TY - THES A1 - Fouquet, Wernher T1 - Analysis of synapse assembly in Drosophila melanogaster T1 - Analyse des synaptischen Aufbaus der Drosophila melanogaster N2 - The majority of rapid cell-to-cell communication mechanisms and information processing within the nervous system makes use of chemical synapses. Fast neurotransmission on these sites not only requires very close apposition of pre- and postsynaptic partners, but also depends on an effective structural arrangement of cellular components on both sides of the synaptic cleft. Synaptic vesicles fuse at active zones (AZs), characterized by an electron-dense protein mesh of insufficiently characterized composition and function. EM analysis of synapses identified electron dense structures thought (but not proven) to play an important role for vesicle release efficacy. The molecular organization of presynaptic AZs during Ca2+ influx–triggered neurotransmitter release is currently a focus of intense investigation. Due to its appearance in electron micrographs, dense bodies at Drosophila synapses were named T-bars. Together with the lab of Erich Buchner, we recently showed that Bruchpilot (BRP) of the Drosophila melanogaster, homologous to the mammalian CAST/ERC family in its N-terminal half, is essential for the T-bar assembly at AZs and efficient neurotransmitter release respectively. The question, in which way BRP contributes to functional and structural organization of the AZ, was a major focus of this thesis. First, stimulated emission depletion microscopy (STED), featuring significantly increased optical resolution, was used to achieve first insights into ‘cytoarchitecture’ of the AZ compartment. In addition, in vivo live imaging experiments following identified populations of synapses over extended periods were preformed to address the trafficking of protein at forming synapses and thereby providing a temporal sequence for the AZ assembly process. Apart from BRP, two additional AZ proteins, DLiprin-α and DSyd-1, were included into the analysis, which were both shown to contribute to efficient AZ assembly. Drosophila Syd-1 (DSyd-1) and Drosophila Liprin-α (DLiprin-α) clusters initiated AZ assembly, finally forming discrete ‘quanta’ at the AZ edge. ELKS-related Bruchpilot, in contrast, accumulated late from diffuse pools in the AZ center, where it contributed to the electron dense specialization by adopting an extended conformation vertical to the AZ membrane. We show that DSyd-1 and DLiprin-α are important for efficient AZ formation. The results of this thesis describe AZ assembly as a sequential protracted process, with matured AZs characterized by sub-compartments and likely quantal building blocks. This step-wise, in parts reversible path leading to mature AZ structure and function offers new control possibilities in the development and plasticity of synaptic circuits. N2 - Durch Ca2+ abhängige Neurotransmitterfreisetzung vermitteln chemische Synapsen die schnelle Informationsübertragung zwischen Nervenzellen. Vorausetzung hierfür sind gewisse zelluläre Eigenschaften, wie eine enge Korrelation zwischen der Prä- und Postsynapse und eine hoch spezialisierte Zusammensetzung von Proteinen. Synaptische Vesikel fusionieren mit der präsynaptischen aktiven Zone (AZ), welche sich aus einem dichten Netzwerk an vielfach noch unerforschter synaptischer Proteine zusammensetzt, das im Transmissionselektronenmikroskop elektronendicht erscheint. Des Weiteren sind ultrastrukturell elektronendichte präsynaptische Spezialisierungen erkennbar (dense bodies), die vermutlich (aber nicht nachweislich) bei der Freisetzung synaptischer Vesikel eine tragende Rolle spielen. Der molekulare Aufbau der AZ ist zurzeit ein weitverbreitetes Studienthema. Die Synapsen der Fruchtfliege Drosophila melanogaster sind präsynaptisch gekennzeichnet durch eine elektronendichte Struktur, welche aufgrund ihrer charakteristischen Form auch als „T-bar“ bezeichnet wird. Durch die Kooperation mit dem Labor von Erich Buchner gelang es uns, das synaptische Protein Bruchpilot (BRP) zu identifizieren. BRP weist im N-terminalen Bereich Homologien zu der in Säuger gefundenen CAST/ERC Proteinfamilie auf, und ist essenziell für die Ausbildung der elektronendichten T-bars an den AZs und für eine effiziente Ausschüttung von Neurotransmitter. In wie weit BRP für die funktionelle und strukturelle Organisation der AZ verantwortlich ist, sollte in der vorliegenden Arbeit erläutert werden. Durch die neu entdeckte „stimulated emission depletion“ Mikroskopie (STED), ist es nun möglich, dank der erhöhten optischen Auflösung, neue Einsichten in die Architektur der AZ zu erlangen. Zusätzlich wurden mit Hilfe von in vivo Experimenten an lebenden Tieren Populationen von Synapsen über längere Zeiträume verfolgt, um so die Synapsenentstehung und den Proteintransport zu untersuchen. Auf diesem Weg sollte eine Abfolge der an der AZ Assemblierung beteiligten Proteine erstellt werden. Neben BRP wurden daher noch zwei weitere AZ Proteine berücksichtigt (DLiprin-α und DSyd-1), welche ebenfalls bei der Bildung neuer synaptischer Kontakten mitwirken. Es konnte gezeigt werden, dass Proteincluster aus Drosophila Syd-1 (DSyd-1) und Drosophila Liprin-α (DLiprin-α) sehr früh während der Bildung neuer synaptischer Kontakte erscheinen und hierbei diskrete ‚Quanta‘ ausbilden, welche sich am Rand der AZ anlagerten. BRP hingegen erreichte die AZ zu einem späteren Zeitpunkt, wahrscheinlich aus diffusen Reservoirs und akkumulierte schließlich im Zentrum der AZ. Mit Hilfe der STED und konfokalen Mikroskopie konnte gezeigt werden, dass sich BRP in einer getreckten, vertikal zur Membran stehenden Orientierung in die elektronendichte Stuktur, den T-bar, einfügt. Zudem sind DSyd-1 und DLiprin-α für eine effiziente Entstehung neuer AZs erforderlich. Die in dieser Arbeit vorgestellten Ergebnisse deuten auf ein länger andauerden sequenziellen Assemblierungsprozess der AZ hin, in dem aus quantalen Baueinheiten Subkompartimente an ausgereiften AZs gebildet werden. Dieser gestaffelte, teils reversible Reifungsablauf der AZ eröffnet neue Möglichkeiten zur Kontrolle der Entwicklung und Plastizität neuronaler Netzwerke durch einen noch nicht beschriebenen Mechanismus. KW - Synapse KW - Drosophila KW - STED KW - confocal microscopy KW - active zone KW - Bruchpilot Y1 - 2008 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/3172 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-38173 ER -