@article{WehrleLiedertHeilmannetal.2015, author = {Wehrle, Esther and Liedert, Astrid and Heilmann, Aline and Wehner, Tim and Bindl, Ronny and Fischer, Lena and Haffner-Luntzer, Melanie and Jakob, Franz and Schinke, Thorsten and Amling, Michael and Ignatius, Anita}, title = {The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice}, series = {Disease Models \& Mechanisms}, volume = {8}, journal = {Disease Models \& Mechanisms}, doi = {10.1242/dmm.018622}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144700}, pages = {93-104}, year = {2015}, abstract = {Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV). We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96) were either ovariectomised (OVX) or sham operated (non-OVX) at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day) with 0.3 g peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, micro-computed tomography (mu CT), histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (-81\%) and bone formation (-80\%) in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2) and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+ 1398\%) and bone formation (+637\%), which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet). On a molecular level, we found an upregulation of ER alpha in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERa might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and effective in confined target populations.}, language = {en} } @article{DoerhoeferLammertKraneetal.2013, author = {D{\"o}rh{\"o}fer, Lena and Lammert, Alexander and Krane, Vera and Gorski, Mathias and Banas, Bernhard and Wanner, Christoph and Kr{\"a}mer, Bernhard K. and Heid, Iris M. and B{\"o}ger, Carsten A.}, title = {Study design of DIACORE (DIAbetes COhoRtE) - a cohort study of patients with diabetes mellitus type 2}, series = {BMC Medical Genetics}, volume = {14}, journal = {BMC Medical Genetics}, number = {25}, issn = {1471-2350}, doi = {10.1186/1471-2350-14-25}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122040}, year = {2013}, abstract = {Background: Diabetes mellitus type 2 (DM2) is highly associated with increased risk for chronic kidney disease (CKD), end stage renal disease (ESRD) and cardiovascular morbidity. Epidemiological and genetic studies generate hypotheses for innovative strategies in DM2 management by unravelling novel mechanisms of diabetes complications, which is essential for future intervention trials. We have thus initiated the DIAbetes COhoRtE study (DIACORE). Methods: DIACORE is a prospective cohort study aiming to recruit 6000 patients of self-reported Caucasian ethnicity with prevalent DM2 for at least 10 years of follow-up. Study visits are performed in University-based recruiting clinics in Germany using standard operating procedures. All prevalent DM2 patients in outpatient clinics surrounding the recruiting centers are invited to participate. At baseline and at each 2-year follow-up examination, patients are subjected to a core phenotyping protocol. This includes a standardized online questionnaire and physical examination to determine incident micro-and macrovascular DM2 complications, malignancy and hospitalization, with a primary focus on renal events. Confirmatory outcome information is requested from patient records. Blood samples are obtained for a centrally analyzed standard laboratory panel and for biobanking of aliquots of serum, plasma, urine, mRNA and DNA for future scientific use. A subset of the cohort is subjected to extended phenotyping, e. g. sleep apnea screening, skin autofluorescence measurement, non-mydriatic retinal photography and non-invasive determination of arterial stiffness. Discussion: DIACORE will enable the prospective evaluation of factors involved in DM2 complication pathogenesis using high-throughput technologies in biosamples and genetic epidemiological studies.}, language = {en} }