TY - THES A1 - Hovhanyan, Anna T1 - Functional analyses of Mushroom body miniature (Mbm) in growth and proliferation of neural progenitor cells in the central brain of Drosophila melanogaster T1 - Funktionelle Analyse des Mushroom body minature (Mbm) in das Wachstum und die Proliferation von neuronalen Vorläuferzellen im zentralen Gehirn von Drosophila melanogaster N2 - Zellwachstum und Zellteilung stellen zwei miteinander verknüpfte Prozesse dar, die dennoch grundsätzlich voneinander zu unterscheiden sind. Die Wiederaufnahme der Proliferation von neuralen Vorläuferzellen (Neuroblasten) im Zentralhirn von Drosophila nach der spät-embryonalen Ruhephase erfordert zunächst Zellwachstum. Der Erhalt der regulären Zellgröße ist eine wichtige Voraussetzung für die kontinuierliche Proliferation der Neuroblasten über die gesamte larvale Entwicklungsphase. Neben extrinsischen Ernährungssignalen ist für das Zellwachstum eine kontinuierliche Versorgung mit funktionellen Ribosomen notwendig, damit die Proteinsynthese aufrechterhalten werden kann. Mutationen im mushroom body miniature (mbm) Gen wurden über einen genetischen Screen nach strukturellen Gehirnmutanten identifiziert. Der Schwerpunkt dieser Arbeit lag in der funktionellen Charakterisierung des Mbm Proteins als neues nukleoläres Protein und damit seiner möglichen Beteiligung in der Ribosomenbiogenese. Der Vergleich der relativen Expressionslevel von Mbm und anderen nuklearen Proteinen in verschiedenen Zelltypen zeigte eine verstärkte Expression von Mbm in der fibrillären Komponente des Nukleolus von Neuroblasten. Diese Beobachtung legte die Vermutung nahe, dass in Neuroblasten neben generell benötigten Faktoren der Ribosomenbiogenese auch Zelltyp-spezifische Faktoren existieren. Mutationen in mbm verursachen Proliferationsdefekte von Neuroblasten, wirken sich jedoch nicht auf deren Zellpolarität, die Orientierung der mitotischen Spindel oder die Asymmetrie der Zellteilung aus. Stattdessen wurde eine Reduktion der Zellgröße beobachtet, was im Einklang mit einer Beeinträchtigung der Ribosomenbiogenese steht. Insbesondere führt der Verlust der Mbm Funktion zu einer Retention der kleinen ribosomalen Untereinheit im Nukleolus, was eine verminderte Proteinsynthese zur Folge hat. Interessanterweise wurden Störungen der Ribosomenbiogenese nur in den Neuroblasten beobachtet. Zudem ist Mbm offensichtlich nicht erforderlich, um Wachstum oder die Proliferation von Zellen der Flügelimginalscheibe und S2-Zellen zu steuern, was wiederum dafür spricht, dass Mbm eine Neuroblasten-spezifische Funktion erfüllt. Darüber hinaus wurden die transkriptionelle Regulation des mbm-Gens und die funktionelle Bedeutung von posttranslationalen Modifikationen analysiert. Mbm Transkription wird von dMyc reguliert. Ein gemeinsames Merkmal von dMyc Zielgenen ist das Vorhandensein einer konservierten „E-Box“-Sequenz in deren Promotorregionen. In der Umgebung der mbm-Transkriptionsstartstelle befinden sich zwei „E-Box“-Motive. Mit Hilfe von Genreporteranalysen konnte nachgewiesen werden, dass nur eine von ihnen die dMyc-abhängige Transkription vermittelt. Die dMyc-abhängige Expression von Mbm konnte auch in Neuroblasten verifiziert werden. Auf posttranslationaler Ebene wird Mbm durch die Proteinkinase CK2 phosphoryliert. In der C-terminalen Hälfte des Mbm Proteins wurden in zwei Clustern mit einer Abfolge von sauren Aminosäuren sechs Serin- und Threoninreste als CK2- Phosphorylierungsstellen identifiziert. Eine Mutationsanalyse dieser Stellen bestätigte deren Bedeutung für die Mbm Funktion in vivo. Weiterhin ergaben sich Evidenzen, dass die Mbm-Lokalisierung durch die CK2-vermittelte Phosphorylierung gesteuert wird. Obwohl die genaue molekulare Funktion von Mbm in der Ribosomenbiogenese noch im Unklaren ist, unterstreichen die Ergebnisse dieser Studie die besondere Rolle von Mbm in der Ribosomenbiogenese von Neuroblasten um Zellwachstum und Proliferation zu regulieren. N2 - Cell growth and cell division are two interconnected yet distinct processes. Initiation of proliferation of central brain progenitor cells (neuroblasts) after the late embryonic quiescence stage requires cell growth, and maintenance of proper cell size is an important prerequisite for continuous larval neuroblast proliferation. Beside extrinsic nutrition signals, cell growth requires constant supply with functional ribosomes to maintain protein synthesis. Mutations in the mushroom body miniature (mbm) gene were previously identified in a screen for structural brain mutants. This study focused on the function of the Mbm protein as a new nucleolar protein, which is the site of ribosome biogenesis. The comparison of the relative expression levels of Mbm and other nucleolar proteins in different cell types showed a pronounced expression of Mbm in neuroblasts, particularly in the fibrillar component of the nucleolus, suggesting that in addition to nucleolar components generally required for ribosome biogenesis, more neuroblast specific nucleolar factors exist. Mutations in mbm cause neuroblast proliferation defects but do not interfere with cell polarity, spindle orientation or asymmetry of cell division of neuroblasts. Instead a reduction in cell size was observed, which correlates with an impairment of ribosome biogenesis. In particular, loss of Mbm leads to the retention of the small ribosomal subunit in the nucleolus resulting in decreased protein synthesis. Interestingly, the defect in ribosome biogenesis was only observed in neuroblasts. Moreover, Mbm is apparently not required for cell size and proliferation control in wing imaginal disc and S2 cells supporting the idea of a neuroblast-specific function of Mbm. Furthermore, the transcriptional regulation of the mbm gene and the functional relevance of posttranslational modifications were analyzed. Mbm is a transcriptional target of dMyc. A common feature of dMyc target genes is the presence of a conserved E-box sequence in their promoter regions. Two E-box motifs are found in the vicinity of the transcriptional start site of mbm. Gene reporter assays verified that only one of them mediates dMyc-dependent transcription. Complementary studies in flies showed that removal of dMyc function in neuroblasts resulted in reduced Mbm expression levels. At the posttranslational level, Mbm becomes phosphorylated by protein kinase CK2. Six serine and threonine residues located in two acidic amino acid rich clusters in the C-terminal half of the Mbm protein were identified as CK2 phosphorylation sites. Mutational analysis of these sites verified their importance for Mbm function in vivo and indicated that Mbm localization is controlled by CK2-mediated phosphorylation. Although the molecular function of Mbm in ribosome biogenesis remains to be determined, the results of this study emphasize the specific role of Mbm in neuroblast ribosome biogenesis to control cell growth and proliferation. KW - Taufliege KW - Mbm KW - Neuroblast KW - cell growth KW - proliferation KW - ribosome biogenesis KW - CK2 KW - Myc KW - Vorläuferzellen KW - Drosophila melanogaster Y1 - 2014 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/9130 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-91303 ER -