@article{ScheinerSinkSpatzetal.2021, author = {Scheiner, Matthias and Sink, Alexandra and Spatz, Philipp and Endres, Erik and Decker, Michael}, title = {Photopharmacology on Acetylcholinesterase: Novel Photoswitchable Inhibitors with Improved Pharmacological Profiles}, series = {ChemPhotoChem}, volume = {5}, journal = {ChemPhotoChem}, number = {2}, doi = {10.1002/cptc.202000119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218445}, pages = {149 -- 159}, year = {2021}, abstract = {Considerable effort has previously been invested in a light-controlled inhibition of the enzyme acetylcholinesterase (AChE). We found that a novel azobenzene-based bistacrine AChE inhibitor switched faster than the known dithienylethene based bistacrine and inverted the photo-controlled interactions of the photoisomers compared to its dithienylethene congener. Furthermore, we have optimized a previously described light-controlled tacrine-based AChE inhibitor. Isomerization upon irradiation with UV light of the novel inhibitor was observed in aqueous medium and showed no fatigue over several cycles. The cis-enriched form showed an 8.4-fold higher inhibition of hAChE compared with its trans-enriched form and was about 30-fold more active than the reference compound tacrine with a single-digit nanomolar inhibition. We went beyond proof-of-concept to discover photoswitchable AChE inhibitors with pharmacologically desirable nanomolar inhibition, "cis-on" effect, and pronounces differences between the photoisomers.}, language = {en} }