TY - INPR A1 - Titov, Evgenii A1 - Humeniuk, Alexander A1 - Mitric, Roland T1 - Exciton localization in excited-state dynamics of a tetracene trimer: A surface hopping LC-TDDFTB study T2 - Physical Chemistry Chemical Physics N2 - Excitons in the molecular aggregates of chromophores are key participants in important processes such as photosynthesis or the functioning of organic photovoltaic devices. Therefore, the exploration of exciton dynamics is crucial. Here we report on exciton localization during excited-state dynamics of the recently synthesized tetracene trimer [Liu et al., Org. Lett., 2017, 19, 580]. We employ the surface hopping approach to nonadiabatic molecular dynamics in conjunction with the long-range corrected time-dependent density functional tight binding (LC-TDDFTB) method [Humeniuk and Mitrić, Comput. Phys. Commun., 2017, 221, 174]. Utilizing a set of descriptors based on the transition density matrix, we perform comprehensive analysis of exciton dynamics. The obtained results reveal an ultrafast exciton localization to a single tetracene unit of the trimer during excited-state dynamics, along with exciton transfer between units. KW - Exciton dynamics Y1 - 2018 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/19868 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-198680 UR - https://doi.org/10.1039/C8CP05240A N1 - Accepted Manuscript ER -