@article{PaulKollmannsberger2020, author = {Paul, Torsten Johann and Kollmannsberger, Philip}, title = {Biological network growth in complex environments: A computational framework}, series = {PLoS Computational Biology}, volume = {16}, journal = {PLoS Computational Biology}, number = {11}, doi = {10.1371/journal.pcbi.1008003}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231373}, year = {2020}, abstract = {Spatial biological networks are abundant on all scales of life, from single cells to ecosystems, and perform various important functions including signal transmission and nutrient transport. These biological functions depend on the architecture of the network, which emerges as the result of a dynamic, feedback-driven developmental process. While cell behavior during growth can be genetically encoded, the resulting network structure depends on spatial constraints and tissue architecture. Since network growth is often difficult to observe experimentally, computer simulations can help to understand how local cell behavior determines the resulting network architecture. We present here a computational framework based on directional statistics to model network formation in space and time under arbitrary spatial constraints. Growth is described as a biased correlated random walk where direction and branching depend on the local environmental conditions and constraints, which are presented as 3D multilayer grid. To demonstrate the application of our tool, we perform growth simulations of a dense network between cells and compare the results to experimental data from osteocyte networks in bone. Our generic framework might help to better understand how network patterns depend on spatial constraints, or to identify the biological cause of deviations from healthy network function. Author summary We present a novel modeling approach and computational implementation to better understand the development of spatial biological networks under the influence of external signals. Our tool allows us to study the relationship between local biological growth parameters and the emerging macroscopic network function using simulations. This computational approach can generate plausible network graphs that take local feedback into account and provide a basis for comparative studies using graph-based methods.}, language = {en} } @article{SchattonYangKleffeletal.2015, author = {Schatton, Tobias and Yang, Jun and Kleffel, Sonja and Uehara, Mayuko and Barthel, Steven R. and Schlapbach, Christoph and Zhan, Qian and Dudeney, Stephen and Mueller, Hansgeorg and Lee, Nayoung and de Vries, Juliane C. and Meier, Barbara and Beken, Seppe Vander and Kluth, Mark A. and Ganss, Christoph and Sharpe, Arlene H. and Waaga-Gasser, Ana Maria and Sayegh, Mohamed H. and Abdi, Reza and Scharffetter-Kochanek, Karin and Murphy, George F. and Kupper, Thomas S. and Frank, Natasha Y. and Frank, Markus H.}, title = {ABCB5 Identifies Immunoregulatory Dermal Cells}, series = {Cell Reports}, volume = {12}, journal = {Cell Reports}, doi = {10.1016/j.celrep.2015.08.010}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149989}, pages = {1564 -- 1574}, year = {2015}, abstract = {Cell-based strategies represent a new frontier in the treatment of immune-mediated disorders. However, the paucity of markers for isolation of molecularly defined immunomodulatory cell populations poses a barrier to this field. Here, we show that ATP-binding cassette member B5 (ABCB5) identifies dermal immunoregulatory cells (DIRCs) capable of exerting therapeutic immunoregulatory functions through engagement of programmed cell death 1 (PD-1). Purified Abcb5\(^+\) DIRCs suppressed T cell proliferation, evaded immune rejection, homed to recipient immune tissues, and induced Tregs in vivo. In fully major-histocompatibility-complex-mismatched cardiac allotransplantation models, allogeneic DIRCs significantly prolonged allograft survival. Blockade of DIRC-expressed PD-1 reversed the inhibitory effects of DIRCs on T cell activation, inhibited DIRC-dependent Treg induction, and attenuated DIRC-induced prolongation of cardiac allograft survival, indicating that DIRC immunoregulatory function is mediated, at least in part, through PD-1. Our results identify ABCB5\(^+\) DIRCs as a distinct immunoregulatory cell population and suggest promising roles of this expandable cell subset in cellular immunotherapy.}, language = {en} } @article{LeeLimSchneideretal.2015, author = {Lee, Chang-Min and Lim, Hee-Jin and Schneider, Christian and Maier, Sebastian and H{\"o}fling, Sven and Kamp, Martin and Lee, Yong-Hee}, title = {Efficient single photon source based on \(\mu\)-fibre-coupled tunable microcavity}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {14309}, doi = {10.1038/srep14309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145835}, year = {2015}, abstract = {Efficient and fast on-demand single photon sources have been sought after as critical components of quantum information science. We report an efficient and tunable single photon source based on an InAs quantum dot (QD) embedded in a photonic crystal cavity coupled with a highly curved \(\mu\)-fibre. Exploiting evanescent coupling between the \(\mu\)-fibre and the cavity, a high collection efficiency of 23\% and Purcell-enhanced spontaneous emissions are observed. In our scheme, the spectral position of a resonance can be tuned by as much as 1.5 nm by adjusting the contact position of the \(\mu\)-fibre, which increases the spectral coupling probability between the QD and the cavity mode. Taking advantage of the high photon count rate and the tunability, the collection efficiencies and the decay rates are systematically investigated as a function of the QD-cavity detuning.}, language = {en} } @article{YuNatarajanHorikirietal.2015, author = {Yu, Leo and Natarajan, Chandra M. and Horikiri, Tomoyuki and Langrock, Carsten and Pelc, Jason S. and Tanner, Michael G. and Abe, Eisuke and Maier, Sebastian and Schneider, Christian and H{\"o}fling, Sven and Kamp, Martin and Hadfield, Robert H. and Fejer, Martin M. and Yamamoto, Yoshihisa}, title = {Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, doi = {10.1038/ncomms9955}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138677}, pages = {8955}, year = {2015}, abstract = {Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.}, language = {en} } @article{GarciaMatosShenetal.2014, author = {Garcia, Tzintzuni I. and Matos, Isa and Shen, Yingjia and Pabuwal, Vagmita and Coelho, Maria Manuela and Wakamatsu, Yuko and Schartl, Manfred and Walter, Ronald B.}, title = {Novel Method for Analysis of Allele Specific Expression in Triploid Oryzias latipes Reveals Consistent Pattern of Allele Exclusion}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {6}, issn = {1932-6203}, doi = {10.1371/journal.pone.0100250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116000}, pages = {e100250}, year = {2014}, abstract = {Assessing allele-specific gene expression (ASE) on a large scale continues to be a technically challenging problem. Certain biological phenomena, such as X chromosome inactivation and parental imprinting, affect ASE most drastically by completely shutting down the expression of a whole set of alleles. Other more subtle effects on ASE are likely to be much more complex and dependent on the genetic environment and are perhaps more important to understand since they may be responsible for a significant amount of biological diversity. Tools to assess ASE in a diploid biological system are becoming more reliable. Non-diploid systems are, however, not uncommon. In humans full or partial polyploid states are regularly found in both healthy (meiotic cells, polynucleated cell types) and diseased tissues (trisomies, non-disjunction events, cancerous tissues). In this work we have studied ASE in the medaka fish model system. We have developed a method for determining ASE in polyploid organisms from RNAseq data and we have implemented this method in a software tool set. As a biological model system we have used nuclear transplantation to experimentally produce artificial triploid medaka composed of three different haplomes. We measured ASE in RNA isolated from the livers of two adult, triploid medaka fish that showed a high degree of similarity. The majority of genes examined (82\%) shared expression more or less evenly among the three alleles in both triploids. The rest of the genes (18\%) displayed a wide range of ASE levels. Interestingly the majority of genes (78\%) displayed generally consistent ASE levels in both triploid individuals. A large contingent of these genes had the same allele entirely suppressed in both triploids. When viewed in a chromosomal context, it is revealed that these genes are from large sections of 4 chromosomes and may be indicative of some broad scale suppression of gene expression.}, language = {en} }