@article{WagnerWetzWiegeringetal.2021, author = {Wagner, Johanna C. and Wetz, Anja and Wiegering, Armin and Lock, Johan F. and L{\"o}b, Stefan and Germer, Christoph-Thomas and Klein, Ingo}, title = {Successful surgical closure of infected abdominal wounds following preconditioning with negative pressure wound therapy}, series = {Langenbeck's Archives of Surgery}, volume = {406}, journal = {Langenbeck's Archives of Surgery}, number = {7}, issn = {1435-2451}, doi = {10.1007/s00423-021-02221-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267541}, pages = {2479-2487}, year = {2021}, abstract = {Purpose Traditionally, previous wound infection was considered a contraindication to secondary skin closure; however, several case reports describe successful secondary wound closure of wounds "preconditioned" with negative pressure wound therapy (NPWT). Although this has been increasingly applied in daily practice, a systematic analysis of its feasibility has not been published thus far. The aim of this study was to evaluate secondary skin closure in previously infected abdominal wounds following treatment with NPWT. Methods Single-center retrospective analysis of patients with infected abdominal wounds treated with NPWT followed by either secondary skin closure referenced to a group receiving open wound therapy. Endpoints were wound closure rate, wound complications (such as recurrent infection or hernia), and perioperative data (such as duration of NPWT or hospitalization parameters). Results One hundred ninety-eight patients during 2013-2016 received a secondary skin closure after NPWT and were analyzed and referenced to 67 patients in the same period with open wound treatment after NPWT. No significant difference in BMI, chronic immunosuppressive medication, or tobacco use was found between both groups. The mean duration of hospital stay was 30 days with a comparable duration in both patient groups (29 versus 33 days, p = 0.35). Interestingly, only 7.7\% of patients after secondary skin closure developed recurrent surgical site infection and in over 80\% of patients were discharged with closed wounds requiring only minimal outpatient wound care. Conclusion Surgical skin closure following NPWT of infected abdominal wounds is a good and safe alternative to open wound treatment. It prevents lengthy outpatient wound therapy and is expected to result in a higher quality of life for patients and reduce health care costs.}, language = {en} } @phdthesis{Eiring2021, author = {Eiring, Patrick}, title = {Super-resolution microscopy of plasma membrane receptors}, doi = {10.25972/OPUS-25004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250048}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Plasma membrane receptors are the most crucial and most commonly studied components of cells, since they not only ensure communication between the extracellular space and cells, but are also responsible for the regulation of cell cycle and cell division. The composition of the surface receptors, the so-called "Receptome", differs and is characteristic for certain cell types. Due to their significance, receptors have been important target structures for diagnostic and therapy in cancer medicine and often show aberrant expression patterns in various cancers compared to healthy cells. However, these aberrations can also be exploited and targeted by different medical approaches, as in the case of personalized immunotherapy. In addition, advances in modern fluorescence microscopy by so-called single molecule techniques allow for unprecedented sensitive visualization and quantification of molecules with an attainable spatial resolution of 10-20 nm, allowing for the detection of both stoichiometric and expression density differences. In this work, the single molecule sensitive method dSTORM was applied to quantify the receptor composition of various cell lines as well as in primary samples obtained from patients with hematologic malignancies. The focus of this work lies on artefact free quantification, stoichiometric analyses of oligomerization states and co localization analyses of membrane receptors. Basic requirements for the quantification of receptors are dyes with good photoswitching properties and labels that specifically mark the target structure without generating background through non-specific binding. To ensure this, antibodies with a predefined DOL (degree of labeling) were used, which are also standard in flow cytometry. First background reduction protocols were established on cell lines prior analyses in primary patient samples. Quantitative analyses showed clear expression differences between the cell lines and the patient cells, but also between individual patients. An important component of this work is the ability to detect the oligomerization states of receptors, which enables a more accurate quantification of membrane receptor densities compared to standard flow cytometry. It also provides information about the activation of a certain receptor, for example of FLT3, a tyrosine kinase, dimerizing upon activation. For this purpose, different well-known monomers and dimers were compared to distinguish the typical localization statistics of single bound antibodies from two or more antibodies that are in proximity. Further experiments as well as co localization analyses proved that antibodies can bind to closely adjacent epitopes despite their size. These analytical methods were subsequently applied for quantification and visualization of receptors in two clinically relevant examples. Firstly, various therapeutically relevant receptors such as CD38, BCMA and SLAMF7 for multiple myeloma, a malignant disease of plasma cells, were analyzed and quantified on patient cells. Furthermore, the influence of TP53 and KRAS mutations on receptor expression levels was investigated using the multiple myeloma cell lines OPM2 and AMO1, showing clear differences in certain receptor quantities. Secondly, FLT3 which is a therapeutic target receptor for acute myeloid leukemia, was quantified and stoichiometrically analyzed on both cell lines and patient cells. In addition, cells that have developed resistance against midostaurin were compared with cells that still respond to this type I tyrosine-kinase-inhibitor for their FLT3 receptor expression and oligomerization state.}, subject = {Fluoreszenzmikroskopie}, language = {en} } @phdthesis{Schlegel2021, author = {Schlegel, Jan}, title = {Super-Resolution Microscopy of Sphingolipids and Protein Nanodomains}, doi = {10.25972/OPUS-22959}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229596}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The development of cellular life on earth is coupled to the formation of lipid-based biological membranes. Although many tools to analyze their biophysical properties already exist, their variety and number is still relatively small compared to the field of protein studies. One reason for this, is their small size and complex assembly into an asymmetric tightly packed lipid bilayer showing characteristics of a two-dimensional heterogenous fluid. Since membranes are capable to form dynamic, nanoscopic domains, enriched in sphingolipids and cholesterol, their detailed investigation is limited to techniques which access information below the diffraction limit of light. In this work, I aimed to extend, optimize and compare three different labeling approaches for sphingolipids and their subsequent analysis by the single-molecule localization microscopy (SMLM) technique direct stochastic optical reconstruction microscopy (dSTORM). First, I applied classical immunofluorescence by immunoglobulin G (IgG) antibody labeling to detect and quantify sphingolipid nanodomains in the plasma membrane of eukaryotic cells. I was able to identify and characterize ceramide-rich platforms (CRPs) with a size of ~ 75nm on the basal and apical membrane of different cell lines. Next, I used click-chemistry to characterize sphingolipid analogs in living and fixed cells. By using a combination of fluorescence microscopy and anisotropy experiments, I analyzed their accessibility and configuration in the plasma membrane, respectively. Azide-modified, short fatty acid side chains, were accessible to membrane impermeable dyes and localized outside the hydrophobic membrane core. In contrast, azide moieties at the end of longer fatty acid side chains were less accessible and conjugated dyes localized deeper within the plasma membrane. By introducing photo-crosslinkable diazirine groups or chemically addressable amine groups, I developed methods to improve their immobilization required for dSTORM. Finally, I harnessed the specific binding characteristics of non-toxic shiga toxin B subunits (STxBs) and cholera toxin B subunits (CTxBs) to label and quantify glycosphingolipid nanodomains in the context of Neisseria meningitidis infection. Under pyhsiological conditions, these glycosphingolipids were distributed homogenously in the plasma membrane but upon bacterial infection CTxB detectable gangliosides accumulated around invasive Neisseria meningitidis. I was able to highlight the importance of cell cycle dependent glycosphingolipid expression for the invasion process. Blocking membrane accessible sugar headgroups by pretreatment with CTxB significantly reduced the number of invasive bacteria which confirmed the importance of gangliosides for bacterial uptake into cells. Based on my results, it can be concluded that labeling of sphingolipids should be carefully optimized depending on the research question and applied microscopy technique. In particular, I was able to develop new tools and protocols which enable the characterization of sphingolipid nanodomains by dSTORM for all three labeling approaches.}, subject = {Sphingolipide}, language = {en} } @article{HaackBaikerSchlegeletal.2021, author = {Haack, Stephanie and Baiker, Sarah and Schlegel, Jan and Sauer, Markus and Sparwasser, Tim and Langenhorst, Daniela and Beyersdorf, Niklas}, title = {Superagonistic CD28 stimulation induces IFN-γ release from mouse T helper 1 cells in vitro and in vivo}, series = {European Journal of Immunology}, volume = {51}, journal = {European Journal of Immunology}, number = {3}, doi = {10.1002/eji.202048803}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239028}, pages = {738 -- 741}, year = {2021}, abstract = {Like human Th1 cells, mouse Th1 cells also secrete IFN-γ upon stimulation with a superagonistic anti-CD28 monoclonal antibody (CD28-SA). Crosslinking of the CD28-SA via FcR and CD40-CD40L interactions greatly increased IFN-γ release. Our data stress the utility of the mouse as a model organism for immune responses in humans.}, language = {en} } @article{SputhPanzerStigloheretal.2021, author = {Sputh, Sebastian and Panzer, Sabine and Stigloher, Christian and Terpitz, Ulrich}, title = {Superaufgel{\"o}ste Mikroskopie: Pilze unter Beobachtung}, series = {BIOspektrum}, volume = {27}, journal = {BIOspektrum}, number = {4}, issn = {1868-6249}, doi = {10.1007/s12268-021-1592-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270014}, pages = {380-382}, year = {2021}, abstract = {The diffraction limit of light confines fluorescence imaging of subcellular structures in fungi. Different super-resolution methods are available for the analysis of fungi that we briefly discuss. We exploit the filamentous fungus Fusarium fujikuroi expressing a YFP-labeled membrane protein showing the benefit of correlative light- and electron microscopy (CLEM), that combines structured illumination microscopy (SIM) and scanning election microscopy (SEM).}, language = {de} } @article{RadeloffRamosTiradoHaddadetal.2021, author = {Radeloff, Katrin and Ramos Tirado, Mario and Haddad, Daniel and Breuer, Kathrin and M{\"u}ller, Jana and Hochmuth, Sabine and Hackenberg, Stephan and Scherzad, Agmal and Kleinsasser, Norbert and Radeloff, Andreas}, title = {Superparamagnetic iron oxide particles (VSOPs) show genotoxic effects but no functional impact on human adipose tissue-derived stromal cells (ASCs)}, series = {Materials}, volume = {14}, journal = {Materials}, number = {2}, issn = {1996-1944}, doi = {10.3390/ma14020263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222970}, year = {2021}, abstract = {Adipose tissue-derived stromal cells (ASCs) represent a capable source for cell-based therapeutic approaches. For monitoring a cell-based application in vivo, magnetic resonance imaging (MRI) of cells labeled with iron oxide particles is a common method. It is the aim of the present study to analyze potential DNA damage, cytotoxicity and impairment of functional properties of human (h)ASCs after labeling with citrate-coated very small superparamagnetic iron oxide particles (VSOPs). Cytotoxic as well as genotoxic effects of the labeling procedure were measured in labeled and unlabeled hASCs using the MTT assay, comet assay and chromosomal aberration test. Trilineage differentiation was performed to evaluate an impairment of the differentiation potential due to the particles. Proliferation as well as migration capability were analyzed after the labeling procedure. Furthermore, the labeling of the hASCs was confirmed by Prussian blue staining, transmission electron microscopy (TEM) and high-resolution MRI. Below the concentration of 0.6 mM, which was used for the procedure, no evidence of genotoxic effects was found. At 0.6 mM, 1 mM as well as 1.5 mM, an increase in the number of chromosomal aberrations was determined. Cytotoxic effects were not observed at any concentration. Proliferation, migration capability and differentiation potential were also not affected by the procedure. Labeling with VSOPs is a useful labeling method for hASCs that does not affect their proliferation, migration and differentiation potential. Despite the absence of cytotoxicity, however, indications of genotoxic effects have been demonstrated.}, language = {en} } @phdthesis{Wehner2021, author = {Wehner, Marius}, title = {Supramolecular Polymorphism in Homo- and Heterochiral Supramolecular Polymerizations}, doi = {10.25972/OPUS-21151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211519}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The aim of the first part of this thesis was to investigate (R,R)-PBI as a model system for polymorphism at its origin by a supramolecular approach. The pathway complexity of (R,R)-PBI was fine-tuned by experimental parameters such as solvent, temperature and concentration to make several supramolecular polymorphs accessible. Mechanistic and quantum chemical studies on the kinetics and thermodynamics of the supramolecular polymerization of (R,R)-PBI were conducted to shed light on the initial stages of polymorphism. The second part of this work deals with mechanistic investigations on the supramolecular polymerization of the racemic mixture of (R,R)- and (S,S)-PBI with regard to homochiral and heterochiral aggregation leading to conglomerates and a racemic supramolecular polymer, respectively.}, subject = {Supramolekulare Chemie}, language = {en} } @article{KriegelFritzeThorn2021, author = {Kriegel, Peter and Fritze, Michael-Andreas and Thorn, Simon}, title = {Surface temperature and shrub cover drive ground beetle (Coleoptera: Carabidae) assemblages in short-rotation coppices}, series = {Agricultural and Forest Entomology}, volume = {23}, journal = {Agricultural and Forest Entomology}, number = {4}, doi = {10.1111/afe.12441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239873}, pages = {400 -- 410}, year = {2021}, abstract = {Increasing demand for biomass has led to an on-going intensification of fuel wood plantations with possible negative effects on open land biodiversity. Hence, ecologists increasingly call for measures that reduce those negative effects on associated biodiversity. However, our knowledge about the efficiency of such measures remains scarce. We investigated the effects of gap implementation in short rotation coppices (SRCs) on carabid diversity and assemblage composition over 3 years, with pitfall traps in gaps, edges and interiors. In parallel, we quantified soil surface temperature, shrub- and herb cover. Edges had the highest number of species and abundances per trap, whereas rarefied species richness was significantly lower in short rotation coppice interiors than in other habitat types. Carabid community composition differed significantly between habitat types. The main environmental drivers were temperature for number of species and abundance and shrub cover for rarefied species richness. We found significantly higher rarefied species richness in gaps compared with interiors. Hence, we argue that gap implementation benefits overall diversity in short rotation coppices. Furthermore, the differences in species community composition between habitat types through increased species turnover support carabid diversity in short rotation coppices. These positive effects were largely attributed to microclimate conditions. However, to maintain positive effects, continuous management of herb layer might be necessary.}, language = {en} } @article{GilSepulcreLindnerSchindleretal.2021, author = {Gil-Sepulcre, Marcos and Lindner, Joachim O. and Schindler, Dorothee and Velasco, Luc{\´i}a and Moonshiram, Dooshaye and R{\"u}diger, Olaf and DeBeer, Serena and Stepanenko, Vladimir and Solano, Eduardo and W{\"u}rthner, Frank and Llobet, Antoni}, title = {Surface-promoted evolution of Ru-bda coordination oligomers boosts the efficiency of water oxidation molecular anodes}, series = {Journal of the American Chemical Society}, volume = {143}, journal = {Journal of the American Chemical Society}, number = {30}, doi = {10.1021/jacs.1c04738}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351514}, pages = {11651-11661}, year = {2021}, abstract = {A new Ru oligomer of formula {[Ru-\(^{II}\)(bda-\(\kappa\)-N\(^2\)O\(^2\))(4,4'-bpy)]\(_{10}\)(4,4'-bpy)}, 10 (bda is [2,2'-bipyridine]-6,6'-dicarbox-ylate and 4,4'-bpy is 4,4'-bipyridine), was synthesized and thoroughly characterized with spectroscopic, X-ray, and electrochemical techniques. This oligomer exhibits strong affinity for graphitic materials through CH-\(\pi\) interactions and thus easily anchors on multiwalled carbon nanotubes (CNT), generating the molecular hybrid material 10@CNT. The latter acts as a water oxidation catalyst and converts to a new species, 10'(H\(_2\)O)\(_2\)@CNT, during the electrochemical oxygen evolution process involving solvation and ligand reorganization facilitated by the interactions of molecular Ru catalyst and the surface. This heterogeneous system has been shown to be a powerful and robust molecular hybrid anode for electrocatalytic water oxidation into molecular oxygen, achieving current densities in the range of 200 mA/cm\(^2\) at pH 7 under an applied potential of 1.45 V vs NHE. The remarkable long-term stability of this hybrid material during turnover is rationalized based on the supramolecular interaction of the catalyst with the graphitic surface.}, language = {en} } @article{SivarajanKessieOberwinkleretal.2021, author = {Sivarajan, Rinu and Kessie, David Komla and Oberwinkler, Heike and Pallmann, Niklas and Walles, Thorsten and Scherzad, Agmal and Hackenberg, Stephan and Steinke, Maria}, title = {Susceptibility of Human Airway Tissue Models Derived From Different Anatomical Sites to Bordetella pertussis and Its Virulence Factor Adenylate Cyclase Toxin}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.797491}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-253302}, year = {2021}, abstract = {To study the interaction of human pathogens with their host target structures, human tissue models based on primary cells are considered suitable. Complex tissue models of the human airways have been used as infection models for various viral and bacterial pathogens. The Gram-negative bacterium Bordetella pertussis is of relevant clinical interest since whooping cough has developed into a resurgent infectious disease. In the present study, we created three-dimensional tissue models of the human ciliated nasal and tracheo-bronchial mucosa. We compared the innate immune response of these models towards the B. pertussis virulence factor adenylate cyclase toxin (CyaA) and its enzymatically inactive but fully pore-forming toxoid CyaA-AC\(^-\). Applying molecular biological, histological, and microbiological assays, we found that 1 µg/ml CyaA elevated the intracellular cAMP level but did not disturb the epithelial barrier integrity of nasal and tracheo-bronchial airway mucosa tissue models. Interestingly, CyaA significantly increased interleukin 6, interleukin 8, and human beta defensin 2 secretion in nasal tissue models, whereas tracheo-bronchial tissue models were not significantly affected compared to the controls. Subsequently, we investigated the interaction of B. pertussis with both differentiated primary nasal and tracheo-bronchial tissue models and demonstrated bacterial adherence and invasion without observing host cell type-specific significant differences. Even though the nasal and the tracheo-bronchial mucosa appear similar from a histological perspective, they are differentially susceptible to B. pertussis CyaA in vitro. Our finding that nasal tissue models showed an increased innate immune response towards the B. pertussis virulence factor CyaA compared to tracheo-bronchial tissue models may reflect the key role of the nasal airway mucosa as the first line of defense against airborne pathogens.}, language = {en} }