@article{RolveringZimmerGinolhacetal.2018, author = {Rolvering, Catherine and Zimmer, Andreas D. and Ginolhac, Aur{\´e}lien and Margue, Christiane and Kirchmeyer, M{\´e}lanie and Servais, Florence and Hermanns, Heike M. and Hergovits, Sabine and Nazarov, Petr V. and Nicot, Nathalie and Kreis, Stephanie and Haan, Serge and Behrmann, Iris and Haan, Claude}, title = {The PD-L1-and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by alpha-PD-L1 or alpha-IL6 antibodies}, series = {Journal of Leukocyte Biology}, volume = {104}, journal = {Journal of Leukocyte Biology}, number = {5}, doi = {10.1002/JLB.MA1217-495R}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226974}, pages = {969-985}, year = {2018}, abstract = {Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells. We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN--like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associated with immune escape of cancer. Interestingly, differential expression of these genes was observed within the different cell lines and when comparing IL27 to IFN-. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other T(H)1 cytokines were also enhanced or restored upon administration of anti-PD-L1. In addition, we show that the suppression of IL27 signaling by IL6-type cytokine pre-stimulationmimicking a situation occurring, for example, in IL6-secreting tumors or in tumor inflammation-induced cachexiacan be antagonized by antibodies against IL6-type cytokines or their receptors. Therapeutically, the antitumor effects of IL27 (mediated, e.g., by increased antigen presentation) might thus be increased by combining IL27 with blocking antibodies against PD-L1 or/and IL6-type cytokines.}, language = {en} } @article{SaintFleurLominyMausVaethetal.2018, author = {Saint Fleur-Lominy, Shella and Maus, Mate and Vaeth, Martin and Lange, Ingo and Zee, Isabelle and Suh, David and Liu, Cynthia and Wu, Xiaojun and Tikhonova, Anastasia and Aifantis, Iannis and Feske, Stefan}, title = {STIM1 and STIM2 Mediate Cancer-Induced Inflammation in T Cell Acute Lymphoblastic Leukemia}, series = {Cell Reports}, volume = {24}, journal = {Cell Reports}, number = {11}, doi = {10.1016/j.celrep.2018.08.030}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227259}, pages = {3045-3060}, year = {2018}, abstract = {T cell acute lymphoblastic leukemia (T-ALL) is commonly associated with activating mutations in the NOTCH1 pathway. Recent reports have shown a link between NOTCH1 signaling and intracellular Ca2+ homeostasis in T-ALL. Here, we investigate the role of store-operated Ca2+ entry (SOCE) mediated by the Ca2+ channel ORAI1 and its activators STIM1 and STIM2 in T-ALL. Deletion of STIM1 and STIM2 in leukemic cells abolishes SOCE and significantly prolongs the survival of mice in a NOTCH1-dependent model of T-ALL. The survival advantage is unrelated to the leukemic cell burden but is associated with the SOCE-dependent ability of malignant T lymphoblasts to cause inflammation in leukemia-infiltrated organs. Mice with STIM1/STIM2-deficient T-ALL show a markedly reduced necroinflammatory response in leukemia-infiltrated organs and downregulation of signaling pathways previously linked to cancer-induced inflammation. Our study shows that leukemic T lymphoblasts cause inflammation of leukemia-infiltrated organs that is dependent on SOCE.}, language = {en} } @article{SchramaUgurelSuckeretal.2014, author = {Schrama, David and Ugurel, Selma and Sucker, Antje and Ritter, Cathrin and Zapatka, Marc and Schadendorf, Dirk and Becker, J{\"u}rgen Christian}, title = {STAT3 Single Nucleotide Polymorphism rs4796793 SNP Does Not Correlate with Response to Adjuvant IFNα Therapy in Stage III Melanoma Patients}, series = {Frontiers in Medicine}, volume = {1}, journal = {Frontiers in Medicine}, number = {47}, issn = {2296-858X}, doi = {10.3389/fmed.2014.00047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120602}, year = {2014}, abstract = {Interferon alpha (IFNα) is approved for adjuvant treatment of stage III melanoma in Europe and the US. Its clinical efficacy, however, is restricted to a subpopulation of patients while side effects occur in most of treated patients. Thus, the identification of predictive biomarkers would be highly beneficial to improve the benefit to risk ratio. In this regard, STAT3 is important for signaling of the IFNα receptor. Moreover, the STAT3 single-nucleotide polymorphism (SNP) rs4796793 has recently been reported to be associated with IFNα sensitivity in metastatic renal cell carcinoma. To translate this notion to melanoma, we scrutinized the impact of rs4796793 functionally and clinically in this cancer. Interestingly, melanoma cells carrying the minor allele of rs4796793 were the most sensitive to IFNα in vitro. However, we did not detect a correlation between SNP genotype and STAT3 mRNA expression for either melanoma cells or for peripheral blood lymphocytes. Next, we analyzed the impact of rs4796793 on the clinical outcome of 259 stage III melanoma patients of which one-third had received adjuvant IFNα treatment. These analyses did not reveal a significant association between the STAT3 rs4796793 SNP and patients' progression free or overall survival when IFNα treated and untreated patients were compared. In conclusion, STAT3 rs4796793 SNP is no predictive marker for the efficacy of adjuvant IFNα treatment in melanoma patients.}, language = {en} }