@article{ShityakovBencurovaFoersteretal.2020, author = {Shityakov, Sergey and Bencurova, Elena and F{\"o}rster, Carola and Dandekar, Thomas}, title = {Modeling of shotgun sequencing of DNA plasmids using experimental and theoretical approaches}, series = {BMC Bioinformatics}, volume = {2020}, journal = {BMC Bioinformatics}, doi = {10.1186/s12859-020-3461-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229169}, year = {2020}, abstract = {Background Processing and analysis of DNA sequences obtained from next-generation sequencing (NGS) face some difficulties in terms of the correct prediction of DNA sequencing outcomes without the implementation of bioinformatics approaches. However, algorithms based on NGS perform inefficiently due to the generation of long DNA fragments, the difficulty of assembling them and the complexity of the used genomes. On the other hand, the Sanger DNA sequencing method is still considered to be the most reliable; it is a reliable choice for virtual modeling to build all possible consensus sequences from smaller DNA fragments. Results In silico and in vitro experiments were conducted: (1) to implement and test our novel sequencing algorithm, using the standard cloning vectors of different length and (2) to validate experimentally virtual shotgun sequencing using the PCR technique with the number of cycles from 1 to 9 for each reaction. Conclusions We applied a novel algorithm based on Sanger methodology to correctly predict and emphasize the performance of DNA sequencing techniques as well as in de novo DNA sequencing and its further application in synthetic biology. We demonstrate the statistical significance of our results.}, language = {en} } @techreport{Dandekar2021, type = {Working Paper}, author = {Dandekar, Thomas}, title = {A new cosmology of a crystallization process (decoherence) from the surrounding quantum soup provides heuristics to unify general relativity and quantum physics by solid state physics}, doi = {10.25972/OPUS-23076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230769}, pages = {42 Seiten}, year = {2021}, abstract = {We explore a cosmology where the Big Bang singularity is replaced by a condensation event of interacting strings. We study the transition from an uncontrolled, chaotic soup ("before") to a clearly interacting "real world". Cosmological inflation scenarios do not fit current observations and are avoided. Instead, long-range interactions inside this crystallization event limit growth and crystal symmetries ensure the same laws of nature and basic symmetries over our domain. Tiny mis-arrangements present nuclei of superclusters and galaxies and crystal structure leads to the arrangement of dark (halo regions) and normal matter (galaxy nuclei) so convenient for galaxy formation. Crystals come and go, allowing an evolutionary cosmology where entropic forces from the quantum soup "outside" of the crystal try to dissolve it. These would correspond to dark energy and leads to a big rip scenario in 70 Gy. Preference of crystals with optimal growth and most condensation nuclei for the next generation of crystals may select for multiple self-organizing processes within the crystal, explaining "fine-tuning" of the local "laws of nature" (the symmetry relations formed within the crystal, its "unit cell") to be particular favorable for self-organizing processes including life or even conscious observers in our universe. Independent of cosmology, a crystallization event may explain quantum-decoherence in general: The fact, that in our macroscopic everyday world we only see one reality. This contrasts strongly with the quantum world where you have coherence, a superposition of all quantum states. We suggest that a "real world" (so our everyday macroscopic world) happens only in our domain, i.e. inside a crystal. "Outside" of our domain and our observable universe there is the quantum soup of boiling quantum foam and superposition of all possibilities. In our crystallized world the vacuum no longer boils but is cooled down by the crystallization event and hence is 10**20 smaller, exactly as observed in our everyday world. As we live in a "solid" state, within a crystal, the different quanta which build our world have all their different states nicely separated. This theory postulates there are only n quanta and m states available for them (there is no Everett-like ever splitting multiverse after each decision). In the solid state we live in, there is decoherence, the states are nicely separated. The arrow of entropy for each edge of the crystal forms one fate, one worldline or clear development of a world, while the layers of the crystal are different system states. Some mathematical leads from loop quantum gravity point to required interactions and potentials. A complete mathematical treatment of this unified theory is far too demanding currently. Interaction potentials for strings or membranes of any dimension allow a solid state of quanta, so allowing decoherence in our observed world are challenging to calculate. However, if we introduce here the heuristic that any type of physical interaction of strings corresponds just to a type of calculation, there is already since 1898 the Hurwitz theorem showing that then only 1D, 2D, 4D and 8D (octonions) allow complex or hypercomplex number calculations. No other hypercomplex numbers and hence dimensions or symmetries are possible to allow calculations without yielding divisions by zero. However, the richest solution allowed by the Hurwitz theorem, octonions, is actually the observed symmetry of our universe, E8.  }, subject = {Kosmologie}, language = {en} } @article{DandekarEisenreich2015, author = {Dandekar, Thomas and Eisenreich, Wolfgang}, title = {Host-adapted metabolism and its regulation in bacterial pathogens}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {5}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {28}, issn = {2235-2988}, doi = {10.3389/fcimb.2015.00028}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196876}, year = {2015}, abstract = {No abstract available.}, language = {en} } @article{GrebinykPrylutskaBuchelnikovetal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Buchelnikov, Anatoliy and Tverdokhleb, Nina and Grebinyk, Sergii and Evstigneev, Maxim and Matyshevska, Olga and Cherepanov, Vsevolod and Prylutskyy, Yuriy and Yashchuk, Valeriy and Naumovets, Anton and Ritter, Uwe and Dandekar, Thomas and Frohme, Marcus}, title = {C60 fullerene as an effective nanoplatform of alkaloid Berberine delivery into leukemic cells}, series = {Pharmaceutics}, volume = {11}, journal = {Pharmaceutics}, number = {11}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11110586}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193216}, pages = {586}, year = {2019}, abstract = {A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle—C60 fullerene (C60)—for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV-Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C\(_{60}\) binding in an aqueous solution. Complexation with C\(_{60}\) was found to promote Ber intracellular uptake. By increasing C\(_{60}\) concentration, the C\(_{60}\)-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C\(_{60}\)-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C\(_{60}\) improved its in vitro efficiency against cancer cells.}, language = {en} } @article{AkhoonGuptaTiwarietal.2019, author = {Akhoon, Bashir A. and Gupta, Shishir K. and Tiwari, Sudeep and Rathor, Laxmi and Pant, Aakanksha and Singh, Nivedita and Gupta, Shailendra K. and Dandekar, Thomas and Pandey, Rakesh}, title = {C. elegans protein interaction network analysis probes RNAi validated pro-longevity effect of nhr-6, a human homolog of tumor suppressor Nr4a1}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-51649-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202666}, pages = {15711}, year = {2019}, abstract = {Protein-protein interaction (PPI) studies are gaining momentum these days due to the plethora of various high-throughput experimental methods available for detecting PPIs. Proteins create complexes and networks by functioning in harmony with other proteins and here in silico network biology hold the promise to reveal new functionality of genes as it is very difficult and laborious to carry out experimental high-throughput genetic screens in living organisms. We demonstrate this approach by computationally screening C. elegans conserved homologs of already reported human tumor suppressor and aging associated genes. We select by this nhr-6, vab-3 and gst-23 as predicted longevity genes for RNAi screen. The RNAi results demonstrated the pro-longevity effect of these genes. Nuclear hormone receptor nhr-6 RNAi inhibition resulted in a C. elegans phenotype of 23.46\% lifespan reduction. Moreover, we show that nhr-6 regulates oxidative stress resistance in worms and does not affect the feeding behavior of worms. These findings imply the potential of nhr-6 as a common therapeutic target for aging and cancer ailments, stressing the power of in silico PPI network analysis coupled with RNAi screens to describe gene function.}, language = {en} } @article{BencurovaGuptaSarukhanyanetal.2018, author = {Bencurova, Elena and Gupta, Shishir K. and Sarukhanyan, Edita and Dandekar, Thomas}, title = {Identification of antifungal targets based on computer modeling}, series = {Journal of Fungi}, volume = {4}, journal = {Journal of Fungi}, number = {3}, issn = {2309-608X}, doi = {10.3390/jof4030081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197670}, pages = {81}, year = {2018}, abstract = {Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host-pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools.}, language = {en} } @article{CecilGentschevAdelfingeretal.2019, author = {Cecil, Alexander and Gentschev, Ivaylo and Adelfinger, Marion and Dandekar, Thomas and Szalay, Aladar A.}, title = {Vaccinia virus injected human tumors: oncolytic virus efficiency predicted by antigen profiling analysis fitted boolean models}, series = {Bioengineered}, volume = {10}, journal = {Bioengineered}, number = {1}, doi = {10.1080/21655979.2019.1622220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200507}, pages = {190-196}, year = {2019}, abstract = {Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a promising approach for cancer therapy. Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a therapeutic potential in treating human prostate and hepatocellular carcinomas in xenografted mice. In this study, we describe the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus-injected human tumors. Antigen profiling data of vaccinia virus GLV-1h68-injected human xenografted mice were obtained, analyzed and used to calculate differences in the tumor growth signaling network by tumor type and gender. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, the T-killer cell mediated cell death, Interferon and Interleukin signaling networks. The in silico findings conform very well with in vivo findings of tumor growth. Similar to a previously published analysis of vaccinia virus-injected canine tumors, we were able to confirm the suitability of our boolean modeling for prediction of human tumor growth after virus infection in the current study as well. In summary, these findings indicate that our boolean models could be a useful tool for testing of the efficacy of VACV-mediated cancer therapy already before its use in human patients.}, language = {en} } @article{SrivastavaBencurovaGuptaetal.2019, author = {Srivastava, Mugdha and Bencurova, Elena and Gupta, Shishir K. and Weiss, Esther and L{\"o}ffler, J{\"u}rgen and Dandekar, Thomas}, title = {Aspergillus fumigatus challenged by human dendritic cells: metabolic and regulatory pathway responses testify a tight battle}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {9}, journal = {Frontiers in Cellular and Infection Microbiology}, doi = {10.3389/fcimb.2019.00168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201368}, pages = {168}, year = {2019}, abstract = {Dendritic cells (DCs) are antigen presenting cells which serve as a passage between the innate and the acquired immunity. Aspergillosis is a major lethal condition in immunocompromised patients caused by the adaptable saprophytic fungus Aspergillus fumigatus. The healthy human immune system is capable to ward off A. fumigatus infections however immune-deficient patients are highly vulnerable to invasive aspergillosis. A. fumigatus can persist during infection due to its ability to survive the immune response of human DCs. Therefore, the study of the metabolism specific to the context of infection may allow us to gain insight into the adaptation strategies of both the pathogen and the immune cells. We established a metabolic model of A. fumigatus central metabolism during infection of DCs and calculated the metabolic pathway (elementary modes; EMs). Transcriptome data were used to identify pathways activated when A. fumigatus is challenged with DCs. In particular, amino acid metabolic pathways, alternative carbon metabolic pathways and stress regulating enzymes were found to be active. Metabolic flux modeling identified further active enzymes such as alcohol dehydrogenase, inositol oxygenase and GTP cyclohydrolase participating in different stress responses in A. fumigatus. These were further validated by qRT-PCR from RNA extracted under these different conditions. For DCs, we outlined the activation of metabolic pathways in response to the confrontation with A. fumigatus. We found the fatty acid metabolism plays a crucial role, along with other metabolic changes. The gene expression data and their analysis illuminate additional regulatory pathways activated in the DCs apart from interleukin regulation. In particular, Toll-like receptor signaling, NOD-like receptor signaling and RIG-I-like receptor signaling were active pathways. Moreover, we identified subnetworks and several novel key regulators such as UBC, EGFR, and CUL3 of DCs to be activated in response to A. fumigatus. In conclusion, we analyze the metabolic and regulatory responses of A. fumigatus and DCs when confronted with each other.}, language = {en} } @article{SbieraKunzWeigandetal.2019, author = {Sbiera, Silviu and Kunz, Meik and Weigand, Isabel and Deutschbein, Timo and Dandekar, Thomas and Fassnacht, Martin}, title = {The new genetic landscape of Cushing's disease: deubiquitinases in the spotlight}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers11111761}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193194}, pages = {1761}, year = {2019}, abstract = {Cushing's disease (CD) is a rare condition caused by adrenocorticotropic hormone (ACTH)-producing adenomas of the pituitary, which lead to hypercortisolism that is associated with high morbidity and mortality. Treatment options in case of persistent or recurrent disease are limited, but new insights into the pathogenesis of CD are raising hope for new therapeutic avenues. Here, we have performed a meta-analysis of the available sequencing data in CD to create a comprehensive picture of CD's genetics. Our analyses clearly indicate that somatic mutations in the deubiquitinases are the key drivers in CD, namely USP8 (36.5\%) and USP48 (13.3\%). While in USP48 only Met415 is affected by mutations, in USP8 there are 26 different mutations described. However, these different mutations are clustering in the same hotspot region (affecting in 94.5\% of cases Ser718 and Pro720). In contrast, pathogenic variants classically associated with tumorigenesis in genes like TP53 and BRAF are also present in CD but with low incidence (12.5\% and 7\%). Importantly, several of these mutations might have therapeutic potential as there are drugs already investigated in preclinical and clinical setting for other diseases. Furthermore, network and pathway analyses of all somatic mutations in CD suggest a rather unified picture hinting towards converging oncogenic pathways.}, language = {en} } @article{SarukhanyanShityakovDandekar2020, author = {Sarukhanyan, Edita and Shityakov, Sergey and Dandekar, Thomas}, title = {Rational drug design of Axl tyrosine kinase type I inhibitors as promising candidates against cancer}, series = {Frontiers in Chemistry}, volume = {7}, journal = {Frontiers in Chemistry}, number = {920}, issn = {2296-2646}, doi = {10.3389/fchem.2019.00920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199505}, year = {2020}, abstract = {The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors.}, language = {en} }