@article{RiquelmeHaarerKammleretal.2018, author = {Riquelme, Paloma and Haarer, Jan and Kammler, Anja and Walter, Lisa and Tomiuk, Stefan and Ahrens, Norbert and Wege, Anja K. and Goecze, Ivan and Zecher, Daniel and Banas, Bernhard and Spang, Rainer and F{\"a}ndrich, Fred and Lutz, Manfred B. and Sawitzki, Birgit and Schlitt, Hans J. and Ochando, Jordi and Geissler, Edward K. and Hutchinson, James A.}, title = {TIGIT\(^+\) iTregs elicited by human regulatory macrophages control T cell immunity}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, number = {9}, doi = {10.1038/s41467-018-05167-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226321}, pages = {2858, 1-18}, year = {2018}, abstract = {Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4(+) T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4(+) T cells to IL-10-producing, TIGIT(+) FoxP3(+)-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-beta, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT(+) Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs.}, language = {en} } @article{KleistMohrGaikwadetal.2016, author = {Kleist, Christian and Mohr, Elisabeth and Gaikwad, Sadanand and Dittmar, Laura and Kuerten, Stefanie and Platten, Michael and Mier, Walter and Schmitt, Michael and Opelz, Gerhard and Terness, Peter}, title = {Autoantigen-specific immunosuppression with tolerogenic peripheral blood cells prevents relapses in a mouse model of relapsing-remitting multiple sclerosis}, series = {Journal of Translational Medicine}, volume = {14}, journal = {Journal of Translational Medicine}, number = {99}, doi = {10.1186/s12967-016-0860-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165787}, pages = {1-14}, year = {2016}, abstract = {Background: Dendritic cells (DCs) rendered suppressive by treatment with mitomycin C and loaded with the autoantigen myelin basic protein demonstrated earlier their ability to prevent experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis (MS). This provides an approach for prophylactic vaccination against autoimmune diseases. For clinical application such DCs are difficult to generate and autoantigens hold the risk of exacerbating the disease. Methods: We replaced DCs by peripheral mononuclear cells and myelin autoantigens by glatiramer acetate (Copaxone ®), a drug approved for the treatment of MS. Spleen cells were loaded with Copaxone®, incubated with mitomycin C (MICCop) and injected into mice after the first bout of relapsing-remitting EAE. Immunosuppression mediated by MICCop was investigated in vivo by daily assessment of clinical signs of paralysis and in in vitro restimulation assays of peripheral immune cells. Cytokine profiling was performed by enzyme-linked immunosorbent assay (ELISA). Migration of MICCop cells after injection was examined by biodistribution analysis of 111Indium-labelled MICCop. The number and inhibitory activity of CD4+CD25+FoxP3+ regulatory T cells were analysed by histology, flow cytometry and in vitro mixed lymphocyte cultures. In order to assess the specificity of MICCop-induced suppression, treated EAE mice were challenged with the control protein ovalbumin. Humoral and cellular immune responses were then determined by ELISA and in vitro antigen restimulation assay. Results: MICCop cells were able to inhibit the harmful autoreactive T-cell response and prevented mice from further relapses without affecting general immune responses. Administered MICCop migrated to various organs leading to an increased infiltration of the spleen and the central nervous system with CD4+CD25+FoxP3+ cells displaying a suppressive cytokine profile and inhibiting T-cell responses. Conclusion: We describe a clinically applicable cell therapeutic approach for controlling relapses in autoimmune encephalomyelitis by specifically silencing the deleterious autoimmune response.}, language = {en} } @article{PrelogSchoenlaubWuerzneretal.2013, author = {Prelog, Martina and Sch{\"o}nlaub, J{\"o}rn and W{\"u}rzner, Reinhard and Koppelstaetter, Christian and Almanzar, Giovanni and Brunner, Andrea and Gasser, Martin and Prommegger, Rupert and H{\"a}usler, Gabriele and Kapelari, Klaus and H{\"o}gler, Wolfgang}, title = {Lower CD28+ T cell proportions were associated with CMV-seropositivity in patients with Hashimoto's thyroiditis}, series = {BMC Endocrine Disorders}, journal = {BMC Endocrine Disorders}, doi = {10.1186/1472-6823-13-34}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96352}, year = {2013}, abstract = {Background Alterations in the naive T cell subpopulations have been demonstrated in patients with T cell mediated autoimmune disorders, reminiscent of immunological changes found in the elderly during immunosenescence, including the switch from CD45RA + to CD45RO + T cells and decreased thymic function with increased compensatory proliferative mechanisms, partly associated with latent Cytomegalovirus (CMV) infection. The present study was aimed to investigate proportions of lymphocytes, their relation to CMV-seropositivity and the replicative history of CD45RA + expressing T cells in Hashimoto's thyroiditis (HT, n = 18) and healthy controls (HC, n = 70). Methods Proportions of peripheral T cells were investigated by flow cytometry. The replicative history was assessed by T cell receptor excision circles (TRECs) and relative telomere length (RTL). Expression of CD62L was analyzed by immunohistochemistry in thyroid sections. The role of CMV was assessed by serology, ELISPOT assay and in situ hybridization. Results Our results demonstrated a significant increase of CD28-negative T cells, associated with CMV-seropositivity in HT patients. HT showed abundant CD45RO + T cells with peripheral loss of CD62L-expressing CD8 + CD45RA + T cells, the latter mainly depending on disease duration. CD62L was expressed in thyroid lymphocyte infiltrations. The diagnosis of HT and within the HT group CMV-seropositivity were the main determinants for the loss of CD28 expression. RTL was not different between HC and HT. HT showed significantly lower TRECs in CD4 + CD45RA + T cells compared to HC. Conclusions Patients with HT display a peripheral T cell phenotype reminiscent of findings in elderly persons or other autoimmune disorders. Whether these mechanisms are primary or secondary to the immunological alterations of autoimmune conditions should be investigated in longitudinal studies which may open research on new therapeutic regimes for treatment of HT and associated autoimmune diseases.}, language = {en} }