TY - JOUR A1 - Lopez-Arreguin, A. J. R. A1 - Montenegro, S. T1 - Towards bio-inspired robots for underground and surface exploration in planetary environments: An overview and novel developments inspired in sand-swimmers T2 - Heliyon N2 - Dessert organisms like sandfish lizards (SLs) bend and generate thrust in granular mediums to scape heat and hunt for prey [1]. Further, SLs seems to have striking capabilities to swim in undulatory form keeping the same wavelength even in terrains with different volumetric densities, hence behaving as rigid bodies. This paper tries to recommend new research directions for planetary robotics, adapting principles of sand swimmers for improving robustness of surface exploration robots. First, we summarize previous efforts on bio-inspired hardware developed for granular terrains and accessing complex geological features. Later, a rigid wheel design has been proposed to imitate SLs locomotion capabilities. In order to derive the force models to predict performance of such bio-inspired mobility system, different approaches as RFT (Resistive Force Theory) and analytical terramechanics are introduced. Even in typical wheeled robots the slip and sinkage increase with time, the new design intends to imitate traversability capabilities of SLs, that seem to keep the same slip while displacing at subsurface levels. KW - aerospace engineering KW - mechanical engineering KW - biomimetics KW - biomechanic KW - biomechanical engineering KW - mechanics KW - sandfish KW - granular KW - locomotion KW - slip Y1 - 2020 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/23030 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-230309 VL - 6 ER -