TY - JOUR A1 - Daniel, Katrin A1 - Tränkner, Daniel A1 - Wojtasz, Lukasz A1 - Shibuya, Hiroki A1 - Watanabe, Yoshinori A1 - Alsheimer, Manfred A1 - Toth, Attila T1 - Mouse CCDC79 (TERB1) is a meiosis-specific telomere associated protein T2 - BMC Cell Biology N2 - Background: Telomeres have crucial meiosis-specific roles in the orderly reduction of chromosome numbers and in ensuring the integrity of the genome during meiosis. One such role is the attachment of telomeres to trans-nuclear envelope protein complexes that connect telomeres to motor proteins in the cytoplasm. These trans-nuclear envelope connections between telomeres and cytoplasmic motor proteins permit the active movement of telomeres and chromosomes during the first meiotic prophase. Movements of chromosomes/telomeres facilitate the meiotic recombination process, and allow high fidelity pairing of homologous chromosomes. Pairing of homologous chromosomes is a prerequisite for their correct segregation during the first meiotic division. Although inner-nuclear envelope proteins, such as SUN1 and potentially SUN2, are known to bind and recruit meiotic telomeres, these proteins are not meiosis-specific, therefore cannot solely account for telomere-nuclear envelope attachment and/or for other meiosis-specific characteristics of telomeres in mammals. Results: We identify CCDC79, alternatively named TERB1, as a meiosis-specific protein that localizes to telomeres from leptotene to diplotene stages of the first meiotic prophase. CCDC79 and SUN1 associate with telomeres almost concurrently at the onset of prophase, indicating a possible role for CCDC79 in telomere-nuclear envelope interactions and/or telomere movements. Consistent with this scenario, CCDC79 is missing from most telomeres that fail to connect to SUN1 protein in spermatocytes lacking the meiosis-specific cohesin SMC1B. SMC1B-deficient spermatocytes display both reduced efficiency in telomere-nuclear envelope attachment and reduced stability of telomeres specifically during meiotic prophase. Importantly, CCDC79 associates with telomeres in SUN1-deficient spermatocytes, which strongly indicates that localization of CCDC79 to telomeres does not require telomere-nuclear envelope attachment. Conclusion: CCDC79 is a meiosis-specific telomere associated protein. Based on our findings we propose that CCDC79 plays a role in meiosis-specific telomere functions. In particular, we favour the possibility that CCDC79 is involved in telomere-nuclear envelope attachment and/or the stabilization of meiotic telomeres. These conclusions are consistent with the findings of an independently initiated study that analysed CCDC79/TERB1 functions. KW - SUN1 KW - meiosis KW - telomeres KW - telomere attachment KW - CCDC79 KW - TERB1 KW - DNA-binding domain KW - meiotic chromosome dynamics KW - fission yeast KW - cohesin SMC1-Beta Y1 - 2014 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/11624 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-116248 SN - 1471-2121 VL - 15 IS - 17 ER -