@phdthesis{Eckstein2019, author = {Eckstein, Klaus}, title = {Linear and Nonlinear Spectroscopy of Doped Carbon Nanotubes}, doi = {10.25972/OPUS-18897}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188975}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Doping plays a decisive role for the functionality of semiconductor-based (opto-)electronic devices. Hence, the technological utilization of semiconductors necessitates control and a fundamental understanding of the doping process. However, for low-dimensional systems like carbon nanotubes, neither concentration nor distribution of charge carriers is currently well known. The research presented in this thesis investigated the doping of semiconducting carbon nanotubes by spectroscopic methods. Samples of highly purified, intrinsic (6,5) single-wall carbon nanotubes were fabricated using polymer stabilization. Chapter 4 showed that both electro- and redox chemical \$p\$-doping lead to identical bleaching, blueshift, broadening and asymmetry of the S\$_1\$ exciton absorption band. The similar spectral changes induced by both doping schemes suggest that optical spectra can not be used to infer what process was used for doping. Perhaps more importantly, it also indicates that the distribution of charges and the character of the charge transfer states does not depend on the method by which doping was achieved. The detailed analysis of the doping-induced spectral changes in chapter 5 suggests that surplus charges are distributed inhomogeneously. The hypothesis of carrier localization is consistent with the high sensitivity of the S\$_1\$ exciton photoluminescence to additional charge carriers and with the stretched-exponential decay of the exciton population following ultrafast excitation. Both aspects are in good agreement with diffusion-limited contact quenching of excitons at localized charges. Moreover, localized charges act - similar to structural defects - as perturbations to the bandstructure as evidenced by a doping-induced increase of the D-band antiresonance in the mid-infrared spectrum. Quantum mechanical model calculations also suggest that counterions play a crucial role in carrier localization. Counterion adsorption at the nanotube surface is thus believed to induce charge traps of more than 100 meV depth with a carrier localization length on the order of 3 - 4 nm. The doping-induced bleach of interband absorption is accompanied by an absorption increase in the IR region below 600 meV. The observed shift of the IR peak position indicates a continuous transition from localized to rather delocalized charge carriers. This transition is caused by the increase of the overlap of charge carrier wavefunctions at higher charge densities and was modeled by classical Monte-Carlo simulations of intraband absorption. Chapter 6 discussed the spectroscopy of heavily (degenerately) doped nanotubes, which are characterized by a Drude-response of free-carrier intraband absorption in the optical conductivity spectrum. In the NIR spectral region, the S\$_1\$ exciton and X\$+^_1\$ trion absorption is replaced by a nearly 1 eV broad and constant absorption signal, the so-called H-band. The linear and transient absorption spectra of heavily doped nanotubes suggest that the H-band can be attributed to free-carrier interband transitions. Chapter 7 dealt with the quantification of charge carrier densities by linear absorption spectroscopy. A particularly good measure of the carrier density is the S\$_1\$ exciton bleach. For a bleach below about 50 \%, the carrier density is proportional to the bleach. At higher doping levels, deviations from the linear behavior were observed. For doping levels exceeding a fully bleached S\$_1\$ band, the determination of the normalized oscillator strength f\$\text{1st}\$ over the whole first subband region (trion, exciton, free e-h pairs) is recommended for quantification of carrier densities. Based on the nanotube density of states, the carrier density \$n\$ can be estimated using \$n = 0.74\,\text{nm}^{-1} \cdot (1 - f_\text{1st})\$. In the last part of this thesis (chapter 8), the time-resolved spectroelectrochemistry was extended to systems beyond photostable carbon nanotube films. The integration of a flowelectrolysis cell into the transient absorption spectrometer allows the investigation of in-situ electrochemically generated but photounstable molecules due to a continuous exchange of sample volume. First time-resolved experiments were successfully performed using the dye methylene blue and its electrochemically reduced form leucomethylene blue.}, subject = {Dotierung}, language = {en} }