@article{ThomaWischmeyerOffenetal.2012, author = {Thoma, Eva C. and Wischmeyer, Erhard and Offen, Nils and Maurus, Katja and Sir{\´e}n, Anna-Leena and Schartl, Manfred and Wagner, Toni U.}, title = {Ectopic expression of Neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75862}, year = {2012}, abstract = {Recent studies show that combinations of defined key developmental transcription factors (TFs) can reprogram somatic cells to pluripotency or induce cell conversion of one somatic cell type to another. However, it is not clear if single genes can define a cells identity and if the cell fate defining potential of TFs is also operative in pluripotent stem cells in vitro. Here, we show that ectopic expression of the neural TF Neurogenin2 (Ngn2) is sufficient to induce rapid and efficient differentiation of embryonic stem cells (ESCs) into mature glutamatergic neurons. Ngn2-induced neuronal differentiation did not require any additional external or internal factors and occurred even under pluripotency-promoting conditions. Differentiated cells displayed neuron-specific morphology, protein expression, and functional features, most importantly the generation of action potentials and contacts with hippocampal neurons. Gene expression analyses revealed that Ngn2-induced in vitro differentiation partially resembled neurogenesis in vivo, as it included specific activation of Ngn2 target genes and interaction partners. These findings demonstrate that a single gene is sufficient to determine cell fate decisions of uncommitted stem cells thus giving insights into the role of key developmental genes during lineage commitment. Furthermore, we present a promising tool to improve directed differentiation strategies for applications in both stem cell research and regenerative medicine.}, subject = {Physiologie}, language = {en} } @article{RaslanAlbertWeissenbergerErnestusetal.2012, author = {Raslan, Furat and Albert-Weißenberger, Christiane and Ernestus, Ralf-Ingo and Kleinschnitz, Christoph and Sir{\´e}n, Anna-Leena}, title = {Focal brain trauma in the cryogenic lesion model in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75419}, year = {2012}, abstract = {The method to induce unilateral cryogenic lesions was first described in 1958 by Klatzo. We describe here an adaptation of this model that allows reliable measurement of lesion volume and vasogenic edema by 2, 3, 5-triphenyltetrazolium chloride-staining and Evans blue extravasation in mice. A copper or aluminium cylinder with a tip diameter of 2.5 mm is cooled with liquid nitrogen and placed on the exposed skull bone over the parietal cortex (coordinates from bregma: 1.5 mm posterior, 1.5 mm lateral). The tip diameter and the contact time between the tip and the parietal skull determine the extent of cryolesion. Due to an early damage of the blood brain barrier, the cryogenic cortical injury is characterized by vasogenic edema, marked brain swelling, and inflammation. The lesion grows during the first 24 hours, a process involving complex interactions between endothelial cells, immune cells, cerebral blood flow, and the intracranial pressure. These contribute substantially to the damage from the initial injury. The major advantage of the cryogenic lesion model is the circumscribed and highly reproducible lesion size and location.}, subject = {Medizin}, language = {en} } @article{AlbertWeissenbergerVarrallyayRaslanetal.2012, author = {Albert-Weißenberger, Christiane and V{\´a}rrallyay, Csan{\´a}d and Raslan, Furat and Kleinschnitz, Christoph and Sir{\´e}n, Anna-Leena}, title = {An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75368}, year = {2012}, abstract = {Traumatic brain injury (TBI) is a result of an outside force causing immediate mechanical disruption of brain tissue and delayed pathogenic events. In order to examine injury processes associated with TBI, a number of rodent models to induce brain trauma have been described. However, none of these models covers the entire spectrum of events that might occur in TBI. Here we provide a thorough methodological description of a straightforward closed head weight drop mouse model to assess brain injuries close to the clinical conditions of human TBI.}, subject = {Medizin}, language = {en} } @article{AlbertWeissenbergerSiren2010, author = {Albert-Weissenberger, Christiane and Sir{\´e}n, Anna-Leena}, title = {Experimental traumatic brain injury}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68131}, year = {2010}, abstract = {Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury.}, subject = {Trauma}, language = {en} } @article{Siren1982, author = {Sir{\´e}n, Anna-Leena}, title = {Differences in central actions of arachidonic acid and prostaglandin F\(_{2\alpha}\) between spontaneously hypertensive and normotensive rats}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63324}, year = {1982}, abstract = {Prostag1andin F\(_{2\alpha}\) (PGF\(_{2\alpha}\)) is one of the most common metabo1ites of arachidonic acid (M) in rat brain. When administered intracerebroventricularly (i.c.v.) to rats, both AA and PGFal exert dose-related hypertensive, tachycardic and hyperthermic effects. Metabolie alterations in the endogenaus formation of some prostaglandins in the brain-stem of spontaneously hypertensive rats (SHR) have been reported. Therefore the central effects of AA and PGF \(_{2\alpha}\) on blood pressure, heart rate and body temperature were studied both in SHR and nonootensive Wistar rats (NR) under urethane-anaesthesia. The hypertensive effect of AA i.c.v. (0.01-100 \(\mu\)g/rat) was larger in magni tude in SHR than in NR, but there was no significant difference in the M-induced changes of heart rate and body temperature between the groups. Pretreatment of NR wi th soditm1 :meclofenamate (1 mg/rat i.c.v.) antagonised the central effects of M indicating that these effects are not due to M itself but to its conversion to prostaglandins. Unlike the effects of AA, the central hypertensive, tachycardic and hyperthennic responses to PGF\(_{2\alpha}\) (0.5-50 l-lg/rat i.c.v .) were significantly attenuated in SHR. The present results obtained with M are conpatible with the previous assumption that the synthesis of prostaglandins in the brain of SHR might differ from that in NR. The results also demonstrate that the central effects of PGF\(_{2\alpha}\) are reduced in SHR.}, subject = {Neurobiologie}, language = {en} } @article{EimerlSirenFeuerstein1986, author = {Eimerl, J. and Sir{\´e}n, Anna-Leena and Feuerstein, G.}, title = {Systemic and regional hemodynamic effects of leukotrienes D\(_4\) and E\(_4\) in the conscious rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63317}, year = {1986}, abstract = {No abstract available}, subject = {Neurobiologie}, language = {en} } @article{SirenFeuersteinLabrooetal.1986, author = {Sir{\´e}n, Anna-Leena and Feuerstein, G. and Labroo, V. M. and Coleen, L. A. and Lozovsky, D.}, title = {Effect of thyrotropin releasing hormone and some of its histidine analogs on the cardiovascular system and prolactin release in the conscious rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63307}, year = {1986}, abstract = {The cardiovascular and endocrine activity of three analogs of thyrotropin releasing hor.mone (TRH), 4-nitro-imidazole TRH (4-nitroTRH), 2-trifluoro-methyl-imidazole TRH (2-TFM-TRH) and 4-trifluoromethyl- imidazole TRH (4-TFM-TRH), was compared to TRH in conscious rats. Injection of TRH or the three analogs (1 mg/kg or 5 mg/kg) into the arterial line induced increases in mean arterial pressure, pulse pressure and heart rate and raised plasma prolactin (PRL). None of the analogs were more potent than TRH in inducing cardiovascular changes. The 4-TFM-TRH was significantly less potent than the 2-TFM-TRH in increasing blood pressure, while the nitro-TRH was more potent than the 2-TFM-TRH in producing tachycardia. TRH induced a two-fold increase in PRL at the 5 mg/kg dose, while both the fluorinated analogs elici ted a 4 to 5 fold increase in PRL at the higher dose. The present results suggest that the receptors for TRH-elicited PRL release differ from TRH-receptors involved in its cardiovascular actions.}, subject = {Neurobiologie}, language = {en} } @article{SirenFeuerstein1986, author = {Sir{\´e}n, Anna-Leena and Feuerstein, G.}, title = {Effect of T-2 toxin on regional blood flow and vascular resistance in the conscious rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63293}, year = {1986}, abstract = {The acute effect ofT-2 toxemia on local blood flow and vascular resistance in hindquarter. mesenteric. and renal vascular beds was continuously measured by the directional pulsed Doppler technique in conscious, male Sprague-Dawley rats. Intravenous injection ofT-2 toxin (I mg/kg) in the conscious rat reduced blood flow and increased vascular resistance in all blood vessels studied but had no significant effect on mean arterial pressure or heart rate. The blood flow in hindquarters gradually decreased to a minimum of -77 ± 9\% (mean ±SE) 6 hr after the toxin injection. The hindquarter vascular resistance concomitantly increased to a maximum value of + 323 ± 69\% above thc resistance before toxin administration. Mesenteric and renal blood flow initially increased (slightly) and then gradually decreased. The maximum drop of blood flow, -90 ± 13\% and -76 ± 13\% for the mesenteric and renal vascular beds, respectively, was achieved 4 hr after T-2 toxin injection and the blood flow values remained low for up to 6 hr. Simultaneously with the impairment of}, subject = {Neurobiologie}, language = {en} } @article{SirenPowellFeuerstein1986, author = {Sir{\´e}n, Anna-Leena and Powell, E. and Feuerstein, G.}, title = {Thyrotropin releasing hormone in hypovolemia: a hemodynamic evaluation in the rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63288}, year = {1986}, abstract = {ln the present study the effects of thyrotropin releasing hormone (TRH) and its stable analogue, CG3703, on cardiac output (thermodilution, Cardiomax) and regional blood flow (BF; directional pulsed Doppler technique) were investigated in hypovolemic hypotension in the rat. In urethan-anesthetized rats TRH (0.5 or 2 mg/ kg ia) or CG3703 (0.05 or 0.5 mg/kg ia) reversed the bleeding (27\% of the blood volume)-induced decreases in mean arterial ...}, subject = {Neurobiologie}, language = {en} } @article{PaakkariNurminenSiren1986, author = {Paakkari, I. and Nurminen, M-L. and Sir{\´e}n, Anna-Leena}, title = {Cardioventilatory effects of TRH in anesthetized rats: role of the brainstem}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63277}, year = {1986}, abstract = {Cardioventilator responses were studied in anaesthetized rats after injections of TRH into either the lateral (i.c.v. lat) or the fourth (i.c.v. IV) cerebral ventricles. TRH induced a morerapid hypertensive effect i.c.v. IV than i.c.v. lat. Blocking of the cerebral aqueduct abolished the hypertensive and tachypnoeic effects of TRH i.c.v. lat but not those of TRH i.c.v. IV. It is concluded that TRH increased blood pressure and ventilation rate via brain stem structures close to the fourtli ventricle.}, subject = {Neurobiologie}, language = {en} }