@unpublished{HoebartnerSteinmetzgerPalanisamyetal.2018, author = {H{\"o}bartner, Claudia and Steinmetzger, Christian and Palanisamy, Navaneethan and Gore, Kiran R.}, title = {A multicolor large Stokes shift fluorogen-activating RNA aptamer with cationic chromophores}, series = {Chemistry - A European Journal}, journal = {Chemistry - A European Journal}, doi = {https://doi.org/10.1002/chem.201805882}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174197}, year = {2018}, abstract = {Large Stokes shift (LSS) fluorescent proteins (FPs) exploit excited state proton transfer pathways to enable fluorescence emission from the phenolate intermediate of their internal 4 hydroxybenzylidene imidazolone (HBI) chromophore. An RNA aptamer named Chili mimics LSS FPs by inducing highly Stokes-shifted emission from several new green and red HBI analogs that are non-fluorescent when free in solution. The ligands are bound by the RNA in their protonated phenol form and feature a cationic aromatic side chain for increased RNA affinity and reduced magnesium dependence. In combination with oxidative functional-ization at the C2 position of the imidazolone, this strategy yielded DMHBO\(^+\), which binds to the Chili aptamer with a low-nanomolar K\(_D\). Because of its highly red-shifted fluorescence emission at 592 nm, the Chili-DMHBO\(^+\) complex is an ideal fluorescence donor for F{\"o}rster resonance energy transfer (FRET) to the rhodamine dye Atto 590 and will therefore find applications in FRET-based analytical RNA systems.}, language = {en} } @article{OkudaLenzSeitzetal.2023, author = {Okuda, Takumi and Lenz, Ann-Kathrin and Seitz, Florian and Vogel, J{\"o}rg and H{\"o}bartner, Claudia}, title = {A SAM analogue-utilizing ribozyme for site-specific RNA alkylation in living cells}, series = {Nature Chemistry}, journal = {Nature Chemistry}, doi = {10.1038/s41557-023-01320-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-328762}, year = {2023}, abstract = {Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes.}, language = {en} } @unpublished{MaghamiScheitlHoebartner2019, author = {Maghami, Mohammad Ghaem and Scheitl, Carolin P. M. and H{\"o}bartner, Claudia}, title = {Direct in vitro selection of trans-acting ribozymes for posttranscriptional, site-specific, and covalent fluorescent labeling of RNA}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.9b10531}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192333}, year = {2019}, abstract = {General and efficient tools for site-specific fluorescent or bioorthogonal labeling of RNA are in high demand. Here, we report direct in vitro selection, characterization, and application of versatile trans-acting 2'-5' adenylyl transferase ribozymes for covalent and site-specific RNA labeling. The design of our partially structured RNA pool allowed for in vitro evolution of ribozymes that modify a predetermined nucleotide in cis (i.e. intramolecular reaction), and were then easily engineered for applications in trans (i.e. in an intermolecular setup). The resulting ribozymes are readily designed for specific target sites in small and large RNAs and accept a wide variety of N6-modified ATP analogues as small molecule substrates. The most efficient new ribozyme (FH14) shows excellent specificity towards its target sequence also in the context of total cellular RNA.}, language = {en} } @article{RonaldHoebartner2020, author = {Ronald, Micura and H{\"o}bartner, Claudia}, title = {Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes}, series = {Chemical Society Reviews}, journal = {Chemical Society Reviews}, edition = {Advance Article}, doi = {10.1039/D0CS00617C}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212133}, year = {2020}, abstract = {This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.}, language = {en} } @unpublished{SednevLiaqatHoebartner2022, author = {Sednev, Maksim V. and Liaqat, Anam and H{\"o}bartner, Claudia}, title = {High-Throughput Activity Profiling of RNA-Cleaving DNA Catalysts by Deoxyribozyme Sequencing (DZ-seq)}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.1c12489}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258520}, year = {2022}, abstract = {RNA-cleaving deoxyribozymes have found broad application as useful tools for RNA biochemistry. However, tedious in vitro selection procedures combined with laborious characterization of individual candidate catalysts hinder the discovery of novel catalytic motifs. Here, we present a new high-throughput sequencing method, DZ-seq, which directly measures activity and localizes cleavage sites of thousands of deoxyribozymes. DZ-seq exploits A-tailing followed by reverse transcription with an oligo-dT primer to capture the cleavage status and sequences of both deoxyribozyme and RNA substrate. We validated DZ-seq by conventional analytical methods and demonstrated its utility by discovery of novel deoxyribozymes that allow for cleaving challenging RNA targets or the analysis of RNA modification states.}, language = {en} } @incollection{LiaqatSednevHoebartner2022, author = {Liaqat, Anam and Sednev, Maksim V. and H{\"o}bartner, Claudia}, title = {In Vitro Selection of Deoxyribozymes for the Detection of RNA Modifications}, series = {Ribosome Biogenesis: Methods and Protocols}, booktitle = {Ribosome Biogenesis: Methods and Protocols}, publisher = {Humana Press}, isbn = {978-1-0716-2501-9}, doi = {10.1007/978-1-0716-2501-9_10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279208}, publisher = {Universit{\"a}t W{\"u}rzburg}, pages = {167-179}, year = {2022}, abstract = {Deoxyribozymes are artificially evolved DNA molecules with catalytic abilities. RNA-cleaving deoxyribozymes have been recognized as an efficient tool for detection of modifications in target RNAs and provide an alternative to traditional and modern methods for detection of ribose or nucleobase methylation. However, there are only few examples of DNA enzymes that specifically reveal the presence of a certain type of modification, including N6-methyladenosine, and the knowledge about how DNA enzymes recognize modified RNAs is still extremely limited. Therefore, DNA enzymes cannot be easily engineered for the analysis of desired RNA modifications, but are instead identified by in vitro selection from random DNA libraries using synthetic modified RNA substrates. This protocol describes a general in vitro selection stagtegy to evolve new RNA-cleaving DNA enzymes that can efficiently differentiate modified RNA substrates from their unmodified counterpart.}, language = {en} } @article{MieczkowskiSteinmetzgerBessietal.2021, author = {Mieczkowski, Mateusz and Steinmetzger, Christian and Bessi, Irene and Lenz, Ann-Kathrin and Schmiedel, Alexander and Holzapfel, Marco and Lambert, Christoph and Pena, Vladimir and H{\"o}bartner, Claudia}, title = {Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-021-23932-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254527}, pages = {3549}, year = {2021}, abstract = {Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer.}, language = {en} } @article{KabingerStillerSchmitzovaetal.2021, author = {Kabinger, Florian and Stiller, Carina and Schmitzov{\´a}, Jana and Dienemann, Christian and Kokic, Goran and Hillen, Hauke S. and H{\"o}bartner, Claudia and Cramer, Patrick}, title = {Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis}, series = {Nature Structural \& Molecular Biology}, volume = {28}, journal = {Nature Structural \& Molecular Biology}, doi = {10.1038/s41594-021-00651-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254603}, pages = {740-746}, year = {2021}, abstract = {Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-d-\(N^4\)-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.}, language = {en} } @article{KokicHillenTegunovetal.2021, author = {Kokic, Goran and Hillen, Hauke S. and Tegunov, Dimitry and Dienermann, Christian and Seitz, Florian and Schmitzova, Jana and Farnung, Lucas and Siewert, Aaron and H{\"o}bartner, Claudia and Cramer, Patrick}, title = {Mechanism of SARS-CoV-2 polymerase stalling by remdesivir}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, doi = {10.1038/s41467-020-20542-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220979}, year = {2021}, abstract = {Remdesivir is the only FDA-approved drug for the treatment of COVID-19 patients. The active form of remdesivir acts as a nucleoside analog and inhibits the RNA-dependent RNA polymerase (RdRp) of coronaviruses including SARS-CoV-2. Remdesivir is incorporated by the RdRp into the growing RNA product and allows for addition of three more nucleotides before RNA synthesis stalls. Here we use synthetic RNA chemistry, biochemistry and cryoelectron microscopy to establish the molecular mechanism of remdesivir-induced RdRp stalling. We show that addition of the fourth nucleotide following remdesivir incorporation into the RNA product is impaired by a barrier to further RNA translocation. This translocation barrier causes retention of the RNA 3ʹ-nucleotide in the substrate-binding site of the RdRp and interferes with entry of the next nucleoside triphosphate, thereby stalling RdRp. In the structure of the remdesivir-stalled state, the 3ʹ-nucleotide of the RNA product is matched and located with the template base in the active center, and this may impair proofreading by the viral 3ʹ-exonuclease. These mechanistic insights should facilitate the quest for improved antivirals that target coronavirus replication.}, language = {en} } @article{LiaqatStillerMicheletal.2020, author = {Liaqat, Anam and Stiller, Carina and Michel, Manuela and Sednev, Maksim V. and H{\"o}bartner, Claudia}, title = {N\(^6\)-Isopentenyladenosine in RNA Determines the Cleavage Site of Endonuclease Deoxyribozymes}, series = {Angewandte Chemie International Edition}, journal = {Angewandte Chemie International Edition}, edition = {Early View}, doi = {10.1002/ange.202006218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212121}, year = {2020}, abstract = {RNA-cleaving deoxyribozymes can serve as selective sensors and catalysts to examine the modification state of RNA. However, site-specific endonuclease deoxyribozymes that selectively cleave posttranscriptionally modified RNA are extremely rare and their specificity over unmodified RNA is low. In this study, we report that the native tRNA modification N\(^6\)-isopentenyladenosine (i\(^6\)A) strongly enhances the specificity and has the power to reconfigure the active site of an RNA-cleaving deoxyribozyme. Using in vitro selection, we identified a DNA enzyme that cleaves i\(^6\)A-modified RNA at least 2500-fold faster than unmodified RNA. Another deoxyribozyme shows unique and unprecedented behaviour by shifting its cleavage site in the presence of the i\(^6\)A RNA modification. Together with deoxyribozymes that are strongly inhibited by i\(^6\)A, these results highlight intricate ways of modulating the catalytic activity of DNA by posttranscriptional RNA modifications.}, language = {en} }