@article{GromerKiserPauli2021, author = {Gromer, Daniel and Kiser, Dominik P. and Pauli, Paul}, title = {Thigmotaxis in a virtual human open field test}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-85678-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259850}, pages = {6670}, year = {2021}, abstract = {Animal models are used to study neurobiological mechanisms in mental disorders. Although there has been significant progress in the understanding of neurobiological underpinnings of threat-related behaviors and anxiety, little progress was made with regard to new or improved treatments for mental disorders. A possible reason for this lack of success is the unknown predictive and cross-species translational validity of animal models used in preclinical studies. Re-translational approaches, therefore, seek to establish cross-species translational validity by identifying behavioral operations shared across species. To this end, we implemented a human open field test in virtual reality and measured behavioral indices derived from animal studies in three experiments (N=31, N=30, and N=80). In addition, we investigated the associations between anxious traits and such behaviors. Results indicated a strong similarity in behavior across species, i.e., participants in our study-like rodents in animal studies-preferred to stay in the outer region of the open field, as indexed by multiple behavioral parameters. However, correlational analyses did not clearly indicate that these behaviors were a function of anxious traits of participants. We conclude that the realized virtual open field test is able to elicit thigmotaxis and thus demonstrates cross-species validity of this aspect of the test. Modulatory effects of anxiety on human open field behavior should be examined further by incorporating possible threats in the virtual scenario and/or by examining participants with higher anxiety levels or anxiety disorder patients.}, language = {en} }