@article{RedlichZhangBenjaminetal.2022, author = {Redlich, Sarah and Zhang, Jie and Benjamin, Caryl and Dhillon, Maninder Singh and Englmeier, Jana and Ewald, J{\"o}rg and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Hovestadt, Thomas and Kollmann, Johannes and Koellner, Thomas and K{\"u}bert-Flock, Carina and Kunstmann, Harald and Menzel, Annette and Moning, Christoph and Peters, Wibke and Riebl, Rebekka and Rummler, Thomas and Rojas-Botero, Sandra and Tobisch, Cynthia and Uhler, Johannes and Uphus, Lars and M{\"u}ller, J{\"o}rg and Steffan-Dewenter, Ingolf}, title = {Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi-scale experimental design}, series = {Methods in Ecology and Evolution}, volume = {13}, journal = {Methods in Ecology and Evolution}, number = {2}, doi = {10.1111/2041-210X.13759}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258270}, pages = {514-527}, year = {2022}, abstract = {Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981-2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6-9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5-10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs.}, language = {en} } @article{PetersHempAppelhansetal.2016, author = {Peters, Marcell K. and Hemp, Andreas and Appelhans, Tim and Behler, Christina and Classen, Alice and Detsch, Florian and Ensslin, Andreas and Ferger, Stefan W. and Frederiksen, Sara B. and Gebert, Frederike and Haas, Michael and Helbig-Bonitz, Maria and Hemp, Claudia and Kindeketa, William J. and Mwangomo, Ephraim and Ngereza, Christine and Otte, Insa and R{\"o}der, Juliane and Rutten, Gemma and Costa, David Schellenberger and Tardanico, Joseph and Zancolli, Giulia and Deckert, J{\"u}rgen and Eardley, Connal D. and Peters, Ralph S. and R{\"o}del, Mark-Oliver and Schleuning, Matthias and Ssymank, Axel and Kakengi, Victor and Zhang, Jie and B{\"o}hning-Gaese, Katrin and Brandl, Roland and Kalko, Elisabeth K.V. and Kleyer, Michael and Nauss, Thomas and Tschapka, Marco and Fischer, Markus and Steffan-Dewenter, Ingolf}, title = {Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13736}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169374}, year = {2016}, abstract = {The factors determining gradients of biodiversity are a fundamental yet unresolved topic in ecology. While diversity gradients have been analysed for numerous single taxa, progress towards general explanatory models has been hampered by limitations in the phylogenetic coverage of past studies. By parallel sampling of 25 major plant and animal taxa along a 3.7 km elevational gradient on Mt. Kilimanjaro, we quantify cross-taxon consensus in diversity gradients and evaluate predictors of diversity from single taxa to a multi-taxa community level. While single taxa show complex distribution patterns and respond to different environmental factors, scaling up diversity to the community level leads to an unambiguous support for temperature as the main predictor of species richness in both plants and animals. Our findings illuminate the influence of taxonomic coverage for models of diversity gradients and point to the importance of temperature for diversification and species coexistence in plant and animal communities.}, language = {en} } @article{RequierPailletLarocheetal.2019, author = {Requier, Fabrice and Paillet, Yoan and Laroche, Fabienne and Rutschmann, Benjamin and Zhang, Jie and Lombardi, Fabio and Svoboda, Miroslav and Steffan-Dewenter, Ingolf}, title = {Contribution of European forests to safeguard wild honeybee populations}, series = {Conservation Letters}, volume = {13}, journal = {Conservation Letters}, number = {2}, doi = {10.1111/conl.12693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204407}, pages = {e12693}, year = {2019}, abstract = {Abstract Recent studies reveal the use of tree cavities by wild honeybee colonies in European forests. This highlights the conservation potential of forests for a highly threatened component of the native entomofauna in Europe, but currently no estimate of potential wild honeybee population sizes exists. Here, we analyzed the tree cavity densities of 106 forest areas across Europe and inferred an expected population size of wild honeybees. Both forest and management types affected the density of tree cavities. Accordingly, we estimated that more than 80,000 wild honeybee colonies could be sustained in European forests. As expected, potential conservation hotspots were identified in unmanaged forests, and, surprisingly, also in other large forest areas across Europe. Our results contribute to the EU policy strategy to halt pollinator declines and reveal the potential of forest areas for the conservation of so far neglected wild honeybee populations in Europe.}, language = {en} }