@article{HutinLingTarbouriechetal.2022, author = {Hutin, Stephanie and Ling, Wai Li and Tarbouriech, Nicolas and Schoehn, Guy and Grimm, Clemens and Fischer, Utz and Burmeister, Wim P.}, title = {The vaccinia virus DNA helicase structure from combined single-particle cryo-electron microscopy and AlphaFold2 prediction}, series = {Viruses}, volume = {14}, journal = {Viruses}, number = {10}, issn = {1999-4915}, doi = {10.3390/v14102206}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290523}, year = {2022}, abstract = {Poxviruses are large DNA viruses with a linear double-stranded DNA genome circularized at the extremities. The helicase-primase D5, composed of six identical 90 kDa subunits, is required for DNA replication. D5 consists of a primase fragment flexibly attached to the hexameric C-terminal polypeptide (res. 323-785) with confirmed nucleotide hydrolase and DNA-binding activity but an elusive helicase activity. We determined its structure by single-particle cryo-electron microscopy. It displays an AAA+ helicase core flanked by N- and C-terminal domains. Model building was greatly helped by the predicted structure of D5 using AlphaFold2. The 3.9 {\AA} structure of the N-terminal domain forms a well-defined tight ring while the resolution decreases towards the C-terminus, still allowing the fit of the predicted structure. The N-terminal domain is partially present in papillomavirus E1 and polyomavirus LTA helicases, as well as in a bacteriophage NrS-1 helicase domain, which is also closely related to the AAA+ helicase domain of D5. Using the Pfam domain database, a D5_N domain followed by DUF5906 and Pox_D5 domains could be assigned to the cryo-EM structure, providing the first 3D structures for D5_N and Pox_D5 domains. The same domain organization has been identified in a family of putative helicases from large DNA viruses, bacteriophages, and selfish DNA elements.}, language = {en} }