TY - JOUR A1 - Herm, Lukas-Valentin A1 - Janiesch, Christian A1 - Helm, Alexander A1 - Imgrund, Florian A1 - Hofmann, Adrian A1 - Winkelmann, Axel T1 - A framework for implementing robotic process automation projects T2 - Information Systems and e-Business Management N2 - Robotic process automation is a disruptive technology to automate already digital yet manual tasks and subprocesses as well as whole business processes rapidly. In contrast to other process automation technologies, robotic process automation is lightweight and only accesses the presentation layer of IT systems to mimic human behavior. Due to the novelty of robotic process automation and the varying approaches when implementing the technology, there are reports that up to 50% of robotic process automation projects fail. To tackle this issue, we use a design science research approach to develop a framework for the implementation of robotic process automation projects. We analyzed 35 reports on real-life projects to derive a preliminary sequential model. Then, we performed multiple expert interviews and workshops to validate and refine our model. The result is a framework with variable stages that offers guidelines with enough flexibility to be applicable in complex and heterogeneous corporate environments as well as for small and medium-sized companies. It is structured by the three phases of initialization, implementation, and scaling. They comprise eleven stages relevant during a project and as a continuous cycle spanning individual projects. Together they structure how to manage knowledge and support processes for the execution of robotic process automation implementation projects. KW - robotic process automation KW - implementation framework KW - project management KW - methodology KW - interview study KW - workshop Y1 - 2023 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/32379 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-323798 SN - 1617-9846 VL - 21 IS - 1 ER -