TY - THES A1 - Schiemenz, Fabian T1 - Covariance and Uncertainty Realism for Low Earth Orbiting Satellites via Quantification of Dominant Force Model Uncertainties T1 - Kovarianz- und Unsicherheitsrealismus für Satelliten in erdnahen Umlaufbahnen mittels Quantifizierung der dominanten Kräftemodellunsicherheiten N2 - The safety of future spaceflight depends on space surveillance and space traffic management, as the density of objects in Earth orbit has reached a level that requires collision avoidance maneuvers to be performed on a regular basis to avoid a mission or, in the context of human space flight, life-endangering threat. Driven by enhanced sensor systems capable of detecting centimeter-sized debris, megaconstellations and satellite miniaturization, the space debris problem has revealed many parallels to the plastic waste in our oceans, however with much less visibility to the eye. Future catalog sizes are expected to increase drastically, making it even more important to detect potentially dangerous encounters as early as possible. Due to the limited number of monitoring sensors, continuous observation of all objects is impossible, resulting in the need to predict the orbital paths and their uncertainty via models to perform collision risk assessment and space object catalog maintenance. For many years the uncertainty models used for orbit determination neglected any uncertainty in the astrodynamic force models, thereby implicitly assuming them to be flawless descriptions of the true space environment. This assumption is known to result in overly optimistic uncertainty estimates, which in turn complicate collision risk analysis. The keynote of this doctoral thesis is to establish uncertainty realism for low Earth orbiting satellites via a physically connected quantification of the dominant force model uncertainties, particularly multiple sources of atmospheric density uncertainty and orbital gravity uncertainty. The resulting process noise models are subsequently integrated into classical and state of the art orbit determination algorithms. Their positive impact is demonstrated via numerical orbit determination simulations and a collision risk assessment study using all non-restricted objects in the official United States space catalogs. It is shown that the consideration of atmospheric density uncertainty and gravity uncertainty significantly improves the quality of the orbit determination and thus makes a contribution to future spaceflight safety by increasing the reliability of the uncertainty estimates used for collision risk assessment. N2 - Die Sicherheit der künftigen Raumfahrt hängt von der Weltraumüberwachung und dem Weltraumobjektmanagement ab, da inzwischen die Dichte an Objekten im Erdorbit ein Niveau erreicht hat, welches regelmäßige Kollisionsvermeidungsmanöver erfordert um eine missions- oder, im Kontext der bemannten Raumfahrt, lebensgefährdende Situation zu vermeiden. Durch verbesserte Sensorsysteme, die in der Lage sind, zentimetergroße Objekte zu erkennen, Megakonstellationen und die Satellitenminiaturisierung hat das Weltraummüllproblem viele Parallelen zu den Plastikabfällen in unseren Weltmeeren offenbart, jedoch mit deutlich geringerer Sichtbarkeit für das Auge. Es ist zu erwarten, dass die Größe der Weltraumobjektkataloge in Zukunft drastisch ansteigen wird, was es umso wichtiger macht, potenziell gefährliche Begegnungen so früh wie möglich zu erkennen. Durch die begrenzte Anzahl an Überwachungssensoren ist eine kontinuierliche Beobachtung aller Objekte unmöglich, sodass die Umlaufbahnen und deren Unsicherheiten über Modelle vorausberechnet werden müssen, um die Bewertung von Kollisionsrisiken vorzunehmen und die Wartung der Objektkataloge sicherzustellen. Viele Jahre haben die zur Bahnbestimmung verwendeten Unsicherheitsmodelle jegliche Unsicherheit in den astrodynamischen Kräftemodellen vernachlässigt und somit implizit angenommen, dass diese fehlerfreie Beschreibungen der wahren Weltraumumgebung darstellen. Diese Annahme ist jedoch dafür bekannt, zu übermäßig optimistischen Unsicherheitsabschätzungen zu führen, was die Kollisionsrisikobewertung erschwert. Das Leitthema dieser Doktorarbeit ist die Berechnung realistischer Unsicherheiten von Objekten in einer niedrigen Erdumlaufbahn anhand einer Unsicherheitsquantifizierung mit physikalischem Bezug zu den Kräftemodellen, welche die größten Anteile an der Propagationsunsicherheit aufweisen. Dies sind insbesondere mehrere Quellen von atmosphärischer Dichteunsicherheit, sowie Gravitationsunsicherheit. Die resultierenden Prozessrauschmodelle werden anschließend in klassische und moderne Algorithmen zur Umlaufbahnbestimmung integriert. Die positiven Auswirkungen dieser Technik werden durch numerische Simulationen zur Orbitbestimmung, sowie durch eine Risikobewertungsstudie anhand aller nicht-sensitiven Objekte in den amerikanischen Weltraumkatalogen belegt. Es wird gezeigt, dass die Berücksichtigung von Unsicherheiten in der atmosphärischen Dichte und dem Gravitationsmodell die Qualität der Umlaufbahnbestimmung signifikant verbessert und somit durch zuverlässigere Unsicherheitsschätzungen bei der Kollisionsrisikobewertung einen Beitrag zur künftigen Sicherheit im Weltraum leistet. KW - Space Debris KW - Thermospheric density uncertainty KW - Gravity model uncertainty KW - Uncertainty realism KW - Orbit determination KW - Conjunction analysis KW - Thermosphärische Dichteunsicherheit KW - Gravitationsmodellunsicherheit KW - Unsicherheitsrealismus KW - Orbitbestimung KW - Konjunktionsanalyse Y1 - 2021 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/24947 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-249474 ER -