@phdthesis{Yang2022, author = {Yang, Shang}, title = {Characterization and engineering of photoreceptors with improved properties for optogenetic application}, doi = {10.25972/OPUS-20527}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205273}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Optogenetics became successful in neuroscience with Channelrhodopsin-2 (ChR2), a light-gated cation channel from the green alga Chlamydomonas reinhardtii, as an easy applicable tool. The success of ChR2 inspired the development of various photosensory proteins as powerful actuators for optogenetic manipulation of biological activity. However, the current optogenetic toolbox is still not perfect and further improvements are desirable. In my thesis, I engineered and characterized several different optogenetic tools with new features. (i) Although ChR2 is the most often used optogenetic actuator, its single-channel conductance and its Ca2+ permeability are relatively low. ChR2 variants with increased Ca2+ conductance were described recently but a further increase seemed possible. In addition, the H+ conductance of ChR2 may lead to cellular acidification and unintended pH-related side effects upon prolonged illumination. Through rational design, I developed several improved ChR2 variants with larger photocurrent, higher cation selectivity, and lower H+ conductance. (ii) The light-activated inward chloride pump NpHR is a widely used optogenetic tool for neural silencing. However, pronounced inactivation upon long time illumination constrains its application for long-lasting neural inhibition. I found that the deprotonation of the Schiff base underlies the inactivation of NpHR. Through systematically exploring optimized illumination schemes, I found illumination with blue light alone could profoundly increase the temporal stability of the NpHR-mediated photocurrent. A combination of green and violet light eliminates the inactivation effect, similar to blue light, but leading to a higher photocurrent and therefore better light-induced inhibition. (iii) Photoactivated adenylyl cyclases (PACs) were shown to be useful for light-manipulation of cellular cAMP levels. I developed a convenient in-vitro assay for soluble PACs that allows their reliable characterization. Comparison of different PACs revealed that bPAC from Beggiatoa is the best optogenetic tool for cAMP manipulation, due to its high efficiency and small size. However, a residual activity of bPAC in the dark is unwanted and the cytosolic localization prevents subcellular precise cAMP manipulation. I therefore introduced point mutations into bPAC to reduce its dark activity. Interestingly, I found that membrane targeting of bPAC with different linkers can remarkably alter its activity, in addition to its localization. Taken together, a set of PACs with different activity and subcellular localization were engineered for selection based on the intended usage. The membrane-bound PM-bPAC 2.0 with reduced dark activity is well-tolerated by hippocampal neurons and reliably evokes a transient photocurrent, when co-expression with a CNG channel. (iv) Bidirectional manipulation of cell activity with light of different wavelengths is of great importance in dissecting neural networks in the brain. Selection of optimal tool pairs is the first and most important step for dual-color optogenetics. Through N- and C-terminal modifications, an improved ChR variant (i.e. vf-Chrimson 2.0) was engineered and selected as the red light-controlled actuator for excitation. Detailed comparison of three two-component potassium channels, composed of bPAC and the cAMP-activated potassium channel SthK, revealed the superior properties of SthK-bP. Combining vf-Chrimson 2.0 and improved SthK-bP "SthK(TV418)-bP" could reliably induce depolarization by red light and hyperpolarization by blue light. A residual tiny crosstalk between vf-Chrimson 2.0 and SthK(TV418)-bP, when applying blue light, can be minimized to a negligible level by applying light pulses or simply lowering the blue light intensity.}, language = {en} }