@phdthesis{Scheuermann2021, author = {Scheuermann, Julian}, title = {Interbandkaskadenlaser f{\"u}r Anwendungen in der Absorptionsspektroskopie}, doi = {10.25972/OPUS-25179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251797}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Das Ziel dieser Arbeit war die Entwicklung und Weiterentwicklung von Laserlichtquellen basierend auf der Interbandkaskadentechnologie in einem Wellenl{\"a}ngenbereich von ca. 3 bis 6 µm. Der Fokus lag dabei auf der Entwicklung von Kantenemitter-Halbleiterlasern, welche bei verschiedensten Emissionswellenl{\"a}ngen erfolgreich hergestellt werden konnten. Dabei wurde auf jeweilige Herausforderungen eingegangen, welche entweder durch die Herstellung selbst oder der anwendungstechnischen Zielsetzung bedingt war. Im Rahmen dieser Arbeit wurden verschiedene, spektral einzelmodige Halbleiterlaser im angesprochenen Wellenl{\"a}ngenbereich entwickelt und hergestellt. Basierend auf dem jeweiligen Epitaxiematerial und der angestrebten Emissionswellenl{\"a}nge wurden Simulationen der optischen Lasermode durchgef{\"u}hrt und die grundlegenden f{\"u}r die Herstellung notwendigen Parameter bestimmt und experimentell umgesetzt. Des Weiteren wurden die verwendeten Verfahren f{\"u}r den jeweiligen Herstellungsprozess angepasst und optimiert. Das umfasst die in den ersten Kapiteln beschriebenen Schritte wie optische Lithografie, Elektronenstrahllithografie, reaktives Trocken{\"a}tzen und verschiedene Arten der Materialdeposition. Mit einer Emissionswellenl{\"a}nge von 2,8 µm wurde beispielsweise der bislang kurzwelligste bei Raumtemperatur im Dauerstrichbetrieb betriebene einzelmodige Interbandkaskadenlaser hergestellt. Dessen Leistungsmerkmale sind mit Diodenlasern im entsprechenden Emissionsbereich vergleichbar. Somit erg{\"a}nzt die Interbandkaskadentechnologie bestehende Technologien nahtlos und es ist eine l{\"u}ckenlose Wellenl{\"a}ngenabdeckung bis in den mittleren Infrarotbereich m{\"o}glich. Je nach Herstellungsprozess wurde außerdem auf die verteilte R{\"u}ckkopplung eingegangen und die Leistungsf{\"a}higkeit des verwendeten Metallgitterkonzeptes anhand von Messungen an spektral einzelmodigen Bauteile aufgezeigt. Es wurden aber auch die je nach Zielsetzung unterschiedlichen Herausforderungen aufgezeigt und diskutiert. F{\"u}r eine Anwendung wurden spezielle Laserchips mit zwei einzelmodigen Emissionswellenl{\"a}ngen bei 3928 nm und 4009 nm entwickelt. Die beiden Wellenl{\"a}ngen sind f{\"u}r die Detektion von Schwefeldioxid und Schwefelwasserstoff geeignet, welche zur {\"U}berwachung und Optimierung der Schwefelgewinnung durch das Claus-Verfahren notwendig sind. Bei der Umsetzung wurden auf einzelnen Chips zwei Laseremitter in einem Abstand von 70 µm platziert und mit je einem Metallgitter versehen. Das verwendete Epitaxiematerial war so konzipiert, dass es optimal f{\"u}r beide Zielwellenl{\"a}ngen verwendet werden kann. Die geforderten Eigenschaften wurden erf{\"u}llt und die Bauteile konnten erfolgreich hergestellt werden. Die Emissionseigenschaften und das spektrale Verhalten wurde bei beiden Zielwellenl{\"a}ngen bestimmt. Einzeln betrachtet erf{\"u}llen beide Emitter die notwendigen Eigenschaften um f{\"u}r spektroskopische Anwendungen eingesetzt werden zu k{\"o}nnen. Erg{\"a}nzend wurde zum einen das Abstimmverhalten der Emissionswellenl{\"a}nge in Abh{\"a}ngigkeit der Modulationsfrequenz des Betriebsstromes untersucht und zus{\"a}tzlich die thermische Abh{\"a}ngigkeit der Betriebsparameter beider Kan{\"a}le zueinander bestimmt. Diese Abh{\"a}ngigkeit ist f{\"u}r eine simultane Messung mit beiden Kan{\"a}len notwendig. Das Konzept mit mehreren Stegwellenleitern pro Laserchip wurde in einem weiteren Fall noch st{\"a}rker ausgearbeitet. Denn je nach Komplexit{\"a}t eines Gasgemisches sind zur Bestimmung der einzelnen Komponenten mehr Messpunkte bzw. Wellenl{\"a}ngen notwendig. Im zweiten Fall ist die Analyse der Kohlenwasserstoffe Methan, Ethan, Propan, Butan, Iso-Butan, Pentan und Iso-Pentan von Interesse, welche als Hauptbestandteile von Erdgas z.B. in Erdgasaufbereitungsanlagen oder zur Bestimmung des Heizwertes analysiert werden m{\"u}ssen. Die genannten Kohlenwasserstoffe zeigen ein starkes Absorptionsverhalten im Wellenl{\"a}ngenbereich von 3,3 bis 3,5 µm. Auf dem entsprechend angepassten Interbandkaskadenmaterial wurden Bauteile mit neun Wellenleitern pro Laserchip hergestellt. Mithilfe der neun einzelmodigen Emissionskan{\"a}le konnte ein Bereich von bis zu 190 nm (21 meV, 167 cm-1) adressiert werden. Außerdem wurde der sich mit zunehmender Wellenl{\"a}nge {\"a}ndernde Schichtaufbau und dessen Einfluss auf die Bauteileigenschaften diskutiert. Die Leistungsdaten der langwelligsten Epitaxie waren im Vergleich deutlich schw{\"a}cher. Um diesen Nachteil zu kompensieren, wurde eine spezielle Wellenleitergeometrie mit doppeltem Steg genutzt. Die Eigenschaften des Konzeptes wurden zuerst mittels Simulation untersucht und ein entsprechendes Herstellungsverfahren entwickelt. Mit der Simulation als Grundlage wurden die verschiedenen Prozessparameter {\"u}ber mehrere Prozessl{\"a}ufe iterativ optimiert und somit die Performance der Laser verbessert. Auch mit diesem Verfahren konnte ausreichende Kopplung an das Metallgitter erzielt werden. Abschließend wurden mit diesem Herstellungsverfahren einzelmodige Laser im Wellenl{\"a}ngenbereich von 5,9 bis {\"u}ber 6 Mikrometern realisiert. Diese Laser emittierten im Dauerstrichbetrieb bei einer maximalen Betriebstemperatur von -2 °C. Insgesamt wurde anhand der im Rahmen dieser Arbeit entwickelten Bauteilen und de ren Charakterisierung gezeigt, dass diese die Anforderungen von TLAS Anwendungen erf{\"u}llen. Jedoch konnte nur auf einen Teil der M{\"o}glichkeiten eingegangen werden, den die Interbandkaskadentechnologie bietet, denn die angesprochenen Einsatzgebiete stellen nur einzelne grundlegende M{\"o}glichkeiten dieser Technologie mit Schwerpunkt auf laserbasierte Lichtquellen dar. Zusammenfassend kann allerdings gesagt werden, dass sich die Interbandkaskadentechnologie etabliert hat. Gerade durch die gezeigten Leistungsdaten bei den Wellenl{\"a}ngen um 2,9 µm, 3,4 µm und 4,0 µm im Dauerstrichbetrieb bei Raumtemperatur wird ersichtlich, dass im Bereich der Sensorik die ICL Technologie in Bezug auf niedriger Strom- bzw. Leistungsaufnahme quasi konkurrenzlos ist. Sicherlich werden die Anwendungsgebiete in Zukunft noch vielf{\"a}ltiger. Denn es sind auf jeden Fall weitere Fortschritte in Richtung h{\"o}herer Emissionswellenl{\"a}ngen, deutlich h{\"o}herer Betriebstemperaturen, verbreiterte Emissionsbereiche oder g{\"a}nzlich andere Bauteil Konzepte wie z.B. f{\"u}r Frequenzk{\"a}mme bzw. Terahertz Anwendungen zu erwarten. Diese Entwicklung betrifft nicht nur den Einsatz als Lichtquelle, denn auch Interbandkaskadendetektoren bzw. Solarzellen wurden schon realisiert und werden weiterentwickelt.}, subject = {Halbleiterlaser}, language = {de} }