TY - JOUR A1 - Dörje, F. A1 - Wess, J. A1 - Lambrecht, G. A1 - Tacke, Reinhold A1 - Mutschler, E. A1 - Brann, M. R. T1 - Antagonist binding profiles of five cloned human muscarinic receptor subtypes N2 - A variety of muscarinic antagonists are currently used as tools to pharmacologically subclassify muscarinic receptors into M\(_1\), M\(_2\) and M\(_3\) subtypes. ln the present study I we have determined the affinity proflies of several of these antagonists at five cloned human muscarinic receptors (m1-m5) stably expressed in Chinesehamster ovary cells (CHO-K1). At all five receptorsl the (R)-enantiomers of trihexyphenidyl and hexbutinol displayed considerably higher affinities (up to 525-fold) than their corresponding (S)-isomers. The stereoselectivity ratios [inhibition constant( S)/inhibition constant(R)] for both pairs of enantiomers were lowest at m2 receptors, suggesting that less stringent configurational demands are made by this receptor subtype. The "M\(_1\)-selective" antagonist (R)-trihexyphenidyl displayed high affinities for m1 and m4 receptors. The "M\(_2\)-selective" antagonists himbacinel (±}-5, 11-dihydro-11-1[(2-[(dipropylamino)methyl]-1- piperidinyllethyl)amino]carbonyii-6H-pyrido(213-b)(1 ~4)benzodiazepine- 6-one (AF-DX 384)1 11-(14-[4-(diethylamino)butyl)-1-piperidinyll acetyl)-5~ 11-dihydro-6H-pyrido(2~3-b) (1~4)benzodiazepine-6-one (AQ-RA 741) and (+K11-(12-[(diethylamino)methyl]-1-piperidinyll acetyl)-5~ 11-di-hydro-6H-pyrido(2~3-b)(1,4)benzodiazepine-6-one (AF-OX 250; the (+)-enantiomer of AF-DX 116] exhibited high affinities for m2 and m41 intermediate affinities for m1 and m3 and low affinities for m5 receptors. This selectivity profile was most prominent for AQ-RA 7 41 I which displayed 195- and 129-fold higher affinities for m2 and m4 receptors than for mS receptors. The "M\(_3\)-selective" antagonist (±)-p-fluoro-hexahydro-sila-difenidol hydrochloride (pFHHsiD) exhibited high affinity for m1 I m3 and m4 receptors. 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) bound with up to 7 -fold higher affinities to m1 I m31 m4 and m5 receptors than to m2 receptors. Although none of the tested antagonists showed more than 2-fold selectivity for one subtype over all other subtypes, each receptor displayed a unique antagonist binding profile. KW - Anorganische Chemie Y1 - 1991 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/5631 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-64113 ER -