@article{ShirakashiSisarioTabanetal.2023, author = {Shirakashi, Ryo and Sisario, Dmitri and Taban, Danush and Korsa, Tessa and Wanner, Sophia B. and Neubauer, Julia and Djuzenova, Cholpon S. and Zimmermann, Heiko and Sukhorukov, Vladimir L.}, title = {Contraction of the rigor actomyosin complex drives bulk hemoglobin expulsion from hemolyzing erythrocytes}, series = {Biomechanics and Modeling in Mechanobiology}, volume = {22}, journal = {Biomechanics and Modeling in Mechanobiology}, number = {2}, doi = {10.1007/s10237-022-01654-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325107}, pages = {417-432}, year = {2023}, abstract = {Erythrocyte ghost formation via hemolysis is a key event in the physiological clearance of senescent red blood cells (RBCs) in the spleen. The turnover rate of millions of RBCs per second necessitates a rapid efflux of hemoglobin (Hb) from RBCs by a not yet identified mechanism. Using high-speed video-microscopy of isolated RBCs, we show that electroporation-induced efflux of cytosolic ATP and other small solutes leads to transient cell shrinkage and echinocytosis, followed by osmotic swelling to the critical hemolytic volume. The onset of hemolysis coincided with a sudden self-propelled cell motion, accompanied by cell contraction and Hb-jet ejection. Our biomechanical model, which relates the Hb-jet-driven cell motion to the cytosolic pressure generation via elastic contraction of the RBC membrane, showed that the contributions of the bilayer and the bilayer-anchored spectrin cytoskeleton to the hemolytic cell motion are negligible. Consistent with the biomechanical analysis, our biochemical experiments, involving extracellular ATP and the myosin inhibitor blebbistatin, identify the low abundant non-muscle myosin 2A (NM2A) as the key contributor to the Hb-jet emission and fast hemolytic cell motion. Thus, our data reveal a rapid myosin-based mechanism of hemolysis, as opposed to a much slower diffusive Hb efflux.}, language = {en} } @article{ButtHowardRaman2022, author = {Butt, Elke and Howard, Cory M. and Raman, Dayanidhi}, title = {LASP1 in cellular signaling and gene expression: more than just a cytoskeletal regulator}, series = {Cells}, volume = {11}, journal = {Cells}, number = {23}, issn = {2073-4409}, doi = {10.3390/cells11233817}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297447}, year = {2022}, abstract = {LIM and SH3 protein 1 was originally identified as a structural cytoskeletal protein with scaffolding function. However, recent data suggest additional roles in cell signaling and gene expression, especially in tumor cells. These novel functions are primarily regulated by the site-specific phosphorylation of LASP1. This review will focus on specific phosphorylation-dependent interaction between LASP1 and cellular proteins that orchestrate primary tumor progression and metastasis. More specifically, we will describe the role of LASP1 in chemokine receptor, and PI3K/AKT signaling. We outline the nuclear role for LASP1 in terms of epigenetics and transcriptional regulation and modulation of oncogenic mRNA translation. Finally, newly identified roles for the cytoskeletal function of LASP1 next to its known canonical F-actin binding properties are included.}, language = {en} } @article{BrosterReixFlorimondCayreletal.2021, author = {Broster Reix, Christine E. and Florimond, C{\´e}lia and Cayrel, Anne and Mailh{\´e}, Am{\´e}lie and Agnero-Rigot, Corentin and Landrein, Nicolas and Dacheux, Denis and Havlicek, Katharina and Bonhivers, M{\´e}lanie and Morriswood, Brooke and Robinson, Derrick R.}, title = {Bhalin, an essential cytoskeleton-associated protein of Trypanosoma brucei linking TbBILBO1 of the flagellar pocket collar with the hook complex}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {11}, issn = {2076-2607}, doi = {10.3390/microorganisms9112334}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250301}, year = {2021}, abstract = {Background: In most trypanosomes, endo and exocytosis only occur at a unique organelle called the flagellar pocket (FP) and the flagellum exits the cell via the FP. Investigations of essential cytoskeleton-associated structures located at this site have revealed a number of essential proteins. The protein TbBILBO1 is located at the neck of the FP in a structure called the flagellar pocket collar (FPC) and is essential for biogenesis of the FPC and parasite survival. TbMORN1 is a protein that is present on a closely linked structure called the hook complex (HC) and is located anterior to and overlapping the collar. TbMORN1 is essential in the bloodstream form of T. brucei. We now describe the location and function of BHALIN, an essential, new FPC-HC protein. Methodology/Principal Findings: Here, we show that a newly characterised protein, BHALIN (BILBO1 Hook Associated LINker protein), is localised to both the FPC and HC and has a TbBILBO1 binding domain, which was confirmed in vitro. Knockdown of BHALIN by RNAi in the bloodstream form parasites led to cell death, indicating an essential role in cell viability. Conclusions/Significance: Our results demonstrate the essential role of a newly characterised hook complex protein, BHALIN, that influences flagellar pocket organisation and function in bloodstream form T. brucei parasites.}, language = {en} } @article{TarauBerlinCurcioetal.2019, author = {Tarau, Ioana-Sandra and Berlin, Andreas and Curcio, Christine A. and Ach, Thomas}, title = {The cytoskeleton of the retinal pigment epithelium: from normal aging to age-related macular degeneration}, series = {International Journal of Molecular Science}, volume = {20}, journal = {International Journal of Molecular Science}, number = {14}, issn = {1422-0067}, doi = {10.3390/ijms20143578}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201781}, year = {2019}, abstract = {The retinal pigment epithelium (RPE) is a unique epithelium, with major roles which are essential in the visual cycle and homeostasis of the outer retina. The RPE is a monolayer of polygonal and pigmented cells strategically placed between the neuroretina and Bruch membrane, adjacent to the fenestrated capillaries of the choriocapillaris. It shows strong apical (towards photoreceptors) to basal/basolateral (towards Bruch membrane) polarization. Multiple functions are bound to a complex structure of highly organized and polarized intracellular components: the cytoskeleton. A strong connection between the intracellular cytoskeleton and extracellular matrix is indispensable to maintaining the function of the RPE and thus, the photoreceptors. Impairments of these intracellular structures and the regular architecture they maintain often result in a disrupted cytoskeleton, which can be found in many retinal diseases, including age-related macular degeneration (AMD). This review article will give an overview of current knowledge on the molecules and proteins involved in cytoskeleton formation in cells, including RPE and how the cytoskeleton is affected under stress conditions — especially in AMD.}, language = {en} } @article{Morriswood2015, author = {Morriswood, Brooke}, title = {Form, fabric, and function of a flagellum-associated cytoskeletal structure.}, series = {Cells}, volume = {4}, journal = {Cells}, number = {4}, doi = {10.3390/cells4040726}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149467}, pages = {726-747}, year = {2015}, abstract = {Trypanosoma brucei is a uniflagellated protist and the causative agent of African trypanosomiasis, a neglected tropical disease. The single flagellum of T. brucei is essential to a number of cellular processes such as motility, and has been a longstanding focus of scientific enquiry. A number of cytoskeletal structures are associated with the flagellum in T. brucei, and one such structure—a multiprotein complex containing the repeat motif protein TbMORN1—is the focus of this review. The TbMORN1-containing complex, which was discovered less than ten years ago, is essential for the viability of the mammalian-infective form of T. brucei. The complex has an unusual asymmetric morphology, and is coiled around the flagellum to form a hook shape. Proteomic analysis using the proximity-dependent biotin identification (BioID) technique has elucidated a number of its components. Recent work has uncovered a role for TbMORN1 in facilitating protein entry into the cell, thus providing a link between the cytoskeleton and the endomembrane system. This review summarises the extant data on the complex, highlights the outstanding questions for future enquiry, and provides speculation as to its possible role in a size-exclusion mechanism for regulating protein entry. The review additionally clarifies the nomenclature associated with this topic, and proposes the adoption of the term "hook complex" to replace the former name "bilobe" to describe the complex.}, language = {en} } @article{AlizadehradKruegerEngstleretal.2015, author = {Alizadehrad, Davod and Kr{\"u}ger, Timothy and Engstler, Markus and Stark, Holger}, title = {Simulating the complex cell design of Trypanosoma brucei and its motility}, series = {PLOS Computational Biology}, volume = {11}, journal = {PLOS Computational Biology}, number = {1}, doi = {10.1371/journal.pcbi.1003967}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144610}, pages = {e1003967}, year = {2015}, abstract = {The flagellate Trypanosoma brucei, which causes the sleeping sickness when infecting a mammalian host, goes through an intricate life cycle. It has a rather complex propulsion mechanism and swims in diverse microenvironments. These continuously exert selective pressure, to which the trypanosome adjusts with its architecture and behavior. As a result, the trypanosome assumes a diversity of complex morphotypes during its life cycle. However, although cell biology has detailed form and function of most of them, experimental data on the dynamic behavior and development of most morphotypes is lacking. Here we show that simulation science can predict intermediate cell designs by conducting specific and controlled modifications of an accurate, nature-inspired cell model, which we developed using information from live cell analyses. The cell models account for several important characteristics of the real trypanosomal morphotypes, such as the geometry and elastic properties of the cell body, and their swimming mechanism using an eukaryotic flagellum. We introduce an elastic network model for the cell body, including bending rigidity and simulate swimming in a fluid environment, using the mesoscale simulation technique called multi-particle collision dynamics. The in silico trypanosome of the bloodstream form displays the characteristic in vivo rotational and translational motility pattern that is crucial for survival and virulence in the vertebrate host. Moreover, our model accurately simulates the trypanosome's tumbling and backward motion. We show that the distinctive course of the attached flagellum around the cell body is one important aspect to produce the observed swimming behavior in a viscous fluid, and also required to reach the maximal swimming velocity. Changing details of the flagellar attachment generates less efficient swimmers. We also simulate different morphotypes that occur during the parasite's development in the tsetse fly, and predict a flagellar course we have not been able to measure in experiments so far.}, language = {en} } @article{BogdanSchultzGrosshans2013, author = {Bogdan, Sven and Schultz, J{\"o}rg and Grosshans, J{\"o}rg}, title = {Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics}, series = {Communicative \& Integrative Biology}, volume = {6}, journal = {Communicative \& Integrative Biology}, number = {e27634}, doi = {10.4161/cib.27634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121305}, year = {2013}, abstract = {Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation.}, language = {en} } @article{FehrholzChristianPKunzmann2014, author = {Fehrholz, Markus and Christian P., Speer and Kunzmann, Steffen}, title = {Caffeine and Rolipram Affect Smad Signalling and TGFβ1 Stimulated CTGF and Transgelin Expression in Lung Epithelial Cells}, series = {PLoS One}, volume = {9}, journal = {PLoS One}, number = {5}, doi = {10.1371/journal.pone.0097357}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118406}, pages = {e97357}, year = {2014}, abstract = {Caffeine administration is an important part of the therapeutic treatment of bronchopulmonary dysplasia (BPD) in preterm infants. However, caffeine mediated effects on airway remodelling are still undefined. The TGF-β/Smad signalling pathway is one of the key pathways involved in airway remodelling. Connective tissue growth factor (CTGF), a downstream mediator of TGF-β, and transgelin, a binding and stabilising protein of the cytoskeleton, are both regulated by TGF-b1 and play an important role in airway remodelling. Both have also been implicated in the pathogenesis of BPD. The aim of the present study was to clarify whether caffeine, an unspecific phosphodiesterase (PDE) inhibitor, and rolipram, a prototypical PDE-4 selective inhibitor, were both able to affect TGF-β1-induced Smad signalling and CTGF/transgelin expression in lung epithelial cells. Furthermore, the effect of transgelin knock-down on Smad signalling was studied. The pharmacological effect of caffeine and rolipram on Smad signalling was investigated by means of a luciferase assay via transfection of a TGFβ1- inducible reporter plasmid in A549 cells. The regulation of CTGF and transgelin expression by caffeine and rolipram were studied by promoter analysis, real-time PCR and Western blot. Endogenous transgelin expression was down-regulated by lentiviral transduction mediating transgelin-specific shRNA expression. The addition of caffeine and rolipram inhibited TGFβ1 induced reporter gene activity in a concentration-related manner. They also antagonized the TGF-b1 induced upregulation of CTGF and transgelin on the promoter-, the mRNA-, and the protein-level. Functional analysis showed that transgelin silencing reduced TGF-β1 induced Smad-signalling and CTGF induction in lung epithelial cells. The present study highlights possible new molecular mechanisms of caffeine and rolipram including an inhibition of Smad signalling and of TGF-β1 regulated genes involved in airway remodelling. An understanding of these mechanisms might help to explain the protective effects of caffeine in prevention of BPD and suggests rolipram to be a potent replacement for caffeine.}, language = {en} } @article{VolceanovHerbstBiniosseketal.2014, author = {Volceanov, Larisa and Herbst, Katharina and Biniossek, Martin and Schilling, Oliver and Haller, Dirk and N{\"o}lke, Thilo and Subbarayal, Prema and Rudel, Thomas and Zieger, Barbara and H{\"a}cker, Georg}, title = {Septins Arrange F-Actin-Containing Fibers on the Chlamydia trachomatis Inclusion and Are Required for Normal Release of the Inclusion by Extrusion}, series = {MBIO}, volume = {5}, journal = {MBIO}, number = {5}, issn = {2150-7511}, doi = {10.1128/mBio.01802-14}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115421}, pages = {e01802-14}, year = {2014}, abstract = {Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. IMPORTANCE Chlamydia trachomatis is a frequent bacterial pathogen throughout the world, causing mostly eye and genital infections. C. trachomatis can develop only inside host cells; it multiplies inside a membranous vacuole in the cytosol, termed an inclusion. The inclusion is covered by cytoskeletal "coats" or "cages," whose organization and function are poorly understood. We here report that a relatively little-characterized group of proteins, septins, is required to organize actin fibers on the inclusion and probably through actin the release of the inclusion. Septins are a group of GTP-binding proteins that can organize into heteromeric complexes and then into large filaments. Septins have previously been found to be involved in the interaction of the cell with bacteria in the cytosol. Our observation that they also organize a reaction to bacteria living in vacuoles suggests that they have a function in the recognition of foreign compartments by a parasitized human cell.}, language = {en} } @article{NieswandtMorowskiBrachsetal.2014, author = {Nieswandt, Bernhard and Morowski, Martina and Brachs, Sebastian and Mielenz, Dirk and D{\"u}tting, Sebastian}, title = {The Adaptor Protein Swiprosin-1/EFhd2 Is Dispensable for Platelet Function in Mice}, doi = {10.1371/journal.pone.0107139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113316}, year = {2014}, abstract = {Background Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity, but may also cause pathological vessel occlusion. Reorganizations of the platelet cytoskeleton and agonist-induced intracellular Ca2+-mobilization are crucial for platelet hemostatic function. EF-hand domain containing 2 (EFhd2, Swiprosin-1) is a Ca2+-binding cytoskeletal adaptor protein involved in actin remodeling in different cell types, but its function in platelets is unknown. Objective Based on the described functions of EFhd2 in immune cells, we tested the hypothesis that EFhd2 is a crucial adaptor protein for platelet function acting as a regulator of Ca2+-mobilization and cytoskeletal rearrangements. Methods and Results We generated EFhd2-deficient mice and analyzed their platelets in vitro and in vivo. Efhd2-/- mice displayed normal platelet count and size, exhibited an unaltered in vivo life span and showed normal Ca2+-mobilization and activation/aggregation responses to classic agonists. Interestingly, upon stimulation of the immunoreceptor tyrosine-based activation motif-coupled receptor glycoprotein (GP) VI, Efhd2-/- platelets showed a slightly increased coagulant activity. Furthermore, absence of EFhd2 had no significant impact on integrin-mediated clot retraction, actomyosin rearrangements and spreading of activated platelets on fibrinogen. In vivo EFhd2-deficiency resulted in unaltered hemostatic function and unaffected arterial thrombus formation. Conclusion These results show that EFhd2 is not essential for platelet function in mice indicating that other cytoskeletal adaptors may functionally compensate its loss.}, language = {en} }