TY - THES A1 - Rauh, Daniel T1 - Impact of Charge Carrier Density and Trap States on the Open Circuit Voltage and the Polaron Recombination in Organic Solar Cells T1 - Einfluss der Ladungsträgerdichte und Störstellen auf die Leerlaufspannung und die Polaronenrekombination in organischen Solarzellen N2 - The focus of this work is studying recombination mechanisms occurring in organic solar cells, as well as their impact on one of their most important parameters — the open circuit voltage Voc. Firstly, the relationship between Voc and the respective charge carrier density n in the active layer under open circuit conditions is analyzed. Therefor, a model after Shockley for the open circuit voltage is used, whose validity is proven with the aid of fits to the measured data. Thereby, it is emphasized that the equation is only valid under special conditions. In the used reference system P3HT:PC61BM the fits are in agreement with the measurement data only in the range of high temperatures (150 - 300 K), where Voc increases linearly with decreasing temperature. At lower temperatures (50 – 150 K), the experiment shows a saturation of Voc. This saturation cannot be explained with the model by the measured falling charge carrier density with decreasing temperatures. In this temperature range Voc is not directly related to the intrinsic properties of the active layer. Voc saturation is due to injection energy barriers at the contacts, which is ascertained by macroscopic simulations. Furthermore, it is observed that Voc in the case of saturation is equivalent to the so-called built-in potential. The difference between the built-in potential and the energy gap corresponds thereby to the sum of the energy barriers at both contacts. With the knowledge of the Voc(n) dependency for not contact limited solar cells, it is possible to investigate the recombination mechanisms of charge carriers in the active layer. For Langevin recombination the recombination rate is Rn2 (recombination order RO = 2), for Shockley-Read-Hall (SRH) Rn1 (RO=1); in various publications RO higher than two is reported with two main explanations. 1: Trap states for charge carriers exist in the respective separated phases, i.e. electrons in the acceptor phase and holes in the donor phase, which leads to a delayed recombination of the charge carriers at the interface of both phases and finally to an apparent recombination order higher than 2. 2: The enhanced R(n) dependency is attributed to the so called recombination prefactor, which again is dependent from n dependent mobility µ. It is shown that for the system P3HT:PC61BM at room temperature the µ(n) dependency does nearly completely explain the higher RO but not at lower temperatures which in this case supports the first explanation. In the material system PTB7:PC71BM the increased RO cannot be explained by the µ(n) dependency even at room temperature. To support the importance of trap states in combination with a phase separation for the explanation of the enhanced RO, additional trap states were incorporated in the solar cells to investigate their influence on the recombination mechanisms. To achieve this, P3HT:PC61BM solar cells were exposed to synthetic air (in the dark and under illumination) or TCNQ was added in small concentrations to the active layer which act as electron traps. For the oxygen degraded solar cell the recombination order is determined by a combination of open Voc-transients and Voc(n) measurements. Thereby, a continuous increase of the recombination order from 2.4 to more than 5 is observed with higher degradation times. By the evaluation of the ideality factor it can be shown that the impact of SRH recombination is increasing with higher trap concentration in relation to Langevin recombination. A similar picture is revealed for solar cells with TCNQ as extrinsic trap states. Finally, a phenomenon called s-shaped IV-curves is investigated, which can sometimes occur for solar cells under illumination. As course of this a reduced surface recombination velocity can be found. Experimentally, the solar cells were fabricated using a special plasma treatment of the ITO contact. The measured IV-curves of such solar cells are reproduced by macroscopic simulations, where the surface recombination velocity is reduced. Hereby, it has to be distinguished between the surface recombination of majority and minority charge carriers at the respective contacts. The theory can be experimentally confirmed by illumination level dependent IV-curves as well as short circuit current density and open circuit voltage transients. N2 - Im Fokus der vorliegenden Arbeit liegen die Rekombinationsmechanismen welche in organischen Solarzellen vorkommen, sowie deren Einfluss auf eine der wichtigsten charakteristischen Kenngrößen dieser - der Leerlaufspannung Voc. Zuerst wird der Zusammenhang zwischen Voc und zugehöriger Ladungsträgerdichte n in der aktiven Schicht unter Leerlaufbedingungen untersucht. Dazu wird ein Modell nach Shockley für die Leerlaufspannung verwendet, dessen Gültigkeit mit Hilfe von Fits an die Messdaten überprüft wird. Dabei stellt sich heraus, dass dieses nur für bestimmte Rahmenbedingungen gültig ist. Im verwendeten Referenzsystem P3HT:PC61BM stimmen die Fits nur im Bereich höherer Temperaturen (150 - 300 K), in denen Voc linear mit sinkenden Temperaturen steigt, mit den Messwerten überein. Im Bereich tieferer Temperaturen (50 - 150 K) stellt sich experimentell eine Sättigung von Voc ein. Diese Sättigung kann mit der gemessenen fallenden Ladungsträgerdichten mit sinkender Temperatur laut Modell nicht erklärt werden. Voc steht in diesem Temperaturbereich deshalb in keinem direkten Zusammenhang zu den intrinsischen Eigenschaften der aktiven Schicht. Die Ursache der Sättigung sind Energiebarrieren an den Kontakten, was mit Hilfe von makroskopischen Simulationen nachgewiesen werden kann. Weiterhin wird festgestellt, dass Voc im Sättigungsfall genau dem sogenannten eingebauten Potential entspricht. Die Differenz zwischen dem eingebauten Potential und der Bandlücke entspricht dabei der Summe der Energiebarrieren an beiden Kontakten. Mit der Erkenntnis, dass für nicht kontaktlimitierte Solarzellen eine Voc(n) Abhängigkeit besteht, kann man sich den Rekombinationsmechanismen in der aktiven Schicht widmen. Für Langevin Rekombination ist die Rekombinstionsrate Rn2 (Rekombinationsordnung RO = 2), für Shockley-Read-Hall (SRH) Rn1 (RO=1); experimentell wird in der Literatur aber von RO größer 2 berichtet wofür zwei Erklärungen existieren. 1.: Es gibt Fallenzustände für Ladungsträger in den entsprechenden separaten Phasen, d.h. Elektronen in der Akzeptorphase und Löcher in der Donatorphase, was in einer verzögerten Rekombination der Ladungsträger an der Grenzfläche beider Phasen führt und damit zu einer höheren RO als 2. 2.: Die erhöhte R(n)-Abhängigkeit wird dem sogenannten Rekombinationsvorfaktor zugeschrieben, welcher wiederum von der n-abhängigen Mobilität µ abhängt. Es wird gezeigt, dass für das System P3HT:PC61BM bei Raumtemperatur der µ(n) Verlauf fast komplett die erhöhte RO erklären kann, allerding nicht bei tieferen Temperaturen welches dort die erste Erklärung stützt. Im Materialsystem PTB7:PC71BM ist schon für Raumtemperatur die erhöhte RO nicht durch den µ(n) Verlauf erklärbar. Um zu untermauern, dass Störstellen in Kombination mit einer Phasenseparation für die erhöhte RO verantwortlich sind, wurden Störstellen in Solarzellen eingebaut um deren Einfluss auf die Rekombinationsmechanismen zu untersuchen. Dazu wurden P3HT:PC61BM Solarzellen zum einen synthetischer Luft ausgesetzt (im Dunkeln und unter Beleuchtung) zum anderen der aktiven Schicht in geringen Konzentrationen TCNQ beigefügt, welches als Elektronenstörstelle fungiert. Für die O2 degradierte Solarzelle wird die RO aus einer Kombination von Voc-Transienten und Voc(n) Messungen bestimmt. Dabei kann mit erhöhter Degradation ein kontinuierlicher Anstieg der RO von 2.4 auf mehr als 5 beobachtet werden. Durch die Auswertung des Idealitätsfaktors kann gezeigt werden, dass der Einfluss der SRH Rekombination in Relation zur Langevin Rekombination mit erhöhter Störstellenkonzentration zunimmt. Ein ähnliches Bild ergibt sich für die Solarzellen mit TCNQ als extrinsische Störstellen. Zuletzt wird das Phänomen s-förmiger Strom-Spannungs-Kennlinien untersucht, welches manchmal für Solarzellen unter Beleuchtung auftritt. Als Ursache kann eine reduzierte Oberflächenrekombinationsgeschwindigkeit ausgemacht werden. Experimentell wurden die Solarzellen mit einer speziellen Plasmabehandlung des ITO Kontaktes hergestellt. Die gemessenen IV-Kennlinien solcher Solarzellen können anhand von makroskopischen Simulationen nachgebildet werden, indem darin die Oberflächenrekombinationsgeschwindigkeit reduziert wird, wobei man dabei die Oberflächenrekombination von Majoritäts- bzw. Minoritätsladungsträgern an den entsprechenden Kontakten unterscheiden muss. Experimentell untermauert werden kann die Theorie anhand von lichtleistungsabhängigen IV-Kurven bzw. Transienten der Kurzschlussstromdichte und der Leerlaufspannung. KW - Organische Solarzelle KW - organische Solarzellen KW - Leerlaufspannung KW - Störstellen KW - recombination KW - organic solar cells KW - open circuit voltage KW - trap states KW - Fotovoltaik KW - Organischer Halbleiter KW - Rekombination Y1 - 2013 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/9008 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-90083 ER -