@phdthesis{Forster2023, author = {Forster, Leonard}, title = {Hyaluronic acid based Bioinks for Biofabrication of Mesenchymal Stem Cells}, doi = {10.25972/OPUS-29860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298603}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {As a major component of the articular cartilage extracellular matrix, hyaluronic acid is a widely used biomaterial in regenerative medicine and tissue engineering. According to its well-known interaction with multiple chondrocyte surface receptors which positively affects many cellular pathways, some approaches by combining mesenchymal stem cells and hyaluronic acid-based hydrogels are already driven in the field of cartilage regeneration and fat tissue. Nevertheless, a still remaining major problem is the development of the ideal matrix for this purpose. To generate a hydrogel for the use as a matrix, hyaluronic acid must be chemically modified, either derivatized or crosslinked and the resulting hydrogel is mostly shaped by the mold it is casted in whereas the stem cells are embedded during or after the gelation procedure which does not allow for the generation of zonal hierarchies, cell density or material gradients. This thesis focuses on the synthesis of different hyaluronic acid derivatives and poly(ethylene glycol) crosslinkers and the development of different hydrogel and bioink compositions that allow for adjustment of the printability, integration of growth factors, but also for the material and biological hydrogel, respectively bioink properties.}, language = {en} }