@phdthesis{SpaethgebLutz2024, author = {Sp{\"a}th [geb. Lutz], Johanna}, title = {Oberfl{\"a}chenfunktionalisierte Gold- und Silbernanopartikel auf Basis von Thioether-Poly(glycidol) f{\"u}r potenzielle biomedizinische Anwendungen - Auswirkungen auf Stabilit{\"a}t, Proteinkoronabildung und Biodistribution}, doi = {10.25972/OPUS-35066}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350662}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Based on previous results showing that thioether modification of gold nanoparticles (AuNPs), especially coating with a multivalent system, yielded in excellent colloidal stability, the first aim of this thesis was to prove whether functionalization of silver nanoparticles (AgNPs) with thioether also has a comparable or even enhanced stabilization efficacy compared with the gold standard of coating with thiols and, particularly, whether the multivalency of polymers leads to stable AgNPs conjugates. Herein, AgNPs coated with mono- and multivalent thiol- and thioether polymers were prepared to systematically investigate the adsorption kinetics onto the silver surface as well as the colloidal stability after exposure to different conditions relevant for biomedical application. Although the thioether-polymers showed a slower immobilization onto AgNPs, same or mostly even better stabilization was exhibited than for the thiol analogs. As multivalent thioether-poly(glycidol) (PG) is already proven as a promising candidate for AuNP modification and stabilization, the second aim of this thesis was to examine the stealth behavior of thioether-PG, side-chain functionalized with various hydrophobic (alkyl and cholesteryl) units, to gain a deeper understanding of AuNP surface functionalization in terms of protein adsorption and their subsequent cellular uptake by human monocyte-derived macrophages. For this purpose, citrate-stabilized AuNPs were modified with the amphiphilic polymers by ligand exchange reaction, followed by incubation in human serum. The various surface amphiphilicities affected protein adsorption to a certain extent, with less hydrophobic particle layers leading to a more inhibited protein binding. Especially AuNPs functionalized with PG carrying the longest alkyl chain showed differences in the protein corona composition compared to the other polymer-coated NPs. In addition, PGylation, and especially prior serum incubation, of the NPs exhibited reduced macrophage internalization. As the use of mammals for in vivo experiments faces various challenges including increasing regulatory hurdles and costs, the third aim of this thesis was to validate larvae of the domestic silkworm Bombyx mori as an alternative invertebrate model for preliminary in vivo research, using AuNPs with various surface chemistry (one PEG-based modification and three PG-coatings with slightly hydrophobic functionalization, as well as positively and negatively charges) for studying their biodistribution and elimination. 6 h and 24 h after intra-hemolymph injection the Au content in different organ compartments was measured with ICP-MS, showing that positively charged particles appeared to be eliminated most rapidly through the midgut, while AuNPs modified with PEG, alkyl-functionalized PG and negatively charged PG exhibited long-term bioavailability in the silkworm body.}, subject = {Nanopartikel}, language = {en} }