TY - JOUR A1 - Hettich, Georg A1 - Schierjott, Ronja A. A1 - Epple, Matthias A1 - Gbureck, Uwe A1 - Heinemann, Sascha A1 - Mozaffari-Jovein, Hadi A1 - Grupp, Thomas M. T1 - Calcium phosphate bone graft substitutes with high mechanical load capacity and high degree of interconnecting porosity T2 - Materials N2 - Bone graft substitutes in orthopedic applications have to fulfill various demanding requirements. Most calcium phosphate (CaP) bone graft substitutes are highly porous to achieve bone regeneration, but typically lack mechanical stability. This study presents a novel approach, in which a scaffold structure with appropriate properties for bone regeneration emerges from the space between specifically shaped granules. The granule types were tetrapods (TEPO) and pyramids (PYRA), which were compared to porous CaP granules (CALC) and morselized bone chips (BC). Bulk materials of the granules were mechanically loaded with a peak pressure of 4 MP; i.e., comparable to the load occurring behind an acetabular cup. Mechanical loading reduced the volume of CALC and BC considerably (89% and 85%, respectively), indicating a collapse of the macroporous structure. Volumes of TEPO and PYRA remained almost constant (94% and 98%, respectively). After loading, the porosity was highest for BC (46%), lowest for CALC (25%) and comparable for TEPO and PYRA (37%). The pore spaces of TEPO and PYRA were highly interconnected in a way that a virtual object with a diameter of 150 µm could access 34% of the TEPO volume and 36% of the PYRA volume. This study shows that a bulk of dense CaP granules in form of tetrapods and pyramids can create a scaffold structure with load capacities suitable for the regeneration of an acetabular bone defect KW - calcium phosphate KW - granules KW - biomechanics KW - bone graft substitutes Y1 - 2019 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/19323 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-193233 SN - 1996-1944 VL - 12 IS - 21 ER -