@phdthesis{Zhao2024, author = {Zhao, Suting}, title = {Symmetry Resolution of Entanglement in Holography}, doi = {10.25972/OPUS-36385}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363854}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {This thesis investigates the charged moments and the symmetry-resolved entanglement entropy in the context of the AdS3/CFT2 duality. In the first part, I focus on the holographic U(1) Chern-Simons-Einstein gravity, a toy model of AdS3/CFT2 with U(1) Kac-Moody symmetry. I start with the vacuum background with a single entangling interval. I show that, apart from a partition function in the grand canonical ensemble, the charged moments can also be interpreted as the two-point function of vertex operators on the replica surface. For the holographic description, I propose a duality between the bulk U(1) Wilson line and the boundary vertex operators. I verify this duality by deriving the effective action for the Chern-Simons fields and comparing the result with the vertex correlator. In the twist field approach, I show that the charged moments are given by the correlation function of the charged twist operators and the additional background operators. To solve the correlation functions involved, I prove the factorization of the U(1) extended conformal block into a U(1) block and a Virasoro block. The general expression for the U(1) block is derived by directly summing over the current descendant states, and the result shows that it takes an identical form as the vertex correlators. This leads to the conclusion that the disjoint Wilson lines compute the neutral U(1) block. The final result for the symmetry-resolved entanglement entropy shows that it is always charge-independent in this model. In the second part, I study charged moments in higher spin holography, where the boundary theory is a CFT with W3 symmetry. I define the notion of the higher spin charged moments by introducing a spin-3 modular charge operator. Restricting to the vacuum background with a single entangling interval, I employ the grand canonical ensemble interpretation and calculate the charged moments via the known higher spin black hole solution. On the CFT side, I perform a perturbative expansion for the higher spin charged moments in terms of the connected correlation functions of the spin-3 modular charge operators. Using the recursion relation for the correlation functions of the W3 currents, I evaluate the charged moments up to the quartic order of the chemical potential. The final expression matches with the holographic result. My results both for U(1) Chern-Simons Einstein gravity and W3 higher spin gravity constitute novel checks of the AdS3/CFT2 correspondence.}, subject = {AdS-CFT-Korrespondenz}, language = {en} }