TY - JOUR A1 - Braunschweig, Holger A1 - Ewing, William C. A1 - Ghosh, Sundargopal A1 - Kramer, Thomas A1 - Mattock, James D. A1 - Östreicher, Sebastian A1 - Vargas, Alfredo A1 - Werner, Christine T1 - Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters T2 - Chemical Science N2 - Treatment of an anionic dimanganaborylene complex ([{Cp(CO)\(_2\)Mn}\(_2\)B]\(^-\)) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe\(_2\)) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M\(_2\)B\(_2\) cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B\(_2\)M\(_2\) units and M\(_4\) (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy\(_3\))\(_2\)) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d\(^{10}\)-d\(^{10}\) dispersion interactions between the copper and platinum fragments. KW - anionic dimetalloborylene complexes KW - trimetallaborides KW - tetrametallaborides KW - Boron KW - metallaboranes KW - crystal structure KW - metal borylene complexes Y1 - 2016 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/19151 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-191511 VL - 7 IS - 1 ER -