@article{HuflageKunzHendeletal.2023, author = {Huflage, Henner and Kunz, Andreas Steven and Hendel, Robin and Kraft, Johannes and Weick, Stefan and Razinskas, Gary and Sauer, Stephanie Tina and Pennig, Lenhard and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Obesity-related pitfalls of virtual versus true non-contrast imaging — an intraindividual comparison in 253 oncologic patients}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {9}, issn = {2075-4418}, doi = {10.3390/diagnostics13091558}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313519}, year = {2023}, abstract = {Objectives: Dual-source dual-energy CT (DECT) facilitates reconstruction of virtual non-contrast images from contrast-enhanced scans within a limited field of view. This study evaluates the replacement of true non-contrast acquisition with virtual non-contrast reconstructions and investigates the limitations of dual-source DECT in obese patients. Materials and Methods: A total of 253 oncologic patients (153 women; age 64.5 ± 16.2 years; BMI 26.6 ± 5.1 kg/m\(^2\)) received both multi-phase single-energy CT (SECT) and DECT in sequential staging examinations with a third-generation dual-source scanner. Patients were allocated to one of three BMI clusters: non-obese: <25 kg/m\(^2\) (n = 110), pre-obese: 25-29.9 kg/m\(^2\) (n = 73), and obese: >30 kg/m\(^2\) (n = 70). Radiation dose and image quality were compared for each scan. DECT examinations were evaluated regarding liver coverage within the dual-energy field of view. Results: While arterial contrast phases in DECT were associated with a higher CTDI\(_{vol}\) than in SECT (11.1 vs. 8.1 mGy; p < 0.001), replacement of true with virtual non-contrast imaging resulted in a considerably lower overall dose-length product (312.6 vs. 475.3 mGy·cm; p < 0.001). The proportion of DLP variance predictable from patient BMI was substantial in DECT (R\(^2\) = 0.738) and SECT (R\(^2\) = 0.620); however, DLP of SECT showed a stronger increase in obese patients (p < 0.001). Incomplete coverage of the liver within the dual-energy field of view was most common in the obese subgroup (17.1\%) compared with non-obese (0\%) and pre-obese patients (4.1\%). Conclusion: DECT facilitates a 30.8\% dose reduction over SECT in abdominal oncologic staging examinations. Employing dual-source scanner architecture, the risk for incomplete liver coverage increases in obese patients.}, language = {en} }