TY - JOUR A1 - Noll, Niklas A1 - Krause, Ana-Maria A1 - Beuerle, Florian A1 - Würthner, Frank T1 - Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis T2 - Nature Catalysis N2 - Inspired by the proficiency of natural enzymes, mimicking of nanoenvironments for precise substrate preorganisation is a promising strategy in catalyst design. However, artificial examples of enzyme-like activation of H\(_2\)O molecules for the challenging oxidative water splitting reaction are hardly explored. Here, we introduce a mononuclear Ru(bda) complex (M1, bda: 2,2’-bipyridine-6,6’-dicarboxylate) equipped with a bipyridine-functionalized ligand to preorganize H\(_2\)O molecules in front of the metal center as in enzymatic clefts. The confined pocket of M1 accelerates chemically driven water oxidation at pH 1 by facilitating a water nucleophilic attack pathway with a remarkable turnover frequency of 140 s\(^{−1}\) that is comparable to the oxygen-evolving complex of photosystem II. Single crystal X-ray analysis of M1 under catalytic conditions allowed the observation of a 7th H\(_2\)O ligand directly coordinated to a RuIII center. Via a well-defined hydrogen-bonding network, another H\(_2\)O substrate is preorganized for the crucial O–O bond formation via nucleophilic attack. KW - water oxidation KW - enzyme KW - catalysis KW - molecular KW - catalyst synthesis KW - catalytic mechanisms KW - homogeneous catalysis KW - photocatalysis KW - supramolecular chemistry Y1 - 2022 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/30289 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-302897 N1 - This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1038/s41929-022-00843-x ER -