@article{LamatschAdolfssonSenioretal.2015, author = {Lamatsch, Dunja K. and Adolfsson, Sofia and Senior, Alistair M. and Christiansen, Guntram and Pichler, Maria and Ozaki, Yuichi and Smeds, Linnea and Schartl, Manfred and Nakagawa, Shinichi}, title = {A transcriptome derived female-specific marker from the invasive Western mosquitofish (Gambusia affinis)}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0118214}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144004}, pages = {e0118214}, year = {2015}, abstract = {Sex-specific markers are a prerequisite for understanding reproductive biology, genetic factors involved in sex differences, mechanisms of sex determination, and ultimately the evolution of sex chromosomes. The Western mosquitofish, Gambusia affinis, may be considered a model species for sex-chromosome evolution, as it displays female heterogamety (ZW/ZZ), and is also ecologically interesting as a worldwide invasive species. Here, de novo RNA-sequencing on the gonads of sexually mature G. affinis was used to identify contigs that were highly transcribed in females but not in males (i.e., transcripts with ovary-specific expression). Subsequently, 129 primer pairs spanning 79 contigs were tested by PCR to identify sex-specific transcripts. Of those primer pairs, one female-specific DNA marker was identified, Sanger sequenced and subsequently validated in 115 fish. Sequence analyses revealed a high similarity between the identified sex-specific marker and the 3' UTR of the aminomethyl transferase (amt) gene of the closely related platyfish (Xiphophorus maculatus). This is the first time that RNA-seq has been used to successfully characterize a sex-specific marker in a fish species in the absence of a genome map. Additionally, the identified sex-specific marker represents one of only a handful of such markers in fishes.}, language = {en} } @article{KangManousakiFranchinietal.2015, author = {Kang, Ji Hyoun and Manousaki, Tereza and Franchini, Paolo and Kneitz, Susanne and Schartl, Manfred and Meyer, Axel}, title = {Transcriptomics of two evolutionary novelties: how to make a sperm-transfer organ out of an anal fin and a sexually selected "sword" out of a caudal fin}, series = {Ecology and Evolution}, volume = {5}, journal = {Ecology and Evolution}, number = {4}, doi = {10.1002/ece3.1390}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144139}, pages = {848-864}, year = {2015}, abstract = {Swords are exaggerated male ornaments of swordtail fishes that have been of great interest to evolutionary biologists ever since Darwin described them in the Descent of Man (1871). They are a novel sexually selected trait derived from modified ventral caudal fin rays and are only found in the genus Xiphophorus. Another phylogenetically more widespread and older male trait is the gonopodium, an intromittent organ found in all poeciliid fishes, that is derived from a modified anal fin. Despite many evolutionary and behavioral studies on both traits, little is known so far about the molecular mechanisms underlying their development. By investigating transcriptomic changes (utilizing a RNA-Seq approach) in response to testosterone treatment in the swordtail fish, Xiphophorus hellerii, we aimed to better understand the architecture of the gene regulatory networks underpinning the development of these two evolutionary novelties. Large numbers of genes with tissue-specific expression patterns were identified. Among the sword genes those involved in embryonic organ development, sexual character development and coloration were highly expressed, while in the gonopodium rather more morphogenesis-related genes were found. Interestingly, many genes and genetic pathways are shared between both developing novel traits derived from median fins: the sword and the gonopodium. Our analyses show that a larger set of gene networks was co-opted during the development and evolution of the older gonopodium than in the younger, and morphologically less complex trait, the sword. We provide a catalog of candidate genes for future efforts to dissect the development of those sexually selected exaggerated male traits in swordtails.}, language = {en} } @article{JonesFrucianoKelleretal.2016, author = {Jones, Julia C. and Fruciano, Carmelo and Keller, Anja and Schartl, Manfred and Meyer, Axel}, title = {Evolution of the elaborate male intromittent organ of Xiphophorus fishes}, series = {Ecology and Evolution}, volume = {6}, journal = {Ecology and Evolution}, number = {20}, doi = {10.1002/ece3.2396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164956}, pages = {7207-7220}, year = {2016}, abstract = {Internally fertilizing animals show a remarkable diversity in male genital morphology that is associated with sexual selection, and these traits are thought to be evolving particularly rapidly. Male fish in some internally fertilizing species have "gonopodia," highly modified anal fins that are putatively important for sexual selection. However, our understanding of the evolution of genital diversity remains incomplete. Contrary to the prediction that male genital traits evolve more rapidly than other traits, here we show that gonopodial traits and other nongonopodial traits exhibit similar evolutionary rates of trait change and also follow similar evolutionary models in an iconic genus of poeciliid fish (Xiphophorus spp.). Furthermore, we find that both mating and nonmating natural selection mechanisms are unlikely to be driving the diverse Xiphophorus gonopodial morphology. Putative holdfast features of the male genital organ do not appear to be influenced by water flow, a candidate selective force in aquatic habitats. Additionally, interspecific divergence in gonopodial morphology is not significantly higher between sympatric species, than between allopatric species, suggesting that male genitals have not undergone reproductive character displacement. Slower rates of evolution in gonopodial traits compared with a subset of putatively sexually selected nongenital traits suggest that different selection mechanisms may be acting on the different trait types. Further investigations of this elaborate trait are imperative to determine whether it is ultimately an important driver of speciation.}, language = {en} } @article{BrunetVolffSchartl2016, author = {Brunet, Fr{\´e}d{\´e}ric G. and Volff, Jean-Nicolas and Schartl, Manfred}, title = {Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates}, series = {Genome Biology Evolution}, volume = {8}, journal = {Genome Biology Evolution}, number = {15}, doi = {10.1093/gbe/evw103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146988}, pages = {1600-1613}, year = {2016}, abstract = {The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75\% after 1R/2R, 64.4\% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling.}, language = {en} } @article{KneitzMishraChalopinetal.2016, author = {Kneitz, Susanne and Mishra, Rasmi R. and Chalopin, Domitille and Postlethwait, John and Warren, Wesley C. and Walther, Ronald B. and Schartl, Manfred}, title = {Germ cell and tumor associated piRNAs in the medaka and \(Xiphophorus\) melanoma models}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, number = {357}, doi = {10.1186/s12864-016-2697-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146028}, year = {2016}, abstract = {Background A growing number of studies report an abnormal expression of Piwi-interacting RNAs (piRNAs) and the piRNA processing enzyme Piwi in many cancers. Whether this finding is an epiphenomenon of the chaotic molecular biology of the fast dividing, neoplastically transformed cells or is functionally relevant to tumorigenesisis is difficult to discern at present. To better understand the role of piRNAs in cancer development small laboratory fish models can make a valuable contribution. However, little is known about piRNAs in somatic and neoplastic tissues of fish. Results To identify piRNA clusters that might be involved in melanoma pathogenesis, we use several transgenic lines of medaka, and platyfish/swordtail hybrids, which develop various types of melanoma. In these tumors Piwi, is expressed at different levels, depending on tumor type. To quantify piRNA levels, whole piRNA populations of testes and melanomas of different histotypes were sequenced. Because no reference piRNA cluster set for medaka or Xiphophorus was yet available we developed a software pipeline to detect piRNA clusters in our samples and clusters were selected that were enriched in one or more samples. We found several loci to be overexpressed or down-regulated in different melanoma subtypes as compared to hyperpigmented skin. Furthermore, cluster analysis revealed a clear distinction between testes, low-grade and high-grade malignant melanoma in medaka. Conclusions Our data imply that dysregulation of piRNA expression may be associated with development of melanoma. Our results also reinforce the importance of fish as a suitable model system to study the role of piRNAs in tumorigenesis.}, language = {en} } @article{AdolfiHerpinRegensburgeretal.2016, author = {Adolfi, Mateus C. and Herpin, Amaury and Regensburger, Martina and Sacquegno, Jacopo and Waxman, Joshua S. and Schartl, Manfred}, title = {Retinoic acid and meiosis induction in adult versus embryonic gonads of medaka}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep34281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147843}, pages = {34281}, year = {2016}, abstract = {In vertebrates, one of the first recognizable sex differences in embryos is the onset of meiosis, known to be regulated by retinoic acid (RA) in mammals. We investigated in medaka a possible meiotic function of RA during the embryonic sex determination (SD) period and in mature gonads. We found RA mediated transcriptional activation in germ cells of both sexes much earlier than the SD stage, however, no such activity during the critical stages of SD. In adults, expression of the RA metabolizing enzymes indicates sexually dimorphic RA levels. In testis, RA acts directly in Sertoli, Leydig and pre-meiotic germ cells. In ovaries, RA transcriptional activity is highest in meiotic oocytes. Our results show that RA plays an important role in meiosis induction and gametogenesis in adult medaka but contrary to common expectations, not for initiating the first meiosis in female germ cells at the SD stage.}, language = {en} } @article{ShenChalopinGarciaetal.2016, author = {Shen, Yingjia and Chalopin, Domitille and Garcia, Tzintzuni and Boswell, Mikki and Boswell, William and Shiryev, Sergey A. and Agarwala, Richa and Volff, Jean-Nicolas and Postlethwait, John H. and Schartl, Manfred and Minx, Patrick and Warren, Wesley C. and Walter, Ronald B.}, title = {X. couchianus and X. hellerii genome models provide genomic variation insight among Xiphophorus species}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, doi = {10.1186/s12864-015-2361-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164582}, pages = {37}, year = {2016}, abstract = {Background Xiphophorus fishes are represented by 26 live-bearing species of tropical fish that express many attributes (e.g., viviparity, genetic and phenotypic variation, ecological adaptation, varied sexual developmental mechanisms, ability to produce fertile interspecies hybrids) that have made attractive research models for over 85 years. Use of various interspecies hybrids to investigate the genetics underlying spontaneous and induced tumorigenesis has resulted in the development and maintenance of pedigreed Xiphophorus lines specifically bred for research. The recent availability of the X. maculatus reference genome assembly now provides unprecedented opportunities for novel and exciting comparative research studies among Xiphophorus species. Results We present sequencing, assembly and annotation of two new genomes representing Xiphophorus couchianus and Xiphophorus hellerii. The final X. couchianus and X. hellerii assemblies have total sizes of 708 Mb and 734 Mb and correspond to 98 \% and 102 \% of the X. maculatus Jp 163 A genome size, respectively. The rates of single nucleotide change range from 1 per 52 bp to 1 per 69 bp among the three genomes and the impact of putatively damaging variants are presented. In addition, a survey of transposable elements allowed us to deduce an ancestral TE landscape, uncovered potential active TEs and document a recent burst of TEs during evolution of this genus. Conclusions Two new Xiphophorus genomes and their corresponding transcriptomes were efficiently assembled, the former using a novel guided assembly approach. Three assembled genome sequences within this single vertebrate order of new world live-bearing fishes will accelerate our understanding of relationship between environmental adaptation and genome evolution. In addition, these genome resources provide capability to determine allele specific gene regulation among interspecies hybrids produced by crossing any of the three species that are known to produce progeny predisposed to tumor development.}, language = {en} } @article{BiscottiGerdolCanapaetal.2016, author = {Biscotti, Maria Assunta and Gerdol, Marco and Canapa, Adriana and Forconi, Mariko and Olmo, Ettore and Pallavicini, Alberto and Barucca, Marco and Schartl, Manfred}, title = {The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {21571}, doi = {10.1038/srep21571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167753}, year = {2016}, abstract = {Lungfish and coelacanths are the only living sarcopterygian fish. The phylogenetic relationship of lungfish to the last common ancestor of tetrapods and their close morphological similarity to their fossil ancestors make this species uniquely interesting. However their genome size, the largest among vertebrates, is hampering the generation of a whole genome sequence. To provide a partial solution to the problem, a high-coverage lungfish reference transcriptome was generated and assembled. The present findings indicate that lungfish, not coelacanths, are the closest relatives to land-adapted vertebrates. Whereas protein-coding genes evolve at a very slow rate, possibly reflecting a "living fossil" status, transposable elements appear to be active and show high diversity, suggesting a role for them in the remarkable expansion of the lungfish genome. Analyses of single genes and gene families documented changes connected to the water to land transition and demonstrated the value of the lungfish reference transcriptome for comparative studies of vertebrate evolution.}, language = {en} } @article{BertChmielewskaBergmannetal.2016, author = {Bert, Bettina and Chmielewska, Justyna and Bergmann, Sven and Busch, Maximilian and Driever, Wolfgang and Finger-Baier, Karin and H{\"o}ßler, Johanna and K{\"o}hler, Almut and Leich, Nora and Misgeld, Thomas and N{\"o}ldner, Torsten and Reiher, Annegret and Schartl, Manfred and Seebach-Sproedt, Anja and Thumberger, Thomas and Sch{\"o}nfelder, Gilbert and Grune, Barbara}, title = {Considerations for a European animal welfare standard to evaluate adverse phenotypes in teleost fish}, series = {The EMBO Journal}, volume = {35}, journal = {The EMBO Journal}, number = {11}, doi = {10.15252/embj.201694448}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188783}, pages = {1151-1154}, year = {2016}, abstract = {No abstract available.}, language = {en} } @article{LiuChenGaoetal.2017, author = {Liu, Han and Chen, Chunhai and Gao, Zexia and Min, Jiumeng and Gu, Yongming and Jian, Jianbo and Jiang, Xiewu and Cai, Huimin and Ebersberger, Ingo and Xu, Meng and Zhang, Xinhui and Chen, Jianwei and Luo, Wei and Chen, Boxiang and Chen, Junhui and Liu, Hong and Li, Jiang and Lai, Ruifang and Bai, Mingzhou and Wei, Jin and Yi, Shaokui and Wang, Huanling and Cao, Xiaojuan and Zhou, Xiaoyun and Zhao, Yuhua and Wei, Kaijian and Yang, Ruibin and Liu, Bingnan and Zhao, Shancen and Fang, Xiaodong and Schartl, Manfred and Qian, Xueqiao and Wang, Weimin}, title = {The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet}, series = {GigaScience}, volume = {6}, journal = {GigaScience}, number = {7}, doi = {10.1093/gigascience/gix039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170844}, year = {2017}, abstract = {The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation.}, language = {en} }