@article{BertChmielewskaBergmannetal.2016, author = {Bert, Bettina and Chmielewska, Justyna and Bergmann, Sven and Busch, Maximilian and Driever, Wolfgang and Finger-Baier, Karin and H{\"o}ßler, Johanna and K{\"o}hler, Almut and Leich, Nora and Misgeld, Thomas and N{\"o}ldner, Torsten and Reiher, Annegret and Schartl, Manfred and Seebach-Sproedt, Anja and Thumberger, Thomas and Sch{\"o}nfelder, Gilbert and Grune, Barbara}, title = {Considerations for a European animal welfare standard to evaluate adverse phenotypes in teleost fish}, series = {The EMBO Journal}, volume = {35}, journal = {The EMBO Journal}, number = {11}, doi = {10.15252/embj.201694448}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188783}, pages = {1151-1154}, year = {2016}, abstract = {No abstract available.}, language = {en} } @article{LiuChenGaoetal.2017, author = {Liu, Han and Chen, Chunhai and Gao, Zexia and Min, Jiumeng and Gu, Yongming and Jian, Jianbo and Jiang, Xiewu and Cai, Huimin and Ebersberger, Ingo and Xu, Meng and Zhang, Xinhui and Chen, Jianwei and Luo, Wei and Chen, Boxiang and Chen, Junhui and Liu, Hong and Li, Jiang and Lai, Ruifang and Bai, Mingzhou and Wei, Jin and Yi, Shaokui and Wang, Huanling and Cao, Xiaojuan and Zhou, Xiaoyun and Zhao, Yuhua and Wei, Kaijian and Yang, Ruibin and Liu, Bingnan and Zhao, Shancen and Fang, Xiaodong and Schartl, Manfred and Qian, Xueqiao and Wang, Weimin}, title = {The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet}, series = {GigaScience}, volume = {6}, journal = {GigaScience}, number = {7}, doi = {10.1093/gigascience/gix039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170844}, year = {2017}, abstract = {The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation.}, language = {en} } @article{BiscottiAdolfiBaruccaetal.2018, author = {Biscotti, Maria Assunta and Adolfi, Mateus Contar and Barucca, Marco and Forconi, Mariko and Pallavicini, Alberto and Gerdol, Marco and Canapa, Adriana and Schartl, Manfred}, title = {A comparative view on sex differentiation and gametogenesis genes in lungfish and coelacanths}, series = {Genome Biology and Evolution}, volume = {10}, journal = {Genome Biology and Evolution}, number = {6}, doi = {10.1093/gbe/evy101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176774}, pages = {1430-1444}, year = {2018}, abstract = {Gonadal sex differentiation and reproduction are the keys to the perpetuation of favorable gene combinations and positively selected traits. In vertebrates, several gonad development features that differentiate tetrapods and fishes are likely to be, at least in part, related to the water-to-land transition. The collection of information from basal sarcopterygians, coelacanths, and lungfishes, is crucial to improve our understanding of the molecular evolution of pathways involved in reproductive functions, since these organisms are generally regarded as "living fossils" and as the direct ancestors of tetrapods. Here, we report for the first time the characterization of >50 genes related to sex differentiation and gametogenesis in Latimeria menadoensis and Protopterus annectens. Although the expression profiles of most genes is consistent with the intermediate position of basal sarcopterygians between actinopterygian fish and tetrapods, their phylogenetic placement and presence/absence patterns often reveal a closer affinity to the tetrapod orthologs. On the other hand, particular genes, for example, the male gonad factor gsdf (Gonadal Soma-Derived Factor), provide examples of ancestral traits shared with actinopterygians, which disappeared in the tetrapod lineage.}, language = {en} } @article{KottlerSchartl2018, author = {Kottler, Verena A. and Schartl, Manfred}, title = {The colorful sex chromosomes of teleost fish}, series = {Genes}, volume = {9}, journal = {Genes}, number = {5}, doi = {10.3390/genes9050233}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176587}, pages = {233}, year = {2018}, abstract = {Teleost fish provide some of the most intriguing examples of sexually dimorphic coloration, which is often advantageous for only one of the sexes. Mapping studies demonstrated that the genetic loci underlying such color patterns are frequently in tight linkage to the sex-determining locus of a species, ensuring sex-specific expression of the corresponding trait. Several genes affecting color synthesis and pigment cell development have been previously described, but the color loci on the sex chromosomes have mostly remained elusive as yet. Here, we summarize the current knowledge about the genetics of such color loci in teleosts, mainly from studies on poeciliids and cichlids. Further studies on these color loci will certainly provide important insights into the evolution of sex chromosomes.}, language = {en} } @article{SchartlSchoriesWatamatsuetal.2018, author = {Schartl, Manfred and Schories, Susanne and Watamatsu, Yuko and Nagao, Yusuke and Hashimoto, Hisashi and Bertin, Chlo{\´e} and Mourot, Brigitte and Schmidt, Cornelia and Wilhelm, Dagmar and Centanin, Lazaro and Guiguen, Yann and Herpin, Amaury}, title = {Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements}, series = {BMC Biology}, volume = {16}, journal = {BMC Biology}, number = {16}, doi = {10.1186/s12915-018-0485-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175827}, year = {2018}, abstract = {Background: Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. Results: We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Conclusions: Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element.}, language = {en} } @article{AnelliOrdasKneitzetal.2018, author = {Anelli, Viviana and Ordas, Anita and Kneitz, Susanne and Sagredo, Leonel Munoz and Gourain, Victor and Schartl, Manfred and Meijer, Annemarie H. and Mione, Marina}, title = {Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression}, series = {Frontiers in Genetics}, volume = {9}, journal = {Frontiers in Genetics}, number = {675}, issn = {1664-8021}, doi = {10.3389/fgene.2018.00675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196963}, year = {2018}, abstract = {Ras genes are among the most commonly mutated genes in human cancer; yet our understanding of their oncogenic activity at the molecular mechanistic level is incomplete. To identify downstream events that mediate ras-induced cellular transformation in vivo, we analyzed global microRNA expression in three different models of Ras-induction and tumor formation in zebrafish. Six microRNAs were found increased in Ras-induced melanoma, glioma and in an inducible model of ubiquitous Ras expression. The upregulation of the microRNAs depended on the activation of the ERK and AKT pathways and to a lesser extent, on mTOR signaling. Two Ras-induced microRNAs (miR-146a and 193a) target Jmjd6, inducing downregulation of its mRNA and protein levels at the onset of Ras expression during melanoma development. However, at later stages of melanoma progression, jmjd6 levels were found elevated. The dynamic of Jmjd6 levels during progression of melanoma in the zebrafish model suggests that upregulation of the microRNAs targeting Jmjd6 may be part of an anti-cancer response. Indeed, triple transgenic fish engineered to express a microRNA-resistant Jmjd6 from the onset of melanoma have increased tumor burden, higher infiltration of leukocytes and shorter melanoma-free survival. Increased JMJD6 expression is found in several human cancers, including melanoma, suggesting that the up-regulation of Jmjd6 is a critical event in tumor progression. The following link has been created to allow review of record GSE37015: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=jjcrbiuicyyqgpc\&acc=GSE37015.}, language = {en} } @article{FranchiniJonesXiongetal.2018, author = {Franchini, Paolo and Jones, Julia C. and Xiong, Peiwen and Kneitz, Susanne and Gompert, Zachariah and Warren, Wesley C. and Walter, Ronald B. and Meyer, Axel and Schartl, Manfred}, title = {Long-term experimental hybridisation results in the evolution of a new sex chromosome in swordtail fish}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07648-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228396}, year = {2018}, abstract = {The remarkable diversity of sex determination mechanisms known in fish may be fuelled by exceptionally high rates of sex chromosome turnovers or transitions. However, the evolutionary causes and genomic mechanisms underlying this variation and instability are yet to be understood. Here we report on an over 30-year evolutionary experiment in which we tested the genomic consequences of hybridisation and selection between two Xiphophorus fish species with different sex chromosome systems. We find that introgression and imposing selection for pigmentation phenotypes results in the retention of an unexpectedly large maternally derived genomic region. During the hybridisation process, the sex-determining region of the X chromosome from one parental species was translocated to an autosome in the hybrids leading to the evolution of a new sex chromosome. Our results highlight the complexity of factors contributing to patterns observed in hybrid genomes, and we experimentally demonstrate that hybridisation can catalyze rapid evolution of a new sex chromosome.}, language = {en} } @article{LiuKinoshitaAdolfietal.2019, author = {Liu, Ruiqi and Kinoshita, Masato and Adolfi, Mateus C. and Schartl, Manfred}, title = {Analysis of the role of the Mc4r system in development, growth, and puberty of medaka}, series = {Frontiers in Endocrinology}, volume = {10}, journal = {Frontiers in Endocrinology}, doi = {10.3389/fendo.2019.00213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201472}, pages = {213}, year = {2019}, abstract = {In mammals the melanocortin 4 receptor (Mc4r) signaling system has been mainly associated with the regulation of appetite and energy homeostasis. In fish of the genus Xiphophorus (platyfish and swordtails) puberty onset is genetically determined by a single locus, which encodes the mc4r. Wild populations of Xiphophorus are polymorphic for early and late-maturing individuals. Copy number variation of different mc4r alleles is responsible for the difference in puberty onset. To answer whether this is a special adaptation of the Mc4r signaling system in the lineage of Xiphophorus or a more widely conserved mechanism in teleosts, we studied the role of Mc4r in reproductive biology of medaka (Oryzias latipes), a close relative to Xiphophorus and a well-established model to study gonadal development. To understand the potential role of Mc4r in medaka, we characterized the major features of the Mc4r signaling system (mc4r, mrap2, pomc, agrp1). In medaka, all these genes are expressed before hatching. In adults, they are mainly expressed in the brain. The transcript of the receptor accessory protein mrap2 co-localizes with mc4r in the hypothalamus in adult brains indicating a conserved function of modulating Mc4r signaling. Comparing growth and puberty between wild-type and mc4r knockout medaka revealed that absence of Mc4r does not change puberty timing but significantly delays hatching. Embryonic development of knockout animals is retarded compared to wild-types. In conclusion, the Mc4r system in medaka is involved in regulation of growth rather than puberty.}, language = {en} } @article{MatosMachadoSchartletal.2019, author = {Matos, Isa and Machado, Miguel P. and Schartl, Manfred and Coelho, Maria Manuela}, title = {Allele-specific expression variation at different ploidy levels in Squalius alburnoides}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-40210-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200910}, pages = {3688}, year = {2019}, abstract = {Allopolyploid plants are long known to be subject to a homoeolog expression bias of varying degree. The same phenomenon was only much later suspected to occur also in animals based on studies of single selected genes in an allopolyploid vertebrate, the Iberian fish Squalius alburnoides. Consequently, this species became a good model for understanding the evolution of gene expression regulation in polyploid vertebrates. Here, we analyzed for the first time genome-wide allele-specific expression data from diploid and triploid hybrids of S. alburnoides and compared homoeolog expression profiles of adult livers and of juveniles. Co-expression of alleles from both parental genomic types was observed for the majority of genes, but with marked homoeolog expression bias, suggesting homoeolog specific reshaping of expression level patterns in hybrids. Complete silencing of one allele was also observed irrespective of ploidy level, but not transcriptome wide as previously speculated. Instead, it was found only in a restricted number of genes, particularly ones with functions related to mitochondria and ribosomes. This leads us to hypothesize that allelic silencing may be a way to overcome intergenomic gene expression interaction conflicts, and that homoeolog expression bias may be an important mechanism in the achievement of sustainable genomic interactions, mandatory to the success of allopolyploid systems, as in S. alburnoides.}, language = {en} } @article{DechaudVolffSchartletal.2019, author = {Dechaud, Corentin and Volff, Jean-Nicolas and Schartl, Manfred and Naville, Magali}, title = {Sex and the TEs: transposable elements in sexual development and function in animals}, series = {Mobile DNA}, volume = {10}, journal = {Mobile DNA}, doi = {10.1186/s13100-019-0185-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202510}, pages = {42}, year = {2019}, abstract = {Transposable elements are endogenous DNA sequences able to integrate into and multiply within genomes. They constitute a major source of genetic innovations, as they can not only rearrange genomes but also spread ready-to-use regulatory sequences able to modify host gene expression, and even can give birth to new host genes. As their evolutionary success depends on their vertical transmission, transposable elements are intrinsically linked to reproduction. In organisms with sexual reproduction, this implies that transposable elements have to manifest their transpositional activity in germ cells or their progenitors. The control of sexual development and function can be very versatile, and several studies have demonstrated the implication of transposable elements in the evolution of sex. In this review, we report the functional and evolutionary relationships between transposable elements and sexual reproduction in animals. In particular, we highlight how transposable elements can influence expression of sexual development genes, and how, reciprocally, they are tightly controlled in gonads. We also review how transposable elements contribute to the organization, expression and evolution of sexual development genes and sex chromosomes. This underscores the intricate co-evolution between host functions and transposable elements, which regularly shift from a parasitic to a domesticated status useful to the host.}, language = {en} }