TY - UNPD A1 - Brisch, Fabian A1 - Kassler, Andreas A1 - Vestin, Jonathan A1 - Pieska, Marcus A1 - Amend, Markus T1 - Accelerating Transport Layer Multipath Packet Scheduling for 5G-ATSSS T2 - KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis and Simulation of Next-Generation Communication Networks 2023 (WueWoWAS’23) N2 - Utilizing multiple access networks such as 5G, 4G, and Wi-Fi simultaneously can lead to increased robustness, resiliency, and capacity for mobile users. However, transparently implementing packet distribution over multiple paths within the core of the network faces multiple challenges including scalability to a large number of customers, low latency, and high-capacity packet processing requirements. In this paper, we offload congestion-aware multipath packet scheduling to a smartNIC. However, such hardware acceleration faces multiple challenges due to programming language and platform limitations. We implement different multipath schedulers in P4 with different complexity in order to cope with dynamically changing path capacities. Using testbed measurements, we show that our CMon scheduler, which monitors path congestion in the data plane and dynamically adjusts scheduling weights for the different paths based on path state information, can process more than 3.5 Mpps packets 25 μs latency. KW - multipath packet scheduling KW - P4 KW - MP-DCCP KW - 5G KW - ATSSSS Y1 - 2023 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/32205 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-322052 ER -