TY - JOUR A1 - Ivanova, Svetlana A1 - Köster, Eva A1 - Holstein, Julian J. A1 - Keller, Niklas A1 - Clever, Guido H. A1 - Bein, Thomas A1 - Beuerle, Florian T1 - Isoreticular crystallization of highly porous cubic covalent organic cage compounds T2 - Angewandte Chemie International Edition N2 - Modular frameworks featuring well-defined pore structures in microscale domains establish tailor-made porous materials. For open molecular solids however, maintaining long-range order after desolvation is inherently challenging, since packing is usually governed by only a few supramolecular interactions. Here we report on two series of nanocubes obtained by co-condensation of two different hexahydroxy tribenzotriquinacenes (TBTQs) and benzene-1,4-diboronic acids (BDBAs) with varying linear alkyl chains in 2,5-position. n-Butyl groups at the apical position of the TBTQ vertices yielded soluble model compounds, which were analyzed by mass spectrometry and NMR spectroscopy. In contrast, methyl-substituted cages spontaneously crystallized as isostructural and highly porous solids with BET surface areas and pore volumes of up to 3426 m\(^2\) g\(^{-1}\) and 1.84 cm\(^3\) g\(^{-1}\). Single crystal X-ray diffraction and sorption measurements revealed an intricate cubic arrangement of alternating micro- and mesopores in the range of 0.97–2.2 nm that are fine-tuned by the alkyl substituents at the BDBA linker. KW - organic chemistry KW - structure elucidation KW - boronateesters KW - cage compounds KW - dynamic covalent chemistry KW - porousmaterials Y1 - 2021 UR - https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/25646 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-256462 VL - 60 IS - 32 ER -