@article{JunGholamiSongetal.2014, author = {Jun, Kyong-Hwa and Gholami, Spedideh and Song, Tae-Jin and Au, Joyce and Haddad, Dana and Carson, Joshua and Chen, Chun-Hao and Mojica, Kelly and Zanzonico, Pat and Chen, Nanhai G. and Zhang, Qian and Szalay, Aladar and Fong, Yuman}, title = {A novel oncolytic viral therapy and imaging technique for gastric cancer using a genetically engineered vaccinia virus carrying the human sodium iodide symporter}, series = {Journal of Experimental \& Clinical Cancer Research}, volume = {33}, journal = {Journal of Experimental \& Clinical Cancer Research}, number = {2}, issn = {1756-9966}, doi = {10.1186/1756-9966-33-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117716}, year = {2014}, abstract = {Background: Gastric cancers have poor overall survival despite recent advancements in early detection methods, endoscopic resection techniques, and chemotherapy treatments. Vaccinia viral therapy has had promising therapeutic potential for various cancers and has a great safety profile. We investigated the therapeutic efficacy of a novel genetically-engineered vaccinia virus carrying the human sodium iodide symporter (hNIS) gene, GLV-1 h153, on gastric cancers and its potential utility for imaging with Tc-99m pertechnetate scintigraphy and I-124 positron emission tomography (PET). Methods: GLV-1 h153 was tested against five human gastric cancer cell lines using cytotoxicity and standard viral plaque assays. In vivo, subcutaneous flank tumors were generated in nude mice with human gastric cancer cells, MKN-74. Tumors were subsequently injected with either GLV-1 h153 or PBS and followed for tumor growth. Tc-99m pertechnetate scintigraphy and I-124 microPET imaging were performed. Results: GFP expression, a surrogate for viral infectivity, confirmed viral infection by 24 hours. At a multiplicity of infection (MOI) of 1, GLV-1 h153 achieved > 90\% cytotoxicity in MNK-74, OCUM-2MD3, and AGS over 9 days, and >70\% cytotoxicity in MNK-45 and TMK-1. In vivo, GLV-1 h153 was effective in treating xenografts (p < 0.001) after 2 weeks of treatment. GLV-1 h153-infected tumors were readily imaged by Tc-99m pertechnetate scintigraphy and I-124 microPET imaging 2 days after treatment. Conclusions: GLV-1 h153 is an effective oncolytic virus expressing the hNIS protein that can efficiently regress gastric tumors and allow deep-tissue imaging. These data encourages its continued investigation in clinical settings.}, language = {en} } @article{CarsilloHueyLevinskyetal.2014, author = {Carsillo, Thomas and Huey, Devra and Levinsky, Amy and Obojes, Karola and Schneider-Schaulies, J{\"u}rgen and Niewiesk, Stefan}, title = {Cotton Rat (Sigmodon hispidus) Signaling Lymphocyte Activation Molecule (CD150) Is an Entry Receptor for Measles Virus}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {10}, issn = {1932-6203}, doi = {10.1371/journal.pone.0110120}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115178}, pages = {e110120}, year = {2014}, abstract = {Cotton rats (Sigmodon hispidus) replicate measles virus (MV) after intranasal infection in the respiratory tract and lymphoid tissue. We have cloned the cotton rat signaling lymphocytic activation molecule (CD150, SLAM) in order to investigate its role as a potential receptor for MV. Cotton rat CD150 displays 58\% and 78\% amino acid homology with human and mouse CD150, respectively. By staining with a newly generated cotton rat CD150 specific monoclonal antibody expression of CD150 was confirmed in cotton rat lymphoid cells and in tissues with a pattern of expression similar to mouse and humans. Previously, binding of MV hemagglutinin has been shown to be dependent on amino acids 60, 61 and 63 in the V region of CD150. The human molecule contains isoleucine, histidine and valine at these positions and binds to MV-H whereas the mouse molecule contains valine, arginine and leucine and does not function as a receptor for MV. In the cotton rat molecule, amino acids 61 and 63 are identical with the mouse molecule and amino acid 60 with the human molecule. After transfection with cotton rat CD150 HEK 293 T cells became susceptible to infection with single cycle VSV pseudotype virus expressing wild type MV glycoproteins and with a MV wildtype virus. After infection, cells expressing cotton rat CD150 replicated virus to lower levels than cells expressing the human molecule and formed smaller plaques. These data might explain why the cotton rat is a semipermissive model for measles virus infection.}, language = {en} } @article{PhillipsChanPaeschkeetal.2015, author = {Phillips, Jane A. and Chan, Angela and Paeschke, Katrin and Zakian, Virginia A.}, title = {The Pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {4}, doi = {10.1371/journal.pgen.1005186}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148722}, pages = {e1005186}, year = {2015}, abstract = {Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.}, language = {en} } @article{GressmannJanczyk2016, author = {Gressmann, Marcel and Janczyk, Markus}, title = {The (Un)Clear Effects of Invalid Retro-Cues}, series = {Frontiers in Psychology}, volume = {7}, journal = {Frontiers in Psychology}, number = {244}, doi = {10.3389/fpsyg.2016.00244}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165296}, year = {2016}, abstract = {Studies with the retro-cue paradigm have shown that validly cueing objects in visual working memory long after encoding can still benefit performance on subsequent change detection tasks. With regard to the effects of invalid cues, the literature is less clear. Some studies reported costs, others did not. We here revisit two recent studies that made interesting suggestions concerning invalid retro-cues: One study suggested that costs only occur for larger set sizes, and another study suggested that inclusion of invalid retro-cues diminishes the retro-cue benefit. New data from one experiment and a reanalysis of published data are provided to address these conclusions. The new data clearly show costs (and benefits) that were independent of set size, and the reanalysis suggests no influence of the inclusion of invalid retro-cues on the retro-cue benefit. Thus, previous interpretations may be taken with some caution at present.}, language = {en} } @article{WanzekSchwindtCapraetal.2017, author = {Wanzek, Katharina and Schwindt, Eike and Capra, John A. and Paeschke, Katrin}, title = {Mms1 binds to G-rich regions in Saccharomyces cerevisiae and influences replication and genome stability}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {13}, doi = {10.1093/nar/gkx467}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170577}, pages = {7796-7806}, year = {2017}, abstract = {The regulation of replication is essential to preserve genome integrity. Mms1 is part of the E3 ubiquitin ligase complex that is linked to replication fork progression. By identifying Mms1 binding sites genome-wide in Saccharomyces cerevisiae we connected Mms1 function to genome integrity and replication fork progression at particular G-rich motifs. This motif can form G-quadruplex (G4) structures in vitro. G4 are stable DNA structures that are known to impede replication fork progression. In the absence of Mms1, genome stability is at risk at these G-rich/G4 regions as demonstrated by gross chromosomal rearrangement assays. Mms1 binds throughout the cell cycle to these G-rich/G4 regions and supports the binding of Pif1 DNA helicase. Based on these data we propose a mechanistic model in which Mms1 binds to specific G-rich/G4 motif located on the lagging strand template for DNA replication and supports Pif1 function, DNA replication and genome integrity.}, language = {en} } @article{EidelKuebler2020, author = {Eidel, Matthias and K{\"u}bler, Andrea}, title = {Wheelchair Control in a Virtual Environment by Healthy Participants Using a P300-BCI Based on Tactile Stimulation: Training Effects and Usability}, series = {Frontiers in Human Neuroscience}, volume = {14}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.00265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207775}, year = {2020}, abstract = {Tactile stimulation is less frequently used than visual for brain-computer interface (BCI) control, partly because of limitations in speed and accuracy. Non-visual BCI paradigms, however, may be required for patients who struggle with vision dependent BCIs because of a loss of gaze control. With the present study, we attempted to replicate earlier results by Herweg et al. (2016), with several minor adjustments and a focus on training effects and usability. We invited 16 healthy participants and trained them with a 4-class tactile P300-based BCI in five sessions. Their main task was to navigate a virtual wheelchair through a 3D apartment using the BCI. We found significant training effects on information transfer rate (ITR), which increased from a mean of 3.10-9.50 bits/min. Further, both online and offline accuracies significantly increased with training from 65\% to 86\% and 70\% to 95\%, respectively. We found only a descriptive increase of P300 amplitudes at Fz and Cz with training. Furthermore, we report subjective data from questionnaires, which indicated a relatively high workload and moderate to high satisfaction. Although our participants have not achieved the same high performance as in the Herweg et al. (2016) study, we provide evidence for training effects on performance with a tactile BCI and confirm the feasibility of the paradigm.}, language = {en} } @article{LealSchwebsBriggsetal.2020, author = {Leal, Andrea Zurita and Schwebs, Marie and Briggs, Emma and Weisert, Nadine and Reis, Helena and Lemgruber, Leondro and Luko, Katarina and Wilkes, Jonathan and Butter, Falk and McCulloch, Richard and Janzen, Christian J.}, title = {Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation}, series = {Nucleic Acids Research}, volume = {48}, journal = {Nucleic Acids Research}, number = {17}, doi = {10.1093/nar/gkaa686}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230579}, pages = {9660-9680}, year = {2020}, abstract = {Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to off-spring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.}, language = {en} } @article{SchindlerRichterMar2021, author = {Schindler, Julia and Richter, Tobias and Mar, Raymond}, title = {Does generation benefit learning for narrative and expository texts? A direct replication attempt}, series = {Applied Cognitive Psychology}, volume = {35}, journal = {Applied Cognitive Psychology}, number = {2}, doi = {10.1002/acp.3781}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224496}, pages = {559 -- 564}, year = {2021}, abstract = {Generated information is better recognized and recalled than information that is read. This so-called generation effect has been replicated several times for different types of material, including texts. Perhaps the most influential demonstration was by McDaniel et al. (1986, Journal of Memory and Language, 25, 645-656; henceforth MEDC). This group tested whether the generation effect occurs only if the generation task stimulates cognitive processes not already stimulated by the text. Numerous studies, however, report difficulties replicating this text by generation-task interaction, which suggests that the effect might only be found under conditions closer to the original method of MEDC. To test this assumption, we will closely replicate MEDC's Experiment 2 in German and English-speaking samples. Replicating the effect would suggest that it can be reproduced, at least under limited conditions, which will provide the necessary foundation for future investigations into the boundary conditions of this effect, with an eye towards its utility in applied contexts.}, language = {en} }