@phdthesis{Murali2023, author = {Murali, Supriya}, title = {Understanding the function of spontaneous blinks by investigating internally and externally directed processes}, doi = {10.25972/OPUS-28747}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287473}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Humans spontaneously blink several times a minute. These blinks are strongly modulated during various cognitive task. However, the precise function of blinking and the reason for their modulation has not been fully understood. In the present work, I investigated the function of spontaneous blinks through various perceptual and cognitive tasks. Previous research has revealed that blinks rates decrease during some tasks but increase during others. When trying to understand these seemingly contradictory results, I observed that blink reduction occurs when one engages with an external input. For instance, a decrease has been observed due to the onset of a stimulus, sensory input processing and attention towards sensory input. However, for activities that do not involve such an engagement, e.g. imagination, daydreaming or creativity, the blink rate has been shown to increase. To follow up on the proposed hypothesis, I distinguished tasks that involve the processing of an external stimulus and tasks that involve disengagement. In the first part of the project, I explored blinking during stimulus engagement. If the probability of blinking is low when engaging with the stimulus, then one should find a reduction in blinks specifically during the time period of processing but not during sensory input per se. To this end, in study 1, I tested the influence of task-relevant information duration on blink timing and additionally manipulated the overall sensory input using a visual and an auditory temporal simultaneity judgement task. The results showed that blinks were suppressed longer for longer periods of relevant information or in other words, blinks occurred at the end of relevant information processing for both the visual and the auditory modality. Since relevance is mediated through top-down processes, I argue that the reduction in blinks is a top-down driven suppression. In studies 2 and 3, I again investigated stimulus processing, but in this case, processing was triggered internally and not based on specific changes in the external input. To this end, I used bistable stimuli, in which the actual physical stimulus remains constant but their perception switches between different interpretations. Studies on the involvement of attention in such bistable perceptual changes indicate that the sensory input is reprocessed before the perceptual switch. The results revealed a reduction in eye blink rates before the report of perceptual switches. Importantly, I was able to decipher that the decrease was not caused by the perceptual switch or the behavioral response but likely started before the internal switch. Additionally, periods between a blink and a switch were longer than interblink intervals, indicating that blinks were followed by a period of stable percept. To conclude, the first part of the project revealed that there is a top-down driven blink suppression during the processing of an external stimulus. In the second part of the project, I extended the idea of blinks marking the disengagement from external processing and tested if blinking is associated with better performance during internally directed processes. Specifically, I investigated divergent thinking, an aspect of creativity, and the link between performance and blink rates as well as the effect of motor restriction. While I could show that motor restriction was the main factor influencing divergent thinking, the relationship between eye blink rates and creative output also depended on restriction. Results showed that higher blink rates were associated with better performance during free movement, but only between subjects. In other words, subjects who had overall higher blink rates scored better in the task, but when they were allowed to sit or walk freely. Within a single subject, trial with higher blink rates were not associated with better performance. Therefore, possibly, people who are able to disengage easily, as indicated by an overall high blink rate, perform better in divergent thinking tasks. However, the link between blink rate and internal tasks is not clear at this point. Indeed, a more complex measurement of blink behavior might be necessary to understand the relationship. In the final part of the project, I aimed to further understand the function of blinks through their neural correlates. I extracted the blink-related neural activity in the primary visual cortex (V1) of existing recordings of three rhesus monkeys during different sensory processing states. I analyzed spike related multi-unit responses, frequency dependent power changes, local field potentials and laminar distribution of activity while the animal watched a movie compared to when it was shown a blank screen. The results showed a difference in blink-related neural activity dependent on the processing state. This difference suggests a state dependent function of blinks. Taken altogether, the work presented in this thesis suggests that eye blinks have an important function during cognitive and perceptual processes. Blinks seem to facilitate a disengagement from the external world and are therefore suppressed during intended processing of external stimuli.}, subject = {Lidschlag}, language = {en} }