@article{KleinHesslingMuhammadKleinetal.2017, author = {Klein-Hessling, Stefan and Muhammad, Khalid and Klein, Matthias and Pusch, Tobias and Rudolf, Ronald and Fl{\"o}ter, Jessica and Qureischi, Musga and Beilhack, Andreas and Vaeth, Martin and Kummerow, Carsten and Backes, Christian and Schoppmeyer, Rouven and Hahn, Ulrike and Hoth, Markus and Bopp, Tobias and Berberich-Siebelt, Friederike and Patra, Amiya and Avots, Andris and M{\"u}ller, Nora and Schulze, Almut and Serfling, Edgar}, title = {NFATc1 controls the cytotoxicity of CD8\(^{+}\) T cells}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {511}, doi = {10.1038/s41467-017-00612-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170353}, year = {2017}, abstract = {Cytotoxic T lymphocytes are effector CD8\(^{+}\) T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1\(^{-/-}\) cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1\(^{-/-}\) CD8\(^{+}\) T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1\(^{-/-}\), but not Nfatc2\(^{-/-}\) CD8\(^{+}\) T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions.}, language = {en} } @article{MuhammadRudolfPhametal.2018, author = {Muhammad, Khalid and Rudolf, Ronald and Pham, Duong Anh Thuy and Klein-Hessling, Stefan and Takata, Katsuyoshi and Matsushita, Nobuko and Ellenrieder, Volker and Kondo, Eisaku and  Serfling, Edgar}, title = {Induction of Short NFATc1/αA Isoform Interferes with Peripheral B Cell Differentiation}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {32}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.00032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197501}, year = {2018}, abstract = {In lymphocytes, immune receptor signals induce the rapid nuclear translocation of preformed cytosolic NFAT proteins. Along with co-stimulatory signals, persistent immune receptor signals lead to high levels of NFATc1/αA, a short NFATc1 isoform, in effector lymphocytes. Whereas NFATc1 is not expressed in plasma cells, in germinal centers numerous centrocytic B cells express nuclear NFATc1/αA. When overexpressed in chicken DT40 B cells or murine WEHI 231 B cells, NFATc1/αA suppressed their cell death induced by B cell receptor signals and affected the expression of genes controlling the germinal center reaction and plasma cell formation. Among those is the Prdm1 gene encoding Blimp-1, a key factor of plasma cell formation. By binding to a regulatory DNA element within exon 1 of the Prdm1 gene, NFATc1/αA suppresses Blimp-1 expression. Since expression of a constitutive active version of NFATc1/αA interfered with Prdm1 RNA expression, LPS-mediated differentiation of splenic B cells to plasmablasts in vitro and reduced immunoglobulin production in vivo, one may conclude that NFATc1/αA plays an important role in controlling plasmablast/plasma cell formation.}, language = {en} } @article{BellLenhartRosenwaldetal.2020, author = {Bell, Luisa and Lenhart, Alexander and Rosenwald, Andreas and Monoranu, Camelia M. and Berberich-Siebelt, Friederike}, title = {Lymphoid aggregates in the CNS of progressive multiple sclerosis patients lack regulatory T cells}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {3090}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.03090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198130}, year = {2020}, abstract = {In gray matter pathology of multiple sclerosis, neurodegeneration associates with a high degree of meningeal inflammatory activity. Importantly, ectopic lymphoid follicles (eLFs) were identified at the inflamed meninges of patients with progressive multiple sclerosis. Besides T lymphocytes, they comprise B cells and might elicit germinal center (GC)-like reactions. GC reactions are controlled by FOXP3+ T-follicular regulatory cells (TFR), but it is unknown if they participate in autoantibody production in eLFs. Receiving human post-mortem material, gathered from autopsies of progressive multiple sclerosis patients, indeed, distinct inflammatory infiltrates enriched with B cells could be detected in perivascular areas and deep sulci. CD35+ cells, parafollicular CD138+ plasma cells, and abundant expression of the homing receptor for GCs, CXCR5, on lymphocytes defined some of them as eLFs. However, they resembled GCs only in varying extent, as T cells did not express PD-1, only few cells were positive for the key transcriptional regulator BCL-6 and ongoing proliferation, whereas a substantial number of T cells expressed high NFATc1 like GC-follicular T cells. Then again, predominant cytoplasmic NFATc1 and an enrichment with CD3+CD27+ memory and CD4+CD69+ tissue-resident cells implied a chronic state, very much in line with PD-1 and BCL-6 downregulation. Intriguingly, FOXP3+ cells were almost absent in the whole brain sections and CD3+FOXP3+ TFRs were never found in the lymphoid aggregates. This also points to less controlled humoral immune responses in those lymphoid aggregates possibly enabling the occurrence of CNS-specific autoantibodies in multiple sclerosis patients.}, language = {en} } @article{BarahonadeBritoKleinHesslingSerflingetal.2022, author = {Barahona de Brito, Carlotta and Klein-Hessling, Stefan and Serfling, Edgar and Patra, Amiya Kumar}, title = {Hematopoietic stem and progenitor cell maintenance and multiple lineage differentiation is an integral function of NFATc1}, series = {Cells}, volume = {11}, journal = {Cells}, number = {13}, issn = {2073-4409}, doi = {10.3390/cells11132012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278809}, year = {2022}, abstract = {Hematopoietic stem and progenitor cell (HSPC) maintenance and the differentiation of various lineages is a highly complex but precisely regulated process. Multiple signaling pathways and an array of transcription factors influence HSPC maintenance and the differentiation of individual lineages to constitute a functional hematopoietic system. Nuclear factor of activated T cell (NFAT) family transcription factors have been studied in the context of development and function of multiple mature hematopoietic lineage cells. However, until now their contribution in HSPC physiology and HSPC differentiation to multiple hematopoietic lineages has remained poorly understood. Here, we show that NFAT proteins, specifically NFATc1, play an indispensable role in the maintenance of HSPCs. In the absence of NFATc1, very few HSPCs develop in the bone marrow, which are functionally defective. In addition to HSPC maintenance, NFATc1 also critically regulates differentiation of lymphoid, myeloid, and erythroid lineage cells from HSPCs. Deficiency of NFATc1 strongly impaired, while enhanced NFATc1 activity augmented, the differentiation of these lineages, which further attested to the vital involvement of NFATc1 in regulating hematopoiesis. Hematopoietic defects due to lack of NFATc1 activity can lead to severe pathologies such as lymphopenia, myelopenia, and a drastically reduced lifespan underlining the critical role NFATc1 plays in HSPC maintenance and in the differentaion of various lineages. Our findings suggest that NFATc1 is a critical component of the myriad signaling and transcriptional regulators that are essential to maintain normal hematopoiesis.}, language = {en} } @article{MurtiFenderGlatzleetal.2023, author = {Murti, Krisna and Fender, Hendrik and Glatzle, Carolin and Wismer, Rhoda and Sampere-Birlanga, Salvador and Wild, Vanessa and Muhammad, Khalid and Rosenwald, Andreas and Serfling, Edgar and Avots, Andris}, title = {Calcineurin-independent NFATc1 signaling is essential for survival of Burkitt lymphoma cells}, series = {Frontiers in Oncology}, volume = {13}, journal = {Frontiers in Oncology}, doi = {10.3389/fonc.2023.1205788}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323103}, year = {2023}, abstract = {In Burkitt lymphoma (BL), a tumor of germinal center B cells, the pro-apoptotic properties of MYC are controlled by tonic B cell receptor (BCR) signals. Since BL cells do not exhibit constitutive NF-κB activity, we hypothesized that anti-apoptotic NFATc1 proteins provide a major transcriptional survival signal in BL. Here we show that post-transcriptional mechanisms are responsible for the calcineurin (CN) independent constitutive nuclear over-expression of NFATc1 in BL and Eµ-MYC - induced B cell lymphomas (BCL). Conditional inactivation of the Nfatc1 gene in B cells of Eµ-MYC mice leads to apoptosis of BCL cells in vivo and ex vivo. Inhibition of BCR/SYK/BTK/PI3K signals in BL cells results in cytosolic re-location of NFATc1 and apoptosis. Therefore, NFATc1 activity is an integrated part of tonic BCR signaling and an alternative target for therapeutic intervention in BL.}, language = {en} }