@article{SchumannEberleinLapaetal.2021, author = {Schumann, S. and Eberlein, U. and Lapa, C. and M{\"u}ller, J. and Serfling, S. and Lassmann, M. and Scherthan, H.}, title = {α-Particle-induced DNA damage tracks in peripheral blood mononuclear cells of [\(^{223}\)Ra]RaCl\(_{2}\)-treated prostate cancer patients}, series = {European Journal of Nuclear Medicine and Molecular Imaging}, volume = {48}, journal = {European Journal of Nuclear Medicine and Molecular Imaging}, number = {9}, issn = {1619-7089}, doi = {10.1007/s00259-020-05170-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265462}, pages = {2761-2770}, year = {2021}, abstract = {Purpose One therapy option for prostate cancer patients with bone metastases is the use of [\(^{223}\)Ra]RaCl\(_{2}\). The α-emitter \(^{223}\)Ra creates DNA damage tracks along α-particle trajectories (α-tracks) in exposed cells that can be revealed by immunofluorescent staining of γ-H2AX+53BP1 DNA double-strand break markers. We investigated the time- and absorbed dose-dependency of the number of α-tracks in peripheral blood mononuclear cells (PBMCs) of patients undergoing their first therapy with [\(^{223}\)Ra]RaCl\(_{2}\). Methods Multiple blood samples from nine prostate cancer patients were collected before and after administration of [\(^{223}\)Ra]RaCl\(_{2}\), up to 4 weeks after treatment. γ-H2AX- and 53BP1-positive α-tracks were microscopically quantified in isolated and immuno-stained PBMCs. Results The absorbed doses to the blood were less than 6 mGy up to 4 h after administration and maximally 16 mGy in total. Up to 4 h after administration, the α-track frequency was significantly increased relative to baseline and correlated with the absorbed dose to the blood in the dose range < 3 mGy. In most of the late samples (24 h - 4 weeks after administration), the α-track frequency remained elevated. Conclusion The γ-H2AX+53BP1 assay is a potent method for detection of α-particle-induced DNA damages during treatment with or after accidental incorporation of radionuclides even at low absorbed doses. It may serve as a biomarker discriminating α- from β-emitters based on damage geometry.}, language = {en} }