@phdthesis{Dietrich2024, author = {Dietrich, Philipp}, title = {Traveling Wave Magnetic Particle Imaging: Visuelle Stenosequantifizierung und Perkutane Transluminale Angioplastie im Gef{\"a}ßmodell}, doi = {10.25972/OPUS-35251}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352517}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Magnetic Particle Imaging (MPI) ist ein innovatives tomographisches Bildgebungs­verfahren, mit dem Tracerpartikel {\"a}ußerst sensitiv und schnell mehrdimensional abgebildet werden k{\"o}nnen. Die Methode basiert auf der nichtlinearen Magnetisierungs­antwort superparamagnetischer Eisenoxidnanopartikel (SPION) in einem Messpunkt, welcher ein Messvolumen rastert. In vorliegender Arbeit wurde das sog. Traveling Wave MPI (TWMPI) Verfahren eingesetzt, wodurch im Vergleich zu konventionellen MPI-Scannern ein gr{\"o}ßeres Field of View (FOV) und eine geringere Latenz bis zur Bildanzeige erreicht werden konnte. TWMPI weist einige f{\"u}r medizinische Zwecke vielversprechende Eigenschaften auf: Es liefert zwei- und dreidimensionale Bildrekonstruktionen in Echtzeit mit hoher zeitlicher und r{\"a}umlicher Aufl{\"o}sung. Dabei ist die Bildgebung von Grund auf hintergrundfrei und erfordert keinerlei ionisierende Strahlung. Zudem ist die Technik {\"a}ußerst sensitiv und kann SPION-Tracer noch in mikromolaren Konzentrationen detektieren. Ziel dieser Arbeit war es daher zu untersuchen, inwiefern es mittels TWMPI m{\"o}glich ist, k{\"u}nstliche Stenosen im Gef{\"a}ßmodell visuell in Echtzeit darzustellen und quantitativ zu beurteilen sowie {\"u}berdies eine perkutane transluminale Angioplastie (PTA) im Gef{\"a}ßmodell unter TWMPI-Echtzeit-Bildgebung durchzuf{\"u}hren. Alle Experimente wurden in einem speziell angefertigten TWMPI-Scanner durchgef{\"u}hrt (JMU W{\"u}rzburg, Experimentelle Physik V (Biophysik), FOV: 65 x 29 x 29 mm³, Aufl{\"o}sung: ca. 1.5 - 2 mm). Die Lumen-Darstellungen erfolgten mittels des SPION-Tracers Ferucarbotran in einer Verd{\"u}nnung von 1 : 50 (entspr. 10 mmol [Fe]/l). Das PTA-Instrumentarium wurde mit eigens hergestelltem ferucarbotran­haltigem Lack (100 mmol [Fe]/l) markiert. F{\"u}r die verschiedenen Teilexperimente wurden den jeweiligen speziellen Anforderungen entsprechend mehrere Gef{\"a}ßmodelle handgefertigt. F{\"u}r die visuelle Stenosequantifizierung wurden f{\"u}nf starre Stenosephantome unterschiedlicher Stenosierung (0\%, 25\%, 50\%, 75\%, 100\%) aus Polyoxymethylen her­gestellt (l: 40 mm, ID: 8 mm). Die Gef{\"a}ßmodelle wurden mehrfach zentral im FOV platz­iert und das stenosierte Lumen mittels sog. Slice-Scanning Modus (SSM, Einzel­aufnahme inkl. 10 Mittelungen: 200 ms, Bildfrequenz: 5 Bilder pro Sekunde, Latenz: ca. 100 ms) als zweidimensionale Quasi-Projektionen abgebildet. Diese Aufnahmen (n = 80, 16 je Phantom) wurden mit einer ein­heitlichen Grauskalierung versehen und anschließend entsprechend den NASCET-Kriterien visuell ausgewertet. Alle achtzig Aufnahmen waren unabh{\"a}ngig vom Stenosegrad aufgrund einheitlicher Fensterung sowie konstanter Scannerparameter untereinander gut vergleichbar. Niedrig­gradige Stenosen konnten insgesamt genauer abgebildet werden als h{\"o}hergradige, was sich neben der subjektiven Bildqualit{\"a}t auch in geringeren Standardabweichungen zeigte (0\%: 3.70 \% ± 2.71, 25\%: 18.64 \% ± 1.84, 50\%: 52.82 \% ± 3.66, 75\%: 77.84 \% ± 14.77, 100\%: 100 \% ± 0). Mit zunehmendem Stenosegrad kam es vermehrt zu geometrischen Ver­zerrungen im Zentrum, sodass bei den 75\%-Stenosen eine breitere Streuung der Messwerte mit einer h{\"o}heren Standardabweichung von 14.77\% einherging. Leichte, randst{\"a}ndige Artefakte konnten bei allen Datens{\"a}tzen beobachtet werden. F{\"u}r die PTA wurden drei interaktive Gef{\"a}ßmodelle aus Polyvinylchlorid (l: 100 mm, ID: 8 mm) mit zu- und abf{\"u}hrendem Schlauchsystem entwickelt, welche mittels Kabelband von außen hochgradig eingeengt werden konnten. Analog zu einer konventionellen PTA mittels r{\"o}ntgenbasierter digitaler Subtraktionsangiographie (DSA), wurden alle erforder­lichen Arbeitsschritte (Gef{\"a}ßdarstellung, Drahtpassage, Ballonplatzierung, Angioplastie, Erfolgskontrolle) unter (TW)MPI-Echtzeit-Bildgebung (Framerate: 2 - 4 FPS, Latenz: ca. 100 ms) abgebildet bzw. durchgef{\"u}hrt. Im Rahmen der PTA war eine Echtzeit-Visualisierung der Stenose im Gef{\"a}ßmodell durch Tracer-Bolusgabe sowie die F{\"u}hrung des markierten Instrumentariums zum Zielort m{\"o}glich. Die Markierung der Instrumente hielt der Beanspruchung w{\"a}hrend der Prozedur stand und erm{\"o}glichte eine genaue Platzierung des Ballonkatheters. Die Stenose konnte mittels Angioplastie-Ballons unter Echtzeit-Darstellung gesprengt werden und der Interventionserfolg im Anschluss durch erneute Visualisierung des Lumens validiert werden. Insgesamt zeigt sich MPI somit als ad{\"a}quate Bildgebungstechnik f{\"u}r die beiden in der Fragestellung bzw. Zielsetzung definierten experimentellen Anwendungen. Stenosen im Gef{\"a}ßmodell konnten erfolgreich in Echtzeit visualisiert und bildmorphologisch nach NASCET-Kriterien quantifiziert werden. Ebenso war eine PTA im Gef{\"a}ßmodell unter TWMPI-Echtzeit-Bildgebung machbar. Diese Ergebnisse unter­streichen das grundlegende Potenzial von MPI f{\"u}r medizinische Zwecke. Um zu den bereits etablierten Bildgebungsmethoden aufzuschließen, ist jedoch weitere Forschung im Bereich der Scanner-Hard- und -Software sowie bez{\"u}glich SPION-Tracern n{\"o}tig.}, subject = {Medizinische Radiologie}, language = {de} }