine a constant γDT that fulfils for all v ∈ V the inequality

((I − Q0)v, A P A−1
0 R v) ≤ γDT ‖A P A−1

0 R v‖ ‖(I − Q0)v‖(8.3)

⇔ (w, A v0) ≤ γDT ‖A v0‖ ‖w‖ ∀v0 ∈ V0, ∀w ∈ W.

Hence we will consider two special situations in which we can give estimations for the

constant. From the results of chapter 3 we know that by assuming that A is s.p.d. it

follows that A0 is non singular. Hence there must be a γDT < 1 because otherwise

A C−1
DT would be singular. But this is a contradiction to Lemma 3.3.1. As a sector of

the hole system we consider the situation as given in Figure 8.1.

��������������������

N 1
i−2 N 1

i−1 N 1
i N 1

i+1 N 1
i+2 N 1

i+3

Ωs

ε δa

Figure 8.1: Small sector Ωs ⊂ Ω

We will consider the inequality (8.3) for the sector Ωs as shown in the Figure 8.1. We

assume that for the coarser grid the points N 1
i ,N 1

i+1 are aggregated and ε, a, δ > 0 are

constants that are given by the used material. So we will consider the stiffness matrix

A ∈ R4×4 given by

A =




ε + ∗ −ε 0 0

−ε a + ε −a 0

0 −a a + δ −δ

0 0 −δ δ + ∗




(8.4)

As there is no conjunction to the boundary, the matrix A as given above is singular

in the case of ∗ = 0. It is in this case ker(A) = (1, 1, 1, 1)T . That means that we can
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8.1 Introduction and problem

switch the boundary to an arbitrary value. As we will do the estimations independet

of the link that is given to points which does not belong to Ωs we set ∗ = 0 (We could

consider the case of a sequence that converges to zero). Then we obtain for an arbitrary

v ∈ V

P A−1
0 R v = (uL, u, u, uR)T , with uL, u, uR ∈ R

(I − Q0)v = (s, w,−w, t) with s, w, t ∈ R.

We obtain

s = 0, (t = 0)

if N 1
i−1, (N 1

i+2) is an isolated point. Otherwise s, t depend on values given by N 1
i−1, (N 1

i+2)

and left (right) neighbours N 1
i−2, (N 1

i+3). So if we do not assume that N 1
i−1 and N 1

i+2

are isolated points we can consider the situation as follows:

ε = δ = a = w = t = uR = 1

uL = s = −1 and u = 0

In this case follows

((I − Q0)v, A P A−1
0 R v) = (−1, 1,−1, 1)




−1

1

−1

1




= 4

‖(I − Q0)v‖ = ‖A P A−1
0 R v‖ = ‖(−1, 1,−1, 1)‖ = 2.

So we can not determine a γDT < 1 for the local situation. We have to consider in this

case a bigger sector of Ω to get an estimation for γDT . Otherwise this implies that we

can not use the estimations of chapter 3 to obtain an estimation for the condition of

A C−1
DT and A C−1

BPX respectively.

In the next two sections we will consider special cases in which we can give estimation

for γDT based on the small sector.
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8 Symmetric Problems

8.1.1 Both neighbours are isolated points

First we assume that both neighbours of the points we aggregate are isolated points.

Therewith it is in the sector Ωs ⊂ Ω

A P A−1
0 R v = (ε(uL − u), ε(u− uL), δ(u − uR), δ(uR − u))T

(I − Q0)v = (0, w,−w, 0).

And we obtain

‖A P A−1
0 R v‖2 = 2ε2(uL − u)2 + 2δ2(uR − u)2

‖(I − Q0)v‖2 = 2w2

[
(A P A−1

0 R v, (I − Q0)v)
]2

=
[
wε(u − uL) − wδ(u − uR)

]2

≤ 2w2(ε2(u − uL)2 + δ2(u − uR)2).

The estimation above is based on the inequality of Young (A.0.3). So it is obvious that

(A P A−1
0 R v, (I − Q0)v) ≤ γDT ‖A P A−1

0 R v‖ ‖(I − Q0)v‖

holds with γDT =
√

1/2. So the estimation is independent of the elements of the matrix

A. However, the assumption is quite restrictive.

8.1.2 One neighbour is an isolated point

Now we assume that one of the neighbours is an isolated point. W.l.o.g. we consider

the case that N 1
i−1 is isolated. As already mentioned, this implies s = 0. Furthermore,

we assume that ε, δ ≤ 1, so we avoid having to distinguish many cases. As we have

γDT =
√

1/2 in the situation that both neighbours are isolated points, it is obvious

that γDT =
√

1/2 is a lower bound for the case that only one neighbour is an isolated

point. We obtain

‖A P A−1
0 R v‖2 = 2ε2(uL − u)2 + 2δ2(uR − u)2

‖(I − Q0)v‖2 = 2w2 + t2

[
(A P A−1

0 R v, (I − Q0)v)
]2

=
[
wε(u− uL) − wδ(u − uR) + tδ(uR − u)

]2
.

We transform the variables in x := uL − u and y := uR − u. Therewith we have to

determine an γDT < 1 that holds

g := γ2
DT (2ε2x2 + 2δ2y2) · (2w2 + t2) − [wεx− wδy + tδy]2 ≥ 0.
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8.2 Two grid estimations for C−1
DT A in the A-norm

To minimize g with respect to t we differentiate g with respect to t. We obtain that

the minimizing t is given by

t =
w(εx − δy)δy

γ2
DT (2εx2 + 2δy2) − δ2y2

.

We highlight, that the denominator is positive if it is 2γ2
DT ≥ δ. By assuming that δ ≤ 1

this is always fulfiled if it is γ2
DT ≥ 1/2. If we insert the value for t in g it follows

g =
2γ2

DT w2(ε2x2 + δ2y2)(ε2(−1 + 4γ2
DT )x2 + 2δεxy + δ2(−3 + 4γ2

DT )y2)

(2γ2
DT (ε2x2 + δ2y2) − δ2y2

As the denominator is positive it is sufficient to consider the numerator. We obtain

that this is positive if it is

g0 := (ε2(−1 + 4γ2
DT )x2 + 2δεxy + δ2(−3 + 4γ2

DT )y2)

= 4γ2
DT (x2ε2 + y2δ2) − 2δ2y2 − (εx − δy)2 ≥ 0.

Then is g0 minimized with respect to x if it is

x = − δy

ε(−1 + 4γ2
DT )

.

And again by assuming that ε ≤ 1 we get for γ2
DT ≥

√
1/4 that the denominator is

positive. It follows by this value for x

g0 =
2δ2(1 − 8γ2

DT + 8γ4
DT )y2

−1 + 4γ2
DT

As the denominator is positive for γ2
DT ≥

√
1/4 we consider again only the numerator.

This is positive if it is

(1 − 8γ2
DT + 8γ4

DT ≥ 0 ⇔ γ2
DT ≥ 1

2
+

√
2

4
.

8.2 Two grid estimations for C−1
DT A in the A-norm

For other estimations of the eigenvalues of C−1
DT A we consider the condition of C−1

DT A

that is given by the norm induced by A. That means for A ∈ Rn×n s.p.d. we consider

the inner product and the induced norm follow as:

a(u, v) := uT A v and ‖u‖A =
√

a(u, u).(8.5)
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8 Symmetric Problems

For A ∈ Rn×n and f ∈ Rn we define u∗ ∈ Rn by

A u∗ := f and u∗ := A−1 f, respectively.(8.6)

For the same A, f we define u1, u0 ∈ Rn by

u1 := A−1 (I − Q0) f(8.7)

u0 := P A−1
0 R f.(8.8)

Based on these definitions it is obvious that we obtain from the definition (3.9) that

u0 + u1 = C−1
DT f.

We therefore get a relation between the solution u∗ and the vectors u0, u1 we get by

using the preconditioner C−1
DT . Since the solution u∗ of A u = f is given by

a(u∗, v) = (f, v) ∀v ∈ V

we will see in the next lemma that the vectors u0, u1 can be interpreted as solutions in

a subspace of V ≡ Rn. For u1 this is quite obvious. For u0 we take it as a result.

Lemma: 8.2.1. Let A ∈ Rn×n be s.p.d. For u1, u0 as defined in (8.7), (8.8) it holds

a(u1, v) = a(u∗, v − Q0 v) = (f, v − Q0 v), ∀v ∈ V(8.9)

a(u0, v0) = a(u∗, v0) = (f, v0) ∀v0 ∈ V0.(8.10)

proof. As Q0, (I−Q0) are orthogonal projection with respect to the inner product (., .)

they hold QT
0 = Q0 and (I −Q0)

T = (I −Q0). Hence we get for the equation (8.9) that

it is for all v ∈ V

a(u1, v) = a(A−1(I − Q0)f, v) = ((I − Q0) f, v)

= (f, (I − Q0) v) = (A A−1 f, (I − Q0) v) = a(u∗, (I − Q0)v).

The second equation of this lemma is obtained as it is Q0 v0 = P S R v0 = v0 for all

v0 ∈ V0 and P = RT . Therewith we obtain for all v0 ∈ V0

a(u0, v0) = a(u0, Q0 v0) = a(P A−1
0 R f, P S R v0) = (A P A−1

0 R f, P S R v0)

= (R A P︸ ︷︷ ︸
A0

A−1
0 R f, S R v0) = (A0 A−1

0 R f, S R v0)

= (R f, S R v0) = (f, Q0 v0) = a(u∗, v0).
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8.2 Two grid estimations for C−1
DT A in the A-norm

As we will use for estimations the norm ‖ . ‖A for the single additional terms u1, u0 we

get by using the preconditioning operator C−1
DT , we will need a relation between

‖u1‖A, ‖u0‖A and ‖u1 + u0‖A.

We will provide this in the next lemma.

Lemma: 8.2.2. Let A be a s.p.d. matrix. For u1, u0 as defined in (8.7), (8.8) it is

a(u0, u1) = 0.

proof. By using the definitions of u0, u1 we get

a(u0, u1) = a(A−1 (I − Q0) f, P A−1
0 R f)

= ((I − Q0) f, P A−1
0 R f) = (R(I − P S R) f, A−1

0 R f)

= ((R − R) f, A−1
0 R f) = 0.

The last equality follows as S is defined by S = (R P )−1.

To get the estimation between u1, u0 and u∗ we define the constant ca by

ca := sup

{‖Q0 v‖A

‖v‖A
: v ∈ V \{0}

}
.(8.11)

Based on the definiton of ca it is obvious that with the constant ca the inequality

‖Q0 v‖A ≤ ca ‖v‖A(8.12)

holds for all v ∈ V. Moreover, it is obvious that ca depends on the structure of the matrix

A. As Q0 : V → V0 is the orthogonal projection the definition (8.11) is equivalent to

ca = sup

{ ‖v0‖A

‖v0 + w‖A

: v0 ∈ V0, w ∈ W, v0 + w 6= 0.

}
.

Therewith it is obvious that ca depends on the structure of the matrix A and the sub-

spaces V0, W ⊂ V.

As the inequality (8.12) holds for v ∈ V0, it follows ca ≥ 1 from Q0 v0 = v0 for all

v0 ∈ V0. If we take the constant ca as given then this implies the following result:
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8 Symmetric Problems

Lemma: 8.2.3. Let A ∈ Rn×n s.p.d. For u1, u0 and u∗ as defined in (8.7), (8.8) and

(8.6) then

‖u0‖A ≤ ‖u∗‖A(8.13)

‖u1‖A ≤ (1 + ca)‖u∗‖A(8.14)

‖u∗‖A ≤ ca(‖u0‖A + ‖u1‖A).(8.15)

holds.

proof. For u0 based on the equation (8.10) of Lemma 8.2.1 and the inequality of Cauchy-

Schwarz (A.0.1)

‖u0‖2
A = a(u0, u0) = a(u∗, u0) ≤ ‖u∗‖A ‖u0‖A.

This implies

‖u0‖A ≤ ‖u∗‖A.

Based on the equation (8.9) of Lemma 8.2.1 and the inequality of Cauchy-Schwarz

(A.0.1) we get for u1

‖u1‖2
A = a(u1, u1) = a(u∗, u1 − Q0 u1) = a(u∗, u1) − a(u∗, Q0 u1)

≤ ‖u∗‖A(‖u1‖A + ‖Q0 u1‖A) ≤ (1 + ca)‖u∗‖A ‖u1‖A.

This implies

‖u1‖A ≤ (1 + ca)‖u∗‖A.

The inequality (8.15) is also obtained by using the results of Lemma 8.2.1 and the

inequality of Cauch-Schwarz (A.0.1). We obtain

‖u∗‖2
A = a(u∗, u∗) = a(u∗, u∗ − Q0u

∗) + a(u∗, Q0u
∗)

= a(u1, u∗) + a(u0, Q0u
∗) ≤ ‖u1‖A ‖u∗‖A + ‖u0‖A ‖Q0u

∗‖A

≤ ‖u∗‖A ‖u1‖A + ca ‖u0‖A ‖u∗‖A ≤ ca ‖u∗‖A (‖u1‖A + ‖u0‖A).

In the last inequality we use ca ≥ 1.

From these results we can give an estimation for the condition of C−1
DT A that only

depends on the constant ca.
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8.3 Technical view of the constant ca. (Neigbours are isolated points)

Theorem: 8.2.4. Let A be a non singular s.p.d. matrix. With ca as defined in (8.11)

then

cDT‖v‖A ≤ ‖C−1
DT A v‖A ≤ dDT‖v‖A

holds for all v ∈ V with

cDT =
1

ca

√
2

and dDT = 2 + ca.

proof. To prove

cDT‖v‖A ≤ ‖C−1
DT A v‖A ≤ dDT‖v‖A

for all v ∈ V it is equivalent to set v = A−1f and prove

cDT‖A−1 f‖A ≤ ‖C−1
DT f‖A ≤ dDT‖A−1 f‖A

⇔ cDT‖u∗‖A ≤ ‖u0 + u1‖A ≤ dDT‖u∗‖A.

The second equivalence follows the defintion of u∗, u0 and u1. From the equations (8.13)

and (8.14) of Lemma 8.2.3 it follows

‖u0 + u1‖A ≤ ‖u0‖A + ‖u1‖A ≤ (2 + ca)‖u∗‖A.

This proves the proposition for dDT . As u0, u1 are orthogonal with respect to the inner

product a(., .) we obtain from equation 8.15 and Lemma A.0.5

‖u∗‖A ≤ ca (‖u0‖A + ‖u1‖A) ≤
√

2ca‖u0 + u1‖A.

This complets the proof for cDT .

8.3 Technical view of the constant ca. (Neigbours are

isolated points)

In section 8.2 we have proved an estimation for the condition of the operator C−1
DT A in

the norm ‖ . ‖A. The estimation depends on a constant ca that fulfils the inequality

‖Q0 v‖A ≤ ca ‖v‖A.
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8 Symmetric Problems

We have already highlighted that this constant depends on the elements of the matrix

A and the structure of the subspaces. In particular we have seen that it is

1√
2ca

‖v‖A ≤ ‖C−1
DT A v‖A.

Therewith 1√
2ca

is our lower bound for the absolute value of the eigenvalue λ of C−1
DT A.

So if we can estimate an upper bound for ca that only depends on the elements of the

matrix A we get a lower bound for the constant cDT with the same dependency. That

is what we will do in this section for problems that result from the discretisation of the

problem (8.1) and for matrices that have the structure as given in (8.2) respectively.

The restriction we assume in this section is that we only aggregate two points into

a new one and the neighbours of the aggregated points are all isolated points. That

means the sets I0,1
t all have the cardinal number one or two. And if N 1

1 ,N 1
2 are aggre-

gated to N 0
t and it is a1,k 6= 0 or a2,k 6= 0 for an k ∈ {3, . . . , n} then N 1

k is an isolated

point. So this is a strict assumption concerning the aggregations that are done. These

assumtions are also used in section 5.2.1 for an exact one sided modification for this

problem. For it we will have no restriction concerning the geometrical structure of the

grid points or the dimension of the system the stiffness matrix is based on.

We start with a simple one dimensional situation and consider the local situation as

illustrated in Figure 8.2. Furthermore we assume that the two grid points N 1
i ,N 1

i+1

will be aggregated

�
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�
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�
�
�
�

��
��
��
����������������

N 1
i−1 N 1

i N 1
i+1 N 1

i+2

aε δ
uL u1 u2 uR

Figure 8.2: One dimensional situation

If we only consider the sector Ωs = [Ni−1,Ni+2] then we locally get the stiffness matrix

A as

A =




ε −ε

−ε a + ε −a

−a a + δ −δ

−δ δ


 .
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8.3 Technical view of the constant ca. (Neigbours are isolated points)

As a result of arguments from section 8.1 the matrix A in the sector is singular. There-

with in this sector for a function u ∈ V

u = (uL, u1, u2, uR)

we obtain the values

‖u‖2
A = ε(uL − u1)

2 + a(u1 − u2)
2 + δ(u2 − uR)2

‖Q0 u‖2
A = ε

(
u1 + u2

2
− uL

)2

+ δ

(
u1 + u2

2
− uR

)2

.

Therefore, we can give an estimation for ca that only depends on the elements of the

matrix.

Lemma: 8.3.1. Assume that the situation is given as above and N 1
i−1,N 1

i+2 are isolated

points then the inequality

‖Q0 u‖A ≤ cA‖u‖A

holds for all u ∈ V with

ca =

√
1 +

ε + δ

4a
.

proof. We just have to prove this for the restricted area as mentioned in the setting.

So we can set u = (uL, u1, u2, uR) ∈ R4 and show the inequality g ≥ 0 with

g = c2
a‖u‖2

a − ‖Q0 u‖2
a

= c2
a

(
ε(uL − u1)

2 + a(u1 − u2)
2 + δ(u2 − uR)2

)

−
(

ε

(
u1 + u2

2
− uL

)2

+ δ

(
u1 + u2

2
− uR

)2
)

To minimize g with respect to uL, uR we differentiatethe function g with respect to uL

and uR. It follows

dg

duL

= 2c2
aε(uL − u1) − 2ε

(
uL − u1 + u2

2

)
(8.16)

dg

duR
= 2c2

aδ(uR − u2) − 2δ

(
uR − u1 + u2

2

)
(8.17)
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and we obtain by the first order condition for a minimum

uL =
c2
au1 − (u1 + u2)/2

c2
a − 1

(8.18)

uR =
c2
au2 − (u1 + u2)/2

c2
a − 1

(8.19)

With the g minimizing values for uL, uR we get for the function g :

g ≥ c2
a

[
ε

(c2
a − 1)2

(
u1 − u2

2

)2

+
δ

(c2
a − 1)2

(
u1 − u2

2

)2

+ a(u1 − u2)
2

]

−
[

ε

(c2
a − 1)2

(
c2
a

u1 − u2

2

)2

+
δ

(c2
a − 1)2

(
c2
a

u1 − u2

2

)2
]

= −(c2
a − 1)c2

a

(c2
a − 1)2

(ε + δ)
(u1 − u2)

2

4
+

c2
a

(c2
a − 1)2

a(c2
a − 1)2(u1 − u2)

2

=
(c2

a − 1) c2
a (u1 − u2)

2

(c2
a − 1)2

[
−ε + δ

4
+ (c2

a − 1)a

]

Since we have ca ≥ 1 last term is non negative if and only if it holds

(c2
a − 1)a ≥ ε + δ

4
⇔ c2

a ≥
√

1 +
ε + δ

4a
.

This shows the proposition.

Moreover, the proof of the last lemma implies that the chosen constant ca is the smallest

possible constant.

Remark: 8.3.2. Assume the situation is given as in Lemma 8.3.1. Then there is no

c̃a <
√

1 + ε+δ
4a

that holds the inequality ‖Q0 u‖A ≤ cA‖u‖A for all u ∈ V.

proof. We take the system of Figure 8.2 and set

u1 = 1 and u2 = c2
a.

The equalities (8.18) and (8.19) motivate to set

uL =
c2
a − (1 + c2

a)/2

c2
a − 1

= 1/2 and uR =
c2
a · c2

a − (1 + c2
a)/2

c2
a − 1

.
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In this case we get

(c2
a − 1)

(
c2
a‖u‖2

A − ‖Qau‖2
A

)
= c8

aa + c6
a

(
−3a − |ε + δ|

4

)

+ c4
a

(
3a +

|ε + δ|
2

)
+ c2

a

(
−a − |ε + δ|

4

)
.

The expression on the right side is zero if we set c2
a = 1 + (ε + δ)/4a.

Moreover, we highlight that the minimizing values for uL, uR as given in (8.18) and

(8.19) do not depend on the couplings represented by ε, δ and a. This characteristic

will be usefull for generalizations.

We generalise the considered system in a two dimensional grid. The matrix A and the

two points we will aggregate respectively fulfil the following condition:

Let N 1
1 ,N 1

2 two grid points that will be aggregated and the stiffness matrix A satisfies

a1,2 6= 0. Moreover, N 1
k is an isolated point if it is k ∈ {3, . . . , n} and a1,k 6= 0 or

a2,k 6= 0. And there is no k ∈ {3, . . . , n} with

a1,k 6= 0 and a2,k 6= 0.

We call such a situation an open system. The structure is as shown in Figure 8.3.

Furthermore, we assume that the grid points N 1
1 ,N 1

2 are interior points of Ω. That

means that it holds for i = 1, 2

ai,i =
∑

k=1, k 6=i

|ai,k|.

The following definitions are for an easier notation:

aL :=

n∑

k=3

|a1,k| and aR :=

n∑

k=3

|a2,k|

I := {1, 2} ∪ I1 ∪ I2

with k ∈ I1 :⇔ a1,k 6= 0 ∧ a2,k = 0

and k ∈ I2 :⇔ a2,k 6= 0 ∧ a1,k = 0.

Based on this setting we can generalize the result of Lemma 8.3.1 in the following way:
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ε1

ε2

ε3
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δ3

δ4

uL,1

uL,2

uL,3

u1
u2

uR,1

uR,2

uR,3

uR,4

Figure 8.3: Open system

Lemma: 8.3.3. Let A ∈ Rn×n s.p.d. be a matrix as defined in (8.2). Let N 1
1 ,N 1

2 be

two aggregatet interior points with a1,2 6= 0. If we assume that all neighbours of N 1
1 ,N 1

2

are isolated points and the setting as given above then the inequality

ca ‖u‖A ≥ ‖Q0 u‖A(8.20)

holds for all u ∈ V with ca =
√

1 + (aL + aR)/4|a1,2|
proof. As in the proof of Lemma 8.3.1 it is sufficient to prove the inequality of the

restricted area that is connected to u1, u2. Similary to the proof of Lemma 8.3.1 we

prove that it is

g := c2
a‖u‖2

A − ‖Q0 u‖2
A ≥ 0

for all u ∈ Rn. For u = (u1, . . . , un) it follows

‖u‖2
A = |a1,2|(u1 − u2)

2 +
∑

k∈I1

|a1,k|(u1 − uk)
2 +

∑

k∈I2

|a2,k|(u2 − uk)
2(8.21)

+

(
∑

i,j∈I1∪I2

|ai,j|(ui − uj)
2

)

‖Q0 u‖2
A =

∑

k∈I1

|a1,k|
(

u1 + u2

2
− uk

)2

+
∑

k∈I2

|a2,k|
(

u1 + u2

2
− uk

)2

.(8.22)

+

(
∑

i,j∈I1∪I2

|ai,j|(ui − uj)
2

)
.
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So we consider again the weighted difference by ca of these expressions. As the proposed

constant ca holds ca ≥ 1 we can estimate as follows:

g = c2
a

(
|a1,2|(u1 − u2)

2 +
∑

k∈I1

|a1,k|(u1 − uk)
2 +

∑

k∈I2

|a2,k|(u2 − uk)
2

)

+ (c2
a − 1)

(
∑

i,j∈I1∪I2

|ai,j|(ui − uj)
2

)

−
(
∑

k∈I1

|a1,k|
(

u1 + u2

2
− uk

)2

+
∑

k∈I2

|a2,k|
(

u1 + u2

2
− uk

)2
)

≥ c2
a

(
|a1,2|(u1 − u2)

2 +
∑

k∈I1

|a1,k|(u1 − uk)
2 +

∑

k∈I2

|a2,k|(u2 − uk)
2

)

−
(
∑

k∈I1

|a1,k|
(

u1 + u2

2
− uk

)2

+
∑

k∈I2

|a2,k|
(

u1 + u2

2
− uk

)2
)

=: g0.

Now we minimize the function g0 in the variables uk, k ∈ I1 ∪ I2. We get

dg0

duk
= c2

a2u1|a1,k| − (u1 + u2)|a1,k| − 2uk(c
2
a − 1)|a1,k| for k ∈ I1

and
dg0

duk

= c2
a2u2|a2,k| − (u1 + u2)|a2,k| − 2uk(c

2
a − 1)|a2,k| for k ∈ I2.

And we get as the first order condition for the g0 minimizing values

uk =
c2
au1 − (u1 + u2)/2

c2
a − 1

for k ∈ I1(8.23)

and uk =
c2
au2 − (u1 + u2)/2

c2
a − 1

for k ∈ I2.(8.24)

As in the proof of Lemma 8.3.1 we use the minimizing values for uk, k ∈ I1 ∪ I2 then
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we obtain

g0 ≥ c2
a

[
|a1,2|(u1 − u2)

2 +
∑

k∈I1

|a1,k|
(c2

a − 1)2

(
u1 − u2

2

)2

+
∑

k∈I2

|a2,k|
(c2

a − 1)2

(
u1 − u2

2

)2
]

−
[
∑

k∈I1

|a1,k|
(c2

a − 1)2

(
c2
a

u1 − u2

2

)2

+
∑

k∈I2

|a2,k|
(c2

a − 1)2

(
c2
a

u1 − u2

2

)2
]

=
(1 − c2

a)c
2
a

(c2
a − 1)2

∑

k∈I1∪I2

(|a1,k| + |a2,k|)
(

u1 − u2

2

)2

+
c2
a(c

2
a − 1)2

(c2
a − 1)2

|a1,2|(u1 − u2)
2

=
(1 − c2

a)c
2
a

(c2
a − 1)2

(aL + aR)

(
u1 − u2

2

)2

+
c2
a(c

2
a − 1)2

(c2
a − 1)2

|a1,2|(u1 − u2)
2

As we have (u1 − u2)
2 ≥ 0 and (c2

a − 1) ≥ 0 it is g0 ≥ 0 if and only if it is

0 ≤(c2
a − 1)|a1,2| −

aL + aR

4

As in the proof of Lemma 8.3.1 we obtain

ca ≥
√

1 +
aL + aR

4|a1,2|
as sufficient condition for g ≥ g0 ≥ 0. This shows the proposition.

Remark: 8.3.4. If we take a look at the two conditions (8.23) and (8.24) then we see

that the minimizing situation for the neighbours of u1, u2 does not depend on the number

of neighbours or a structure of the grid. This property implies the same structure for the

constant ca independently of the structure of the grid or the number of neighbours. The

constant only depends on the relation of the link between the points N 1
1 ,N 1

2 compared

with the sum of the links to other points, no matter how the sum aL + aR of links is

partitioned among neighbours.

The Remark 8.3.2 shows for the simple one dimensional problem that the constant ca

can not be estimated in a better way than in Lemma 8.3.1. As the Lemma 8.3.3 is

a generalisation of this, we get the same result for the constant ca defined in Lemma

8.3.3.

This holds based on the property that the constant ca in Lemma 8.3.3 is the same as

in Lemma 8.3.1, if we only have the one dimensional situation. We have seen that the

worst values for the neighbours of the aggregated points do not depend on the dimen-

sion or the structure of the links.
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Now we will estimate the constant ca for the aggregation of two arbitrary interior points.

The generelisation in this step is that there may be indices k ∈ I1 ∩ I2. That means the

sets I1, I2 are now defined as

I1 := {k ∈ {3, . . . , n} : a1,k 6= 0} and I2 := {k ∈ {3, . . . , n} : a2,k 6= 0}.

Moreover, it still holds the definitions of aL, aR as

aL :=
∑

k∈I1

|a1,k| and aR :=
∑

k∈I2

|a2,k|.

We assume a1,2 6= 0 and if a1,k 6= 0 or a2,k 6= 0 for an k ∈ {3, . . . , n} then N 1
k is an

isolated point. Then we define the sets

I∗ := I1 ∩ I2, I∗
1 := I1\I∗ and I∗

2 := I2\I∗.

Lemma: 8.3.5. Let A s.p.d. be a matrix as defined in (8.2). Let N 1
1 ,N 1

2 be two

aggregated interior points with a1,2 6= 0. If we assume the setting given above then the

inequality

ca ‖u‖A ≥ ‖Q0 u‖A

holds for all u ∈ V with ca =
√

1 + (aL + aR)/4|a1,2|

proof. We consider the following expressions:

‖ũ‖2
A = |a1,2|(u1 − u2)

2 +
∑

k∈I∗1

|a1,k|(u1 − uk)
2 +

∑

k∈I∗

|a1,k|(u1 − uk,1)
2(8.25)

+
∑

k∈I∗2

|a2,k|(u2 − uk)
2 +

∑

k∈I∗

|a2,k|(u2 − uk,2)
2

+

(
∑

i,j∈I1∪I2

|ai,j|(ui − uj)
2

)

‖Q̃0 u‖2
A =

∑

k∈I∗1

|a1,k|
(

u1 + u2

2
− uk

)2

+
∑

k∈I∗

|a1,k|
(

u1 + u2

2
− uk,1

)2

(8.26)

+
∑

k∈I∗2

|a2,k|
(

u1 + u2

2
− uk

)2

+
∑

k∈I∗

|a2,k|
(

u1 + u2

2
− uk,2

)2

+

(
∑

i,j∈I1∪I2

|ai,j|(ui − uj)
2

)
.
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Then we obtain in the case of uk,1 = uk,2 for all k ∈ I∗

‖ũ‖2
A = ‖u‖2

A and ‖Q̃0 u‖2
A = ‖Q0 u‖2

A.

From the result of Lemma 8.3.3 and the given constant ca we obtain

sup
eu 6=0

‖Q̃0 u‖2
A

‖ũ‖2
A

≤ ca.

Thus the proposition follows from

sup
u 6=0

‖Q0 u‖2
A

‖u‖2
A

= sup
u 6=0, uk,1=uk,2 ∀k∈I∗

‖Q̃0 u‖2
A

‖ũ‖2
A

≤ sup
u 6=0

‖Q̃0 u‖2
A

‖ũ‖2
A

≤ ca.

The central point of the proof of Lemma 8.3.5 is that the open system we have con-

sidered in Lemma 8.3.3 is more general than the system we consider in Lemma 8.3.5.

Therewith the system in Lemma 8.3.5 is a special case of Lemma 8.3.3. The system we

have considered in this lemma and the structure of the proof are illustrated in Figure

8.4 at page 247. We start from a general system and then we cut it open to get the

situation as considered before in Lemma 8.3.3 Figure 8.3 on page 242. The sets of

indices as used in the proof are

I1 = {(L, 2), (L, 3), (G, 1), (G, 2)} I2 = {(R, 2), (R, 3), (R, 4), (G, 1), (G, 2)}

I∗ = {(G, 1), (G, 2)} I∗
1 = {(L, 2), (L, 3)}

and I∗
2 = {(R, 2), (R, 3), (R, 4)}.

The last generalisation is to consider points that can be coupled to the boundary, too.

We consider s.p.d. matrices A ∈ R
n×n for their elements holding

ai,i > 0, for all i = 1, . . . n, ai,j ≤ 0, for all i 6= j

and
n∑

j=1, j 6=i

|ai,j| ≤ |ai,i| for all i = 1, . . . , n.

If it is

0 < ri = ai,i −
n∑

j=1, j 6=i

|ai,j|

then ri is the couple of the boundary. We still assume that if a1,k 6= 0 or a2,k 6= 0 for

an k ∈ {3, . . . , n} then N 1
k is an isolated point. Hence we get the same structure as in

the estimation above.
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ε4
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δ1
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δ2

δ2

δ3

δ3

δ4

δ4

δ5

δ5

uL,1

uL,2

uL,2

uL,3

uL,3

uL,4
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uR,4

uR,4

uR,5

uG,1

uG,2

Figure 8.4: General system and the system to that it is cut open.
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Lemma: 8.3.6. Let A s.p.d. be a matrix as defined above. Let N 1
1 ,N 1

2 be two aggre-

gated points with a1,2 6= 0. If we assume that all neighbours are isolated points and the

setting is as above then the inequality

ca ‖u‖A ≥ ‖Q0 u‖A

holds for all u ∈ V with ca =
√

1 + a1,1+a2,2−2|a1,2|
4|a1,2|

proof. For the situation based on the above mentioned sets we define

‖ũ‖2
A = |a1,2|(u1 − u2)

2 +
∑

k∈I1

|a1,k|(u1 − uk)
2 +

∑

k∈I2

|a2,k|(u2 − uk)
2(8.27)

+ r1(u1 − x)2 + r2(u2 − x) +

(
∑

i,j∈I1∪I2

|ai,j|(ui − uj)
2

)

‖Q̃0 u‖2
A =

∑

k∈I1

|a1,k|
(

u1 + u2

2
− uk

)2

+
∑

k∈I2

|a2,k|
(

u1 + u2

2
− uk

)2

(8.28)

(r1 + r2)

(
u1 + u2

2
− x

)2

+

(
∑

i,j∈I1∪I2

|ai,j|(ui − uj)
2

)
.

with

ri := ai,i −
n∑

j=1, j 6=i

|ai,j| i = 1, 2.

As we have for x = 0

‖ũ‖A = ‖u‖A and ‖Q̃0 u‖A = ‖Q0 u‖A

it follows

sup
u 6=0

‖Q0u‖A

‖u‖A

= sup
u 6=0, x=0

‖Q̃0u‖A

‖ũ‖A

≤ sup
u 6=0

‖Q̃0u‖A

‖ũ‖A

≤ ca.

The last equation is obtained by the proposition of Lemma 8.3.5 as for an interior point

it is by the symmetry of A

aL = a1,1 − |a1,2| and aR = a2,2 − |a1,2|

and for the points of this lemma we obtain

aL + r1 = a1,1 − |a1,2| and aR + r2 = a2,2 − |a1,2|.
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In the proof of Lemma 8.3.5 we have the system cut open and so induced new points

and therewith degrees of freedom. In the proof of Lemma 8.3.6 we introduce a free

point (and therewith one more degree of freedom) as we drop the condition u = 0 for

points that belong to the boundary.

So we can summarize the results of this section in one central and global theorem. For

this we assume that there is an arbitrary number of grid points that are aggregated in

the coarser grid. We set for each pair N 1
i ,N 1

j of aggregated points

ai,j := ai,i − |ai,j| and ci,j
a :=

√
1 +

ai,j + aj,i

4|ai,j|
.

And for a given restriction operator R we set

Ind = {(i, j) : N 1
i ,N 1

j are aggregated}.
Then Ind is the set of the aggregated points. So we can summarize the results as

follows:

Theorem: 8.3.7. Let A s.p.d. be a matrix as defined in 8.2 and the given grid. We

assume that it is ai,j 6= 0 for all (i, j) ∈ Ind and all the neighbours of aggregated points

are isolated points. Then

ca ‖u‖A ≥ ‖Q0 u‖A

holds for all u ∈ V with ca = max{ci,j
a : (i, j) ∈ Ind}.

proof. Let N 1
i ,N 1

j be two aggregated points. Then the inequality

ca ‖u‖A ≥ ‖Q0 u‖A

holds locally for N 1
i ,N 1

j with ca ≥ ci,j
a . The proof is completed by the fact that N 1

i ,N 1
j

are arbitrary points.

At least we mention that a coupling between two aggregated points is necessary to

obtain a locall estimation for ca. That means the condition ai,j 6= 0 for two aggregated

points is necessary. This is obvious if we set a = 0 in the most simple considered system

of Lemma 8.3.1. Then it follows in the considered small sector

‖u‖2
A = ε(f − u1)

2 + δ(g − u2)
2

‖Q0u‖2
A = ε

(
f − u1 + u2

2

)2

+ δ

(
g − u1 + u2

2

)2
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8 Symmetric Problems

If we set u1 = f = 1 and u2 = g = −1 then for ε, δ > 0 is no estimation for ca

possible. In a two dimensional system that is non irreducible a proof could be obtained

by using a link that is constructed with some points between the two aggregated points.

Nevertheless the condition is in general not necessary therefore the preconditioner is

well posed (non singular). This holds as we have proved the non singularity of the

operator C−1
DT in chapter 3 only by the condition that A, A0 are non singular.

8.4 Technical view on the constant ca. (One

Dimension)

In section 8.3 we have given estimations for the constant ca for a quite general geomet-

rical situation. But therefore we had a strict restriction for the aggregation and for the

neighbours of aggregated points, respectively. Now we will drop this assumption. For

the sake of simplicity, we consider a one dimensional system.
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N 0
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k+1
N 0

1 N 0
2 N 0

k

ε δa1 a2 a3 an−1

Figure 8.5: One dimensional system with an arbitrary situation for neighbours

We assume that the situation is given as in Figure 8.5. That means we have n = 2k with

k ∈ N points N 1
1 , . . . ,N 1

n that are pairwise aggregated to k new points N 0
1 , . . . ,N 0

k .

Moreover, these n points have a left and a right neighbour N 1
0 ,N 1

n+1 or N 0
0 ,N 0

k+1

respectively, that are isolated or belong to the boundary of Ω. Furthermore, the values

of u are given by

u(N 1
0 ) = uL, u(N 1

n+1) = uR and u(N 1
i ) = ui, for i = 1, . . . , n.

Then we obtain

Q0u =

(
uL,

u1 + u2

2
,

u1 + u2

2

u3 + u4

2
, . . . ,

un−1 + un

2
, uR

)
.
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8.4 Technical view on the constant ca. (One Dimension)

Furhermore, for the sector of Ω the stiffness matrix is

A =




ε −ε

−ε ε + a1 −a1

−a1 a1 + a2 −a2

. . .

−an−1 an−1 + δ −δ

−δ δ




with ε, δ, ai > 0. Therewith the expressions of our interest in the sector of Ω follow as

‖u‖2
A = ε(uL − u1)

2 +

n−1∑

i=1

(ui − ui+1)
2ai + δ(uR − un)2

‖Q0u‖2
A = ε

(
uL − u1 + u2

2

)2

+ δ

(
uR − un−1 + un

2

)2

+
k−1∑

i=1

(
u2i−1 + u2i

2
− u2i+1 + u2i+2

2

)2

a2i.

As we have done in the previous section we define a function g := c2
a ‖u‖2

A − ‖Q0u‖2
A.

We have to determine a ca that fulfils g ≥ 0 for all u ∈ V. We begin by minimizing the

function g(uL, u1, . . . , un, uR) with respect to the values uL, uR given on the isolated

points. As already known it follows that the g minimizing values for uL, uR are given

by

uL =
c2
au1 − (u1 + u2)/2

c2
a − 1

and uR =
c2
aun − (un−1 + un)/2

c2
a − 1

.

If we insert these values in g then we obtain

g = − c2
a

(c2
a − 1)

ε

4
(u1 − u2)

2 − c2
a

(c2
a − 1)

δ

4
(un − un−1)

2(8.29)

+ c2
a

n−1∑

i=1

(ui − ui+1)
2ai −

k−1∑

i=1

(
u2i−1 + u2i

2
− u2i+1 + u2i+2

2

)2

a2i.

For an easier notation we transform the variables ui in yi with

yi := (ui − ui+1), for i = 1, . . . , n − 1

yn := un
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(As the values only depends on the differences the setting yn = un is just for complete-

ness. This will be obvious in some steps). Then we obtain

(u2i−1 + u2i − u2i+1 − u2i+2)
2 = ((u2i−1 − u2i+1) + (u2i − u2i+2))

2

= ((y2i−1 + y2i) + (y2i + y2i+1))
2

≤ 4y2
2i−1 + 8y2

2i + 4y2
2i+1.(8.30)

With g as given in (8.29) and the representation and estimation as given in (8.30)

g ≥ − c2
a

(c2
a − 1)

ε

4
y2

1 −
c2
a

(c2
a − 1)

δ

4
y2

n−1 −
(
a2y

2
1 + an−2y

2
n−1

)
+ c2

a

n−1∑

i=1

y2
i ai(8.31)

− 2
k−1∑

i=1

a2iy
2
2i −

k−2∑

i=2

y2
2i−1(a2i + a2i−2)

holds. This inequality must hold for all yi, i = 1, . . . , n − 1. We consider the variables

yi, i = 1, . . . , n − 1 separated:

1. y1 : For y1 we obatin

c2
aa1 ≥

c2
a

(c2
a − 1)

δ

4
+ a2

⇐ c2
a ≥ a1 + a2 + ε/4 +

√
(a1 + a2 + ε/4)2 − 4a1a2

2a1

.

2. yn−1 : Similary to y1 it is sufficient

c2
aan−1 ≥

c2
a

(c2
a − 1)

δ

4
+ an−2

⇐ c2
a ≥ an−1 + an−2 + δ/4 +

√
(an−1 + an−2 + δ/4)2 − 4an−1an−2

2an−1

.

3. yi, 2 ≤ i ≤ n − 2, and i even: Then we obtain

c2
a ai ≥ 2ai ⇐ c2

a ≥ 2.

Hence

c2
a ≥ 2

is sufficient for g ≥ 0 for all yi, 2 ≤ i ≤ n − 2, and i even.
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4. yi, 2 ≤ i ≤ n − 2, and i odd: For these constants we have

c2
a ai ≥ ai−1 + ai+1 ⇐ c2

a ≥ ai−1 + ai+1

ai
.

Hence

c2
a ≥ ai−1 + ai+1

ai

.

is sufficient for g ≥ 0 for all yi, 2 ≤ i ≤ n − 2, and i odd.

Therewith we can summarize the result for this situation in the following theorem:

Theorem: 8.4.1. Let A be the matrix given by the structure of (8.4). We assume

that there are n points N 1
1 , . . . ,N 1

n that are pairwise aggregated in V0 and that the left

and the right neighbours N 1
0 ,N 1

n+1 of this system are isolated points or belong to the

boundary of Ω. The links are given as described above. Then the inequality

‖Q0 u‖A ≤ ca ‖u‖A

holds with

c2
a = max

{
max{(ai−1 + ai+1)/ai : 2 ≤ i ≤ n − 1, i odd}, 2,

a1 + a2 + ε/4 +
√

(a1 + a2 + ε/4)2 − 4a1a2

2a1

,

an−1 + an−2 + δ/4 +
√

(an−1 + an−2 + δ/4)2 − 4an−1an−2

2an−1

}
.

proof. See the calculation above in this section.

So as in the situation in section 8.3 the estimation depends on the ratio of the links

between the points that are aggregated to the links they have with their neighbours.

The easiest way to see this, is the restriction c2
a ≥ ai−1+ai+1

ai
. In this equation ai is the

link between the points N 1
i ,N 1

i+1 and they are aggregated. ai−1, ai+1 are the links to

their neighbours N 1
i−1,N 1

i+2.

At least we should highlight that the estimation given in Theorem 8.4.1 does not depend

on the number k of aggregated pairs.
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8.5 Two grid estimation for C−1
BPX A in the A-norm

We also want to estimate the condition of C−1
BPX A in the norm induced by A. So we

remember the definition of C−1
BPX by

C−1
BPX f = A−1 f + P A−1

0 R f.

By the definition of u∗ and u0 as

u∗ = A−1 f and u0 = P A−1
0 R f

defined in (8.6), (8.8) we can write this for a given f ∈ V as

C−1
BPX f = u∗ + u0.(8.32)

We also remember that it still holds

‖u0‖A ≤ ‖u∗‖A

as proved in Lemma 8.2.3. For further estimations we need an estimation for a(u∗, u0).

This is given in the next lemma.

Lemma: 8.5.1. Let A be a s.p.d. matrix. For u∗, u0 as defined in (8.6), (8.8) then

a(u∗, u0) = ‖u0‖2
A holds.

proof. By using the definitions of u0, u∗ we get

a(u∗, u0) = (A A−1 f, P A−1
0 R f) = (R f, A−1

0 R f) = ‖R f‖A−1
0

and ‖u0‖A = (A P A−1
0 R f, P A−1

0 R f)

= (A−1
0 R A P A−1

0 R f, R f)

= (A−1
0 R f, R f) = ‖R f‖A−1

0
.

This proves the proposition.

This result is sufficient to prove a strong proposition for the condition of C−1
BPX A if we

consider the operator in the norm induced by A.

Theorem: 8.5.2. Let A be a non singular s.p.d. matrix. Then

cBPX‖v‖A ≤ ‖C−1
BPX A v‖A ≤ dBPX‖v‖A

holds for all v ∈ V with

cBPX = 1 and dBPX = 2.
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proof. To prove

cBPX‖v‖A ≤ ‖C−1
BPX A v‖A ≤ dBPX‖v‖A

for all v ∈ V it is equivalent to set v = A−1f and prove

cBPX‖A−1 f‖A ≤ ‖C−1
BPX f‖A ≤ dBPX‖A−1 f‖A

⇔ cBPX‖u∗‖A ≤ ‖u∗ + u0‖A ≤ dBPX‖u∗‖A.

The second equivalence follows from the definition of u∗, u0 and the representation

(8.32). From the result of Lemma 8.5.1 follows

‖u∗‖A ≤
√

‖u∗‖2
A + 3‖u0‖2

A =
√

‖u∗‖2
A + 2a(u0, u∗) + ‖u0‖2

A

=
√
‖u∗ + u0‖2

A = ‖u∗ + u0‖A.

This proves the proposition for cBPX . On the other side, follows the assertion for dBPX

as we obtain from the same arguments

‖u∗ + u0‖A =
√
‖u∗‖2

A + 3‖u0‖2
A ≤

√
4‖u∗‖2

A = 2‖u∗‖A.

So we see by using the ‖ . ‖A norm that we can give for the BPX-preconditioner a strong

estimation for the eigenvalues.

8.6 Multigrid estimation for C−1
BPX A in the A-norm

We will give an estimation for the condition of C−1
BPX A in the multigrid case. So we

consider again the condition concerning the norm induced by A. We remember the

multigrid definition of C−1
BPX by

C−1
BPX f =

J∑

j=0

Pj A−1
j Rj f.

We keep the definition of u∗ as u∗ = A−1 f and define for the same f ∈ Rn the vectors

uj by

uj := Pj A−1
j Rj f for j = 0, . . . , J.(8.33)
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8 Symmetric Problems

Therewith we obtain

C−1
BPX f =

J∑

j=0

uj

and further follows uJ = u∗. For further estimations we need an estimation for a(ui, uj),

for i, j = 0, . . . , J. These are given in the next lemma.

Lemma: 8.6.1. Let A be a s.p.d. matrix. For uj as defined in (8.33) we have

1. a(uj, vj) = a(u∗, vj), ∀j = 0, . . . , J, ∀vj ∈ Vj

2. ‖uj‖A ≤ ‖u∗‖A, for j = 0, . . . , J.

3. a(ui, uj) = a(ui, ui) = ‖ui‖2
A, for i < j.

proof. 1. For an arbitrary j ∈ {0, . . . , J} and an arbitrary vj ∈ Vi we obtain Q̂j vj =

Pj Ŝj Rj vj = vj . So it follows for an arbitrary vj ∈ Vj

a(uj, vj) = a(uj, Pj Ŝj Rj vj) = a(Pj A−1
j Rj f, Pj Ŝj Rj vj)

= (Rj A Pj A−1
j Rj f, Ŝj Rj vj) = (Rj f, Ŝj Rj vj)

= (f, Q̂j vj) = a(u∗, vj).

This shows the first proposition.

2. The second assertion follows the first one and the inequalitiy of Cauchy-Schwarz

‖uj‖2
A = a(uj, uj) = a(u∗, uj) ≤ ‖u∗‖A ‖uj‖

⇒ ‖uj‖A ≤ ‖u∗‖A.

3. The third proposition is obtained by the following two representations:

a(ui, uj) = (A Pi A
−1
i Ri f, Pj A−1

j Rj f) = (A−1
i Ri f, Ri A Pj A−1

j Rj f)

= (A−1
i Ri f, Rj

i Rj A Pj A−1
j Rj f) = (A−1

i Ri f, Rj
i Rj f)

= (A−1
i Ri f, Ri f)

and a(ui, ui) = (A Pi A
−1
i Ri f, Pi A

−1
i Ri f) = (A−1

i Ri f, Ri A Pi A
−1
i Ri f)

= (A−1
i Ri f, Ri f).
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Therewith we can give the central result for the condition concerning the norm induced

by A of the preconditiond system in the multilevel situation.

Theorem: 8.6.2. Let A ∈ Rn×n be s.p.d. Then

cBPX‖v‖A ≤ ‖C−1
BPX A v‖A ≤ dBPX‖v‖A

holds for all v ∈ V with

cBPX = 1 and dBPX = J + 1.

proof. To prove

cBPX‖v‖A ≤ ‖C−1
BPX A v‖A ≤ dBPX‖v‖A

for all v ∈ V it is equivalent to set v = A−1f and prove

cBPX‖A−1 f‖A ≤ ‖C−1
BPX f‖A ≤ dBPX‖A−1 f‖A

⇔ cBPX‖u∗‖A ≤
∥∥∥∥∥

J∑

j=0

uj

∥∥∥∥∥
A

≤ dBPX‖u∗‖A.

From the results of Lemma 8.6.1 follows

‖u∗‖2
A = ‖uJ‖2

A ≤
J∑

j=0

‖uj‖2
A ≤

J∑

j=0

(2j + 1)‖uj‖2
A =

∥∥∥∥∥

J∑

j=0

uj

∥∥∥∥∥

2

A

.

This proves the proposition for cBPX . On the other side, we obtain the proposition for

dBPX based on the same arguments and the estimation

‖ui‖A ≤ ‖u∗‖A for all i = 0, . . . , J. This implies

‖uJ + uJ−1 + · · · + u0‖A ≤
J∑

j=0

‖uj‖A ≤
J∑

j=0

‖u∗‖A = (J + 1)‖u∗‖A.

Therefore, by using the ‖ . ‖A norm we see that we can give for the BPX-preconditioner

a strong estimation for the eigenvalues of C−1
BPX A. In particular the estimations are

independent of the elements of the matrix A. We should highlight that these results

are as strong as the assumption included to use the inverse of A.
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To understand better the structure of the BPX-method that is used in the Theorem

8.6.2 we can show the following calculation:

‖u∗‖A ≤
√
‖u∗‖2

A + 3‖uJ−1‖2
A + 5‖uJ−2‖2

A + · · · + (2J + 1)‖u0‖2
A

=

[
‖uJ‖2

A +
(
‖uJ−1‖2

A + 2a(uJ , uJ−1)
)

+
(
‖uJ−2‖2

A + 2a(uJ , uJ−2) + 2a(uJ−1, uJ−2)
)

+ · · · +
(
‖u0‖2

A + 2a(u0, uJ) + · · ·+ 2a(u0, u1)
)]1/2

=
√

‖uJ + uJ−1 + · · ·+ u0‖2
A = ‖uJ + uJ−1 + · · · + u0‖A.

We can do the same for the other estimation if we use additional

‖ui‖A ≤ ‖u∗‖A. This shows that the estimations of Theorem 8.6.2 are exact if

u∗ = uJ = · · · = u0

holds. This is more or less the problem for the BPX-method.

However to conclude this section we highlight that the result for the condition of

C−1
BPX A in the norm ‖ . ‖A is in general the same as in the optimal situation if we

use the Euclidean norm.
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8.7 Multigrid estimations for C−1
DT A in the A-norm

We will consider the multigrid situation for the estimation of the condition of C−1
DT A

concerning the norm induced by A. In chapter 6 we have already seen that there are

two possible multigrid preconditioners which are generalisations of C−1
DT as defined for

two grids. We will see that both have their own problems. We will present them both

and point out the problems. Then we will show that if we use the aggregation method

and we assume that the condition (2.14) holds the generalisations are equal and the

additional problems we get for the multigrid situation are solved. As the definition

of the constants is simpler in this case we will present the preconditioner we have

introduced in chapter 6 as second version in this chapter first.

8.7.1 Generalisation of C−1
DT . Version 2.

For a given f ∈ R
n we define u∗ ∈ R

n by

A u∗ := f, respectively u∗ := A−1 f.(8.34)

For the same f we define u2,j ∈ Rn by

u2,j := Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1)Rj f, for j = 1, . . . , J(8.35)

and u2,0 := P0 A−1
0 R0 f.(8.36)

As it always holds ŜJ = In and ŜJ−1 = SJ−1 we obtain by these definitions that in the

case of J = 1 this is the operator as used in section 8.2 as two grid operator. So we

write

C−1
DT,2 f =

J∑

j=0

u2,j

=

J∑

j=1

Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1)Rj + P0 A−1
0 R0.

With these definitions we can show some properties of the elements u2,j, j = 0, . . . , J

as done in the two gird situation. Similary to the two grid situation, the elements u2,j

can by interpreted as solutions of A u = f in subspaces.
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Lemma: 8.7.1. Let A ∈ Rn×n be s.p.d. For u2,j, j = 0, . . . , J as defined in (8.35),

(8.36) we have

a(u2,j, vj) = a(u∗, (Q̂j − Q̂j−1) vj) = (f, (Q̂j − Q̂j−1) vj)(8.37)

∀vj ∈ Vj and all ∀ j = 1, . . . , J

and a(u2,0, v0) = a(u∗, v0) = (f, v0), ∀v0 ∈ V0.(8.38)

proof. As it holds Q̂jvj = vj for all vj ∈ Vj it follows from the definitions for an arbitrary

vj ∈ Vj

a(u2,j, vj) = a(u2,j, Pj Ŝj Rj vj)

= (A Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1)Rj f, Pj Ŝj Rj vj)

= (Rj A Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1)Rj f, Ŝj Rj vj)

= ((Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1)Rj f, Ŝj Rj vj)

= (f, Pj(Ij − P j−1
j Ŝj−1 Rj

j−1Ŝ
−1
j )Ŝj Rj vj)

= (f, (Pj Ŝj Rj − Pj−1 Ŝj−1 Rj−1) vj)

= (f, (Q̂j − Q̂j−1) v) = a(u∗, (Q̂j − Q̂j−1) v).

This shows the first assertion. For the second we go through the same steps and we

obtain

a(u2,0, v0) = (A P0 A−1
0 R0 f, P0 Ŝ0 R0 v0)

= (R0 f, Ŝ0 R0 v0)

= (f, Q̂0 v0) = (f, v0) = a(u∗, v0).

Remark: 8.7.2. Unfortunately

a(u2,i, u2,j) = 0 for i 6= j

does not hold in this setting. This can be seen if we consider for i < j the following

calculation:

a(u2,j, u2,i) =
(
A Pj A−1

j (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1)Rj f, Pi A

−1
i (Ii − Ŝ−1

i P j−1
j Ŝj−1 Rj

j−1)Ri f
)

=
(
Ri

j (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1)Rj f, A−1

i (Ii − Ŝ−1
i P j−1

j Ŝj−1 Rj
j−1)Ri f

)
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As it is not necessarily (Ij − Ŝ−1
j P j−1

j Ŝj−1 Rj
j−1)Rj f ∈ W̃j = ker(Rj

j−1). So the inner

product above is in general unequal zero.

For further estimation between u2,0+ · · ·+u2,J and u∗ we define the constants ca,2,j , cG,j

as follows

ca,2,j := sup

{
‖Q̂j−1 vj‖A

‖vj‖A

: vj ∈ Vj\{0}
}

, for j = 1, . . . , J(8.39)

cG,j := sup

{
‖Q̂j v‖A

‖v‖A
: v ∈ V \{0}

}
, for j = 0, . . . , J.(8.40)

By the definiton of ca,2,j it is obvious that these constants hold the inequality

‖Q̂j−1 vj‖A ≤ ca,2,j ‖vj‖A

for all vj ∈ Vj. Moreover, we can represent the expressions as follows:

‖Q̂j−1 vj‖2
A = (A Pj−1 Ŝj−1 Rj−1 vj , Pj−1 Ŝj−1 Rj−1 vj)(8.41)

= (Aj P j−1
j Ŝj−1 Rj−1 vj , P j−1

j Ŝj−1 Rj−1 vj)

‖vj‖2
A = ‖Q̂j vj‖2

A = (A Pj Ŝj Rj vj , Pj Ŝj Rj vj)

= (Aj Ŝj Rj vj , Ŝj Rj vj).

Similary to the constant ca in the two grid situation, the constant ca,2,j depends on

the matrix Aj and the relation of the subspaces P j−1
j Ŝj−1 Rj

j−1(Ṽj), Ṽj to each other.

Based on these constants we get the following estimations:

Lemma: 8.7.3. Let A ∈ Rn×n be s.p.d. For u2,j, j = 0, . . . , J and u∗ we have

‖u2,0‖A ≤ ‖u∗‖A(8.42)

‖u2,j‖A ≤ (ca,2,j + 1)‖u∗‖A, for j = 1, . . . , J.(8.43)

‖u∗‖A ≤
J∑

j=0

cG,j‖u2,j‖A.(8.44)

proof. As it is u2,0 ∈ V0 it follows from Lemma 8.7.1

‖u2,0‖2
A = a(u2,0, u2,0) = a(u∗, u2,0) ≤ ‖u∗‖A ‖u2,0‖A

⇒ ‖u2,0‖A ≤ ‖u∗‖A.
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The second proposition also results from Lemma 8.7.1. As we have u2,j ∈ Vj it follows

with the definition of ca,2,j

‖u2,j‖2
A = a(u2,j, u2,j) = a(u∗, (Q̂j − Q̂j−1)u2,j)

≤ ‖u∗‖A ‖(Q̂j − Q̂j−1)u2,j‖A

≤ ‖u∗‖A(‖Q̂ju2,j‖A + ‖Q̂j−1u2,j‖A)

≤ ‖u∗‖A ‖u2,j‖A(1 + ca,2,j)

⇒ ‖u2,j‖A ≤ (ca,2,j + 1)‖u∗‖A.

This shows the second proposition. For the third we decompose u∗ as

u∗ =

J∑

j=1

(Q̂j − Q̂j−1)u
∗ + Q̂0u

∗.

Then we obtain

(Q̂j − Q̂j−1)v = (Q̂j − Q̂j−1)Q̂j v, ∀v ∈ V

and Q̂j v ∈ Vj

for all v ∈ V. This implies with Lemma 8.7.1

‖u∗‖2
A = a(u∗, u∗) = a

(
u∗,

J∑

j=1

(Q̂j − Q̂j−1)u
∗ + Q̂0u

∗

)

=

J∑

j=1

a(u∗, (Q̂j − Q̂j−1)u
∗) + a(u∗, Q̂0u

∗)

=
J∑

j=1

a(u∗, (Q̂j − Q̂j−1) Q̂j u∗) + a(u∗, Q̂0u
∗)

=

J∑

j=0

a(u2,j, Q̂ju
∗) ≤

J∑

j=0

‖u2,j‖A ‖Q̂j u∗‖A ≤
J∑

j=0

cG,j‖u2,j‖A ‖u∗‖A

⇒ ‖u∗‖A ≤
J∑

j=0

cG,j‖u2,j‖A
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Furthermore we define a constant K2 that holds

J∑

j=0

‖u2,j‖A ≤ K2

∥∥∥∥∥

J∑

j=0

u2,j

∥∥∥∥∥
A

.(8.45)

The problem for further estimations is that until there is no knowlege about the angles

γi,j < 1 that holds

a(u2,i, u2,j) ≤ γi,j ‖u2,i‖A ‖u2,j‖A

we can not give any estimation for K2.

If such an K2 existed, then we could give an estimation for the condition of C−1
DT,2 A

that only depends on the constants ca,2,j , cG,j and K2.

Proposition: 8.7.4. Let A be a s.p.d. matrix and assume that the inequality (8.45)

holds with K2. With ca,2,j , cG,j as defined in (8.39) and (8.40)

cDT,2‖v‖A ≤ ‖C−1
DT,2 A v‖A ≤ dDT,2‖v‖A

holds for all v ∈ V with

cDT,2 =
1

maxj=0,...,J cG,jK2
and dDT,2 = (J + 1) +

J∑

j=1

ca,2,j.

proof. To prove

cDT,2‖v‖A ≤ ‖C−1
DT,2 A v‖A ≤ dDT,2‖v‖A

for all v ∈ V it is equivalent to set v = A−1f and prove

cDT,2‖A−1 f‖A ≤ ‖C−1
DT,2 f‖A ≤ dDT,2‖A−1 f‖A

⇔ cDT,2‖u∗‖A ≤ ‖u2,0 + · · · + u2,J‖A ≤ dDT,2‖u∗‖A.

From the estimations of Lemma 8.7.3 we obtain

‖u2,0 + · · ·+ u2,J‖A ≤ ‖u2,0‖A + · · ·+ ‖u2,J‖A ≤
(

(J + 1) +

J∑

j=1

ca,2,j

)
‖u∗‖A.

This proves the propostion for dDT,2. Again from Lemma 8.7.3 by assuming that there

is a K2 that fulfils the inequality (8.45) it follows

‖u∗‖A ≤
J∑

j=0

cG,j‖u2,j‖A ≤ max
i=0,...,J

cG,i

(
J∑

j=0

‖u2,j‖A

)

≤ max
i=0,...,J

cG,iK2‖u2,0 + · · ·+ u2,J‖A.

This proves the estimation for cDT,2.
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A short discussion on the constants: In section 8.2 we have highlighted that the

constant ca does only depend on the elements of the matrix A and the structure of the

subspace V0. The calculation (8.41) shows that the constants ca,2,j only depend on the

elements of Aj and the structure of P j−1
j Ŝj−1 Rj

j−1(Ṽj), Ṽj in relation to each other.

One of the problems is that in general we do not have

P j−1
j Ŝj−1 Rj

j−1ṽj ∈ P j−1
j (Ṽj−1).

If we use the aggregation method, then the inclusion above only holds if the condition

(2.14) is fulfilled. The constant cG,j depends on the elements of A and the structure of

Vj in relation to V. Hence cG,j is not as easy to handle as ca.

Moreover, the definitions imply immediately

ca,2,J = ca = cG,J−1 and cG,J = 1.(8.46)

Now we can compare the result of Proposition 8.7.4 with the result of Theorem 8.2.4

that holds in the two grid situation:

In Proposition 8.7.4 we obtain from equation (8.46) in the case of J = 1

cDT,2 =
1

ca K2
and dDT,2 = 2 + ca.

And in the two gird situation considered in Theorem 8.2.4 we obtain

cDT =
1

ca

√
2

and dDT = 2 + ca.

From Lemma A.0.5 follows K2 =
√

2 if we add two orthogonal vectors. Thus the

estimations for dDT , dDT,2 and cDT , cDT,2 are the same.

This shows that the results of this section are a generalisation of the results we have in

the two grid situation.

8.7.2 Generalisation of C−1
DT . Version 1.

For f ∈ Rn we take over the definition of u∗ ∈ Rn by

A u∗ := f and u∗ := A−1 f respectively.(8.47)

For the same f ∈ Rn we define u1,j ∈ Rn by

u1,j := Pj A−1
j (Ij − Qj−1)Rj f, for j = 1, . . . , J(8.48)

and u1,0 := P0 A−1
0 R0 f.(8.49)
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Based on these definitions it is obvious that in the case of J = 1 this is also the operator

as used in section 8.2. Furthermore, it is obvious that we obtain u1,0 = u2,0. We write

C−1
DT,1 f =

J∑

j=0

u1,j

=

J∑

j=1

Pj A−1
j (Ij − Qj−1)Rj + P0 A−1

0 R0.

In this case we obtain the following characteristics that are similar to the properties

proved in Lemma 8.7.1 for the situation of C−1
DT,2.

Lemma: 8.7.5. Let A ∈ Rn×n be s.p.d. For u1,j, j = 0, . . . , J as defined in (8.48),

(8.49) we have:

a(u1,j, vj) = a(u∗, Pj(I − Qj−1)Ŝj Rj vj)(8.50)

= (f, Pj(I − Qj−1)Ŝj Rj vj) ∀vj ∈ Vj, j = 1, . . . , J

a(u1,0, v0) = a(u∗, v0) = (f, v0), ∀v0 ∈ V0(8.51)

and a(u1,i, u1,j) = 0, ∀i 6= j.(8.52)

proof. For an arbitrary j ∈ {1, . . . , J} we have Qj−1 = QT
j−1 and also Ij − Qj−1 =

(Ij − Qj−1)
T . Furthermore, for an arbitrary vj ∈ Vj it is Q̂j vj = Pj Ŝj Rj vj = vj . The

first assertion follows from

a(u1,j , vj) = a(u1,j, Q̂j vj)

= (A Pj A−1
j (Ij − Qj−1)Rj f, Pj Ŝj Rj vj)

= (Rj A Pj A−1
j (Ij − Qj−1)Rj f, Ŝj Rj vj)

= ((Ij − Qj−1)Rj f, Ŝj Rj vj)

= (f, Pj (I − Qj−1) Ŝj Rj vj)

= a(u∗, Pj (Ij − Qj−1) Ŝj Rj vj).

The second assertion follows as it holds u1,0 = u2,0 and the is the same as the equation

(8.38) in Lemma 8.7.1. For the third proposition we consider first i, j ≥ 1 with w.l.o.g.
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i < j. Then we obtain

a(u1,i, u1,j) = (Pi A
−1
i (I − Qj−1)Ri f, A Pj A−1

j (I − Qj−1)Rj f)

= (A−1
i (I − Qj−1)Ri f, Rj

i Rj A Pj A−1
j (I − P j−1

j Sj−1 Rj
j−1)Rj f)

= (A−1
i (I − Qj−1)Ri f, Rj

i (I − P j−1
j Sj−1 Rj

j−1)Rj f)

= (A−1
i (I − Qj−1)Ri f, Rj−1

i (Rj
j−1 − Rj

j−1 P j−1
j Sj−1 Rj

j−1)Rj f)

= (A−1
i (I − Qj−1)Ri f, Rj−1

i (Rj
j−1 − Rj

j−1)Rj f) = 0.

If it is i < j and i = 0 then the proposition follows the same way by

a(u1,0, u1,j) = (P0 A−1
0 R0 f, A Pj A−1

j (I − Qj−1)Rj f)

= (A−1
0 R0 f, R0 A Pj A−1

j (I − Qj−1)Rj f)

= (A−1
0 R0 f, Rj

0 (I − Qj−1)Rj f) = 0.

This proves the third proposition.

Remark: 8.7.6. For the equation (8.50) we can also write

a(u1,j, vj) = a(u∗, Pj(Ij − Qj−1)Ŝj Rj vj)

= a(u∗, Q̂j − Pj Qj−1 Ŝj Rj vj), ∀vj ∈ Vj and all j = 1, . . . , J.

This representation clearly shows the problem of the operator. In general we have

Pj Qj−1 Ŝj Rj 6= Q̂j−1. Therewith it is

v 6=
J∑

j=1

Pj(Ij − Qj−1)Ŝj Rj v + P0 Ŝ0 R0 v

and we can not decompose u as done in the two grid case or by using C−1
DT,1.

We define again some constants that are for this generalisation of the two grid case the

generalisation of ca. So we define for j = 1, . . . , J the constants ca,1,j, K1 by

ca,1,j := sup

{‖Qj−1ṽj‖Aj

‖ṽj‖Aj

: ṽj ∈ Ṽj\{0}
}

(8.53)

K1 := sup





a(v, v)

a
(
v,
∑J

j=1 Pj(Ij − Qj−1) Ŝj Rj v + P0 Ŝ0 R0v
) : v ∈ V \{0}



 .(8.54)
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From the definiton of ca,1,j it is again given that these constants hold the inequality

‖Qj−1ṽj‖Aj
≤ ca,1,j ‖ṽj‖Aj

for all ṽj ∈ Ṽj. Furthermore we obtain

‖Pj Qj−1 Ŝj Rj vj‖2
A = (A Pj Qj−1 Ŝj Rj vj, Pj Qj−1 Ŝj Rj vj)

= (Aj Qj−1 Ŝj Rj vj , Qj−1 Ŝj Rj vj)

‖vj‖2
A = ‖Q̂j vj‖2

A = (A Pj Ŝj Rj vj , Pj Ŝj Rj vj)

= (Aj Ŝj Rj vj, Ŝj Rj vj).

As Ŝj Rj : Vj → Ṽj is bijective we obtain for a constant ca,1,j

‖Qj−1ṽj‖Aj
≤ ca,1,j ‖ṽj‖Aj

∀ṽj ∈ Ṽj

⇔ ‖Pj Qj−1 Ŝj Rj vj‖2
A ≤ ca,1,j‖vj‖A ∀vj ∈ Vj.

Furthermore we highlight that for ca,1,j the same situation as for ca in the two grid

situation remains. We will discuss this more in-depth in section 8.7.3.

By these characteristics we can show some estimations for isolated elements u1,j :

Lemma: 8.7.7. Let A be a s.p.d. matrix. For u1,j, j = 0, . . . , J and u∗ we have

‖u1,0‖A ≤ ‖u∗‖A(8.55)

‖u1,j‖A ≤ (1 + ca,1,j)‖u∗‖A(8.56)

‖u∗‖A ≤ K1 max
j=0,...,J

cG,j

√
J + 1‖u1,0 + · · · + u1,J‖A.(8.57)

proof. As the first proposition is proved for u2,0 in Lemma 8.7.3 the first propostion

holds again by u1,0 = u2,0. The second proposition follows by u1,j ∈ Vj and Lemma

8.7.5 with

‖u1,j‖2
A = a(u1,j, u1,j) = a(u∗, Pj(I − P j−1

j Sj−1 Rj
j−1)Ŝj Rj u1,j)

= a(u∗, (Q̂j − Pj−1 Sj−1 Rj
j−1 Ŝj Rj) u1,j)

≤ ‖u∗‖A(‖Q̂ju1,j‖A + ‖Pj−1 Sj−1 Rj
j−1 Ŝj Rj u1,j‖A)

≤ ‖u∗‖A(‖u1,j‖A + ca,1,j‖u1,j‖A)

⇒ ‖u1,j‖A ≤ (1 + ca,1,j)‖u∗‖A.
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For the third proposition we use the definition of K1. The third proposition of this

lemma follows from the calculation

‖u∗‖2
A = a(u∗, u∗)

≤ K1 a

(
u∗,

J∑

j=1

Pj (Ij − Qj−1)Ŝj Rj u∗ + P0 Ŝ0 R0 u∗

)

= K1

∑

j=1

a(u∗, Pj (Ij − Qj−1)Ŝj Rj u∗) + a(u∗, P0 Ŝ0 R0 u∗)

= K1

∑

j=1

a(u∗, Pj (Ij − Qj−1)Ŝj Rj Pj Ŝj︸ ︷︷ ︸
=Ij

Rj u∗) + a(u∗, P0 Ŝ0 R0 u∗)

= K1

∑

j=1

a(u∗, Pj (Ij − Qj−1)Ŝj Rj Pj Ŝj Rj u∗
︸ ︷︷ ︸

∈Vj

) + a(u∗, P0 Ŝ0 R0 u∗)

= K1

J∑

j=0

a(u1,j, Q̂j u∗) ≤ K1

J∑

j=0

‖u1,j‖A ‖Q̂j u∗‖A

≤ K1

J∑

j=0

cG,j‖u1,j‖A ‖u∗‖A

⇒ ‖u∗‖A ≤ K1

J∑

j=0

cG,j ‖u1,j‖A.

From the orthogonality of u1,i, u1,j for i 6= j as shown in Lemma 8.7.5, we obtain with

Lemma A.0.5

K1

J∑

j=0

cG,j ‖u1,j‖A ≤
√

J + 1 K1 max
j=0,...,J

cG,j‖u1,0 + · · ·+ u1,J‖A.

In this setting we can give an estimation for the condition of C−1
DT,1A.

Proposition: 8.7.8. Let A ∈ R
n×n be s.p.d. With ca,1,j , cG,j and K1 as defined in

(8.53),(8.40) and (8.54) then

cDT,1‖v‖A ≤ ‖C−1
DT,1 A v‖A ≤ dDT,1‖v‖A
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holds for all v ∈ V with

cDT,1 =
1√

J + 1 K1 maxj=0,...,J cG,j

and dDT,1 = (J + 1) +

J∑

j=1

ca,1,j .

proof. We prove again that it is

cDT,1‖u∗‖A ≤ ‖u1,0 + · · ·+ u1,J‖A ≤ dDT,1‖u∗‖A.

From the estimations of Lemma 8.7.7 we obtain

‖u1,0 + · · ·+ u1,J‖A ≤ ‖u1,0‖A + · · ·+ ‖u1,J‖A ≤
(

(J + 1) +

J∑

j=1

ca,1,j

)
‖u∗‖A.

This proves the assertion for dDT,1. The proposition for cDT,1 is still proved by the proof

of (8.57) in Lemma 8.7.7.

A short discussion on the constants: As already mentioned, the constant ca of sec-

tion 8.2 only depends on the elements of A and the structure of V0. As shown in section

8.7.1 the constants ca,2,j , cG,j do also depend on the elements of Aj and on a relation

of spaces that is not as easy to handle as the relation of V0 to V. For ca,1,j it is obvious

that this constant depends on the elemets of Aj and the structure of Ṽj, P
j−1
j (Ṽj−1).

Hence we have for ca,1,j the same relation of spaces as for ca.

Furthermore, we also obtain

ca,1,J = ca = cG,J−1 and cG,J = 1.

As the equation QJ−1 = Q̂J−1 holds independently of the number J of levels, it follows

that

K1 = 1

for the two grid situation. Now we can again compare the result of Proposition 8.7.8

with the result of Theorem 8.2.4 that holds in the two grid situation:

For J = 1, we obtain ca,1,1 = ca from the relations above. Thus it follows that

dDT = dDT,1.

For J = 1, the estimation for cDT and cDT,1, is also the same. Therefore, the estima-

tions we gave for C−1
DT A are the same as in the two grid situation.
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Furthermore, the characteristics ŜJ = IJ and QJ−1 = Q̂J−1 imply that both multigrid

versions are the same in the two grid situation. So they are both generalisations of the

same two grid structure.

In addition we should highlight that in general it is not possible to replace the global

constant K1 by constants k1,j that would fulfil

a(v, (Q̂j − Q̂j−1)v) ≤ k1,ja(v, Pj(Ij − Qj−1) Ŝj Rj v).(8.58)

This is impossible as in general we have

ker(Rj−1) 6= ker(Rj
j−1 Ŝj Rj)

⇒ ker(Q̂j−1) 6= ker(Pj Qj−1 Ŝj Rj)

⇒ ker(Q̂j − Q̂j−1) 6= ker(Pj(Ij − Qj−1) Ŝj Rj).

So the existence of a constant K1 is not sufficient for the existence of constants k1,j for

all j = 1, . . . , J that would fulfil the inequalities (8.58).

8.7.3 Technical view of the constants

We will now take a look at the constants that determine the condition of C−1
DT,1 A and

C−1
DT,2 A in the A-norm. As we have considered the constant ca for the two grid case

quite in-depth we can now use this knowlegde. So we with regard to the estimations

for the constants we will refer to the estimations we have done for ca. Again we will

only consider the case in which two points are aggregated to a new one.

The constant ca,1,j : First we remember that the constant ca for the two grid method

in section 8.2 was given by the inequality

(A Q0 v, Q0 v) ≤ c2
a (A v, v), for all v ∈ V.

And so as already mentioned, we obtain for the multigrid setting

(A QJ−1 vJ , QJ−1 vJ) ≤ c2
a,1,J (A vJ , vJ), for all vJ ∈ VJ

with ca,1,J = ca. And by the Theorem 8.3.7 or local Lemma 8.3.6 we can estimate this

for two aggregated points N J
i ,N J

k as follows

ca =

√
1 +

ai,i + ak,k − 2|ai,k|
4|ai,k|

.
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For j = 1, . . . , J the constant ca,1,j follows from the inequality

‖Qj−1 ṽj‖2
Aj

≤ c2
a,1,j ‖ṽj‖2

Aj
for all ṽj ∈ Ṽj

Then we have for each j = 1, . . . , J − 1 the same situation as in the two grid situation

if we use the entries of Aj instead of A. Therewith we can estimate ca,1,j locally for two

points N j
i ,N j

k that are aggregated by

ca,1,j =

√√√√1 +
aj

i,i + aj
k,k − 2|aj

i,k|
4|aj

i,k|
.

Thereby aj
i,k is the element (i, k) of Aj . So the constants ca,1,j are the generalisation of ca.

So we can summarize the results for ca,1,j in a theorem that is the generalisation of the

Theorem 8.3.7. We set for each pair N j
i ,N j

k of aggregated points

ci,k
a,1,j :=

√√√√1 +
aj

i,i + aj
k,k − 2|aj

i,k|
4|aj

i,k|
.

And for a Restriction Rj
j−1 operator we set

Indj =
{

(i, k) : i, k ∈ Ij−1,j
t for an t ∈ {1, . . . , nj−1}

}
.

Then Indj is the set of points that are aggregated from level j to j − 1. Therefore we

obtain the following result:

Theorem: 8.7.9. Let A s.p.d. be a matrix as defined for Theorem 8.3.7. We assume

that the neighbours of aggregated points are isolated points and that it is aj
i,k 6= 0 for all

(i, k) ∈ Indj. Then

‖Qj−1ṽj‖Aj
≤ ca,1,j ‖ṽj‖Aj

holds for all ṽj ∈ Ṽj with ca,1,j = max{ci,k
a,1,j : (i, k) ∈ Indj}.

proof. See the calculation above and the proof of Theorem 8.3.7.

The constant ca,2,j : Also for the constant ca,2,j we refer to the situation and esti-

mation we had for ca and the two grid case. Here we have with Q̂j vj = vj for all
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vj ∈ Vj

‖Q̂j−1 vj‖2
A ≤ c2

a,2,j ‖vj‖2
A, for all vj ∈ Vj

⇔ (A Pj P j−1
j Ŝj−1 Rj−1 vj, Pj P j−1

j Ŝj−1 Rj−1 vj)

≤ c2
a,2,j (A PjŜj Rj vj , PjŜj Rj vj), for all vj ∈ Vj

⇔ (Aj P j−1
j Ŝj−1 Rj−1 vj , P j−1

j Ŝj−1 Rj−1 vj)

≤ c2
a,2,j (Aj Ŝj Rj vj , Ŝj Rj vj), for all vj ∈ Vj

⇔ ‖P j−1
j Ŝj−1 Rj

j−1 ṽj‖2
Aj

≤ c2
a,2,j ‖Ŝj ṽj‖2

Aj
, for all ṽj ∈ Ṽj .

And again the last equivalence foollows as Rj : Vj → Ṽj is bijective.

If we consider at level j the local situation as shown in Figure 8.6 we assume that the

points N j
i and N j

i+1 are aggregated to N j−1
k .

N j
i−1 N j

i N j
i+1 N j

i+2

aj

εj

εj

δj

δj

uL

uL u1 u2

uR

uR

u

N j−1
k−1 N j−1

k N j−1
k+1

Figure 8.6: Coarsing between the j-th and the (j − 1)-th grid

Based on the definition of Ŝj−1 and the result of Lemma 2.4.4 showing that the structure

of Ŝj−1 is

(Ŝj−1)
−1 = diag(|Ij−1,J

1 |, . . . , |Ij−1,J
nj−1

|).
We obtain for ṽj ∈ Ṽj that is locally given by

ṽj = (uL, u1, u2, uR)

P j−1
j Ŝj−1 Rj

j−1 ṽj =

(
uL,

n1u1 + n2u2

n1 + n2
,

n1u1 + n2u2

n1 + n2
, uR

)

with n1 := |Ij,J
i | and n2 := |Ij,J

i+1|.
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And by the definitions of n1, n2 we obtain

(Ŝj−1)k,k = |Ij−1,J
k | = n1 + n2.

With

Aj =




εj −εj 0 0

−εj aj + εj −aj 0

0 −aj aj + δj −δj

0 0 −δj δj




and the shortcut u = n1u1+n2u2

n1+n2
the inequality

0 ≤ c2
a,1,j‖ṽj‖2

A − ‖P j−1
j Ŝj−1 Rj

j−1 ṽj‖2
A

is locally equivalent to

0 ≤ c2
a,2,j

(
εj(uL − u1)

2 + aj(u1 − u2)
2 + δj(u2 − uR)2

)

−
(
εj (u − uL)2 + δj (u − uR)2) =: g.

We differentiate the function g with respect to uL, uR to minimize g concerning these

variables. We get

∂g

∂uL
= c2

a,2,jεj(uL − u1) − 2εj(uL − u)

∂g

∂uR

= c2
a,2,jδj(uR − u2) − 2δj(uR − u).

So g is minimized with respect to uL, uR if we set them

uL =
c2
a,2,ju1 − u

c2
a,2,j − 1

and uR =
c2
a,2,ju2 − u

c2
a,2,j − 1

.(8.59)

If we put these values in the function g based on the same calculation as done in Lemma

8.3.1 it follows

g =
c2
a,2,j(1 − c2

a,2,j)

(c2
a,2,j − 1)2

(
εj

[
n2(u2 − u1)

n2 + n1

]2

+ δj

[
n1(u1 − u2)

n2 + n1

]2
)

+
c2
a,2,j(1 − c2

a,2,j)
2

(c2
a,2,j − 1)2

aj(u1 − u2)
2.
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So g ≥ 0 holds for all u1, u2 ∈ R if it is

(c2
a,2,j − 1)aj ≥

εjn
2
2 + δjn

2
1

(n1 + n2)2
⇔ ca,2,j =

√
1 +

εjn2
2 + δjn2

1

aj(n1 + n2)2
.

We see that in the case of n1 = n2 this is the same situation as for ca and ca,1,j re-

spectively. This will be obvious in the next section as we will see that by assuming

that the condition (2.14) holds both generalisations of the two grid method are the

same and therewith ca,1,j = ca,2,j obviously holds. And the condition n1 = n2 is locally

for the given level the same assumtions as that the condition (2.14) holds. Generally

we can not state wether the estimation for ca,1,j is smaller or bigger as the estimation

for ca,2,j. This happens because this depends on εj , δj. If we assume εj = δj it follows

ca,1,j ≤ ca,2,j and the constants are equal if and only if it is n1 = n2. Furthermore,

ca,2,j ≥ ca,1,j holds if we have εj ≥ δj and n2 ≥ n1 or δj ≥ εj and n1 ≥ n2.

As the minimizing values for uL, uR indicated in (8.59) do not depend on εj, δj we can

go through all the generalisation steps we did for the constant ca.

So we define

ci,k
a,2,j :=

√√√√1 +
(aj

i,i − |aj
i,k|)|Ij,J

k |2 + (aj
k,k − |aj

i,k|)|Ij,J
i |2|

4|aj
i,k|(|Ij,J

k | + |Ij,J
i |)2

.

and we can summarize the results for ca,2,j as follows:

Theorem: 8.7.10. Let A s.p.d. be a matrix as defined in Theorem 8.3.7. We assume

that the neighbours of aggregated points are isolated points and that it is aj
i,k 6= 0 for all

(i, k) ∈ Indj. Then

ca,2,j ‖vj‖A ≥ ‖Q̂j−1 vj‖A

holds for all vj ∈ Vj with

ca,2,j = max{ci,k
a,2,j : (i, k) ∈ Indj}.

proof. See the calculation above.

The constant cG,j : To give an estimation for the constant cG,j we have to determine

an cG,j so that

‖Q̂j v‖2
A ≤ c2

G,j‖v‖2
A,
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holds for all v ∈ V. We therefore need a relation between an element v ∈ VJ and an

element Q̂j v ∈ Vj . This is more difficult to control since the constants ca,i,j we regarded

before. That is why we need quite strong assumptions to show quite a weaker result

as for the constants ca,i,j, i = 1, 2.
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N J
0 N J

1 N J
2 N J

n−1 N J
n N J

n+1

a1 an−1
ε δ

N j
i−1 N j

i+1N j
i

Figure 8.7: Coarsing between the grids J, j

We assume that the situation is given as shown in Figure 8.7. That means the stiffness

matrix is given by a one dimensional problem. We have

|Ij,J
i | = n and |Ij,J

i−1| = |Ij,J
i+1| = 1.

So at j level two points N J
0 ,N J

n+1 are isolated points in all previous steps and there are

n points N J
1 , . . . ,N J

n that are aggregated at j level to the point N j
i . Then for u ∈ V

the values for ‖u‖2
A and ‖Q̂j u‖2

A with u := 1
n

∑n
i=1 ui are given as follows:

‖u‖2
A = ε(uL − u1)

2 +

n−1∑

i=1

ai(ui+1 − ui)
2 + δ(uR − un)2

‖Q̂j u‖2
A = ε(uL − u)2 + δ(uR − u)2.

As done before we set g := c2
G,j‖u‖2

A − ‖Qj u‖2
A and differentiate g with respect to

uL, uR. This implies as minimizing expressions

uL =
c2
G,ju1 − u

c2
G,j − 1

and uR =
c2
G,jun − u

c2
G,j − 1

.

If we insert the minimizing values and go through the same calculation steps as done

for ca, ca,1,j or ca,2,j it follows that g ≥ 0 is implied by

(c2
G,j − 1)

n−1∑

i=1

ai(ui+1 − ui)
2 ≥ ε(u1 − u)2 + δ(un − u)2.(8.60)
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We transform the variables into

y1 := (u2 − u1), y2 := (u3 − u2), . . . , yn−1 := (un − un−1) and yn := u1

then we obtain based on a simple calculation

u − u1 =
1

n

n−1∑

i=1

yi (n − i) and u − un = −1

n

n−1∑

i=1

yi i

Therewith it is (8.60) equivalent to

(c2
G,j − 1)

n−1∑

i=1

aiy
2
i ≥ ε

n2

(
n−1∑

i=1

yi (n − i)

)2

+
δ

n2

(
n−1∑

i=1

yi i

)2

.(8.61)

Then we use on the right side pairwise the inequality of Young. So we obtain

2 (yi i) (yj j) ≤ y2
i j2 + y2

j i2

and 2 (yi (n − i)) (yj (n − j)) ≤ y2
i (n − j)2 + y2

j (n − i)2.

Furthermore, we use the result

n−1∑

i=1

i2 =
n(n − 1)(2n − 1)

6
.

Therewith we get

δ

n2

(
n−1∑

i=1

yii

)2

≤ δ

n2

n−1∑

i=1

(
y2

i

n−1∑

k=1

k2

)
=

δ

n2

n−1∑

i=1

y2
i

n(n − 1)(2n − 1)

6

As we get the same result for ε
n2

(∑n−1
i=1 yi(n − i)

)2
the inequality (8.61) is fulfilled if

(c2
G,j − 1)

n−1∑

i=1

aiy
2
i ≥ (δ + ε)(n − 1)(2n − 1)

6n

n−1∑

i=1

y2
i

holds. This is fulfiled if we have

cG,j ≥
√

1 +
(δ + ε)(n − 1)(2n − 1)

6nai
, ∀i = 1, . . . , n − 1.

Therefore, we can give an estimation for cG,j. However, we have to limit the result as

we assumed |Ij,J
i−1| = |Ij,J

i+1| = 1 and the estimation depends on the number of points

that are aggregated.
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8.7.4 Generalisation of C−1
DT . Common Version.

In this section we will assume that we use the aggregation method to construct the

spaces VJ−1, . . . , V0 and the condition (2.14) holds. We will see that in this case the

two generalisations of C−1
DT we have presented are the same. So we have two different

representations for the same operator. Hence, we can use the good properties of both

and prove a stronger proposition for the constants cDT , dDT as we have done in the

sections 8.7.1 or 8.7.2. More precisely, we will see that based on this assumption we

can drop the constant K1, K2.

Based on Lemma 2.4.9 the condition (2.14) is equivalent to the equation

Ŝj P j−1
j Sj−1 = P j−1

j Ŝj−1.

Therewith we obtain for j = 1, . . . , J

u2,j = Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj f

= Pj A−1
j (Ij − Ŝ−1

j Ŝj P j−1
j Sj−1 Rj

j−1) Rj f

= Pj A−1
j (Ij − P j−1

j Sj−1 Rj
j−1) Rj f

= Pj A−1
j (Ij − Qj−1) Rj f

= u1,j.

Based on the definitions u1,0 = u2,0 the both preconditioners are the same. We set

uj := u1,j, for j = 0, . . . , J. So assuming that the condition (2.14) holds we have two

representations of the same preconditioner

C−1
DT f =

J∑

j=1

Pj A−1
j (Ij − Ŝ−1

j P j−1
j Ŝj−1 Rj

j−1) Rj f + P0 A−1
0 R0, f

=
J∑

j=1

Pj A−1
j (Ij − Qj−1) Rj f + P0 A−1

0 R0, f

=

J∑

j=0

uj.

So far it is obvious that we have two representations of the same operator. Hence we

can always use the more useful representation. In one case, this means we use version
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1 to obtain the orthogonality of ui, uj for i 6= j with respect to the dotproduct a(., .),

while in the other case we use version 2 to obtain a decomposition of f by orthogonal

projections Q̂j .

The result for K1 we will prove as an example (this results from the decomposition

of f). Therefore we remember that in the Lemmata 2.3.8, 2.4.8 we proved that if the

condition (2.14) holds, it follows

Q̂j−1 = Pj Ŝj Qj−1 Rj and Ŝj Qj−1 = Qj−1 Ŝj−1.

Hence we get for the constants K1

K1 = sup





a(v, v)

a
(
v,
∑

j=1 Pj(Ij − Qj−1) Ŝj Rj v + P0 Ŝ0 R0 v
) : v ∈ V \{0}





(8.62)

= sup





a(v, v)

a
(
v,
∑

j=1(Pj Ŝj Rj − Pj Qj−1 Ŝj Rj) v + P0 Ŝ0 R0 v
) : v ∈ V \{0}





= sup





a(v, v)

a
(
v,
∑

j=1(Q̂j − Q̂j−1) v + Q̂0 v
) : v ∈ V \{0}





= sup

{
a(v, v)

a(v, v)
: v ∈ V \{0}

}
= 1.

So we can drop the constant K1. On the other side, we can set
√

J + 1 for the constant

K2 as used for the estimations concerning C−1
DT,2 (this results form the orthogonality of

ui, uj). As already mentioned, in this situation we obtain a result for the condition of

C−1
DT A that combines the good characteristics of both versions. This is what we meant

when we mentioned that we can drop these constants.

Theorem: 8.7.11. Let A ∈ R
n×n be s.p.d. and assume that it holds the condition

(2.14). With ca,1,j , cG,j as defined in (8.53) and (8.40)

cDT‖v‖A ≤ ‖C−1
DT A v‖A ≤ dDT‖v‖A

holds for all v ∈ V with

cDT =
1√

J + 1maxj=0,...,J cG,j

and dDT,2 = (J + 1) +
J∑

j=1

ca,1,j.
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proof. The proof follows from Proposition 8.7.8 and the characteristic that K1 = 1

holds in the assumed situation as shown in (8.62).
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9 Numerical results

In this chapter we will first sum up properties of matrices which are useful for iterative

methods. Then we will consider for j = 0, . . . , J the matrices Aj, Aj,X of our model

problems with respect to these characteristics. To conclude the chapter we will present

some numerical results for the model problems, highlighting that the numerical results

for the modification which is presented in section 5.1.3 and motivated as the exact

modification in section 5.1.1 are correct. For other modifications we have to take a

closer look at the individual situations.

9.1 Characteristics of matrices

In chapter 3 we have used the operators A−1, A−1
0 to define the preconditioners

C−1
BPX , C−1

DT , C−1
2P and the associated modified options. We have mentioned that we

do not want to use the exact inverse. In the multigrid situation we have defined the

same preconditioners with non singular matrices B(j) for j = 0, . . . , J and we have

recognized B(j) = Aj only as an example. For the numerical experiments we will carry

out in the next section we set for (Bj)−1 some iterations of an iterative method. In

paricular we will use the Jacobi method and the SSOR method.

9.1.1 Basics for iterative methods

In this section we want to introduce some splitting methods. Afterwards we will sum

up some results for these methods presented in [GrR94], [Hac85]. As usual we define

for a matrix A the spectrum σ(A) and the spectral radius ρ(A) as follows

σ(A) := {λ ∈ C : det(A − λI) = 0}

ρ(A) := max{|λ| : λ ∈ σ(A)}.
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A linear iteration method to solve Ax = b can be presented as

xk+1 := Mxk + Nb x0 ∈ R
n

with M, N ∈ R
n×n.

The matrix M is said to be the iteration matrix. Moreover we define for a A ∈ Rn×n

A = D − L − R, with D = diag(a1,1, . . . , an,n)

−L =




0 0

a2,1
. . .

...
. . .

. . .

an,1 · · · an,n−1 0




and − U =




0 a1,2 · · · a1,n

. . .
. . .

...
. . . an−1,n

0 0




Then the Jacobi method is defined as follows

xk+1 := D−1(L + U) xk + D−1 b

= (I − D−1 A) xk + D−1 b.

The Gauss-Seidel method is defined as follows

xk+1 := (D − L)−1 R xk + (D − L)−1 b.

Hence we have the iteration matrices

MJ := (I − D−1 A) and MGS := (D − L)−1 R

The main aspect of these methods is given by the following result:

Proposition: 9.1.1. A linear iteration method, with the iteration matrix M converges

if and only if it is ρ(M) < 1.

proof. Cf. [GrR94] Lemma 5.2 or [Hac85] Proposition 3.2.7.

Furthermore we define the residual error ek as follows

ek := b − A xk.

For a linar iteration method we obtain for an arbitrary matrix norm ‖.‖ that the

sequence of xk converges if we have ‖M‖ < 1. Additionally we obtain in this case

‖ek‖ ≤ ‖M‖k ‖e0‖.
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9.1.2 Basics for matrices

In this section we will define some basic characteristics for matrices. Afterwards we

will consider the relation to the property ρ(MJ ), ρ(MGS) < 1. For the characterisation

of matrices we follow the definition given in [Hac85]. Hence we define for A ∈ Rn×n

A ≥ 0 (A > 0) if it is ai,j ≥ 0 (ai,j > 0) ∀i, j.

Based on this notation we define the following matrices:

Definition: 9.1.2. A matrix A ∈ Rn×n is said to be

1. a L0-matrix, if it is ai,j ≤ 0 for i 6= j.

2. a L-matrix, if it is ai,j ≤ 0 for i 6= j and ai,i > 0

3. a M-matrix, if A is a non singular L-matrix and it is A−1 ≥ 0.

Furthermore we define the graph G(A) of a matrix A ∈ Rn×n as

G(A) := {(i, j) : ai,j 6= 0}.

The elements (i, j) ∈ G(A) are also called edges, and the rows (or columns) of the

matrix are also called verteces in this case. Then we say that i is adjacent to j if it it

(i, j) ∈ G(A). We say that i, j are connected, if there are k0, k1, . . . , kt with

i = k0, k1, . . . , kt−1, kt = j with (ks−1, ks) ∈ G(A) for all s = 1, . . . , t.

Otherwise we say that i, j are disconnected. Furthermore we say that G(A) is connected

if all (i, j) ∈ {1, . . . , n} × {1, . . . , n} are connected. Otherwise we say that G(A) is

disconnected.

Definition: 9.1.3. A matrix A ∈ Rn×n is said to be

1. weakly (strictly) diagonally dominant, if it is

|ai,i| ≥
n∑

j=1, j 6=i

|ai,j|
(
|ai,i| >

n∑

j=1, j 6=i

|ai,j|
)

for all i = 1, . . . , n.

2. irreducible if G(A) is connected. Otherwise A is said to be reducible.
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3. irreducible diagonal dominant, if A is irreducible, weakly diagonally dominant

and there is one i0 ∈ {1, . . . , n} with

|ai0,i0| >

n∑

j=1, j 6=i0

|ai0,j|.

Remark: 9.1.4. A matrix A ∈ Rn×n is reducible, if and only if there is a permutation

matrix Π that holds

Π A ΠT =

(
A(1,1) A(1,2)

0 A(2,2)

)

with A(1,1) ∈ Rk,k, A(2,2) ∈ R(n−k)×(n−k) and A(1,2) ∈ Rk×(n−k) for a k ∈ 1, . . . , n − 1.

Basesd on these definitions we obtain the following results:

Proposition: 9.1.5. Let A ∈ Rn×n be a strict diagonal dominant or irreducible diag-

onal dominant, then we have

ρ(MJ ) = ρ(I − D−1
A A) < 1.

proof. Cf. [Hac85] Proposition 6.4.10.

Based on a similar condition we obtain that A is a M-matrix if we additionally use the

condition of the algebraic signs of the elements of A :

Proposition: 9.1.6. Let A ∈ Rn×n be a L-matrix. If A is strict diagonal dominant

or irreducible diagonal dominant then A is a M-matrix.

proof. S. [GrR94] Proposition 1.6 or [Ost].

If A ∈ Rn×n is s.p.d. we can give a simple sufficient condition to ensure that A is an

M-matrix. It holds:

Proposition: 9.1.7. Let A ∈ Rn×n be s.p.d. If it is ai,j ≤ 0 for all i 6= j then A is an

M-matrix.

proof. Cf. [Hac85] Proposition 6.4.18.

The relation between the Propositions 9.1.5, 9.1.6 are obvious based on the following

result:

Proposition: 9.1.8. Let A ∈ Rn×n be a L0-matrix.
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a) The following two assertions are equivalent:

1) A is non singular and it is A−1 ≥ 0

2) It is ai,i > 0 for i = 1, . . . , n, MJ ≥ 0 and ρ(MJ) < 1.

b) Additionally it follows that if the condition in a) is fulfilled then A is an M-matrix.

Vice versa it holds MJ ≥ 0 and ρ(MJ ) < 1 if A is an M-matrix.

proof. Cf. [Hac85] Proposition 6.4.4.

As mentioned before the definition follows the definition given in [Hac85]. The propo-

sition 9.1.8 proves that we can drop the condition ai,i > 0 in the definition of the

M-matrix. This is the principle we followed in [GrR94]. It is less well-known that we

can also drop the assumption A−1 ≥ 0 if we assume, instead of this that A is weak

diagonal dominant.

Proposition: 9.1.9. Let A ∈ Rn×n be a non singular, irreducible diagonal dominant

L-matrix. Then it follows A−1 ≥ 0.

proof. It is obvious that A−1 ≥ 0 is equivalent to

Ax = b with b ≥ 0 ⇒ x ≥ 0.

Hence we assume that it is Ax = b with b ≥ 0 and xi0 < 0. W.l.o.g. we assume xi0 ≤ xj

for all j = 1, . . . , n. Then we obtain

0 ≤ bi0 =
n∑

j=1

ai0,jxj ⇔ xi0 ≥
n∑

j=1,j 6=i0

ai0,j

ai0,i0

xj .

Based on xi0 ≤ xj it follows ai0,j 6= 0 ⇒ xj = xi0 for all j = 1, . . . , n. Hence we obtain

that there are m ≥ 2 elementes xj ∈ x with xj = xi0 . With a permutation matrix Π

we obtain

A∗ = Π A ΠT =

(
A(1,1) 0

A(2,1) A(2,2)

)

with A(1,1) ∈ Rm×m. As A is non singular this also holds for A∗ and A(1,1). We obtain

by operations with the rows of A∗ a non singular matrix

A∗∗ =

(
A(1,1) 0

0 Ã(2,2)

)

But for v = e1+· · ·+em we obtain A∗∗ v = 0. This is in contradiction to the assumption.
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Finally we will present a relation between MJ and MGS.

Proposition: 9.1.10. Let A ∈ Rn×n be an M-matrix. Then it follows

ρ(MGS) ≤ ρ(MJ) < 1.

proof. Cf. [Hac85] Proposition 6.6.3.

Hence we can summarize the result for the matrices with a look at the splitting methods:

If the matrices we use are M-matrices or irreducible (strict) diagonal dominants then

the splitting methods converge.

9.1.3 Results for Aj, Aj,X

Based on the definition of our model problems in chapter 2, we obtain that A is a

weak diagonal dominant L-matrix for these problems. The symmetric problem implies

always an irreducible matrix A. For the convection system this is the case if there is a

diffusion, too (ε 6= 0). Hence it is obvious that if we assume that the stiffness matrix

is based on the discretisation of one of the partial differential equations presented in

chapter 2, then the irreducibility depends on the diffusion. Based on proposition 9.1.6

we obtain that A is an M-matrix in this case. Now we discuss if the coarser matrices

Aj , Aj,X are M-matrices, too. Again, we only consider the situation of two grids and

drop the indices for P, R. It is obvious that this contains all the information as the

coarser operators are defined iteratively. Hence we can use all the arguments iteratively.

We remember that if we use the operators P, R given by the aggregation method then

Rk,. = (e1
j )

T implies (R A)k,. = Aj,.

and Rk,. = (e1
i + e1

j )
T implies (R A)k,. = Aj,. + Ai,..

Furthermore we obtain that

P.,k = e1
j implies (A P ).,k = A.,j

and P.,k = e1
i + e1

j implies (A P ).,k = A,j + A.,i.

Based on these characteristics we obtain the following result:

Proposition: 9.1.11. Let A ∈ Rn×n be an irreducible diagonal dominant L-matrix. If

we assume that P, R are based on the aggregation method then A0 is also a irreducible

diagonal dominant L-matrix.
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proof. It is sufficient to consider the situation we obtain if we aggregate two points.

W.l.o.g. we assume that we aggregate the points N 1
n ,N 1

n−1 to N 0
n−1. Then it follows

R =

(
In−2 0 0

0 1 1

)
.

We consider two different kinds of rows of A0.

For k < n − 1 the rows of A0 are follows as

(A0)k,. = (ak,1, . . . , ak,n−2, ak,n−1 + ak,n).

Hence it holds for these rows

a0
k,j =





ak,j ≤ 0, for j 6= k, n

ak,n−1 + ak,n ≤ 0, for j = n − 1

ak,k > 0 for j = k.

Furthermore we obtain

a0
k,k = ak,k ≥

n∑

j=1, j 6=k

|ak,j| =

n−1∑

j=1, j 6=k

|a0
k,j|.

Now we consider the (n − 1)-th row of A0. We obtain

(A0)n−1,. = (an−1,1 + an,1, . . . , an−1,n−2 + an,n−2, an−1,n−1 + an−1,n + an,n−1 + an,n).

Based on the characteristics for an−1,j, an,j for j = 1, . . . , n we obtain

a0
n−1,k = an−1,k + an,k ≤ 0 for k 6= n − 1

a0
n−1,n−1 = an−1,n−1 + an−1,n︸ ︷︷ ︸

≥0

+ an,n−1 + an,n︸ ︷︷ ︸
≥0

≥ 0.

The last inequality above is follows from the weak diagonal dominance of A. To prove

that A0 is an L-matrix we have to prove a0
n−1,n−1 > 0. Assume that we have a0

n−1,n−1 =

0. From the weak diagonal dominance of A it follows in this case

an,n = −an,n−1, an−1,n−1 = −an−1,n

and an−1,k = an,k = 0 for k < n − 1.
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This implies

A =

(
A(1,1) A(1,2)

0 A(2,2)

)

with A(1,1) ∈ R(n−2)×(n−2) and A(2,2) ∈ R2×2. This is in contradiction to the irreducibility

of A. Hence we have a0
n−1,n−1 > 0.

Concerning the weak diagonal dominance of A0 we obtain

a0
n−1,n−1 = an−1,n−1 + an−1,n + an,n−1 + an,n

≥
n∑

j=1, j 6=n−1,n

(|an−1,j| + |an,j|)

⇔ an−1,n−1 + an,n ≥
n∑

j=1, j 6=n

|an,j| +
n∑

j=1, j 6=n−1

|an−1,j|)

⇐ an−1,n−1 ≥
n∑

j=1, j 6=n−1

|an−1,j| and an,n ≥
n∑

j=1, j 6=n

|an,j|.

In the calculations above we have proved that A0 is a weak diagonal dominant. So far

we have proved that and A0 is a weak diagonal dominant L-matrix.

The irreducibility of A0 follows as it is

|a0
i,j| ≥ |ai,j| for (i, j) 6= (n − 1, n − 1).

Based on the assumption that A is irreducible diagonal dominant, there is a k ∈
{1, . . . , n} with

n∑

i=1, i6=k

|ak,i| < ak,k.

Based on this property the calculations above prove that for k ≤ n − 2 it follows that

n−1∑

i=1, i6=k

|a0
k,i| < a0

k,k

and for k = n − 1 or k = n it follows that

n−2∑

i=1

|a0
n−1,i| < a0

n−1,n−1.

Hence A0 is also irreducible diagonal dominant.
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Based on the Proposition above for the aggregation method much of the structure of

the matrix A is maintained if we consider the coarser operator A0. In section 5.1.1 we

have seen that also for the simple one dimensional convection this is not true for A0,X

if we use the modification based on the inverse of blocks. In particular we have seen

that the matrix A0,X can be singular in this case.

In section 5.1.1 we have also seen that if we use the exact modification for the one di-

mensional convection (without diffusion, i.e. ε = 0) then A0,X has the same structure as

A0 and A, respectively. In particular they are all weak diagonal dominant L-matrices.

We have to highlight that for this example neither A nor A0, (A0,X) are irreducible.

We will take a closer look at the matrices A0,X we obtain from the modifications pre-

sented in Lemma 5.1.10 or more generally in proposition 5.1.11. We remember that

these are the generalisations of the exact modification presented in section 5.1.1.

We consider the convection diffusion system composed of four grid points. We remem-

ber that the matrices A, R are defined as

A =




b1 + ε0 + ε1 −ε1 0 0

−b2 − ε1 b2 + ε1 + ε2 −ε2 0

0 −b3 − ε2 b3 + ε2 + ε3 −ε3

0 0 −b4 − ε3 b4 + ε3 + ε4




R =




1 0 0 0

0 1 1 0

0 0 0 1




(9.1)

(cf. (5.21)). As a generalisation of X defined in (5.22) we set

X =




1 0 0 0

p 1 −q 0

0 0 1 0

0 0 0 1


 with p, q ∈ R+.(9.2)

Then we obtain the following proposition for the modified operator A0,X :

Lemma: 9.1.12. Assume that A, R are as defined in (9.1) and it is εi = ε for i =

0, . . . , 4. If X is defined in (9.2) then we have

1. (A0,X)2,2 > 0 if it is q ≤ 1 or b3 ≥ b2 + ε.

2. (A0,X)2,j ≤ 0 for j = 1, 3 if it is p ≤ 1 or b3 ≥ b2 + ε.
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3. that A0,X is a L-matrix if it is p, q ≤ 1.

4. (a0,X)2,2 ≥ |(a0,X)2,1+(a0,X)2,3| if we have p = q ≤ 1 or 1 ≥ q > p and b3 ≥ b2+ε.

5. A0,X is a weak diagonal dominant if we have q = p ≤ 1.

proof. Based on the definitions for A, R, X we obtain

A0,X =




b1 + ε(1 − p) −ε(1 − q) 0

−b2 − ε + (b2 − b3 + ε)p b2 + 2ε − (b2 − b3 + ε)q −ε

0 −b4 − ε b4 + 2ε


 .

1. The first assertion follows from

(A0,X)2,2 = b2 + 2ε − (b2 + ε − b3)q = b2(1 − q) + b3 + ε(2 − q).

2. Similar to the first one, the second assertion follows from

(A0,X)2,1 = −b2 − ε + (b2 − b3 + ε)p = −b2(1 − p) − b3p − ε(1 − p)

(A0,X)2,3 = −ε

3. If we consider the first row of A0,X then we obtain (A0,X)1,1 > 0 for p ≤ 1 and

(A0,X)1,3 ≤ 0 for q ≤ 1. Together with the two results above this implies that

A0,X is an L-matrix in this case.

4. Based on the second row of A0,X we obtain

(A0,X)2,2 ≥ |(A0,X)2,1| + |(A0,X)2,3|

⇔ b2 + 2ε − (b2 − b3 + ε)q ≥ b2 + ε − (b2 − b3 + ε)p + ε

⇔ (p − q)(b2 + ε − b3) ≥ 0.

5. For p = q ≤ 1 the first row of A0,X holds (A0,X)1,1 ≥ |(A0,X)1,2| + |(A0,X)1,3|.
Hence the last assertion follows from previous assertion.

We can sum up the technical results before in a simple proposition that follows imme-

diately:
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Corollary: 9.1.13. Assume that A, R are as defined in (9.1) and it is εi = ε for

i = 0, . . . , 4. If X is defined in (9.2) with p = q ≤ 1 then A0,X is a weak diagonal

dominant L-matrix. If we have p = q < 1 then A0,X is irreducible diagonal dominant.

proof. The first assertion follows immediately from Lemma 9.1.12. If we have addi-

tionally p, q < 1 then we obatin (A0,X)1,2 < 0. Hence A0,X is irreducible in this case.

Furthermore, for the first row of A0,X we have

a0,X
1,1 > |a0,X

1,2 | + |a0,X
1,3 |.

Thus A0,X is irreducible diagonal dominant.

Proposition: 9.1.14. Assume that A, R are as defined in (9.1) and it is εi = ε for

i = 0, . . . , 4. If X is defined in (9.2) with p, q as defined in (5.22) then A0,X is an

irreducible diagonal dominant L-matrix.

proof. Based on the Corollary 9.1.13 it is sufficient to prove p = q < 1. For the defined

values we have

p =
|a2,1|

a2,2 + |a3,2|
=

b2 + ε

b2 + b3 + 3ε
< 1

q = −a3,3 − a2,2 + a3,2

a2,2 + |a3,2|
= −b3 + 2ε − b2 − 2ε − b3 − ε

b2 + b3 + 3ε

=
b2 + ε

b2 + b3 + 3ε
= p.

Thus the presented exact modification has for the coarser operators characteristics

which are useful from a numerical point of view. But as the invariance does not hold

for more complex systems this is also true for these characteristics.

If we drop the condition of εi = ε for i = 0, . . . , 4 and consider the matrix X as

presented in (5.22) then it follows

p =
|a2,1|

a2,2 + |a3,2|
=

b2 + ε1

b2 + ε1 + 2ε2 + b3

and q = −a3,3 − a2,2 + a3,2

a2,2 + |a3,2|
= −b3 + ε2 + ε3 − b2 − ε1 − ε2 − b3 − ε2

b2 + ε1 + 2ε2 + b3

=
b2 + ε1 + (ε2 − ε3)

b2 + ε1 + 2ε2 + b3
.
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Hence it follows obviously p 6= q for ε2 6= ε3. But if we assume that it is bi >> εj then

it is p ≈ q. A similar problem we obtain in the case of a two dimensional convection

system also without any kind of diffusion. If the stencil in N 1
i is given as




0 0 0

−bi,x bi,x + bi,y 0

0 −bi,y 0


 with bi,x, bi,y ∈ R+

and we assume that the points N 1
i ,N 1

i+1 fulfill ai,i+1 = 0, ai+1,i = bi+1,x. That means

that there is a flow from N 1
i to N 1

i+1 in the x-direction. Furthermore we assume that

N 1
i ,N 1

i+1 are aggregated and we follow the modification as presented in section 5.1.2.

Then the entries of the modification matrix are

p =
bi,x

bi,x + bi,y + bi+1,x

q = −bi+1,x + bi+1,y − bi,x − bi,y − bi+1,x

bi,x + bi,y + bi+1,x

=
bi,x + (bi,y − bi+1,y)

bi,x + bi,y + bi+1,x

.

Hence in this situation the convection in the y-direction has an influence that terminates

the structure. As long as we have bi,y ≈ bi+1,y or more precise

bi,y − bi+1,y

bi,x + bi,y + bi+1,x

≪ bi,x

bi,x + bi,y + bi+1,x

we are still close to p = q.

The characteristics as mentioned above motivate two ideas:

1. If we consider the results of Lemma 9.1.12, then b3 ≥ b2 seems a feasible heuristic.

Additionally this implies the same rule for the aggregation as the results of section

8.3.

2. Another numerical idea is to determine only p ∈ [0, 1] and to set q = p. It is

obvious that if the modification must hold p 6= q to fulfill the invariance, we lose

this characteristic.

We want to look briefly at the structure of the matrices we get from the second idea

mentioned above. W.l.o.g. we consider only the situation that two points are aggre-

gated to a new one. More general results are obtained by the iterative use of the

arguments.
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We consider a matrix A ∈ Rn×n that is an irreducible diagonal dominant L-matrix.

Based on proposition 9.1.6 A is an M-matrix. We will show that if certain conditions

are fulfilled then the assumed characteristics of the matrix are also true for A0,X and

hence A0,X is an M-matrix based on the same proposition. It is A0 ∈ R(n−1)×(n−1) and

w.l.o.g. we assume that N 1
n−1,N 1

n are aggregated to N 0
n−1. Moreover, we assume that

N 1
n−2 is used to modify the prolongation. The structure of R, PX follows as

R =

(
In−2

1 1

)
, X =




In−3

1

p 1 −p

1


 and PX =




In−3

1

p 1 − p

1


 .

(9.3)

To prove that A0,X has the same structure as A we consider three types of rows:

j ≤ n − 3 : For j ≤ n − 3 the row j-th row of A0,X is

(A0,X)j,. =
(
a0,X

j,1 , . . . , a0,X
j,n−3, a

0,X
j,n−2, a

0,X
j,n−1

)

=
(
aj,1, . . . , aj,n−3, p aj,n−1 + aj,n−2, (1 − p)aj,n−1 + aj,n

)

It follows for p ∈ [0, 1]

a0,X
j,j = aj,j > 0, a0,X

j,k ≤ 0 for k 6= j

and
n−1∑

i=1,i6=j

|a0,X
j,i | =

(
n−3∑

i=1,i6=j

|aj,i|
)

+ |p aj,n−1 + aj,n−2| + |(1 − p)aj,n−1 + aj,n|

=

(
n−3∑

i=1,i6=j

|aj,i|
)

+ |p aj,n−1| + |aj,n−2| + (1 − p)|aj,n−1| + |aj,n|

=
n∑

i=1,i6=j

|aj,i| ≤ aj,j = a0,X
j,j .

j = n − 2 : The (n − 2)-th row of A0,X is

(A0,X)n−2,. =
(
an−2,1, . . . , an−2,n−3, p an−2,n−1 + an−2,n−2, (1 − p)an−2,n−1 + an−2,n

)

It follows obviously a0,X
n−2,j ≤ 0 for j 6= n − 2 and p ∈ [0, 1]. Moreover we obtain from

the weak diagonal dominance of A the inequality

p |an−2,n−1| ≤ an−2,n−2
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for p ∈ [0, 1]. This implies a0,X
n−2,n−2 > 0 for p ∈ [0, 1). Furthermore we obtain from the

weak diagonal dominance of A for p ∈ [0, 1]

n−1∑

i=1,i6=n−2

|a0,X
n−2,i| =

(
n−3∑

i=1

|an−2,i|
)

+ |(1 − p)an−2,n−1 + an−2,n|

=

n∑

i=1,i6=n−1

|an−2,i| − p|an−2,n−1|

≤ an−2,n−2 − p |an−2,n−1| = a0,X
n−2,n−2.

Hence the (n−2)-th row of A0,X holds the condition for the weak diagonal dominance.

j = n − 1 : The (n − 1)-th row of A0,X is

(A0,X)n−1,. =
(
an−1,1 + an,1, . . . , an−1,n−3 + an,n−3,

an−1,n−2 + an,n−2 + p (an−1,n−1 + an,n−1),

an−1,n + an,n + (1 − p)(an−1,n−1 + an,n−1)
)
.

The inequality

a0,X
n−1,j ≤ 0 for j ≤ n − 3

follows immediately from the representation above.

Furthermore we obtain

a0,X
n−1,n−2 ≤ 0 ⇔ an−1,n−2 + an,n−2 + p(an−1,n−1 + an,n−1) ≤ 0.(9.4)

As we have assumed that N 1
n−2 is used to modify the prolongation it follows an−1,n−2 <

0. Therewith the inequality (9.4) holds if p is small enough. As an example we consider

p =
|an−1,n−2|

an−1,n−1+|an,n−1| as done for the invariance in chapter 5 then it follows

0 ≥ an−1,n−2 + an,n−2 + p(an−1,n−1 + an,n−1)

⇔ |an−1,n−2| + |an,n−2| ≥ p(an−1,n−1 + an,n−1)

⇔ (|an−1,n−2| + |an,n−2|)(an−1,n−1 + |an,n−1|) ≥ |an−1,n−2|(an−1,n−1 − |an,n−1|)

⇐ |an,n−2|(an−1,n−1 + |an,n−1|) ≥ 0

and |an−1,n−2|(an−1,n−1 + |an,n−1|) ≥ |an−1,n−2|(an−1,n−1 − |an,n−1|).

294



9.1 Characteristics of matrices

Hence we have a0,X
n−1,n−2 ≤ 0 in this case.

For the diagonal element a0,X
n−1,n−1 of A0,X we obtain

0 < a0,X
n−1,n−1

⇔ 0 < an−1,n + an,n + (1 − p)(an−1,n−1 + an,n−1).

This inequality is fulfilled by several assumptions, too. If it is A = AT then we obtain

an,n ≥ |an,n−1| = |an−1,n| and an−1,n−1 ≥ |an−1,n| = |an,n−1|.

And for n ≥ 3 it follows from the irreducibility of A

an,n > |an,n−1| or an−1,n−1 > |an−1,n|.

Hence the inequality 0 < a0,X
n−1,n−1 is true for p ∈ [0, 1].

For a matrix A which is not necessarily symmetric we consider the situation again for

p =
|an−1,n−2|

an−1,n−1+|an,n−1| . We obtain

(an−1,n−1 + |an,n−1|)a0,X
n−1,n−1

=(an−1,n−1 + |an,n−1|)(an−1,n−1 − |an,n−1|)

− (an−1,n−1 + |an,n−1|)
|an−1,n−2|

an−1,n−1 + |an,n−1|
(an−1,n−1 − an,n−1)

+ (an−1,n−1 + |an,n−1|)(an−1,n−1 − an,n−1)

=(an−1,n−1 + |an,n−1| − |an−1,n−2|)(an−1,n−1 − |an,n−1|)

+ (an,n − |an−1,n|)(an−1,n−1 + |an,n−1|)

=an−1,n−1

(
an−1,n−1 − |an−1,n−2| − |an−1,n|

)
+ |an,n−1|

(
an,n − |an,n−1|

)

+
(
an,nan−1,n−1 − |an−1,n||an,n−1|

)
.

Based on the weak diagonal dominance the first and second bracket are non negative.

For the third bracket we obtain

an,nan−1,n−1 − |an−1,n||an,n−1| > 0

because

an,n = |an,n−1| and an−1,n−1 = |an−1,n|
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contradicts again the irreducibility of A.

For the condition concerning the weak diagonal dominance of A0,X we only consider

the assumption p =
|an−1,n−2|

an−1,n−1+|an,n−1| . In this case we have a0,X
n−1,k ≤ 0 for k ≤ n−2. Thus

we obtain

n−2∑

i=1

|a0,X
n−1,i| =

n−2∑

i=1

−a0,X
n−1,i

=

n−3∑

i=1

−(an−1,i + an,i) − (an−1,n−2 + an,n−2 + p (an−1,n−1 + an,n−1))

=

n−2∑

i=1

−(an−1,i + an,i) − p an−1,n−1 − p an,n−1

≤ an−1,n−1 − |an−1,n| + an,n − |an,n−1| − p an−1,n−1 − p an,n−1

≤ (1 − p)an−1,n−1 + an−1,n + an,n + (1 − p)an,n−1 = a0,X
n−1,n−1.

Finally we want to highlight that for p =
|an−1,n−2|

an−1,n−1+|an,yn−1| it follows that A0,X is irre-

ducible diagonal dominant from the same arguments as in Proposition 9.1.11. We sum

up this result in the following proposition.

Theorem: 9.1.15. Assume that A ∈ Rn×n is an irreducible diagonal dominant L-

matrix. Assume that R, PX are as defined in (9.3) and we set p = |an−1,n−2|
an−1,n−1+|an,n−1| .

Then A0,X is also an irreducible diagonal dominant L-matrix.

proof. See the calculations above the proposition.

9.2 Numerical experiments

In this section we want to present and discuss some numerical results. We will com-

pare the preconditioner C−1
BPX , C−1

DT , C−1
2P and the associated modified options. As in the

analytical consideration we will concentrate on the operators C−1
BPX , C−1

DT . To compare

the methods we will consider the number of iterations needed to solve the equation

(Itter), the time for one iteration (tIt, msec.), the time for the setup (tset, sec.) and the

time for the total algorithm (t, sec.). In doing so we have to highlight the following:

The main aspect of this paper is to make theoretical assertions on numerical methods

and not to give the best possible implementation method. It is possible to get a good
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idea of which modifiactions or algorithms imply more effort. Furthermore we only use

the GMRes-method preconditioned with the different operators. That means that for

symmetric stiffness matrics we drop the possibility to use the CG-method if the pre-

conditioner is symmetric, too. We will discuss this more in-depth in the section for

symmetic problems.

Furthermore we highlight that there are possibilities to parallelize some steps. We will

discuss the possibilities therefore at the end of the section.

For all experiments we set Ω = [0, 1] × [0, 1]. h is the step width and nx = ny = 1
h
− 1

the number of grid points in the direction of x, y. We use nx = ny = 28 − 1. Thus we

obtain n = 2552 = 65025 grid points. Moreover we stop the iteration if the condition

‖A xk − f‖ ≤ δ = 10−8 is fulfilled.

Furthermore we only aggregate only two grid points to a new one as done in all cal-

culations. The rule concerning which points are aggregated follows the arguments of

chapter 8. Hence we classify the possible aggregations by the relative size of the links

to the neighbours. We set J = 15. Hence we use 16 different grids.

9.2.1 The unsymmetric model problem

In this section we will consider three different problems based on the convection diffu-

sion equation

b1(x, y)
∂u

∂x
+ b2(x, y)

∂u

∂y
− ε△u(x, y) = f(x, y) ∀(x, y) ∈ Ω(9.5)

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω.

In all problems we set ε = const, f ≡ 1 and g ≡ 0. To obtain the stiffness matrix we

use the method of the finite differences and the upwind method.
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9 Numerical results

To obtain the different problems we define the functions b1, b2 on the grid points as

follows:

PS1:

b1(x, l) =
−(ny + 1)/2 + l

ny

and b2(k, y) =
−k + (nx + 1)/2

nx

for l = 1, . . . , ny and k = 1, . . . , nx.

(Hence the constant solutions are

given by circles. Cf. Figure 9.1)

PS2: b1 ≡ 1, b2 ≡ 0.

PS3: b1(k, y) = nx

k
, for k = 1, . . . nx and

b2 ≡ 0.

Figure 9.1:

For the modifications we set

X = 0 : No modification. Xj = Ij for j = 1, . . . , J.

X = 1 : Xj = D−1
Aj

for j = 1, . . . , J. (The main diagonal.)

X = 2 : Modification by the inverse of blocks. We only invert the blocks of the dimension

2 × 2. (Cf. section 5.1.1)

X = 3 : Modification by the inverse of blocks. We invert the blocks of the dimension 2×2

and of the dimension 1 × 1. (Cf. section 5.1.1)

X = 4 :
”
exact“ modification as presented in Proposition 5.1.11 for the arbitrary situation.

For ε = 0 and the one dimensional problem this is proved as a perfect choice

concerning the angle (Cf. section 5.1.1.)

X = 5 : Modification for symmetric matrices. The modification is introduced for sym-

metric matrices but it can be used for other matrices as well (Cf. section 5.2).

X = 6 : Modification as motivated in section 9.1 based on M-matrix properties.

For the matrices B(j) that should approximate Aj we set ν iterations of the Jacobi-

method (meth. = Jac) or the symmetric Gauss-Seidel-method (meth. = SSOR).
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9.2 Numerical experiments

We start with the tables 9.1 and 9.2. In these tables we present the results for the

problem PS1 for all the three preconditioners and the six different kinds of modification.

Problem: PS1 with b = 1, ε = 2−15

meth = Jac, ν = 1, δ = 10−8

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 708 290 120 843 435 244 1024 454 280 1082

1 807 321 132 970 454 204 1147 450 308 1183

2 808 302 124 953 397 200 1078 404 284 1119

3 809 306 120 958 400 204 1081 382 284 1092

4 935 152 148 984 130 228 985 127 352 996

5 1046 116 172 1081 103 256 1085 110 364 1100

6 935 137 144 977 130 240 987 136 304 935

Table 9.1:

First we consider the unmodified methods. It is obvious to see that for this complex

problem the BPX-method is more effective than the other methods. This is is not

suprising as we have proved in section 3.6 hat

dDT

cDT
≤ dBPX

cBPX
⇔ γDT ≤

√
1/2.(9.6)

Hence the BPX-method is more robust than the DT -method. Furthermore, we see

that the effort for the 2P -method is higher than for the DT -method and this one is

higher than the effort for the BPX-method. This is based on the projections that are

needed. Moreover we see that in this example the modifications X = 1, 2, 3 almost

have no influence on the number of iterations. The modifications X = 4, 5, 6 work well

on all preconditioners. This is obvious by the number of the iterations in both tables

9.1, 9.2. Unfortuantly we also see that the effort to determine the modification is to

high to obtain a faster method than the unmodified one. Moreover, we highlight that

the effect of the modifications X = 4, 5, 6 is much higher for the DT -method and the

2P -method than for the BPX-method. This result suggests that the DT -method is

more sensitive with respect to the angle. In the figures 9.2 and 9.3 we consider the

derivation of d/c with respect to µγDT
for the DT and the BPX-method. In the figures
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Problem: PS1 with b = 1, ε = 2−15

meth = SSOR, ν = 1, δ = 10−8

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 706 137 156 749 180 240 787 406 332 1032

1 807 138 152 851 179 236 887 390 316 1111

2 808 142 152 853 206 236 907 375 316 1095

3 808 141 156 853 201 240 904 364 316 1083

4 935 96 192 965 84 276 966 119 352 993

5 1046 89 232 1076 68 316 1073 103 396 1104

6 934 96 188 963 84 276 966 126 352 998

Table 9.2:

9.4 and 9.5 we do the same for the deviation with respect to γDT . The result is

d

dµγDT

(
dDT

cDT

)
>

d

dµγDT

(
dBPX

cBPX

)
∀µγDT

> 0

⇔ d

dγDT

(
dDT

cDT

)
>

d

dγDT

(
dBPX

cBPX

)
∀γDT ∈ (0, 1).

The equivalence follows from

d

dγDT

(
dDT

cDT

)
=

d

dµγDT

(
dDT

cDT

)(
d

dγDT

µga

)

︸ ︷︷ ︸
>0

.

The result of this consideration is obvious. The DT method is more sensitive with

respect to the angle than the BPX method. And the bigger γDT is, the bigger is the

difference between the methods.

If we compare the three modifications X = 4, 5, 6 more in-depth then we see that

X = 5 always has the lowest number of iterations, but also the highest effort. The

higher effort results as we have to determine two directions in which a modification is

done. And the lower number of iterations result as information of two directions are

used to modify the system. The methods X = 4 and X = 6 are more or less equal for

this example. At last we want to highlight that the relations are the same if we raise
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ν.

0
0 1 2

15

30

d
dµγDT

(
dDT

cDT
− dBPX

cBPX

)

µγDT

Figure 9.2:
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Figure 9.5:

Next we consider the results in the tables 9.3 and 9.4 for the problem PS2. It is again

the case that the modifications X = 1, 2, 3 have no effect on the number of iterations.

Again the methods X = 4, 5, 6 work in a way that the number of iterations reduces.

We highlight that especially the modification X = 4 is more or less constructed for

exactly this situation. If we now take a closer look at the modifications X = 4, 5, 6

then we see that the method X = 5 does not have the lowest number of iterations

anymore. Probably this is based on the fact that X = 5 uses two directions for each
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Problem: PS2 with b = 1, ε = 2−15

meth = Jac, ν = 1, δ = 10−8

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 719 78 128 737 101 204 752 114 276 766

1 819 108 128 819 109 200 855 113 320 869

2 819 118 120 850 111 208 858 112 316 868

3 818 118 120 849 112 200 856 117 273 868

4 950 45 144 959 33 220 956 40 296 961

5 1064 42 168 1073 38 248 1075 40 324 1079

6 947 43 140 956 45 224 960 59 304 969

Table 9.3:

Problem: PS2 with b = 1, ε = 2−15

meth = SSOR, ν = 1, δ = 10−8

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 718 36 152 725 44 264 732 89 308 755

1 819 46 168 830 43 228 831 93 308 858

2 819 39 152 827 35 232 829 110 348 869

3 819 41 152 827 32 228 827 118 336 877

4 948 31 184 955 20 276 953 41 348 964

5 1064 34 228 1073 19 308 1070 40 424 1083

6 948 28 188 954 35 312 960 58 344 927

Table 9.4:
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9.2 Numerical experiments

grid point that is modified. But in this example the causality is mainly given by one

direction (the second direction has only an influence based on the diffusion). Hence

the second direction in the modification makes effort and has no important causality.

Furthermore we see in particular in table 9.4 that X = 6 is no longer equal to X = 4.

Thus for the DT -method X = 4 is a better choice. We remember that X = 6 is based

on numerical ideas for the iterative methods used on subspaces. We can assume that

in this example and in particular for meth = SSOR the solutions are good. Also for

X = 4. Hence the effect of the right angle is more important.

Now we consider in the table 9.5 and 9.6 results for PS3. We remember that PS3

represents is a one dimensional flux without the condition of a constant b.

Problem: PS3 with b = 1, ε = 2−15

meth = Jac, ν = 1, δ = 10−8

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 752 120 132 785 124 216 799 507 292 1212

1 861 125 136 896 108 212 898 116 292 911

2 858 104 132 884 90 212 887 372 320 1140

3 858 106 144 886 91 216 887 92 324 897

4 971 69 148 987 52 232 986 76 332 1003

5 1083 78 172 1103 60 256 1102 215 332 1212

6 972 70 148 988 61 232 990 484 308 1405

Table 9.5:

For the modifications X = 4, 5, 6 there is nothing new. But for this problem the modifi-

cations X = 1, 2, 3 also have a positive effect on the number of iterations. In particular

if we consider the methods DT and 2P which are more sensitive with respect to the

angle than the BPX method we see that the number of iterations reduces for X = 3.

This is more obvious for meth = SSOR. This may result from the fact that the solu-

tion on the subspace is in this case better than for meth = Jac. Hence the effect of the

angle is more important.

Now we are going to take a look at the methods C−1
DT,2, C

−1
2P,2. We remember that these
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Problem: PS3 with b = 1, ε = 2−15

meth = SSOR, ν = 1, δ = 10−8

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 752 44 168 762 64 256 774 417 336 1102

1 861 48 172 872 55 252 878 100 328 906

2 858 42 168 867 41 252 871 190 324 965

3 858 42 168 868 34 256 868 91 356 901

4 971 37 200 980 34 284 982 83 392 1012

5 1083 39 236 1094 27 320 1093 110 396 1141

6 971 36 200 980 41 284 986 447 400 1375

Table 9.6:

methods are based on the idea to obtain an orthogonality in the multigrid situation

independent of the condition (2.14).

In the tables 9.7 and 9.8 we see that the results are always worse than for C−1
DT,1, C

−1
2P,1.

Worse means that we have a higher effort and a higher number of iterations. Perhaps

this will be better if we use the matrices Ŝk, Ŝ
−1
k also to construct the coarser operators

Ak and not only for the projections (Cf. the scaled tentative prolongator in [GJV08] ).

This idea will not be outlined in the current work.

We will conclude this section with two remarks. First is that if the stop criterion

becomes harder then the modifications X = 4, 5, 6 should become better if we consider

the total time of the algorithm. This is because the number of iterations raises for all

methods and the setting time is fixed independent of the number of iterations. We

present this for the problem PS3. We set

‖A xk − f‖ ≤ δ = 10−12 or ‖A xk − f‖ ≤ δ = 10−15

instead of ‖A xk − f‖ ≤ δ = 10−8

as used befor. In the tables 9.9 and 9.11 we present the results for meth = Jac. Hence

this tables should be compared with the table 9.5. In the tables 9.10 and 9.12 we

present the results for meth = SSOR. Thus this tables should be compared with the

table 9.6.
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Problem: PS1 with b = 1, ε = 2−15

meth = Jac, ν = 1, δ = 10−8

C−1
BPX C−1

DT,2 C−1
2P,2

X tset Itter tIt t Itter tIt t Itter tIt t

0 705 290 120 840 436 228 1034 450 324 1091

1 805 321 128 970 462 212 1160 474 296 1223

2 806 302 124 952 402 236 1087 424 332 1158

3 806 306 124 956 401 224 1090 409 316 1136

4 984 152 164 932 133 260 987 133 328 998

5 1044 116 172 1080 104 304 1088 112 340 1097

6 932 137 152 975 130 260 986 133 316 996

Table 9.7:

Problem: PS1 with b = 1, ε = 2−15

meth = SSOR, ν = 1, δ = 10−8

C−1
BPX C−1

DT,2 C−1
2P,2

X tset Itter tIt t Itter tIt t Itter tIt t

0 704 137 168 749 180 268 792 405 348 1043

1 805 138 152 848 182 240 889 409 328 1138

2 806 142 152 851 218 280 922 396 392 1137

3 806 141 164 853 209 244 909 382 324 1104

4 932 96 188 961 87 332 969 124 392 1000

5 1044 89 256 1076 68 320 1071 106 436 1105

6 932 96 188 961 86 320 969 124 392 999

Table 9.8:
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In both cases we see that δ = 10−12 has no large influence on the total time the

algorithm needs. Hence there is no difference to δ = 10−8. For δ = 10−15 we see that

a good modification makes the preconditioner more robust. (Additionally we should

highlight that we stop all methods if we have done 1000 iterations.)

Problem: PS3 with b = 1, ε = 2−15

meth = Jac, ν = 1, δ = 10−12

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 752 173 132 810 178 248 841 726 316 1611

1 858 187 152 926 165 212 926 176 292 946

2 856 154 140 905 141 212 909 558 300 1407

3 856 155 144 906 142 212 909 144 316 926

4 968 104 160 998 81 252 996 115 336 1022

5 1080 121 184 1119 94 276 1117 335 352 1332

6 968 107 156 999 95 268 1005 685 332 1761

Table 9.9:

The second aspect is the behaviour of the modifications if the convection shrinks com-

pared to the diffusion. For this aspect we have to differ between the problems.

In the tables 9.13, 9.14 we consider the problem PS1 for meth = Jac, b = 1 and

ε = 2−8, 2−5. Hence these tables should be compared with the table 9.1. If we consider

the unmodified operators we see that the problem becomes easier if ε grows. If we con-

sider the modified methods with X = 4, 5, 6 then we see that this effect is weaker for

these methods. This implies that the effect of the modification is smaller for a bigger ε.

Hence the modified preconditioners are more robust concerning a small diffusion as the

unmomdified methods. In particular for X = 4, 6 the number of iterations is almost

constant. For X = 5 it occurs the effect that with the bigger diffusion there is more

than one direction that has an influence on the behaviour of the system. Hence for a

bigger ε we have for X = 5 again a lower number of iterations as needed for X = 4, 6.

In the tables 9.15, 9.16 we consider the problem PS3 for meth = Jac, b = 1 and

ε = 2−8, 2−5. Hence this tables should be compared to the table 9.5. Considering the
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Problem: PS3 with b = 1, ε = 2−15

meth = SSOR, ν = 1, δ = 10−12

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 752 67 184 770 99 272 790 591 356 1383

1 858 73 172 877 84 260 888 152 356 939

2 856 62 172 871 63 260 877 267 344 1032

3 856 61 172 871 52 260 872 141 340 927

4 968 56 200 983 49 288 985 124 372 1032

5 1080 60 248 1098 40 328 1095 159 408 1175

6 968 56 200 984 62 296 991 632 376 1684

Table 9.10:

Problem: PS3 with b = 1, ε = 2−15

meth = Jac, ν = 1, δ = 10−15

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 752 1000 132 2087 1000 236 2193 1000 288 2240

1 858 231 132 951 208 232 959 231 288 993

2 855 1000 128 2189 1000 252 2290 1000 324 2350

3 855 1000 132 2192 1000 212 2277 1000 288 2345

4 968 131 168 1009 102 232 1003 1000 308 2484

5 1080 158 176 1138 1000 272 2537 1000 332 2621

6 968 1000 148 2324 1000 232 2397 1000 304 2479

Table 9.11:
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Problem: PS3 with b = 1, ε = 2−15

meth = SSOR, ν = 1, δ = 10−15

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 752 1000 172 2125 1000 268 2224 1000 356 2310

1 858 93 168 884 105 260 899 193 344 968

2 855 1000 172 2225 1000 260 2320 1000 344 2399

3 855 1000 172 2226 1000 260 2318 1000 340 2397

4 967 71 200 987 61 288 990 1000 372 2539

5 1079 1000 236 2517 1000 328 2611 1000 408 2693

6 969 70 220 990 81 288 1000 1000 368 2545

Table 9.12:

Problem: PS1 with b = 1, ε = 2−8

meth = Jac, ν = 1, δ = 10−8

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 708 278 124 834 320 204 895 320 276 921

1 808 295 120 948 333 204 1008 332 280 1032

2 808 264 128 925 294 204 971 318 288 1018

3 809 264 128 920 289 200 967 290 280 990

4 934 140 144 978 129 224 983 129 304 993

5 1027 83 160 1048 69 248 1050 92 324 1067

6 935 144 144 980 141 224 989 157 304 1012

Table 9.13:
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Problem: PS1 with b = 1, ε = 2−5

meth = Jac, ν = 1, δ = 10−8

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 707 196 128 777 204 204 798 211 280 818

1 807 198 128 880 202 204 897 202 284 913

2 808 201 120 882 204 204 899 220 288 929

3 808 206 120 884 210 204 903 209 280 920

4 936 114 144 967 112 224 976 116 304 987

5 1026 72 160 1044 63 244 1046 73 324 1056

6 936 122 144 971 129 232 985 137 312 999

Table 9.14:

unmodified methods we see that in this case the problem becomes more comlex if ε

grows. But also in this case we see that this effect is smaller for the modified methods

and in particular for the modifications X = 4, 5, 6. Based on the same arguments as

for PS1 we observe the lowest effect for X = 5. This is probably again based on the

causality of a second direction.

Remarks on parallelisation

As the three preconditioners C−1
BPX , C−1

DT and C−1
2P are all additive methods we can

parallelize the multiplication

C−1
i v

in that way that we calculate

(B(J))−1 RJ v, . . . , (B(1))−1 R1 v, (B(0))−1 R0 v

or (B(J))−1 (IJ − QJ−1) RJ v, . . . , (B(1))−1 (I1 − Q0) R1, (B
(0))−1 R0 v

at the same time. It is obvious that this makes all preconditioners faster.

As mentioned at the beginning of this section we set for B(j) ν iterations of the Jacobi

method or the SSOR method. In doing so it is obvious that for the Jacobi method
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Problem: PS3 with b = 1, ε = 2−8

meth = Jac, ν = 1, δ = 10−8

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 752 172 156 814 265 216 894 404 296 1066

1 859 174 160 923 226 212 968 228 292 988

2 856 152 140 904 175 212 930 437 292 1213

3 856 151 136 903 173 216 929 172 292 942

4 967 75 152 985 64 232 987 68 308 994

5 1075 67 176 1092 52 256 1091 128 328 1137

6 967 80 152 987 80 232 994 246 304 1115

Table 9.15:

Problem: PS3 with b = 1, ε = 2−5

meth = Jac, ν = 1, δ = 10−8

C−1
BPX C−1

DT,1 C−1
2P,1

X tset Itter tIt t Itter tIt t Itter tIt t

0 754 267 136 875 342 212 963 350 316 999

1 853 257 128 966 297 212 1022 297 328 1046

2 855 231 128 949 258 212 989 331 292 1082

3 853 214 132 935 235 212 969 235 292 987

4 968 121 148 1003 115 232 1006 124 312 1019

5 1065 82 168 1087 68 260 1085 84 328 1099

6 968 125 148 1005 133 232 1014 193 300 1066

Table 9.16:
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we can parallize the calculation for the different grid points. If we have enough kernels

then its also possible to use for each grid point its own kernel. For the SSOR-method

this is not possible. Additionally as concerns it is difficult to check the relation between

the numeration of the grid points on coarser grids and the geometrical structure. This

would result in an additional effort.

9.2.2 The symmetric model problem

In this section we are going to consider the problem based on the equation

−div(α(x, y) grad u(x, y)) = f(x, y), ∀(x, y) ∈ Ω(9.7)

u(x, y) = g(x, y), ∀(x, y) ∈ ∂Ω

with

α(x, y) =

(
a(x, y) 0

0 b(x, y)

)

We set f ≡ 1 and g ≡ 0. To obtain the associated stiffness matrix we use the method

of the finite elements.

In our example the functions

a(x, y) = b(x, y) are set constant

on the single elements. Further-

more the constants for the function

a(x, y) are increasing in the diago-

nal through the unit square. More

exactly we set
a(x, y) = ε

a(x, y) = 2
√

ε

a(x, y) = 3
√

ε

a(x, y) = nx
√

ε

Figure 9.6:

a(x, y) = k
√

ε for x ≤ y and (k − 1) h ≤ x < k h

or y < x and (k − 1) h ≤ y < k h (Cf. figure 9.6).
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For the modification we use the idea as presented in section 5.3. Hence we calculate

the eigenvectors of the blocks of the dimension 2 × 2. In section 5.3 we have also seen

that they have for ε, δ → 0 the limits

v1 = (1, 1)T and v2 = (−1, 1)T .

If we use v1 in the modification then we say that the modification is based on the long

waves. If we use v2 then we say that the modification is based on the short waves. And

for the modifications we set

X = 0 : No modification. Xj = Ij for j = 1, . . . , J.

X = 7 : modification with the long waves. ‖v1‖ = 1.

X = 8 : modification with the long waves. ‖v1‖ =
√

2.

X = 9 : modification with the long waves, scaled with the eigenvalues. ‖v1‖ =
√

2/λ1.

X = 10 : modification with the short waves. ‖v2‖ = 1.

X = 11 : modification with the short waves. ‖v2‖ =
√

2.

X = 12 : modification with the short waves, scaled with the eigenvalues. ‖v2‖ =
√

2/λ2.

Unfortunately we see in the tables 9.17 and 9.18 that the modification cause an addi-

tional effort and raise the number of iterations. Only if the solutions on the subspaces

are very good as in the case of meth = SSOR and ν = 10 then we see that the modi-

fications X = 10, 11 have a positive influence on the number of iterations. But as the

idea is to use the CG-method instead of the GMRes-method for symmetric problems

this result is quite worse because for a symmetric preconditioner we need symmet-

ric matrices B(j). Hence we may only do one iteration of the Jacobi - method or the

Symmetric Gauss-Seidel method. We will sum this up to the following two aspects:

1. The idea to scale the modification with the eigenvalues not a good idea.

2. If we use the two sided modification then the modification must use an approxi-

mation on the waves with short frequences.

To conclude the consideration of a two sided modification, we highlight that there

are methods for which we obtain better results for the two sided modification. For

the stiffness matrix as defined above we consider the BPX-method with prolongation
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meth = Jac, ν = 1, δ = 10−8, ε = 2−15

C−1
BPX C−1

DT,1 C−1
2P,1

X Itter tIt t Itter tIt t Itter tIt t

0 198 124 791 211 264 819 264 372 902

7 328 124 1134 327 256 1186 315 448 1254

8 460 128 1277 397 224 1248 382 404 1325

9 442 128 1255 1000 212 2391 1000 400 2628

10 1000 128 2294 649 244 1631 641 376 1726

11 1000 128 2302 650 212 1612 641 332 1690

12 1000 128 2294 1000 216 2392 1000 308 2479

Table 9.17:

meth = SSOR, ν = 10, δ = 10−8, ε = 2−15

C−1
BPX C−1

DT,1 C−1
2P,1

X Itter tIt t Itter tIt t Itter tIt t

0 90 884 809 107 956 835 261 1032 1071

7 160 884 1137 146 980 1135 311 1072 1417

8 178 880 1161 154 956 1141 368 1036 1512

9 183 872 1167 1000 976 3143 1000 1052 3252

10 216 868 1208 92 992 1066 224 1096 1326

11 213 880 1205 91 960 1062 225 1136 1330

12 216 868 1208 1000 956 3129 1000 1480 3553

Table 9.18:
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9 Numerical results

and restriction operators which are based on the geometrical method (cf section 2.5).

Modifications for this are presented in [Tic06]. The results are presented in table 9.19.

We see that for this example the modified preconditioners need less iterations to solve

the system of linear equations. In contrast to the algebraic methods, the setup time

does not rise if we use the modification. This results as for geometrical methods the

modification follows mainly from the geometrical structure. Hence there is no further

effort to determine neighbours for the modification from the elements of the matrix.

We emphasize that we do not consider the DT or the 2P method as it is not as easy

to determine the operator SX = (RX PX)−1 for the geometrical methods. This would

induce effects we do not want to discuss in this thesis.

CBPX−1 with J = 7

ν = 1, δ = 10−8, ε = 2−15

meth = Jac meth = SSOR

X tset Itter tIt tges Itter tIt tges

unmodified 841 44 76 847 35 100 845

modified 805 26 76 808 22 96 808

Table 9.19:
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A Basics

We will sum up some elemantary definitions and results which do not fit to any chapter.

For this section we assume the following setting:

Let V be a linear vector space and U, W linear subspaces. Let (., .) be a dotproduct

and ‖v‖ :=
√

(v, v) be the associated vectornorm.

Proposition: A.0.1. For all v1, v2 ∈ V it is

|(v1, v2)| ≤ ‖v1‖ ‖v2‖.

Definition: A.0.2. If there is a γ ∈ [0, 1) with

(u, w) ≤ γ ‖u‖ ‖w‖ ∀u ∈ U, w ∈ W

then we say that U, W hold a strengthened Cauchy-Schwarz Inequality.

Proposition: A.0.3. For a, b ∈ R and ε ∈ R+ we have

a b ≤ a2

2ε
+

εb2

2
.

Lemma: A.0.4. For j = 1, . . . , m let aj , bj be in Rnj . Let further γj ≤ 1 be constants

that fulfil

(aj , bj) ≤ γj ‖aj‖ ‖bj‖

then we obtain for a := (a1, a2, . . . , am) ∈ Rn1+...,+nm and b := (b1, b2, . . . , bm) ∈
Rn1+...,+nm the inequality

(a, b) ≤ γ ‖a‖ ‖b‖

with γ = maxj=1,...,m{γj}.

proof. We show the proposition by induction over m. For m = 1 the proposition follows

by the assumption. So we show the induction step. Assume that the assertion is fulfilled

for m − 1. With

ã := (a1, . . . , am−1) and b̃ := (b1, . . . , bm−1)
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A Basics

it follows

(a, b)2 = ((ã, am), (̃b, bm))2 = (ã, b̃)2 + (am, bm)2 + 2(ã, b̃)(am, bm)

≤ γ2 ‖ã‖2 ‖b̃‖2 + γ2 ‖am‖2 ‖bm‖2 + 2γ2 ‖ã‖ ‖b̃‖ ‖am‖ ‖bm‖

≤ γ2 ‖ã‖2 ‖b̃‖2 + γ2 ‖am‖2 ‖bm‖2 + γ2
(
‖ã‖2‖bm‖2 + ‖b̃‖2 ‖am‖2

)

= γ2 ‖(ã, am)‖2 ‖(̃b, bm)‖2 = γ2 ‖a‖2 ‖b‖2.

This shows the proposition for m.

Lemma: A.0.5. Let v1, . . . , vn ∈ V be orthogonal by pairs. That means

(vi, vj) = 0 for i 6= 0.

Then we obtain
(

1√
n

n∑

i=1

‖vi‖
)2

≤
∥∥∥∥∥

n∑

i=1

vi

∥∥∥∥∥

2

≤
(

n∑

i=1

‖vi‖
)2

.

proof. Based on the orthogonality of the elements we obtain

n∑

i=1

‖vi‖2 =

∥∥∥∥∥

n∑

i=1

vi

∥∥∥∥∥

2

.

Thus it follows for the first inequality by using the inequality of Young (A.0.3)

(
1√
n

(
n∑

i=1

‖vi‖
))2

=
1

n

n∑

i=1

‖vi‖2 +
2

n

n∑

i=1

n∑

j=i+1

‖vi‖ ‖vj‖

≤ 1

n

n∑

i=1

‖vi‖2 +
2

n

n∑

i=1

n∑

j=i+1

‖vi‖2 + ‖vj‖2

2

=
1

n

n∑

i=1

n ‖vi‖2 =

n∑

i=1

‖vi‖2 =

∥∥∥∥∥

n∑

i=1

vi

∥∥∥∥∥

2

.

This implies the first inequality. The second inquality is obtained as follows:

∥∥∥∥∥

n∑

i=1

vi

∥∥∥∥∥

2

=
n∑

i=1

‖vi‖2 ≤
n∑

i=1

‖vi‖2 +
2

n

n∑

i=1

n∑

j=i+1

‖vi‖ ‖vj‖ =

(
n∑

i=1

‖vi‖
)2

.
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Lemma: A.0.6. For γ ∈ (0, 1) we obtain that

µ(γ) :=
γ√

1 − γ2

increases in γ.

proof. We differentiate µ with respect to γ. Hence we have

d µ

dγ
=

1√
1 − γ2

− γ

2

(−2γ)

(
√

1 − γ2)3
> 0.
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