@article{LepetaLourencoSchweitzeretal.2016, author = {Lepeta, Katarzyna and Lourenco, Mychael V. and Schweitzer, Barbara C. and Martino Adami, Pamela V. and Banerjee, Priyanjalee and Catuara-Solarz, Silvina and de la Fuente Revenga, Mario and Marc Guillem, Alain and Haider, Mouna and Ijomone, Omamuyovwi M. and Nadorp, Bettina and Qi, Lin and Perera, Nirma D. and Refsgaard, Louise K. and Reid, Kimberley M. and Sabbar, Mariam and Sahoo, Arghyadip and Schaefer, Natascha and Sheean, Rebecca K. and Suska, Anna and Verma, Rajkumar and Vicidomini, Cinzia and Wright, Dean and Zhang, Xing-Ding and Seidenbecher, Constanze}, title = {Synaptopathies: synaptic dysfunction in neurological disorders - a review from students to students}, series = {Journal of Neurochemistry}, volume = {138}, journal = {Journal of Neurochemistry}, number = {6}, doi = {10.1111/jnc.13713}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187509}, pages = {785-805}, year = {2016}, abstract = {Synapses are essential components of neurons and allow information to travel coordinately throughout the nervous system to adjust behavior to environmental stimuli and to control body functions, memories, and emotions. Thus, optimal synaptic communication is required for proper brain physiology, and slight perturbations of synapse function can lead to brain disorders. In fact, increasing evidence has demonstrated the relevance of synapse dysfunction as a major determinant of many neurological diseases. This notion has led to the concept of synaptopathies as brain diseases with synapse defects as shared pathogenic features. In this review, which was initiated at the 13th International Society for Neurochemistry Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental disorders (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer and Parkinson disease). We finally discuss the appropriateness and potential implications of gathering synapse diseases under a single term. Understanding common causes and intrinsic differences in disease-associated synaptic dysfunction could offer novel clues toward synapse-based therapeutic intervention for neurological and neuropsychiatric disorders. In this Review, which was initiated at the 13th International Society for Neurochemistry (ISN) Advanced School, we discuss basic concepts of synapse structure and function, and provide a critical view of how aberrant synapse physiology may contribute to neurodevelopmental (autism, Down syndrome, startle disease, and epilepsy) as well as neurodegenerative disorders (Alzheimer's and Parkinson's diseases), gathered together under the term of synaptopathies. Read the Editorial Highlight for this article on page .}, language = {en} } @article{RiedererLaux2011, author = {Riederer, Peter and Laux, Gerd}, title = {MAO-inhibitors in Parkinson's Disease}, series = {Experimental Neurobiology}, volume = {20}, journal = {Experimental Neurobiology}, number = {1}, doi = {10.5607/en.2011.20.1.1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140930}, pages = {1-17}, year = {2011}, abstract = {Monoamine oxidase inhibitors (MAO-I) belong to the earliest drugs tried in Parkinson's disease (PD). They have been used with or without levodopa (L-DOPA). Non-selective MAO-I due to their side-effect/adverse reaction profile, like tranylcypromine have limited use in the treatment of depression in PD, while selective, reversible MAO-A inhibitors are recommended due to their easier clinical handling. For the treatment of akinesia and motor fluctuations selective irreversible MAO-B inhibitors selegiline and rasagiline are recommended. They are safe and well tolerated at the recommended daily doses. Their main differences are related to (1) metabolism, (2) interaction with CYP-enzymes and (3) quantitative properties at the molecular biological/genetic level. Rasagiline is more potent in clinical practise and has a hypothesis driven more favourable side effect/adverse reaction profile due to its metabolism to aminoindan. Both selegiline and rasagiline have a neuroprotective and neurorestaurative potential. A head-to head clinical trial would be of utmost interest from both the clinical outcome and a hypothesis-driven point of view. Selegiline is available as tablet and melting tablet for PD and as transdermal selegiline for depression, while rasagiline is marketed as tablet for PD. In general, the clinical use of MAO-I nowadays is underestimated. There should be more efforts to evaluate their clinical potency as antidepressants and antidementive drugs in addition to the final proof of their disease-modifying potential. In line with this are recent innovative developments of MAO-I plus inhibition of acetylcholine esterase for Alzheimer's disease as well as combined MAO-I and iron chelation for PD.}, language = {en} } @article{SchreweLillLiuetal.2015, author = {Schrewe, L. and Lill, C. M. and Liu, T. and Salmen, A. and Gerdes, L. A. and Guillot-Noel, L. and Akkad, D. A. and Blaschke, P. and Graetz, C. and Hoffjan, S. and Kroner, A. and Demir, S. and B{\"o}hme, A. and Rieckmann, P. and El Ali, A. and Hagemann, N. and Hermann, D. M. and Cournu-Rebeix, I. and Zipp, F. and K{\"u}mpfel, T. and Buttmann, M. and Zettl, U. K. and Fontaine, B. and Bertram, L. and Gold, R. and Chan, A.}, title = {Investigation of sex-specific effects of apolipoprotein E on severity of EAE and MS}, series = {Journal of Neuroinflammation}, volume = {12}, journal = {Journal of Neuroinflammation}, number = {234}, doi = {10.1186/s12974-015-0429-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136252}, year = {2015}, abstract = {Background: Despite pleiotropic immunomodulatory effects of apolipoprotein E (apoE) in vitro, its effects on the clinical course of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) are still controversial. As sex hormones modify immunomodulatory apoE functions, they may explain contentious findings. This study aimed to investigate sex-specific effects of apoE on disease course of EAE and MS. Methods: MOG\(_{35-55}\) induced EAE in female and male apoE-deficient mice was assessed clinically and histopathologically. apoE expression was investigated by qPCR. The association of the MS severity score (MSSS) and APOE rs429358 and rs7412 was assessed across 3237 MS patients using linear regression analyses. Results: EAE disease course was slightly attenuated in male apoE-deficient (apoE\(^{-/-}\)) mice compared to wildtype mice (cumulative median score: apoE\(^{-/-}\) = 2 [IQR 0.0-4.5]; wildtype = 4 [IQR 1.0-5.0]; n = 10 each group, p = 0.0002). In contrast, EAE was more severe in female apoE\(^{-/-}\) mice compared to wildtype mice (cumulative median score: apoE\(^{-/-}\) = 3 [IQR 2.0-4.5]; wildtype = 3 [IQR 0.0-4.0]; n = 10, p = 0.003). In wildtype animals, apoE expression during the chronic EAE phase was increased in both females and males (in comparison to naive animals; p < 0.001). However, in MS, we did not observe a significant association between MSSS and rs429358 or rs7412, neither in the overall analyses nor upon stratification for sex. Conclusions: apoE exerts moderate sex-specific effects on EAE severity. However, the results in the apoE knock-out model are not comparable to effects of polymorphic variants in the human APOE gene, thus pinpointing the challenge of translating findings from the EAE model to the human disease.}, language = {en} }