@article{DrechslerMeinitzerPilzetal.2011, author = {Drechsler, Christiane and Meinitzer, Andreas and Pilz, Stefan and Krane, Vera and Tomaschitz, Andreas and Ritz, Eberhard and M{\"a}rz, Winfried and Wanner, Christoph}, title = {Homoarginine, heart failure, and sudden cardiac death in haemodialysis patients}, series = {European Journal of Heart Failure}, volume = {13}, journal = {European Journal of Heart Failure}, number = {8}, doi = {10.1093/eurjhf/hfr056}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140495}, pages = {852-859}, year = {2011}, abstract = {Aims Sudden cardiac death (SCD) is a major contributor to the excess mortality of patients on maintenance dialysis. Homoarginine deficiency may lead to decreased nitric oxide availability and endothelial dysfunction. Based on this rationale we assessed whether homoarginine deficiency is a risk factor for SCD in dialysis patients. Methods and results This study examined the association of homoarginine with cardiovascular outcomes in 1255 diabetic haemodialysis patients from the German diabetes and dialysis study. During a median of 4 years of follow-up, hazard ratios (HR) (95\% CI) for reaching the following pre-specified, adjudicated endpoints were determined: SCD, myocardial infarction, stroke, death due to heart failure, and combined cardiovascular events. There was a strong association of low homoarginine concentrations with the presence of congestive heart failure and left ventricular hypertrophy as well as increased levels of brain natriuretic peptide. Per unit decrease in homoarginine, the risk of SCD increased three-fold (HR 3.1, 95\% CI 2.0-4.9), attenuating slightly in multivariate models (HR 2.4; 95\% CI 1.5-3.9). Patients in the lowest homoarginine quintile experienced a more than two-fold increased risk of SCD, and more than three-fold increased risk of heart failure death than patients in the highest quintile, which accounted for the high incidence of combined cardiovascular events. Low homoarginine showed a trend towards increased risk of stroke, however, myocardial infarction was not meaningfully affected. Conclusion Low homoarginine is a strong risk factor for SCD and death due to heart failure in haemodialysis patients. Further studies are needed to elucidate the underlying mechanisms, offering the potential to develop new interventional strategies.}, language = {en} } @article{MeierShephardLutz1990, author = {Meier, I. and Shephard, S. E. and Lutz, Werner K.}, title = {Nitrosation of aspartic acid, aspartame, and glycine ethylester. Alkylation of 4-(p-nitrobenzyl)pyridine (NBP) in vitro and binding to DNA in the rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60804}, year = {1990}, abstract = {In a colorimetric assay using 4-( p-nitrobenzyl)pyridine (NBP) as a nucleophilic scavenger of alkylating agents, the nitrosation and alkylation reactions were investigated for a number of amino acids and derivatives. The alkylating activity increased with the square of the nitrite concentration. The nitrosation rate constants for aspartic acid, aspartame, and glycine ethylester ( = precursors C) were 0.08, 1.4 and ~ 0.2, respectively, expressed in terms of the pH-dependent \(k_2\) rate constant of the equation dNOCjdt = \(k_2\) • (C]· [nitrite]\(^2\) • The rates correlated inversely with the basicity of the amino group. The stability of the alkylating activity was astonishingly high, both in acid and at neutral pH. Half-lives of 500, 200, and 30 min were determined for aspartic acid (pH 3.5), aspartame (pH 2.5), and glycine ethylester (pH 2.5). Values of 60, 15, and 2 min; respectively, were found at pH 7. It is concluded that rearrangement of the primary N-nitroso product to the ultimate alkylating agent could be rate-limiting. The potential of nitrosated a-amino acids to bind to DN A in vivo was investigated by oral gavage of radiolabelled glycine ethylester to rats, followed irnmediately by sodium nitrite. DNA was isolated from stomach and liver and analysed for radioactivity and modified nucleotides. No indication of DNA adduct formation was obtained. Based on an estimation of the dose fraction converted from glycine ethylester to the nitroso product under the given experimental conditions, the maximum possible DNA-binding potency of nitroso glycine ethylester is about one order of magnitude below the methylating potency of N-nitrosomethylurea in rat stomach. The apparent discrepancy to the in vitro data could be due to efficient detoxification processes in mammalian cells.}, subject = {Toxikologie}, language = {en} }