@article{Drenckhahn2021, author = {Drenckhahn, Detlev}, title = {Zur Vegetation der Seedeiche der Nordseek{\"u}ste Schleswig-Holsteins - Implikationen f{\"u}r die Umsetzung des Generalplans K{\"u}stenschutz}, series = {Forum Geobotanicum}, volume = {10}, journal = {Forum Geobotanicum}, issn = {1867-9315}, doi = {10.3264/FG.2021.0825a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243795}, pages = {28-37}, year = {2021}, abstract = {Bis zum Jahr 2100 prognostiziert der Weltklimarat (IPCC 2021) einen Anstieg des Meeresspiegels von bis zu 63-101 cm gegen{\"u}ber heutigen Wasserst{\"a}nden. Im Rahmen des Generalplans K{\"u}stenschutz Schleswig-Holstein(GKSH) soll als Klimafolgeanpassung eine Erh{\"o}hung und Profil{\"a}nderung der meisten Nordseedeiche und Elbedeiche erfolgen (zusammen 363,3 km mit einer Vegetationsfl{\"a}che von 3.500 ha). Diese Maßnahmen werden mit einem vollst{\"a}ndigen Verlust der alten Deichvegetation einhergehen und zur Freisetzung von großen Mengen an CO₂ aus dem Bodenkohlenstoff f{\"u}hren. Die Seedeiche der Nordseek{\"u}ste (262 km) z{\"a}hlen zu den artenreichen, semi-nat{\"u}rlichen und von Schafen beweideten Grasl{\"a}ndern (Fl{\"a}che von 2600 ha) in Schleswig-Holstein mit bis zu 18 Gras- und 64 zweikeim-bl{\"a}ttrigen Bl{\"u}tenpflanzen und an die Vegetation gebundene 800-1000 Arten von Invertebraten (darunter 200 K{\"a}ferarten). Auf die Außenb{\"o}schung dringen Pflanzen der Salzwiesengesellschaften vor. Die steileren, w{\"a}rmeexponierten ({\"u}berwiegend nach Osten und S{\"u}den ausgerichtet) und durch Vertritt l{\"u}ckigen Innenb{\"o}schungen der Seedeiche sind wertvolle Refugien w{\"a}rmeliebender, konkurrenzschwacher Arten von Magerstandorten und Trittgesellschaften wie die folgenden mediterran-subatlantischen Arten: Knotenklettenkerbel (Torilis nodosa), Zwergklee/Armbl{\"u}tiger Klee (Trifolium micranthum) und Vogelfußklee (Trifolium ornithopodioides). F{\"u}r die Erhaltung beider Kleearten (die aktuelle Verbreitung wird dokumentiert) besitzt Schleswig-Holstein eine nationale und nordwest-europ{\"a}isch-kontinentale Verantwortlichkeit. Folgende Maßnahmen zum Schutz der reichhaltigen Deichvegetation und Teilen seiner Invertebratenfauna bei der Deichverst{\"a}rkung im Rahmen des GKSH werden vorgeschlagen: 1. Abheben der Grasnarbe mit Wurzelraum und zeitnahe Wiederverlegung der alten Grasnarbe (Soden) auf das neue Deichprofil; das ist auch wichtig zum Erhalt des Bodenkohlenstoffs (Klimaschutz). 2. Einsaat von neuen Deichprofilen mit Saatgut von artenreichen Deichabschnitten. 3. Aufnahme substanzieller Forschungsprogramme/Forschungsf{\"o}rderung zur {\"O}kologie der Seedeiche. Weiterhin sollte auf den Einsatz von Herbiziden auf Deichen zur Bek{\"a}mpfung von Disteln verzichtet werden.}, subject = {Seedeich}, language = {de} } @article{SponslerRequierKallniketal.2022, author = {Sponsler, Douglas B. and Requier, Fabrice and Kallnik, Katharina and Classen, Alice and Maihoff, Fabienne and Sieger, Johanna and Steffan-Dewenter, Ingolf}, title = {Contrasting patterns of richness, abundance, and turnover in mountain bumble bees and their floral hosts}, series = {Ecology}, volume = {103}, journal = {Ecology}, number = {7}, doi = {10.1002/ecy.3712}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287199}, year = {2022}, abstract = {Environmental gradients generate and maintain biodiversity on Earth. Mountain slopes are among the most pronounced terrestrial environmental gradients, and the elevational structure of species and their interactions can provide unique insight into the processes that govern community assembly and function in mountain ecosystems. We recorded bumble bee-flower interactions over 3 years along a 1400-m elevational gradient in the German Alps. Using nonlinear modeling techniques, we analyzed elevational patterns at the levels of abundance, species richness, species β-diversity, and interaction β-diversity. Though floral richness exhibited a midelevation peak, bumble bee richness increased with elevation before leveling off at the highest sites, demonstrating the exceptional adaptation of these bees to cold temperatures and short growing seasons. In terms of abundance, though, bumble bees exhibited divergent species-level responses to elevation, with a clear separation between species preferring low versus high elevations. Overall interaction β-diversity was mainly caused by strong turnover in the floral community, which exhibited a well-defined threshold of β-diversity rate at the tree line ecotone. Interaction β-diversity increased sharply at the upper extreme of the elevation gradient (1800-2000 m), an interval over which we also saw steep decline in floral richness and abundance. Turnover of bumble bees along the elevation gradient was modest, with the highest rate of β-diversity occurring over the interval from low- to mid-elevation sites. The contrast between the relative robustness bumble bee communities and sensitivity of plant communities to the elevational gradient in our study suggests that the strongest effects of climate change on mountain bumble bees may be indirect effects mediated by the responses of their floral hosts, though bumble bee species that specialize in high-elevation habitats may also experience significant direct effects of warming.}, language = {en} } @article{GanuzaRedlichUhleretal.2022, author = {Ganuza, Cristina and Redlich, Sarah and Uhler, Johannes and Tobisch, Cynthia and Rojas-Botero, Sandra and Peters, Marcell K. and Zhang, Jie and Benjamin, Caryl S. and Englmeier, Jana and Ewald, J{\"o}rg and Fricke, Ute and Haensel, Maria and Kollmann, Johannes and Riebl, Rebekka and Uphus, Lars and M{\"u}ller, J{\"o}rg and Steffan-Dewenter, Ingolf}, title = {Interactive effects of climate and land use on pollinator diversity differ among taxa and scales}, series = {Science Advances}, volume = {8}, journal = {Science Advances}, number = {18}, doi = {10.1126/sciadv.abm9359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301303}, year = {2022}, abstract = {Changes in climate and land use are major threats to pollinating insects, an essential functional group. Here, we unravel the largely unknown interactive effects of both threats on seven pollinator taxa using a multiscale space-for-time approach across large climate and land-use gradients in a temperate region. Pollinator community composition, regional gamma diversity, and community dissimilarity (beta diversity) of pollinator taxa were shaped by climate-land-use interactions, while local alpha diversity was solely explained by their additive effects. Pollinator diversity increased with reduced land-use intensity (forest < grassland < arable land < urban) and high flowering-plant diversity at different spatial scales, and higher temperatures homogenized pollinator communities across regions. Our study reveals declines in pollinator diversity with land-use intensity at multiple spatial scales and regional community homogenization in warmer and drier climates. Management options at several scales are highlighted to mitigate impacts of climate change on pollinators and their ecosystem services.}, language = {en} } @article{FrickeRedlichZhangetal.2022, author = {Fricke, Ute and Redlich, Sarah and Zhang, Jie and Tobisch, Cynthia and Rojas-Botero, Sandra and Benjamin, Caryl S. and Englmeier, Jana and Ganuza, Cristina and Riebl, Rebekka and Uhler, Johannes and Uphus, Lars and Ewald, J{\"o}rg and Kollmann, Johannes and Steffan-Dewenter, Ingolf}, title = {Plant richness, land use and temperature differently shape invertebrate leaf-chewing herbivory on plant functional groups}, series = {Oecologia}, volume = {199}, journal = {Oecologia}, number = {2}, doi = {10.1007/s00442-022-05199-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325079}, pages = {407-417}, year = {2022}, abstract = {Higher temperatures can increase metabolic rates and carbon demands of invertebrate herbivores, which may shift leaf-chewing herbivory among plant functional groups differing in C:N (carbon:nitrogen) ratios. Biotic factors influencing herbivore species richness may modulate these temperature effects. Yet, systematic studies comparing leaf-chewing herbivory among plant functional groups in different habitats and landscapes along temperature gradients are lacking. This study was conducted on 80 plots covering large gradients of temperature, plant richness and land use in Bavaria, Germany. We investigated proportional leaf area loss by chewing invertebrates ('herbivory') in three plant functional groups on open herbaceous vegetation. As potential drivers, we considered local mean temperature (range 8.4-18.8 °C), multi-annual mean temperature (range 6.5-10.0 °C), local plant richness (species and family level, ranges 10-51 species, 5-25 families), adjacent habitat type (forest, grassland, arable field, settlement), proportion of grassland and landscape diversity (0.2-3 km scale). We observed differential responses of leaf-chewing herbivory among plant functional groups in response to plant richness (family level only) and habitat type, but not to grassland proportion, landscape diversity and temperature—except for multi-annual mean temperature influencing herbivory on grassland plots. Three-way interactions of plant functional group, temperature and predictors of plant richness or land use did not substantially impact herbivory. We conclude that abiotic and biotic factors can assert different effects on leaf-chewing herbivory among plant functional groups. At present, effects of plant richness and habitat type outweigh effects of temperature and landscape-scale land use on herbivory among legumes, forbs and grasses.}, language = {en} } @article{SteiningerAbelZiegleretal.2023, author = {Steininger, Michael and Abel, Daniel and Ziegler, Katrin and Krause, Anna and Paeth, Heiko and Hotho, Andreas}, title = {ConvMOS: climate model output statistics with deep learning}, series = {Data Mining and Knowledge Discovery}, volume = {37}, journal = {Data Mining and Knowledge Discovery}, number = {1}, issn = {1384-5810}, doi = {10.1007/s10618-022-00877-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324213}, pages = {136-166}, year = {2023}, abstract = {Climate models are the tool of choice for scientists researching climate change. Like all models they suffer from errors, particularly systematic and location-specific representation errors. One way to reduce these errors is model output statistics (MOS) where the model output is fitted to observational data with machine learning. In this work, we assess the use of convolutional Deep Learning climate MOS approaches and present the ConvMOS architecture which is specifically designed based on the observation that there are systematic and location-specific errors in the precipitation estimates of climate models. We apply ConvMOS models to the simulated precipitation of the regional climate model REMO, showing that a combination of per-location model parameters for reducing location-specific errors and global model parameters for reducing systematic errors is indeed beneficial for MOS performance. We find that ConvMOS models can reduce errors considerably and perform significantly better than three commonly used MOS approaches and plain ResNet and U-Net models in most cases. Our results show that non-linear MOS models underestimate the number of extreme precipitation events, which we alleviate by training models specialized towards extreme precipitation events with the imbalanced regression method DenseLoss. While we consider climate MOS, we argue that aspects of ConvMOS may also be beneficial in other domains with geospatial data, such as air pollution modeling or weather forecasts.}, subject = {Klima}, language = {en} }